Use the orignal dummynet's indentation style
[dragonfly.git] / sys / vfs / hammer / hammer_disk.h
CommitLineData
8750964d
MD
1/*
2 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
9775c955 34 * $DragonFly: src/sys/vfs/hammer/hammer_disk.h,v 1.2 2007/10/16 18:16:42 dillon Exp $
8750964d
MD
35 */
36
37#ifndef _SYS_UUID_H_
38#include <sys/uuid.h>
39#endif
40
41/*
42 * The structures below represent the on-disk format for a HAMMER
43 * filesystem. Note that all fields for on-disk structures are naturally
44 * aligned. The host endian format is used - compatibility is possible
45 * if the implementation detects reversed endian and adjusts data accordingly.
46 *
47 * Most of HAMMER revolves around the concept of an object identifier. An
48 * obj_id is a 64 bit quantity which uniquely identifies a filesystem object
49 * FOR THE ENTIRE LIFE OF THE FILESYSTEM. This uniqueness allows backups
50 * and mirrors to retain varying amounts of filesystem history by removing
51 * any possibility of conflict through identifier reuse.
52 *
53 * A HAMMER filesystem may spam multiple volumes.
54 *
55 * A HAMMER filesystem uses a 16K filesystem buffer size. All filesystem
c60bb2c5
MD
56 * I/O is done in multiples of 16K. Most buffer-sized headers such as those
57 * used by volumes, super-clusters, clusters, and basic filesystem buffers
58 * use fixed-sized A-lists which are heavily dependant on HAMMER_BUFSIZE.
8750964d
MD
59 */
60#define HAMMER_BUFSIZE 16384
61#define HAMMER_BUFMASK (HAMMER_BUFSIZE - 1)
62
63/*
64 * Hammer transction ids are 64 bit unsigned integers and are usually
65 * synchronized with the time of day in nanoseconds.
66 */
67typedef u_int64_t hammer_tid_t;
68
8750964d
MD
69/*
70 * Most HAMMER data structures are embedded in 16K filesystem buffers.
71 * All filesystem buffers except those designated as pure-data buffers
72 * contain this 128-byte header.
73 *
74 * This structure contains an embedded A-List used to manage space within
75 * the filesystem buffer. It is not used by volume or cluster header
76 * buffers, or by pure-data buffers. The granularity is variable and
77 * depends on the type of filesystem buffer. BLKSIZE is just a minimum.
78 */
79
80#define HAMMER_FSBUF_HEAD_SIZE 128
81#define HAMMER_FSBUF_MAXBLKS 256
9775c955 82#define HAMMER_FSBUF_BLKMASK (HAMMER_FSBUF_MAXBLKS - 1)
c60bb2c5 83#define HAMMER_FSBUF_METAELMS HAMMER_ALIST_METAELMS_256_1LYR /* 11 */
8750964d
MD
84
85struct hammer_fsbuf_head {
86 u_int64_t buf_type;
87 u_int32_t buf_crc;
88 u_int32_t buf_reserved07;
c60bb2c5 89 u_int32_t reserved[6];
8750964d
MD
90 struct hammer_almeta buf_almeta[HAMMER_FSBUF_METAELMS];
91};
92
93typedef struct hammer_fsbuf_head *hammer_fsbuf_head_t;
94
c60bb2c5
MD
95/*
96 * Note: Pure-data buffers contain pure-data and have no buf_type.
97 * Piecemeal data buffers do have a header and use HAMMER_FSBUF_DATA.
98 */
8750964d 99#define HAMMER_FSBUF_VOLUME 0xC8414D4DC5523031ULL /* HAMMER01 */
c60bb2c5 100#define HAMMER_FSBUF_SUPERCL 0xC8414D52C3555052ULL /* HAMRSUPR */
8750964d
MD
101#define HAMMER_FSBUF_CLUSTER 0xC8414D52C34C5553ULL /* HAMRCLUS */
102#define HAMMER_FSBUF_RECORDS 0xC8414D52D2454353ULL /* HAMRRECS */
103#define HAMMER_FSBUF_BTREE 0xC8414D52C2545245ULL /* HAMRBTRE */
104#define HAMMER_FSBUF_DATA 0xC8414D52C4415441ULL /* HAMRDATA */
105
106#define HAMMER_FSBUF_VOLUME_REV 0x313052C54D4D41C8ULL /* (reverse endian) */
107
108/*
109 * The B-Tree structures need hammer_fsbuf_head.
110 */
111#include "hammer_btree.h"
112
113/*
114 * HAMMER Volume header
115 *
116 * A HAMMER filesystem is built from any number of block devices, Each block
c60bb2c5
MD
117 * device contains a volume header followed by however many super-clusters
118 * and clusters fit into the volume. Clusters cannot be migrated but the
119 * data they contain can, so HAMMER can use a truncated cluster for any
120 * extra space at the end of the volume.
8750964d
MD
121 *
122 * The volume containing the root cluster is designated as the master volume.
123 * The root cluster designation can be moved to any volume.
124 *
125 * The volume header takes up an entire 16K filesystem buffer and includes
c60bb2c5
MD
126 * a one or two-layered A-list to manage the clusters making up the volume.
127 * A volume containing up to 32768 clusters (2TB) can be managed with a
128 * single-layered A-list. A two-layer A-list is capable of managing up
129 * to 16384 super-clusters with each super-cluster containing 32768 clusters
130 * (32768 TB per volume total). The number of volumes is limited to 32768
131 * but it only takes 512 to fill out a 64 bit address space so for all
132 * intents and purposes the filesystem has no limits.
133 *
134 * cluster addressing within a volume depends on whether a single or
135 * duel-layer A-list is used. If a duel-layer A-list is used a 16K
136 * super-cluster buffer is needed for every 16384 clusters in the volume.
137 * However, because the A-list's hinting is grouped in multiples of 16
138 * we group 16 super-cluster buffers together (starting just after the
139 * volume header), followed by 16384x16 clusters, and repeat.
140 *
141 * NOTE: A 32768-element single-layer and 16384-element duel-layer A-list
142 * is the same size.
8750964d 143 */
c60bb2c5
MD
144#define HAMMER_VOL_MAXCLUSTERS 32768 /* 1-layer */
145#define HAMMER_VOL_MAXSUPERCLUSTERS 16384 /* 2-layer */
146#define HAMMER_VOL_SUPERCLUSTER_GROUP 16
147#define HAMMER_VOL_METAELMS_1LYR HAMMER_ALIST_METAELMS_32K_1LYR
148#define HAMMER_VOL_METAELMS_2LYR HAMMER_ALIST_METAELMS_16K_2LYR
8750964d
MD
149
150struct hammer_volume_ondisk {
151 struct hammer_fsbuf_head head;
9775c955 152 int64_t vol_beg; /* byte offset of first cl/supercl in volume */
8750964d
MD
153 int64_t vol_end; /* byte offset of volume EOF */
154 int64_t vol_locked; /* reserved clusters are >= this offset */
155
156 uuid_t vol_fsid; /* identify filesystem */
157 uuid_t vol_fstype; /* identify filesystem type */
158 char vol_name[64]; /* Name of volume */
159
160 int32_t vol_no; /* volume number within filesystem */
161 int32_t vol_count; /* number of volumes making up FS */
162
163 u_int32_t vol_version; /* version control information */
9775c955 164 u_int32_t vol_reserved01;
8750964d
MD
165 u_int32_t vol_flags; /* volume flags */
166 u_int32_t vol_rootvol; /* which volume is the root volume? */
167
168 int32_t vol_clsize; /* cluster size (same for all volumes) */
9775c955 169 int32_t vol_nclusters;
8750964d
MD
170 u_int32_t vol_reserved06;
171 u_int32_t vol_reserved07;
172
173 /*
174 * These fields are initialized and space is reserved in every
175 * volume making up a HAMMER filesytem, but only the master volume
176 * contains valid data.
177 */
178 int32_t vol0_rootcluster; /* root cluster no (index) in rootvol */
179 u_int32_t vol0_reserved02;
180 u_int32_t vol0_reserved03;
181 hammer_tid_t vol0_nexttid; /* next TID */
182 u_int64_t vol0_recid; /* fs-wide record id allocator */
183
184 char reserved[1024];
185
c60bb2c5
MD
186 /*
187 * Meta elements for the volume header's A-list, which is either a
188 * 1-layer A-list capable of managing 32768 clusters, or a 2-layer
189 * A-list capable of managing 16384 super-clusters (each of which
190 * can handle 32768 clusters).
191 */
192 union {
9775c955
MD
193 struct hammer_almeta super[HAMMER_VOL_METAELMS_2LYR];
194 struct hammer_almeta normal[HAMMER_VOL_METAELMS_1LYR];
c60bb2c5 195 } vol_almeta;
8750964d
MD
196 u_int32_t vol0_bitmap[1024];
197};
198
c60bb2c5
MD
199#define HAMMER_VOLF_VALID 0x0001 /* valid entry */
200#define HAMMER_VOLF_OPEN 0x0002 /* volume is open */
201#define HAMMER_VOLF_SUPERCL_ENABLE 0x0004 /* enable supercluster layer */
202#define HAMMER_VOLF_SUPERCL_RESERVE 0x0008 /* supercluster layout */
203
204/*
205 * HAMMER Super-cluster header
206 *
207 * A super-cluster is used to increase the maximum size of a volume.
208 * HAMMER's volume header can manage up to 32768 direct clusters or
209 * 16384 super-clusters. Each super-cluster (which is basically just
210 * a 16K filesystem buffer) can manage up to 32768 clusters. So adding
211 * a super-cluster layer allows a HAMMER volume to be sized upwards of
212 * around 32768TB instead of 2TB.
213 *
214 * Any volume initially formatted to be over 32G reserves space for the layer
215 * but the layer is only enabled if the volume exceeds 2TB.
216 */
217#define HAMMER_SUPERCL_METAELMS HAMMER_ALIST_METAELMS_32K_1LYR
9775c955 218#define HAMMER_SCL_MAXCLUSTERS HAMMER_VOL_MAXCLUSTERS
c60bb2c5
MD
219
220struct hammer_supercl_ondisk {
221 struct hammer_fsbuf_head head;
222 uuid_t vol_fsid; /* identify filesystem - sanity check */
223 uuid_t vol_fstype; /* identify filesystem type - sanity check */
224 int32_t reserved[1024];
225
9775c955 226 struct hammer_almeta scl_meta[HAMMER_SUPERCL_METAELMS];
c60bb2c5 227};
8750964d
MD
228
229/*
230 * HAMMER Cluster header
231 *
c60bb2c5
MD
232 * A cluster is limited to 64MB and is made up of 4096 16K filesystem
233 * buffers. The cluster header contains four A-lists to manage these
234 * buffers.
235 *
236 * master_alist - This is a non-layered A-list which manages pure-data
237 * allocations and allocations on behalf of other A-lists.
238 *
239 * btree_alist - This is a layered A-list which manages filesystem buffers
240 * containing B-Tree nodes.
8750964d 241 *
c60bb2c5
MD
242 * record_alist - This is a layered A-list which manages filesystem buffers
243 * containing records.
244 *
245 * mdata_alist - This is a layered A-list which manages filesystem buffers
246 * containing piecemeal record data.
247 *
248 * General storage management works like this: All the A-lists except the
249 * master start in an all-allocated state. Now lets say you wish to allocate
250 * a B-Tree node out the btree_alist. If the allocation fails you allocate
251 * a pure data block out of master_alist and then free that block in
252 * btree_alist, thereby assigning more space to the btree_alist, and then
253 * retry your allocation out of the btree_alist. In the reverse direction,
254 * filesystem buffers can be garbage collected back to master_alist simply
255 * by doing whole-buffer allocations in btree_alist and then freeing the
256 * space in master_alist. The whole-buffer-allocation approach to garbage
257 * collection works because A-list allocations are always power-of-2 sized
258 * and aligned.
8750964d 259 */
c60bb2c5
MD
260#define HAMMER_CLU_MAXBUFFERS 4096
261#define HAMMER_CLU_MASTER_METAELMS HAMMER_ALIST_METAELMS_4K_1LYR
262#define HAMMER_CLU_SLAVE_METAELMS HAMMER_ALIST_METAELMS_4K_2LYR
9775c955 263#define HAMMER_CLU_MAXBYTES (HAMMER_CLU_MAXBUFFERS * HAMMER_BUFSIZE)
8750964d
MD
264
265struct hammer_cluster_ondisk {
266 struct hammer_fsbuf_head head;
267 uuid_t vol_fsid; /* identify filesystem - sanity check */
268 uuid_t vol_fstype; /* identify filesystem type - sanity check */
269
270 u_int64_t clu_gen; /* identify generation number of cluster */
271 u_int64_t clu_unused01;
272
273 hammer_tid_t clu_id; /* unique cluster self identification */
274 int32_t vol_no; /* cluster contained in volume (sanity) */
275 u_int32_t clu_flags; /* cluster flags */
276
277 int32_t clu_start; /* start of data (byte offset) */
278 int32_t clu_limit; /* end of data (byte offset) */
279 int32_t clu_no; /* cluster index in volume (sanity) */
280 u_int32_t clu_reserved03;
281
282 u_int32_t clu_reserved04;
283 u_int32_t clu_reserved05;
284 u_int32_t clu_reserved06;
285 u_int32_t clu_reserved07;
286
9775c955
MD
287 int32_t idx_data; /* data append point (element no) */
288 int32_t idx_index; /* index append point (element no) */
289 int32_t idx_record; /* record prepend point (element no) */
8750964d
MD
290 u_int32_t idx_reserved03;
291
292 /*
c60bb2c5
MD
293 * Specify the range of information stored in this cluster as two
294 * btree elements. These elements exist as separate records that
295 * point to us in the parent cluster's B-Tree.
296 *
297 * Note that clu_btree_end is range-inclusive, not range-exclusive.
298 * i.e. 0-1023 instead of 0,1024.
8750964d 299 */
c60bb2c5
MD
300 struct hammer_base_elm clu_btree_beg;
301 struct hammer_base_elm clu_btree_end;
8750964d
MD
302
303 /*
c60bb2c5
MD
304 * The cluster's B-Tree root can change as a side effect of insertion
305 * and deletion operations so store an offset instead of embedding
306 * the root node.
8750964d 307 */
c60bb2c5
MD
308 int32_t clu_btree_root;
309 int32_t clu_btree_parent_vol_no;
310 int32_t clu_btree_parent_clu_no;
311 hammer_tid_t clu_btree_parent_clu_id;
8750964d 312
8750964d 313 u_int64_t synchronized_rec_id;
8750964d 314
9775c955
MD
315 struct hammer_almeta clu_master_meta[HAMMER_CLU_MASTER_METAELMS];
316 struct hammer_almeta clu_btree_meta[HAMMER_CLU_SLAVE_METAELMS];
317 struct hammer_almeta clu_record_meta[HAMMER_CLU_SLAVE_METAELMS];
318 struct hammer_almeta clu_mdata_meta[HAMMER_CLU_SLAVE_METAELMS];
8750964d
MD
319};
320
321/*
322 * HAMMER records are 96 byte entities encoded into 16K filesystem buffers.
323 * Each record has a 64 byte header and a 32 byte extension. 170 records
324 * fit into each buffer. Storage is managed by the buffer's A-List.
325 *
326 * Each record may have an explicit data reference to a block of data up
327 * to 2^31-1 bytes in size within the current cluster. Note that multiple
328 * records may share the same or overlapping data references.
329 */
330
331/*
332 * All HAMMER records have a common 64-byte base and a 32-byte extension.
333 *
334 * Many HAMMER record types reference out-of-band data within the cluster.
335 * This data can also be stored in-band in the record itself if it is small
336 * enough. Either way, (data_offset, data_len) points to it.
337 *
338 * Key comparison order: obj_id, rec_type, key, create_tid
339 */
340struct hammer_base_record {
341 int64_t obj_id; /* 00 object record is associated with */
342 int64_t key; /* 08 indexing key (offset or namekey) */
343
344 hammer_tid_t create_tid;/* 10 transaction id for record creation */
345 hammer_tid_t delete_tid;/* 18 transaction id for record update/delete */
346
347 u_int16_t rec_type; /* 20 type of record */
348 u_int16_t obj_type; /* 22 type of object (if inode) */
349 u_int32_t data_offset; /* 24 intra-cluster data reference */
350 /* An offset of 0 indicates zero-fill */
351 int32_t data_len; /* 28 size of data (remainder zero-fill) */
352 u_int32_t data_crc; /* 2C data sanity check */
353 u_int64_t rec_id; /* 30 record id (iterator for recovery) */
354 u_int64_t reserved07; /* 38 */
355 /* 40 */
356};
357
c60bb2c5
MD
358/*
359 * Record types are fairly straightforward. The B-Tree includes the record
360 * type in its index sort.
361 *
362 * In particular please note that it is possible to create a pseudo-
363 * filesystem within a HAMMER filesystem by creating a special object
364 * type within a directory. Pseudo-filesystems are used as replication
365 * targets and even though they are built within a HAMMER filesystem they
366 * get their own obj_id space (and thus can serve as a replication target)
367 * and look like a mount point to the system.
368 */
8750964d
MD
369#define HAMMER_RECTYPE_UNKNOWN 0
370#define HAMMER_RECTYPE_INODE 1 /* inode in obj_id space */
c60bb2c5 371#define HAMMER_RECTYPE_PSEUDO_INODE 2 /* pseudo filesysem */
8750964d
MD
372#define HAMMER_RECTYPE_DATA_CREATE 0x10
373#define HAMMER_RECTYPE_DATA_ZEROFILL 0x11
374#define HAMMER_RECTYPE_DATA_DELETE 0x12
375#define HAMMER_RECTYPE_DATA_UPDATE 0x13
376#define HAMMER_RECTYPE_DIR_CREATE 0x20
377#define HAMMER_RECTYPE_DIR_DELETE 0x22
378#define HAMMER_RECTYPE_DIR_UPDATE 0x23
379#define HAMMER_RECTYPE_DB_CREATE 0x30
380#define HAMMER_RECTYPE_DB_DELETE 0x32
381#define HAMMER_RECTYPE_DB_UPDATE 0x33
382#define HAMMER_RECTYPE_EXT_CREATE 0x40 /* ext attributes */
383#define HAMMER_RECTYPE_EXT_DELETE 0x42
384#define HAMMER_RECTYPE_EXT_UPDATE 0x43
385
386#define HAMMER_OBJTYPE_DIRECTORY 1
387#define HAMMER_OBJTYPE_REGFILE 2
388#define HAMMER_OBJTYPE_DBFILE 3
389#define HAMMER_OBJTYPE_FIFO 4
c60bb2c5
MD
390#define HAMMER_OBJTYPE_CDEV 5
391#define HAMMER_OBJTYPE_BDEV 6
392#define HAMMER_OBJTYPE_SOFTLINK 7
393#define HAMMER_OBJTYPE_PSEUDOFS 8 /* pseudo filesystem obj */
394
395#define HAMMER_OBJTYPE_CLUSTER_BEG 0x10
396#define HAMMER_OBJTYPE_CLUSTER_END 0x11
8750964d
MD
397
398/*
399 * Generic full-sized record
400 */
401struct hammer_generic_record {
402 struct hammer_base_record base;
403 char filler[32];
404};
405
406/*
407 * A HAMMER inode record.
408 *
409 * This forms the basis for a filesystem object. obj_id is the inode number,
410 * key1 represents the pseudo filesystem id for security partitioning
411 * (preventing cross-links and/or restricting a NFS export and specifying the
412 * security policy), and key2 represents the data retention policy id.
413 *
414 * Inode numbers are 64 bit quantities which uniquely identify a filesystem
415 * object for the ENTIRE life of the filesystem, even after the object has
416 * been deleted. For all intents and purposes inode numbers are simply
417 * allocated by incrementing a sequence space.
418 *
419 * There is an important distinction between the data stored in the inode
420 * record and the record's data reference. The record references a
421 * hammer_inode_data structure but the filesystem object size and hard link
422 * count is stored in the inode record itself. This allows multiple inodes
423 * to share the same hammer_inode_data structure. This is possible because
424 * any modifications will lay out new data. The HAMMER implementation need
425 * not use the data-sharing ability when laying down new records.
426 *
427 * A HAMMER inode is subject to the same historical storage requirements
428 * as any other record. In particular any change in filesystem or hard link
429 * count will lay down a new inode record when the filesystem is synced to
430 * disk. This can lead to a lot of junk records which get cleaned up by
431 * the data retention policy.
432 *
433 * The ino_atime and ino_mtime fields are a special case. Modifications to
434 * these fields do NOT lay down a new record by default, though the values
435 * are effectively frozen for snapshots which access historical versions
436 * of the inode record due to other operations. This means that atime will
437 * not necessarily be accurate in snapshots, backups, or mirrors. mtime
438 * will be accurate in backups and mirrors since it can be regenerated from
439 * the mirroring stream.
440 *
441 * Because nlinks is historically retained the hardlink count will be
442 * accurate when accessing a HAMMER filesystem snapshot.
443 */
444struct hammer_inode_record {
445 struct hammer_base_record base;
446 u_int64_t ino_atime; /* last access time (not historical) */
447 u_int64_t ino_mtime; /* last modified time (not historical) */
448 u_int64_t ino_size; /* filesystem object size */
449 u_int64_t ino_nlinks; /* hard links */
450};
451
452/*
453 * Data records specify the entire contents of a regular file object,
454 * including attributes. Small amounts of data can theoretically be
455 * embedded in the record itself but the use of this ability verses using
456 * an out-of-band data reference depends on the implementation.
457 */
458struct hammer_data_record {
459 struct hammer_base_record base;
460 char filler[32];
461};
462
463/*
464 * A directory entry specifies the HAMMER filesystem object id, a copy of
465 * the file type, and file name (either embedded or as out-of-band data).
466 * If the file name is short enough to fit into den_name[] (including a
467 * terminating nul) then it will be embedded in the record, otherwise it
468 * is stored out-of-band. The base record's data reference always points
469 * to the nul-terminated filename regardless.
470 *
471 * Directory entries are indexed with a 128 bit namekey rather then an
472 * offset. A portion of the namekey is an iterator or randomizer to deal
473 * with collisions.
474 */
475struct hammer_entry_record {
476 struct hammer_base_record base;
477 u_int64_t obj_id; /* object being referenced */
478 u_int64_t reserved01;
479 u_int8_t den_type; /* cached file type */
480 char den_name[15]; /* short file names fit in record */
481};
482
483/*
484 * Hammer rollup record
485 */
c60bb2c5 486union hammer_record_ondisk {
8750964d
MD
487 struct hammer_base_record base;
488 struct hammer_generic_record generic;
489 struct hammer_inode_record inode;
490 struct hammer_data_record data;
491 struct hammer_entry_record entry;
492};
493
c60bb2c5 494typedef union hammer_record_ondisk *hammer_record_ondisk_t;
8750964d
MD
495
496/*
497 * Filesystem buffer for records
498 */
499#define HAMMER_RECORD_NODES \
500 ((HAMMER_BUFSIZE - sizeof(struct hammer_fsbuf_head)) / \
c60bb2c5 501 sizeof(union hammer_record_ondisk))
8750964d
MD
502
503struct hammer_fsbuf_recs {
504 struct hammer_fsbuf_head head;
505 char unused[32];
c60bb2c5 506 union hammer_record_ondisk recs[HAMMER_RECORD_NODES];
8750964d
MD
507};
508
509/*
510 * Filesystem buffer for piecemeal data. Note that this does not apply
511 * to dedicated pure-data buffers as such buffers do not have a header.
512 */
513
514#define HAMMER_DATA_SIZE (HAMMER_BUFSIZE - sizeof(struct hammer_fsbuf_head))
515#define HAMMER_DATA_BLKSIZE 64
9775c955 516#define HAMMER_DATA_BLKMASK (HAMMER_DATA_BLKSIZE-1)
8750964d
MD
517#define HAMMER_DATA_NODES (HAMMER_DATA_SIZE / HAMMER_DATA_BLKSIZE)
518
519struct hammer_fsbuf_data {
520 struct hammer_fsbuf_head head;
521 u_int8_t data[HAMMER_DATA_NODES][HAMMER_DATA_BLKSIZE];
522};
523
9775c955
MD
524/*
525 * Filesystem buffer rollup
526 */
527union hammer_fsbuf_ondisk {
528 struct hammer_fsbuf_head head;
529 struct hammer_fsbuf_btree btree;
530 struct hammer_fsbuf_recs record;
531 struct hammer_fsbuf_data data;
532};
533
534typedef union hammer_fsbuf_ondisk *hammer_fsbuf_ondisk_t;
8750964d
MD
535
536/*
537 * HAMMER UNIX Attribute data
538 *
539 * The data reference in a HAMMER inode record points to this structure. Any
540 * modifications to the contents of this structure will result in a record
541 * replacement operation.
542 *
543 * state_sum allows a filesystem object to be validated to a degree by
544 * generating a checksum of all of its pieces (in no particular order) and
545 * checking it against this field.
546 */
547struct hammer_inode_data {
548 u_int16_t version; /* inode data version */
549 u_int16_t mode; /* basic unix permissions */
550 u_int32_t uflags; /* chflags */
551 u_int64_t reserved01;
552 u_int64_t reserved02;
553 u_int64_t state_sum; /* cumulative checksum */
554 uuid_t uid;
555 uuid_t gid;
556};
557
558#define HAMMER_INODE_DATA_VERSION 1
559
c60bb2c5
MD
560/*
561 * Rollup various structures embedded as record data
562 */
563union hammer_data {
564 struct hammer_inode_data inode;
565};
566