wlan - Update wlan from Adrian / FreeBSD
[dragonfly.git] / sys / dev / netif / wpi / if_wpi.c
CommitLineData
4db7dd1b
JT
1/*-
2 * Copyright (c) 2006,2007
3 * Damien Bergamini <damien.bergamini@free.fr>
4 * Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
2fbc2f97
SW
17 *
18 * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
4db7dd1b
JT
19 */
20
21#define VERSION "20071127"
22
4db7dd1b
JT
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 *
26 * The 3945ABG network adapter doesn't use traditional hardware as
27 * many other adaptors do. Instead at run time the eeprom is set into a known
28 * state and told to load boot firmware. The boot firmware loads an init and a
29 * main binary firmware image into SRAM on the card via DMA.
30 * Once the firmware is loaded, the driver/hw then
31 * communicate by way of circular dma rings via the the SRAM to the firmware.
32 *
33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34 * The 4 tx data rings allow for prioritization QoS.
35 *
36 * The rx data ring consists of 32 dma buffers. Two registers are used to
37 * indicate where in the ring the driver and the firmware are up to. The
38 * driver sets the initial read index (reg1) and the initial write index (reg2),
39 * the firmware updates the read index (reg1) on rx of a packet and fires an
40 * interrupt. The driver then processes the buffers starting at reg1 indicating
41 * to the firmware which buffers have been accessed by updating reg2. At the
42 * same time allocating new memory for the processed buffer.
43 *
44 * A similar thing happens with the tx rings. The difference is the firmware
45 * stop processing buffers once the queue is full and until confirmation
46 * of a successful transmition (tx_intr) has occurred.
47 *
48 * The command ring operates in the same manner as the tx queues.
49 *
50 * All communication direct to the card (ie eeprom) is classed as Stage1
51 * communication
52 *
53 * All communication via the firmware to the card is classed as State2.
54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55 * firmware. The bootstrap firmware and runtime firmware are loaded
56 * from host memory via dma to the card then told to execute. From this point
57 * on the majority of communications between the driver and the card goes
58 * via the firmware.
59 */
60
61#include <sys/param.h>
62#include <sys/sysctl.h>
63#include <sys/sockio.h>
64#include <sys/mbuf.h>
65#include <sys/kernel.h>
66#include <sys/socket.h>
67#include <sys/systm.h>
68#include <sys/malloc.h>
69#include <sys/queue.h>
70#include <sys/taskqueue.h>
71#include <sys/module.h>
72#include <sys/bus.h>
73#include <sys/endian.h>
74#include <sys/linker.h>
75#include <sys/firmware.h>
76
4db7dd1b
JT
77#include <sys/resource.h>
78#include <sys/rman.h>
79
80#include <bus/pci/pcireg.h>
81#include <bus/pci/pcivar.h>
82
83#include <net/bpf.h>
84#include <net/if.h>
85#include <net/if_arp.h>
4db7dd1b
JT
86#include <net/ifq_var.h>
87#include <net/ethernet.h>
88#include <net/if_dl.h>
89#include <net/if_media.h>
90#include <net/if_types.h>
91
92#include <netproto/802_11/ieee80211_var.h>
93#include <netproto/802_11/ieee80211_radiotap.h>
94#include <netproto/802_11/ieee80211_regdomain.h>
95#include <netproto/802_11/ieee80211_ratectl.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103/* XXX: move elsewhere */
104#define abs(x) (((x) < 0) ? -(x) : (x))
105
4db7dd1b
JT
106#include "if_wpireg.h"
107#include "if_wpivar.h"
108
109#define WPI_DEBUG
110
111#ifdef WPI_DEBUG
112#define DPRINTF(x) do { if (wpi_debug != 0) kprintf x; } while (0)
113#define DPRINTFN(n, x) do { if (wpi_debug & n) kprintf x; } while (0)
114#define WPI_DEBUG_SET (wpi_debug != 0)
115
116enum {
117 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */
118 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */
119 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/
120 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */
121 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/
122 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */
123 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */
124 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */
125 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */
126 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */
127 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */
128 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */
129 WPI_DEBUG_ANY = 0xffffffff
130};
131
132static int wpi_debug = 1;
133SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
134TUNABLE_INT("debug.wpi", &wpi_debug);
135
136#else
137#define DPRINTF(x)
138#define DPRINTFN(n, x)
139#define WPI_DEBUG_SET 0
140#endif
141
142struct wpi_ident {
143 uint16_t vendor;
144 uint16_t device;
145 uint16_t subdevice;
146 const char *name;
147};
148
149static const struct wpi_ident wpi_ident_table[] = {
150 /* The below entries support ABG regardless of the subid */
151 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
152 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 /* The below entries only support BG */
154 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" },
155 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" },
156 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" },
157 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" },
158 { 0, 0, 0, NULL }
159};
160
161static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
18ef6e46
SW
162 const char name[IFNAMSIZ], int unit,
163 enum ieee80211_opmode opmode,
4db7dd1b
JT
164 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165 const uint8_t mac[IEEE80211_ADDR_LEN]);
166static void wpi_vap_delete(struct ieee80211vap *);
167static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 void **, bus_size_t, bus_size_t, int);
169static void wpi_dma_contig_free(struct wpi_dma_info *);
170static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171static int wpi_alloc_shared(struct wpi_softc *);
172static void wpi_free_shared(struct wpi_softc *);
173static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 int, int);
178static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 const uint8_t mac[IEEE80211_ADDR_LEN]);
182static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183static void wpi_mem_lock(struct wpi_softc *);
184static void wpi_mem_unlock(struct wpi_softc *);
185static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
186static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188 const uint32_t *, int);
189static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190static int wpi_alloc_fwmem(struct wpi_softc *);
191static void wpi_free_fwmem(struct wpi_softc *);
192static int wpi_load_firmware(struct wpi_softc *);
193static void wpi_unload_firmware(struct wpi_softc *);
194static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196 struct wpi_rx_data *);
197static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199static void wpi_notif_intr(struct wpi_softc *);
200static void wpi_intr(void *);
201static uint8_t wpi_plcp_signal(int);
81c64c9b 202static void wpi_watchdog_callout(void *);
4db7dd1b
JT
203static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 struct ieee80211_node *, int);
f0a26983 205static void wpi_start(struct ifnet *, struct ifaltq_subque *);
4db7dd1b
JT
206static void wpi_start_locked(struct ifnet *);
207static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 const struct ieee80211_bpf_params *);
209static void wpi_scan_start(struct ieee80211com *);
210static void wpi_scan_end(struct ieee80211com *);
211static void wpi_set_channel(struct ieee80211com *);
212static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213static void wpi_scan_mindwell(struct ieee80211_scan_state *);
214static int wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215static void wpi_read_eeprom(struct wpi_softc *,
216 uint8_t macaddr[IEEE80211_ADDR_LEN]);
217static void wpi_read_eeprom_channels(struct wpi_softc *, int);
218static void wpi_read_eeprom_group(struct wpi_softc *, int);
219static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220static int wpi_wme_update(struct ieee80211com *);
221static int wpi_mrr_setup(struct wpi_softc *);
222static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224#if 0
225static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226#endif
227static int wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228static int wpi_run(struct wpi_softc *, struct ieee80211vap *);
229static int wpi_scan(struct wpi_softc *);
230static int wpi_config(struct wpi_softc *);
231static void wpi_stop_master(struct wpi_softc *);
232static int wpi_power_up(struct wpi_softc *);
233static int wpi_reset(struct wpi_softc *);
81c64c9b
JT
234static void wpi_hwreset_task(void *, int);
235static void wpi_rfreset_task(void *, int);
4db7dd1b
JT
236static void wpi_hw_config(struct wpi_softc *);
237static void wpi_init(void *);
238static void wpi_init_locked(struct wpi_softc *, int);
239static void wpi_stop(struct wpi_softc *);
240static void wpi_stop_locked(struct wpi_softc *);
241
4db7dd1b
JT
242static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
243 int);
81c64c9b 244static void wpi_calib_timeout_callout(void *);
4db7dd1b
JT
245static void wpi_power_calibration(struct wpi_softc *, int);
246static int wpi_get_power_index(struct wpi_softc *,
247 struct wpi_power_group *, struct ieee80211_channel *, int);
248#ifdef WPI_DEBUG
249static const char *wpi_cmd_str(int);
250#endif
251static int wpi_probe(device_t);
252static int wpi_attach(device_t);
253static int wpi_detach(device_t);
254static int wpi_shutdown(device_t);
255static int wpi_suspend(device_t);
256static int wpi_resume(device_t);
257
258
259static device_method_t wpi_methods[] = {
260 /* Device interface */
261 DEVMETHOD(device_probe, wpi_probe),
262 DEVMETHOD(device_attach, wpi_attach),
263 DEVMETHOD(device_detach, wpi_detach),
264 DEVMETHOD(device_shutdown, wpi_shutdown),
265 DEVMETHOD(device_suspend, wpi_suspend),
266 DEVMETHOD(device_resume, wpi_resume),
267
d3c9c58e 268 DEVMETHOD_END
4db7dd1b
JT
269};
270
271static driver_t wpi_driver = {
272 "wpi",
273 wpi_methods,
274 sizeof (struct wpi_softc)
275};
276
277static devclass_t wpi_devclass;
278
aa2b9d05 279DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
4db7dd1b
JT
280
281static const uint8_t wpi_ridx_to_plcp[] = {
282 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
283 /* R1-R4 (ral/ural is R4-R1) */
284 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
285 /* CCK: device-dependent */
286 10, 20, 55, 110
287};
288static const uint8_t wpi_ridx_to_rate[] = {
289 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
290 2, 4, 11, 22 /*CCK */
291};
292
293
294static int
295wpi_probe(device_t dev)
296{
297 const struct wpi_ident *ident;
298
81c64c9b 299 wlan_serialize_enter();
4db7dd1b
JT
300 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
301 if (pci_get_vendor(dev) == ident->vendor &&
302 pci_get_device(dev) == ident->device) {
303 device_set_desc(dev, ident->name);
81c64c9b 304 wlan_serialize_exit();
4db7dd1b
JT
305 return 0;
306 }
307 }
81c64c9b 308 wlan_serialize_exit();
4db7dd1b
JT
309 return ENXIO;
310}
311
312/**
313 * Load the firmare image from disk to the allocated dma buffer.
314 * we also maintain the reference to the firmware pointer as there
315 * is times where we may need to reload the firmware but we are not
316 * in a context that can access the filesystem (ie taskq cause by restart)
317 *
318 * @return 0 on success, an errno on failure
319 */
320static int
321wpi_load_firmware(struct wpi_softc *sc)
322{
323 const struct firmware *fp;
324 struct wpi_dma_info *dma = &sc->fw_dma;
325 const struct wpi_firmware_hdr *hdr;
4db7dd1b
JT
326 const uint8_t *itext, *idata, *rtext, *rdata, *btext;
327 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
328 int error;
329
4db7dd1b
JT
330 DPRINTFN(WPI_DEBUG_FIRMWARE,
331 ("Attempting Loading Firmware from wpi_fw module\n"));
332
81c64c9b
JT
333 wlan_assert_serialized();
334 wlan_serialize_exit();
4db7dd1b
JT
335 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
336 device_printf(sc->sc_dev,
337 "could not load firmware image 'wpifw_fw'\n");
338 error = ENOENT;
81c64c9b 339 wlan_serialize_enter();
4db7dd1b
JT
340 goto fail;
341 }
81c64c9b 342 wlan_serialize_enter();
4db7dd1b
JT
343
344 fp = sc->fw_fp;
345
4db7dd1b
JT
346 /* Validate the firmware is minimum a particular version */
347 if (fp->version < WPI_FW_MINVERSION) {
348 device_printf(sc->sc_dev,
349 "firmware version is too old. Need %d, got %d\n",
350 WPI_FW_MINVERSION,
351 fp->version);
352 error = ENXIO;
353 goto fail;
354 }
4db7dd1b
JT
355
356 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
357 device_printf(sc->sc_dev,
358 "firmware file too short: %zu bytes\n", fp->datasize);
359 error = ENXIO;
360 goto fail;
361 }
362
363 hdr = (const struct wpi_firmware_hdr *)fp->data;
364
365 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW |
366 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
367
368 rtextsz = le32toh(hdr->rtextsz);
369 rdatasz = le32toh(hdr->rdatasz);
370 itextsz = le32toh(hdr->itextsz);
371 idatasz = le32toh(hdr->idatasz);
372 btextsz = le32toh(hdr->btextsz);
373
374 /* check that all firmware segments are present */
375 if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
376 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
377 device_printf(sc->sc_dev,
378 "firmware file too short: %zu bytes\n", fp->datasize);
379 error = ENXIO; /* XXX appropriate error code? */
380 goto fail;
381 }
382
383 /* get pointers to firmware segments */
384 rtext = (const uint8_t *)(hdr + 1);
385 rdata = rtext + rtextsz;
386 itext = rdata + rdatasz;
387 idata = itext + itextsz;
388 btext = idata + idatasz;
389
390 DPRINTFN(WPI_DEBUG_FIRMWARE,
391 ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
392 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
393 (le32toh(hdr->version) & 0xff000000) >> 24,
394 (le32toh(hdr->version) & 0x00ff0000) >> 16,
395 (le32toh(hdr->version) & 0x0000ffff),
396 rtextsz, rdatasz,
397 itextsz, idatasz, btextsz));
398
399 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
400 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
401 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
402 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
403 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
404
405 /* sanity checks */
406 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
407 rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
408 itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
409 idatasz > WPI_FW_INIT_DATA_MAXSZ ||
410 btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
411 (btextsz & 3) != 0) {
412 device_printf(sc->sc_dev, "firmware invalid\n");
413 error = EINVAL;
414 goto fail;
415 }
416
417 /* copy initialization images into pre-allocated DMA-safe memory */
418 memcpy(dma->vaddr, idata, idatasz);
419 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
420
421 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
422
423 /* tell adapter where to find initialization images */
424 wpi_mem_lock(sc);
425 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
426 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
427 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
428 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
429 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
430 wpi_mem_unlock(sc);
431
432 /* load firmware boot code */
433 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
434 device_printf(sc->sc_dev, "Failed to load microcode\n");
435 goto fail;
436 }
437
438 /* now press "execute" */
439 WPI_WRITE(sc, WPI_RESET, 0);
440
441 /* wait at most one second for the first alive notification */
81c64c9b 442 if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
4db7dd1b
JT
443 device_printf(sc->sc_dev,
444 "timeout waiting for adapter to initialize\n");
445 goto fail;
446 }
447
448 /* copy runtime images into pre-allocated DMA-sage memory */
449 memcpy(dma->vaddr, rdata, rdatasz);
450 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
451 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
452
453 /* tell adapter where to find runtime images */
454 wpi_mem_lock(sc);
455 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
456 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
457 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
458 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
459 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
460 wpi_mem_unlock(sc);
461
462 /* wait at most one second for the first alive notification */
81c64c9b 463 if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
4db7dd1b
JT
464 device_printf(sc->sc_dev,
465 "timeout waiting for adapter to initialize2\n");
466 goto fail;
467 }
468
469 DPRINTFN(WPI_DEBUG_FIRMWARE,
470 ("Firmware loaded to driver successfully\n"));
4db7dd1b
JT
471 return error;
472fail:
473 wpi_unload_firmware(sc);
474 return error;
475}
476
477/**
478 * Free the referenced firmware image
479 */
480static void
481wpi_unload_firmware(struct wpi_softc *sc)
482{
4db7dd1b 483 if (sc->fw_fp) {
81c64c9b
JT
484 wlan_assert_serialized();
485 wlan_serialize_exit();
4db7dd1b 486 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
81c64c9b 487 wlan_serialize_enter();
4db7dd1b
JT
488 sc->fw_fp = NULL;
489 }
490}
491
492static int
493wpi_attach(device_t dev)
494{
2446872c 495 struct wpi_softc *sc;
4db7dd1b
JT
496 struct ifnet *ifp;
497 struct ieee80211com *ic;
498 int ac, error, supportsa = 1;
499 uint32_t tmp;
500 const struct wpi_ident *ident;
501 uint8_t macaddr[IEEE80211_ADDR_LEN];
502
81c64c9b 503 wlan_serialize_enter();
2446872c 504 sc = device_get_softc(dev);
4db7dd1b
JT
505 sc->sc_dev = dev;
506
507 if (bootverbose || WPI_DEBUG_SET)
508 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
509
510 /*
511 * Some card's only support 802.11b/g not a, check to see if
512 * this is one such card. A 0x0 in the subdevice table indicates
513 * the entire subdevice range is to be ignored.
514 */
515 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
516 if (ident->subdevice &&
517 pci_get_subdevice(dev) == ident->subdevice) {
518 supportsa = 0;
519 break;
520 }
521 }
522
523 /* Create the tasks that can be queued */
81c64c9b
JT
524 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
525 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
4db7dd1b 526
81c64c9b
JT
527 callout_init(&sc->calib_to_callout);
528 callout_init(&sc->watchdog_to_callout);
4db7dd1b
JT
529
530 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
531 device_printf(dev, "chip is in D%d power mode "
532 "-- setting to D0\n", pci_get_powerstate(dev));
533 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
534 }
535
536 /* disable the retry timeout register */
537 pci_write_config(dev, 0x41, 0, 1);
538
539 /* enable bus-mastering */
540 pci_enable_busmaster(dev);
541
542 sc->mem_rid = PCIR_BAR(0);
543 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
544 RF_ACTIVE);
545 if (sc->mem == NULL) {
546 device_printf(dev, "could not allocate memory resource\n");
547 error = ENOMEM;
548 goto fail;
549 }
550
551 sc->sc_st = rman_get_bustag(sc->mem);
552 sc->sc_sh = rman_get_bushandle(sc->mem);
553
554 sc->irq_rid = 0;
555 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
556 RF_ACTIVE | RF_SHAREABLE);
557 if (sc->irq == NULL) {
558 device_printf(dev, "could not allocate interrupt resource\n");
559 error = ENOMEM;
560 goto fail;
561 }
562
563 /*
564 * Allocate DMA memory for firmware transfers.
565 */
566 if ((error = wpi_alloc_fwmem(sc)) != 0) {
567 kprintf(": could not allocate firmware memory\n");
568 error = ENOMEM;
569 goto fail;
570 }
571
572 /*
573 * Put adapter into a known state.
574 */
575 if ((error = wpi_reset(sc)) != 0) {
576 device_printf(dev, "could not reset adapter\n");
577 goto fail;
578 }
579
580 wpi_mem_lock(sc);
581 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
582 if (bootverbose || WPI_DEBUG_SET)
583 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
584
585 wpi_mem_unlock(sc);
586
587 /* Allocate shared page */
588 if ((error = wpi_alloc_shared(sc)) != 0) {
589 device_printf(dev, "could not allocate shared page\n");
590 goto fail;
591 }
592
593 /* tx data queues - 4 for QoS purposes */
594 for (ac = 0; ac < WME_NUM_AC; ac++) {
595 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
596 if (error != 0) {
597 device_printf(dev, "could not allocate Tx ring %d\n",ac);
598 goto fail;
599 }
600 }
601
602 /* command queue to talk to the card's firmware */
603 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
604 if (error != 0) {
605 device_printf(dev, "could not allocate command ring\n");
606 goto fail;
607 }
608
609 /* receive data queue */
610 error = wpi_alloc_rx_ring(sc, &sc->rxq);
611 if (error != 0) {
612 device_printf(dev, "could not allocate Rx ring\n");
613 goto fail;
614 }
615
616 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
617 if (ifp == NULL) {
618 device_printf(dev, "can not if_alloc()\n");
619 error = ENOMEM;
620 goto fail;
621 }
622 ic = ifp->if_l2com;
623
624 ic->ic_ifp = ifp;
625 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
626 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
627
628 /* set device capabilities */
629 ic->ic_caps =
630 IEEE80211_C_STA /* station mode supported */
631 | IEEE80211_C_MONITOR /* monitor mode supported */
632 | IEEE80211_C_TXPMGT /* tx power management */
633 | IEEE80211_C_SHSLOT /* short slot time supported */
634 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
635 | IEEE80211_C_WPA /* 802.11i */
636/* XXX looks like WME is partly supported? */
637#if 0
638 | IEEE80211_C_IBSS /* IBSS mode support */
639 | IEEE80211_C_BGSCAN /* capable of bg scanning */
640 | IEEE80211_C_WME /* 802.11e */
641 | IEEE80211_C_HOSTAP /* Host access point mode */
642#endif
643 ;
644
645 /*
646 * Read in the eeprom and also setup the channels for
647 * net80211. We don't set the rates as net80211 does this for us
648 */
649 wpi_read_eeprom(sc, macaddr);
650
651 if (bootverbose || WPI_DEBUG_SET) {
652 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
653 device_printf(sc->sc_dev, "Hardware Type: %c\n",
654 sc->type > 1 ? 'B': '?');
655 device_printf(sc->sc_dev, "Hardware Revision: %c\n",
656 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
657 device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
658 supportsa ? "does" : "does not");
659
660 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
661 what sc->rev really represents - benjsc 20070615 */
662 }
663
664 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
665 ifp->if_softc = sc;
666 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
667 ifp->if_init = wpi_init;
668 ifp->if_ioctl = wpi_ioctl;
669 ifp->if_start = wpi_start;
670 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
c3d41318 671#ifdef notyet
4db7dd1b 672 ifq_set_ready(&ifp->if_snd);
c3d41318 673#endif
4db7dd1b
JT
674
675 ieee80211_ifattach(ic, macaddr);
676 /* override default methods */
677 ic->ic_node_alloc = wpi_node_alloc;
4db7dd1b
JT
678 ic->ic_raw_xmit = wpi_raw_xmit;
679 ic->ic_wme.wme_update = wpi_wme_update;
680 ic->ic_scan_start = wpi_scan_start;
681 ic->ic_scan_end = wpi_scan_end;
682 ic->ic_set_channel = wpi_set_channel;
683 ic->ic_scan_curchan = wpi_scan_curchan;
684 ic->ic_scan_mindwell = wpi_scan_mindwell;
685
686 ic->ic_vap_create = wpi_vap_create;
687 ic->ic_vap_delete = wpi_vap_delete;
688
689 ieee80211_radiotap_attach(ic,
690 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
691 WPI_TX_RADIOTAP_PRESENT,
692 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
693 WPI_RX_RADIOTAP_PRESENT);
694
695 /*
696 * Hook our interrupt after all initialization is complete.
697 */
698 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
81c64c9b 699 wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
4db7dd1b
JT
700 if (error != 0) {
701 device_printf(dev, "could not set up interrupt\n");
702 goto fail;
703 }
704
705 if (bootverbose)
706 ieee80211_announce(ic);
707#ifdef XXX_DEBUG
708 ieee80211_announce_channels(ic);
709#endif
81c64c9b 710 wlan_serialize_exit();
4db7dd1b
JT
711 return 0;
712
81c64c9b
JT
713fail:
714 wlan_serialize_exit();
715 wpi_detach(dev);
4db7dd1b
JT
716 return ENXIO;
717}
718
719static int
720wpi_detach(device_t dev)
721{
2446872c
JT
722 struct wpi_softc *sc;
723 struct ifnet *ifp;
4db7dd1b
JT
724 struct ieee80211com *ic;
725 int ac;
726
81c64c9b 727 wlan_serialize_enter();
2446872c
JT
728 sc = device_get_softc(dev);
729 ifp = sc->sc_ifp;
4db7dd1b
JT
730 if (ifp != NULL) {
731 ic = ifp->if_l2com;
732
733 ieee80211_draintask(ic, &sc->sc_restarttask);
734 ieee80211_draintask(ic, &sc->sc_radiotask);
735 wpi_stop(sc);
81c64c9b
JT
736 callout_stop(&sc->watchdog_to_callout);
737 callout_stop(&sc->calib_to_callout);
4db7dd1b
JT
738 ieee80211_ifdetach(ic);
739 }
740
4db7dd1b
JT
741 if (sc->txq[0].data_dmat) {
742 for (ac = 0; ac < WME_NUM_AC; ac++)
743 wpi_free_tx_ring(sc, &sc->txq[ac]);
744
745 wpi_free_tx_ring(sc, &sc->cmdq);
746 wpi_free_rx_ring(sc, &sc->rxq);
747 wpi_free_shared(sc);
748 }
749
750 if (sc->fw_fp != NULL) {
751 wpi_unload_firmware(sc);
752 }
753
754 if (sc->fw_dma.tag)
755 wpi_free_fwmem(sc);
4db7dd1b
JT
756
757 if (sc->irq != NULL) {
758 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
759 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
760 }
761
762 if (sc->mem != NULL)
763 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
764
765 if (ifp != NULL)
766 if_free(ifp);
767
81c64c9b 768 wlan_serialize_exit();
4db7dd1b
JT
769 return 0;
770}
771
772static struct ieee80211vap *
773wpi_vap_create(struct ieee80211com *ic,
18ef6e46
SW
774 const char name[IFNAMSIZ], int unit,
775 enum ieee80211_opmode opmode, int flags,
4db7dd1b
JT
776 const uint8_t bssid[IEEE80211_ADDR_LEN],
777 const uint8_t mac[IEEE80211_ADDR_LEN])
778{
779 struct wpi_vap *wvp;
780 struct ieee80211vap *vap;
781
782 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
783 return NULL;
784 wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
f688ab3e 785 M_80211_VAP, M_INTWAIT | M_ZERO);
4db7dd1b
JT
786 if (wvp == NULL)
787 return NULL;
788 vap = &wvp->vap;
789 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
790 /* override with driver methods */
791 wvp->newstate = vap->iv_newstate;
792 vap->iv_newstate = wpi_newstate;
793
794 ieee80211_ratectl_init(vap);
795
796 /* complete setup */
797 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
798 ic->ic_opmode = opmode;
799 return vap;
800}
801
802static void
803wpi_vap_delete(struct ieee80211vap *vap)
804{
805 struct wpi_vap *wvp = WPI_VAP(vap);
806
807 ieee80211_ratectl_deinit(vap);
808 ieee80211_vap_detach(vap);
809 kfree(wvp, M_80211_VAP);
810}
811
812static void
813wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
814{
815 if (error != 0)
816 return;
817
818 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
819
820 *(bus_addr_t *)arg = segs[0].ds_addr;
821}
822
823/*
824 * Allocates a contiguous block of dma memory of the requested size and
825 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
826 * allocations greater than 4096 may fail. Hence if the requested alignment is
827 * greater we allocate 'alignment' size extra memory and shift the vaddr and
828 * paddr after the dma load. This bypasses the problem at the cost of a little
829 * more memory.
830 */
831static int
832wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
833 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
834{
835 int error;
836 bus_size_t align;
837 bus_size_t reqsize;
838
839 DPRINTFN(WPI_DEBUG_DMA,
840 ("Size: %zd - alignment %zd\n", size, alignment));
841
842 dma->size = size;
843 dma->tag = NULL;
844
845 if (alignment > 4096) {
846 align = PAGE_SIZE;
847 reqsize = size + alignment;
848 } else {
849 align = alignment;
850 reqsize = size;
851 }
852 error = bus_dma_tag_create(dma->tag, align,
853 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
854 NULL, NULL, reqsize,
855 1, reqsize, flags,
856 &dma->tag);
857 if (error != 0) {
858 device_printf(sc->sc_dev,
859 "could not create shared page DMA tag\n");
860 goto fail;
861 }
862 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
863 flags | BUS_DMA_ZERO, &dma->map);
864 if (error != 0) {
865 device_printf(sc->sc_dev,
866 "could not allocate shared page DMA memory\n");
867 goto fail;
868 }
869
870 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
871 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags);
872
873 /* Save the original pointers so we can free all the memory */
874 dma->paddr = dma->paddr_start;
875 dma->vaddr = dma->vaddr_start;
876
877 /*
878 * Check the alignment and increment by 4096 until we get the
879 * requested alignment. Fail if can't obtain the alignment
880 * we requested.
881 */
882 if ((dma->paddr & (alignment -1 )) != 0) {
883 int i;
884
885 for (i = 0; i < alignment / 4096; i++) {
886 if ((dma->paddr & (alignment - 1 )) == 0)
887 break;
888 dma->paddr += 4096;
889 dma->vaddr += 4096;
890 }
891 if (i == alignment / 4096) {
892 device_printf(sc->sc_dev,
893 "alignment requirement was not satisfied\n");
894 goto fail;
895 }
896 }
897
898 if (error != 0) {
899 device_printf(sc->sc_dev,
900 "could not load shared page DMA map\n");
901 goto fail;
902 }
903
904 if (kvap != NULL)
905 *kvap = dma->vaddr;
906
907 return 0;
908
909fail:
910 wpi_dma_contig_free(dma);
911 return error;
912}
913
914static void
915wpi_dma_contig_free(struct wpi_dma_info *dma)
916{
917 if (dma->tag) {
918 if (dma->map != NULL) {
919 if (dma->paddr_start != 0) {
920 bus_dmamap_sync(dma->tag, dma->map,
921 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
922 bus_dmamap_unload(dma->tag, dma->map);
923 }
924 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
925 }
926 bus_dma_tag_destroy(dma->tag);
927 }
928}
929
930/*
931 * Allocate a shared page between host and NIC.
932 */
933static int
934wpi_alloc_shared(struct wpi_softc *sc)
935{
936 int error;
937
938 error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
939 (void **)&sc->shared, sizeof (struct wpi_shared),
940 PAGE_SIZE,
941 BUS_DMA_NOWAIT);
942
943 if (error != 0) {
944 device_printf(sc->sc_dev,
945 "could not allocate shared area DMA memory\n");
946 }
947
948 return error;
949}
950
951static void
952wpi_free_shared(struct wpi_softc *sc)
953{
954 wpi_dma_contig_free(&sc->shared_dma);
955}
956
957static int
958wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
959{
960
961 int i, error;
962
963 ring->cur = 0;
964
965 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
966 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
967 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
968
969 if (error != 0) {
970 device_printf(sc->sc_dev,
971 "%s: could not allocate rx ring DMA memory, error %d\n",
972 __func__, error);
973 goto fail;
974 }
975
976 error = bus_dma_tag_create(ring->data_dmat, 1, 0,
977 BUS_SPACE_MAXADDR_32BIT,
a2f24108
JT
978 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
979 MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
4db7dd1b
JT
980 if (error != 0) {
981 device_printf(sc->sc_dev,
982 "%s: bus_dma_tag_create_failed, error %d\n",
983 __func__, error);
984 goto fail;
985 }
986
987 /*
988 * Setup Rx buffers.
989 */
990 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
991 struct wpi_rx_data *data = &ring->data[i];
992 struct mbuf *m;
993 bus_addr_t paddr;
994
995 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
996 if (error != 0) {
997 device_printf(sc->sc_dev,
998 "%s: bus_dmamap_create failed, error %d\n",
999 __func__, error);
1000 goto fail;
1001 }
a2f24108 1002 m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4db7dd1b
JT
1003 if (m == NULL) {
1004 device_printf(sc->sc_dev,
1005 "%s: could not allocate rx mbuf\n", __func__);
1006 error = ENOMEM;
1007 goto fail;
1008 }
1009 /* map page */
1010 error = bus_dmamap_load(ring->data_dmat, data->map,
a2f24108 1011 mtod(m, caddr_t), MJUMPAGESIZE,
4db7dd1b
JT
1012 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1013 if (error != 0 && error != EFBIG) {
1014 device_printf(sc->sc_dev,
1015 "%s: bus_dmamap_load failed, error %d\n",
1016 __func__, error);
1017 m_freem(m);
1018 error = ENOMEM; /* XXX unique code */
1019 goto fail;
1020 }
1021 bus_dmamap_sync(ring->data_dmat, data->map,
1022 BUS_DMASYNC_PREWRITE);
1023
1024 data->m = m;
1025 ring->desc[i] = htole32(paddr);
1026 }
1027 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1028 BUS_DMASYNC_PREWRITE);
1029 return 0;
1030fail:
1031 wpi_free_rx_ring(sc, ring);
1032 return error;
1033}
1034
1035static void
1036wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1037{
1038 int ntries;
1039
1040 wpi_mem_lock(sc);
1041
1042 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1043
1044 for (ntries = 0; ntries < 100; ntries++) {
1045 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1046 break;
1047 DELAY(10);
1048 }
1049
1050 wpi_mem_unlock(sc);
1051
1052#ifdef WPI_DEBUG
1053 if (ntries == 100 && wpi_debug > 0)
1054 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1055#endif
1056
1057 ring->cur = 0;
1058}
1059
1060static void
1061wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1062{
1063 int i;
1064
1065 wpi_dma_contig_free(&ring->desc_dma);
1066
1067 for (i = 0; i < WPI_RX_RING_COUNT; i++)
1068 if (ring->data[i].m != NULL)
1069 m_freem(ring->data[i].m);
1070}
1071
1072static int
1073wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1074 int qid)
1075{
1076 struct wpi_tx_data *data;
1077 int i, error;
1078
1079 ring->qid = qid;
1080 ring->count = count;
1081 ring->queued = 0;
1082 ring->cur = 0;
1083 ring->data = NULL;
1084
1085 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1086 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1087 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1088
1089 if (error != 0) {
1090 device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1091 goto fail;
1092 }
1093
1094 /* update shared page with ring's base address */
1095 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1096
1097 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1098 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1099 BUS_DMA_NOWAIT);
1100
1101 if (error != 0) {
1102 device_printf(sc->sc_dev,
1103 "could not allocate tx command DMA memory\n");
1104 goto fail;
1105 }
1106
1107 ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
f688ab3e 1108 M_INTWAIT | M_ZERO);
4db7dd1b
JT
1109 if (ring->data == NULL) {
1110 device_printf(sc->sc_dev,
1111 "could not allocate tx data slots\n");
1112 goto fail;
1113 }
1114
1115 error = bus_dma_tag_create(ring->data_dmat, 1, 0,
a2f24108
JT
1116 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE,
1117 WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT,
4db7dd1b
JT
1118 &ring->data_dmat);
1119 if (error != 0) {
1120 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1121 goto fail;
1122 }
1123
1124 for (i = 0; i < count; i++) {
1125 data = &ring->data[i];
1126
1127 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1128 if (error != 0) {
1129 device_printf(sc->sc_dev,
1130 "could not create tx buf DMA map\n");
1131 goto fail;
1132 }
1133 bus_dmamap_sync(ring->data_dmat, data->map,
1134 BUS_DMASYNC_PREWRITE);
1135 }
1136
1137 return 0;
1138
1139fail:
1140 wpi_free_tx_ring(sc, ring);
1141 return error;
1142}
1143
1144static void
1145wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146{
1147 struct wpi_tx_data *data;
1148 int i, ntries;
1149
1150 wpi_mem_lock(sc);
1151
1152 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1153 for (ntries = 0; ntries < 100; ntries++) {
1154 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1155 break;
1156 DELAY(10);
1157 }
1158#ifdef WPI_DEBUG
1159 if (ntries == 100 && wpi_debug > 0)
1160 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1161 ring->qid);
1162#endif
1163 wpi_mem_unlock(sc);
1164
1165 for (i = 0; i < ring->count; i++) {
1166 data = &ring->data[i];
1167
1168 if (data->m != NULL) {
1169 bus_dmamap_unload(ring->data_dmat, data->map);
1170 m_freem(data->m);
1171 data->m = NULL;
1172 }
1173 }
1174
1175 ring->queued = 0;
1176 ring->cur = 0;
1177}
1178
1179static void
1180wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1181{
1182 struct wpi_tx_data *data;
1183 int i;
1184
1185 wpi_dma_contig_free(&ring->desc_dma);
1186 wpi_dma_contig_free(&ring->cmd_dma);
1187
1188 if (ring->data != NULL) {
1189 for (i = 0; i < ring->count; i++) {
1190 data = &ring->data[i];
1191
1192 if (data->m != NULL) {
1193 bus_dmamap_sync(ring->data_dmat, data->map,
1194 BUS_DMASYNC_POSTWRITE);
1195 bus_dmamap_unload(ring->data_dmat, data->map);
1196 m_freem(data->m);
1197 data->m = NULL;
1198 }
1199 }
1200 kfree(ring->data, M_DEVBUF);
1201 }
1202
1203 if (ring->data_dmat != NULL)
1204 bus_dma_tag_destroy(ring->data_dmat);
1205}
1206
1207static int
1208wpi_shutdown(device_t dev)
1209{
2446872c 1210 struct wpi_softc *sc;
4db7dd1b 1211
81c64c9b 1212 wlan_serialize_enter();
2446872c 1213 sc = device_get_softc(dev);
4db7dd1b
JT
1214 wpi_stop_locked(sc);
1215 wpi_unload_firmware(sc);
81c64c9b 1216 wlan_serialize_exit();
4db7dd1b
JT
1217
1218 return 0;
1219}
1220
1221static int
1222wpi_suspend(device_t dev)
1223{
2446872c 1224 struct wpi_softc *sc;
4db7dd1b 1225
81c64c9b 1226 wlan_serialize_enter();
2446872c 1227 sc = device_get_softc(dev);
4db7dd1b 1228 wpi_stop(sc);
81c64c9b 1229 wlan_serialize_exit();
4db7dd1b
JT
1230 return 0;
1231}
1232
1233static int
1234wpi_resume(device_t dev)
1235{
2446872c
JT
1236 struct wpi_softc *sc;
1237 struct ifnet *ifp;
4db7dd1b 1238
81c64c9b 1239 wlan_serialize_enter();
2446872c
JT
1240 sc = device_get_softc(dev);
1241 ifp = sc->sc_ifp;
4db7dd1b
JT
1242 pci_write_config(dev, 0x41, 0, 1);
1243
1244 if (ifp->if_flags & IFF_UP) {
1245 wpi_init(ifp->if_softc);
1246 if (ifp->if_flags & IFF_RUNNING)
f0a26983 1247 if_devstart(ifp);
4db7dd1b 1248 }
81c64c9b 1249 wlan_serialize_exit();
4db7dd1b
JT
1250 return 0;
1251}
1252
1253/* ARGSUSED */
1254static struct ieee80211_node *
1255wpi_node_alloc(struct ieee80211vap *vap __unused,
1256 const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1257{
1258 struct wpi_node *wn;
1259
f688ab3e 1260 wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
4db7dd1b
JT
1261
1262 return &wn->ni;
1263}
1264
1265/**
1266 * Called by net80211 when ever there is a change to 80211 state machine
1267 */
1268static int
1269wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1270{
1271 struct wpi_vap *wvp = WPI_VAP(vap);
1272 struct ieee80211com *ic = vap->iv_ic;
1273 struct ifnet *ifp = ic->ic_ifp;
1274 struct wpi_softc *sc = ifp->if_softc;
1275 int error;
1276
1277 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1278 ieee80211_state_name[vap->iv_state],
1279 ieee80211_state_name[nstate], sc->flags));
1280
4db7dd1b
JT
1281 if (nstate == IEEE80211_S_AUTH) {
1282 /* The node must be registered in the firmware before auth */
1283 error = wpi_auth(sc, vap);
1284 if (error != 0) {
1285 device_printf(sc->sc_dev,
1286 "%s: could not move to auth state, error %d\n",
1287 __func__, error);
1288 }
1289 }
1290 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1291 error = wpi_run(sc, vap);
1292 if (error != 0) {
1293 device_printf(sc->sc_dev,
1294 "%s: could not move to run state, error %d\n",
1295 __func__, error);
1296 }
1297 }
1298 if (nstate == IEEE80211_S_RUN) {
1299 /* RUN -> RUN transition; just restart the timers */
81c64c9b 1300 wpi_calib_timeout_callout(sc);
4db7dd1b
JT
1301 /* XXX split out rate control timer */
1302 }
4db7dd1b
JT
1303 return wvp->newstate(vap, nstate, arg);
1304}
1305
1306/*
1307 * Grab exclusive access to NIC memory.
1308 */
1309static void
1310wpi_mem_lock(struct wpi_softc *sc)
1311{
1312 int ntries;
1313 uint32_t tmp;
1314
1315 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1316 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1317
1318 /* spin until we actually get the lock */
1319 for (ntries = 0; ntries < 100; ntries++) {
1320 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1321 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1322 break;
1323 DELAY(10);
1324 }
1325 if (ntries == 100)
1326 device_printf(sc->sc_dev, "could not lock memory\n");
1327}
1328
1329/*
1330 * Release lock on NIC memory.
1331 */
1332static void
1333wpi_mem_unlock(struct wpi_softc *sc)
1334{
1335 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1336 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1337}
1338
1339static uint32_t
1340wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1341{
1342 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1343 return WPI_READ(sc, WPI_READ_MEM_DATA);
1344}
1345
1346static void
1347wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1348{
1349 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1350 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1351}
1352
1353static void
1354wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1355 const uint32_t *data, int wlen)
1356{
1357 for (; wlen > 0; wlen--, data++, addr+=4)
1358 wpi_mem_write(sc, addr, *data);
1359}
1360
1361/*
1362 * Read data from the EEPROM. We access EEPROM through the MAC instead of
1363 * using the traditional bit-bang method. Data is read up until len bytes have
1364 * been obtained.
1365 */
1366static uint16_t
1367wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1368{
1369 int ntries;
1370 uint32_t val;
1371 uint8_t *out = data;
1372
1373 wpi_mem_lock(sc);
1374
1375 for (; len > 0; len -= 2, addr++) {
1376 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1377
1378 for (ntries = 0; ntries < 10; ntries++) {
1379 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1380 break;
1381 DELAY(5);
1382 }
1383
1384 if (ntries == 10) {
1385 device_printf(sc->sc_dev, "could not read EEPROM\n");
1386 return ETIMEDOUT;
1387 }
1388
1389 *out++= val >> 16;
1390 if (len > 1)
1391 *out ++= val >> 24;
1392 }
1393
1394 wpi_mem_unlock(sc);
1395
1396 return 0;
1397}
1398
1399/*
1400 * The firmware text and data segments are transferred to the NIC using DMA.
1401 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1402 * where to find it. Once the NIC has copied the firmware into its internal
1403 * memory, we can free our local copy in the driver.
1404 */
1405static int
1406wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1407{
1408 int error, ntries;
1409
1410 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size));
1411
1412 size /= sizeof(uint32_t);
1413
1414 wpi_mem_lock(sc);
1415
1416 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1417 (const uint32_t *)fw, size);
1418
1419 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1420 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1421 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1422
1423 /* run microcode */
1424 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1425
1426 /* wait while the adapter is busy copying the firmware */
1427 for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1428 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1429 DPRINTFN(WPI_DEBUG_HW,
1430 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1431 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1432 if (status & WPI_TX_IDLE(6)) {
1433 DPRINTFN(WPI_DEBUG_HW,
1434 ("Status Match! - ntries = %d\n", ntries));
1435 break;
1436 }
1437 DELAY(10);
1438 }
1439 if (ntries == 1000) {
1440 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1441 error = ETIMEDOUT;
1442 }
1443
1444 /* start the microcode executing */
1445 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1446
1447 wpi_mem_unlock(sc);
1448
1449 return (error);
1450}
1451
1452static void
1453wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1454 struct wpi_rx_data *data)
1455{
1456 struct ifnet *ifp = sc->sc_ifp;
1457 struct ieee80211com *ic = ifp->if_l2com;
1458 struct wpi_rx_ring *ring = &sc->rxq;
1459 struct wpi_rx_stat *stat;
1460 struct wpi_rx_head *head;
1461 struct wpi_rx_tail *tail;
1462 struct ieee80211_node *ni;
1463 struct mbuf *m, *mnew;
1464 bus_addr_t paddr;
1465 int error;
1466
1467 stat = (struct wpi_rx_stat *)(desc + 1);
1468
1469 if (stat->len > WPI_STAT_MAXLEN) {
1470 device_printf(sc->sc_dev, "invalid rx statistic header\n");
d40991ef 1471 IFNET_STAT_INC(ifp, ierrors, 1);
4db7dd1b
JT
1472 return;
1473 }
1474
1475 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1476 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1477
1478 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1479 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1480 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1481 (uintmax_t)le64toh(tail->tstamp)));
1482
1483 /* discard Rx frames with bad CRC early */
1484 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1485 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1486 le32toh(tail->flags)));
d40991ef 1487 IFNET_STAT_INC(ifp, ierrors, 1);
4db7dd1b
JT
1488 return;
1489 }
1490 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1491 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1492 le16toh(head->len)));
d40991ef 1493 IFNET_STAT_INC(ifp, ierrors, 1);
4db7dd1b
JT
1494 return;
1495 }
1496
1497 /* XXX don't need mbuf, just dma buffer */
a2f24108 1498 mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4db7dd1b
JT
1499 if (mnew == NULL) {
1500 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1501 __func__));
d40991ef 1502 IFNET_STAT_INC(ifp, ierrors, 1);
4db7dd1b
JT
1503 return;
1504 }
1505 error = bus_dmamap_load(ring->data_dmat, data->map,
a2f24108 1506 mtod(mnew, caddr_t), MJUMPAGESIZE,
4db7dd1b
JT
1507 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1508 if (error != 0 && error != EFBIG) {
1509 device_printf(sc->sc_dev,
1510 "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1511 m_freem(mnew);
d40991ef 1512 IFNET_STAT_INC(ifp, ierrors, 1);
4db7dd1b
JT
1513 return;
1514 }
1515 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1516
1517 /* finalize mbuf and swap in new one */
1518 m = data->m;
1519 m->m_pkthdr.rcvif = ifp;
1520 m->m_data = (caddr_t)(head + 1);
1521 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1522
1523 data->m = mnew;
1524 /* update Rx descriptor */
1525 ring->desc[ring->cur] = htole32(paddr);
1526
1527 if (ieee80211_radiotap_active(ic)) {
1528 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1529
1530 tap->wr_flags = 0;
1531 tap->wr_chan_freq =
1532 htole16(ic->ic_channels[head->chan].ic_freq);
1533 tap->wr_chan_flags =
1534 htole16(ic->ic_channels[head->chan].ic_flags);
1535 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1536 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1537 tap->wr_tsft = tail->tstamp;
1538 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1539 switch (head->rate) {
1540 /* CCK rates */
1541 case 10: tap->wr_rate = 2; break;
1542 case 20: tap->wr_rate = 4; break;
1543 case 55: tap->wr_rate = 11; break;
1544 case 110: tap->wr_rate = 22; break;
1545 /* OFDM rates */
1546 case 0xd: tap->wr_rate = 12; break;
1547 case 0xf: tap->wr_rate = 18; break;
1548 case 0x5: tap->wr_rate = 24; break;
1549 case 0x7: tap->wr_rate = 36; break;
1550 case 0x9: tap->wr_rate = 48; break;
1551 case 0xb: tap->wr_rate = 72; break;
1552 case 0x1: tap->wr_rate = 96; break;
1553 case 0x3: tap->wr_rate = 108; break;
1554 /* unknown rate: should not happen */
1555 default: tap->wr_rate = 0;
1556 }
1557 if (le16toh(head->flags) & 0x4)
1558 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1559 }
1560
4db7dd1b
JT
1561 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1562 if (ni != NULL) {
1563 (void) ieee80211_input(ni, m, stat->rssi, 0);
1564 ieee80211_free_node(ni);
1565 } else
1566 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
4db7dd1b
JT
1567}
1568
1569static void
1570wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1571{
1572 struct ifnet *ifp = sc->sc_ifp;
1573 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1574 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1575 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1576 struct ieee80211_node *ni = txdata->ni;
1577 struct ieee80211vap *vap = ni->ni_vap;
1578 int retrycnt = 0;
1579
1580 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1581 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1582 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1583 le32toh(stat->status)));
1584
1585 /*
1586 * Update rate control statistics for the node.
1587 * XXX we should not count mgmt frames since they're always sent at
1588 * the lowest available bit-rate.
1589 * XXX frames w/o ACK shouldn't be used either
1590 */
1591 if (stat->ntries > 0) {
1592 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1593 retrycnt = 1;
1594 }
1595 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1596 &retrycnt, NULL);
1597
1598 /* XXX oerrors should only count errors !maxtries */
1599 if ((le32toh(stat->status) & 0xff) != 1)
d40991ef 1600 IFNET_STAT_INC(ifp, oerrors, 1);
4db7dd1b 1601 else
d40991ef 1602 IFNET_STAT_INC(ifp, opackets, 1);
4db7dd1b
JT
1603
1604 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1605 bus_dmamap_unload(ring->data_dmat, txdata->map);
1606 /* XXX handle M_TXCB? */
1607 m_freem(txdata->m);
1608 txdata->m = NULL;
1609 ieee80211_free_node(txdata->ni);
1610 txdata->ni = NULL;
1611
1612 ring->queued--;
1613
1614 sc->sc_tx_timer = 0;
9ed293e0 1615 ifq_clr_oactive(&ifp->if_snd);
4db7dd1b
JT
1616 wpi_start_locked(ifp);
1617}
1618
1619static void
1620wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1621{
1622 struct wpi_tx_ring *ring = &sc->cmdq;
1623 struct wpi_tx_data *data;
1624
1625 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1626 "type=%s len=%d\n", desc->qid, desc->idx,
1627 desc->flags, wpi_cmd_str(desc->type),
1628 le32toh(desc->len)));
1629
1630 if ((desc->qid & 7) != 4)
1631 return; /* not a command ack */
1632
1633 data = &ring->data[desc->idx];
1634
1635 /* if the command was mapped in a mbuf, free it */
1636 if (data->m != NULL) {
1637 bus_dmamap_unload(ring->data_dmat, data->map);
1638 m_freem(data->m);
1639 data->m = NULL;
1640 }
1641
1642 sc->flags &= ~WPI_FLAG_BUSY;
1643 wakeup(&ring->cmd[desc->idx]);
1644}
1645
1646static void
1647wpi_notif_intr(struct wpi_softc *sc)
1648{
1649 struct ifnet *ifp = sc->sc_ifp;
1650 struct ieee80211com *ic = ifp->if_l2com;
1651 struct wpi_rx_desc *desc;
1652 struct wpi_rx_data *data;
1653 uint32_t hw;
1654
1655 hw = le32toh(sc->shared->next);
1656 while (sc->rxq.cur != hw) {
1657 data = &sc->rxq.data[sc->rxq.cur];
1658 desc = (void *)data->m->m_ext.ext_buf;
1659
1660 DPRINTFN(WPI_DEBUG_NOTIFY,
1661 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1662 desc->qid,
1663 desc->idx,
1664 desc->flags,
1665 desc->type,
1666 le32toh(desc->len)));
1667
1668 if (!(desc->qid & 0x80)) /* reply to a command */
1669 wpi_cmd_intr(sc, desc);
1670
1671 switch (desc->type) {
1672 case WPI_RX_DONE:
1673 /* a 802.11 frame was received */
1674 wpi_rx_intr(sc, desc, data);
1675 break;
1676
1677 case WPI_TX_DONE:
1678 /* a 802.11 frame has been transmitted */
1679 wpi_tx_intr(sc, desc);
1680 break;
1681
1682 case WPI_UC_READY:
1683 {
1684 struct wpi_ucode_info *uc =
1685 (struct wpi_ucode_info *)(desc + 1);
1686
1687 /* the microcontroller is ready */
1688 DPRINTF(("microcode alive notification version %x "
1689 "alive %x\n", le32toh(uc->version),
1690 le32toh(uc->valid)));
1691
1692 if (le32toh(uc->valid) != 1) {
1693 device_printf(sc->sc_dev,
1694 "microcontroller initialization failed\n");
1695 wpi_stop_locked(sc);
1696 }
1697 break;
1698 }
1699 case WPI_STATE_CHANGED:
1700 {
1701 uint32_t *status = (uint32_t *)(desc + 1);
1702
1703 /* enabled/disabled notification */
1704 DPRINTF(("state changed to %x\n", le32toh(*status)));
1705
1706 if (le32toh(*status) & 1) {
1707 device_printf(sc->sc_dev,
1708 "Radio transmitter is switched off\n");
1709 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1710 ifp->if_flags &= ~IFF_RUNNING;
1711 /* Disable firmware commands */
1712 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1713 }
1714 break;
1715 }
1716 case WPI_START_SCAN:
1717 {
1718#ifdef WPI_DEBUG
1719 struct wpi_start_scan *scan =
1720 (struct wpi_start_scan *)(desc + 1);
1721#endif
1722
1723 DPRINTFN(WPI_DEBUG_SCANNING,
1724 ("scanning channel %d status %x\n",
1725 scan->chan, le32toh(scan->status)));
1726 break;
1727 }
1728 case WPI_STOP_SCAN:
1729 {
1730#ifdef WPI_DEBUG
1731 struct wpi_stop_scan *scan =
1732 (struct wpi_stop_scan *)(desc + 1);
1733#endif
1734 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1735
1736 DPRINTFN(WPI_DEBUG_SCANNING,
1737 ("scan finished nchan=%d status=%d chan=%d\n",
1738 scan->nchan, scan->status, scan->chan));
1739
1740 sc->sc_scan_timer = 0;
1741 ieee80211_scan_next(vap);
1742 break;
1743 }
1744 case WPI_MISSED_BEACON:
1745 {
1746 struct wpi_missed_beacon *beacon =
1747 (struct wpi_missed_beacon *)(desc + 1);
1748 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1749
1750 if (le32toh(beacon->consecutive) >=
1751 vap->iv_bmissthreshold) {
1752 DPRINTF(("Beacon miss: %u >= %u\n",
1753 le32toh(beacon->consecutive),
1754 vap->iv_bmissthreshold));
1755 ieee80211_beacon_miss(ic);
1756 }
1757 break;
1758 }
1759 }
1760
1761 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1762 }
1763
1764 /* tell the firmware what we have processed */
1765 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1766 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1767}
1768
1769static void
1770wpi_intr(void *arg)
1771{
1772 struct wpi_softc *sc = arg;
1773 uint32_t r;
1774
4db7dd1b
JT
1775 r = WPI_READ(sc, WPI_INTR);
1776 if (r == 0 || r == 0xffffffff) {
4db7dd1b
JT
1777 return;
1778 }
1779
1780 /* disable interrupts */
1781 WPI_WRITE(sc, WPI_MASK, 0);
1782 /* ack interrupts */
1783 WPI_WRITE(sc, WPI_INTR, r);
1784
1785 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1786 struct ifnet *ifp = sc->sc_ifp;
1787 struct ieee80211com *ic = ifp->if_l2com;
1788 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1789
1790 device_printf(sc->sc_dev, "fatal firmware error\n");
1791 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1792 "(Hardware Error)"));
1793 if (vap != NULL)
1794 ieee80211_cancel_scan(vap);
1795 ieee80211_runtask(ic, &sc->sc_restarttask);
1796 sc->flags &= ~WPI_FLAG_BUSY;
4db7dd1b
JT
1797 return;
1798 }
1799
1800 if (r & WPI_RX_INTR)
1801 wpi_notif_intr(sc);
1802
1803 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1804 wakeup(sc);
1805
1806 /* re-enable interrupts */
1807 if (sc->sc_ifp->if_flags & IFF_UP)
1808 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1809
4db7dd1b
JT
1810}
1811
1812static uint8_t
1813wpi_plcp_signal(int rate)
1814{
1815 switch (rate) {
1816 /* CCK rates (returned values are device-dependent) */
1817 case 2: return 10;
1818 case 4: return 20;
1819 case 11: return 55;
1820 case 22: return 110;
1821
1822 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1823 /* R1-R4 (ral/ural is R4-R1) */
1824 case 12: return 0xd;
1825 case 18: return 0xf;
1826 case 24: return 0x5;
1827 case 36: return 0x7;
1828 case 48: return 0x9;
1829 case 72: return 0xb;
1830 case 96: return 0x1;
1831 case 108: return 0x3;
1832
1833 /* unsupported rates (should not get there) */
1834 default: return 0;
1835 }
1836}
1837
1838/* quickly determine if a given rate is CCK or OFDM */
1839#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1840
1841/*
1842 * Construct the data packet for a transmit buffer and acutally put
1843 * the buffer onto the transmit ring, kicking the card to process the
1844 * the buffer.
1845 */
1846static int
1847wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1848 int ac)
1849{
1850 struct ieee80211vap *vap = ni->ni_vap;
1851 struct ifnet *ifp = sc->sc_ifp;
1852 struct ieee80211com *ic = ifp->if_l2com;
1853 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1854 struct wpi_tx_ring *ring = &sc->txq[ac];
1855 struct wpi_tx_desc *desc;
1856 struct wpi_tx_data *data;
1857 struct wpi_tx_cmd *cmd;
1858 struct wpi_cmd_data *tx;
1859 struct ieee80211_frame *wh;
1860 const struct ieee80211_txparam *tp;
1861 struct ieee80211_key *k;
1862 struct mbuf *mnew;
1863 int i, error, nsegs, rate, hdrlen, ismcast;
1864 bus_dma_segment_t segs[WPI_MAX_SCATTER];
1865
1866 desc = &ring->desc[ring->cur];
1867 data = &ring->data[ring->cur];
1868
1869 wh = mtod(m0, struct ieee80211_frame *);
1870
1871 hdrlen = ieee80211_hdrsize(wh);
1872 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1873
085ff963 1874 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4db7dd1b
JT
1875 k = ieee80211_crypto_encap(ni, m0);
1876 if (k == NULL) {
1877 m_freem(m0);
1878 return ENOBUFS;
1879 }
1880 /* packet header may have moved, reset our local pointer */
1881 wh = mtod(m0, struct ieee80211_frame *);
1882 }
1883
1884 cmd = &ring->cmd[ring->cur];
1885 cmd->code = WPI_CMD_TX_DATA;
1886 cmd->flags = 0;
1887 cmd->qid = ring->qid;
1888 cmd->idx = ring->cur;
1889
1890 tx = (struct wpi_cmd_data *)cmd->data;
1891 tx->flags = htole32(WPI_TX_AUTO_SEQ);
1892 tx->timeout = htole16(0);
1893 tx->ofdm_mask = 0xff;
1894 tx->cck_mask = 0x0f;
1895 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1896 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1897 tx->len = htole16(m0->m_pkthdr.len);
1898
1899 if (!ismcast) {
1900 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1901 !cap->cap_wmeParams[ac].wmep_noackPolicy)
1902 tx->flags |= htole32(WPI_TX_NEED_ACK);
1903 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1904 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1905 tx->rts_ntries = 7;
1906 }
1907 }
1908 /* pick a rate */
1909 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1910 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1911 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1912 /* tell h/w to set timestamp in probe responses */
1913 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1914 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1915 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1916 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1917 tx->timeout = htole16(3);
1918 else
1919 tx->timeout = htole16(2);
1920 rate = tp->mgmtrate;
1921 } else if (ismcast) {
1922 rate = tp->mcastrate;
1923 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1924 rate = tp->ucastrate;
1925 } else {
1926 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1927 rate = ni->ni_txrate;
1928 }
1929 tx->rate = wpi_plcp_signal(rate);
1930
1931 /* be very persistant at sending frames out */
1932#if 0
1933 tx->data_ntries = tp->maxretry;
1934#else
1935 tx->data_ntries = 30; /* XXX way too high */
1936#endif
1937
1938 if (ieee80211_radiotap_active_vap(vap)) {
1939 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1940 tap->wt_flags = 0;
1941 tap->wt_rate = rate;
1942 tap->wt_hwqueue = ac;
085ff963 1943 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
4db7dd1b
JT
1944 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1945
1946 ieee80211_radiotap_tx(vap, m0);
1947 }
1948
1949 /* save and trim IEEE802.11 header */
1950 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1951 m_adj(m0, hdrlen);
1952
1953 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1954 1, &nsegs, BUS_DMA_NOWAIT);
1955 if (error != 0 && error != EFBIG) {
1956 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1957 error);
1958 m_freem(m0);
1959 return error;
1960 }
1961 if (error != 0) {
1962 /* XXX use m_collapse */
d776df92 1963 mnew = m_defrag(m0, MB_DONTWAIT);
4db7dd1b
JT
1964 if (mnew == NULL) {
1965 device_printf(sc->sc_dev,
1966 "could not defragment mbuf\n");
1967 m_freem(m0);
1968 return ENOBUFS;
1969 }
1970 m0 = mnew;
1971
1972 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1973 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1974 if (error != 0) {
1975 device_printf(sc->sc_dev,
1976 "could not map mbuf (error %d)\n", error);
1977 m_freem(m0);
1978 return error;
1979 }
1980 }
1981
1982 data->m = m0;
1983 data->ni = ni;
1984
1985 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1986 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1987
1988 /* first scatter/gather segment is used by the tx data command */
1989 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1990 (1 + nsegs) << 24);
1991 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1992 ring->cur * sizeof (struct wpi_tx_cmd));
1993 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
1994 for (i = 1; i <= nsegs; i++) {
1995 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1996 desc->segs[i].len = htole32(segs[i - 1].ds_len);
1997 }
1998
1999 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2000 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2001 BUS_DMASYNC_PREWRITE);
2002
2003 ring->queued++;
2004
2005 /* kick ring */
2006 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2007 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2008
2009 return 0;
2010}
2011
2012/**
2013 * Process data waiting to be sent on the IFNET output queue
2014 */
2015static void
f0a26983 2016wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4db7dd1b 2017{
f0a26983 2018 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
4db7dd1b 2019 wpi_start_locked(ifp);
4db7dd1b
JT
2020}
2021
2022static void
2023wpi_start_locked(struct ifnet *ifp)
2024{
2025 struct wpi_softc *sc = ifp->if_softc;
2026 struct ieee80211_node *ni;
2027 struct mbuf *m;
2028 int ac;
2029
4db7dd1b
JT
2030 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2031 ifq_purge(&ifp->if_snd);
2032 return;
2033 }
2034
2035 for (;;) {
ac9843a1 2036 m = ifq_dequeue(&ifp->if_snd);
4db7dd1b
JT
2037 if (m == NULL)
2038 break;
2039 ac = M_WME_GETAC(m);
2040 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2041 /* there is no place left in this ring */
d401506e
AH
2042 /*
2043 * XXX: we CANNOT do it this way. If something
2044 * is prepended already, this is going to blow.
2045 */
9ed293e0 2046 ifq_set_oactive(&ifp->if_snd);
d401506e 2047 ifq_prepend(&ifp->if_snd, m);
4db7dd1b
JT
2048 break;
2049 }
d401506e 2050 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
4db7dd1b
JT
2051 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2052 ieee80211_free_node(ni);
d40991ef 2053 IFNET_STAT_INC(ifp, oerrors, 1);
4db7dd1b
JT
2054 break;
2055 }
2056 sc->sc_tx_timer = 5;
2057 }
2058}
2059
2060static int
2061wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2062 const struct ieee80211_bpf_params *params)
2063{
2064 struct ieee80211com *ic = ni->ni_ic;
2065 struct ifnet *ifp = ic->ic_ifp;
2066 struct wpi_softc *sc = ifp->if_softc;
2067
2068 /* prevent management frames from being sent if we're not ready */
2069 if (!(ifp->if_flags & IFF_RUNNING)) {
2070 m_freem(m);
2071 ieee80211_free_node(ni);
2072 return ENETDOWN;
2073 }
4db7dd1b
JT
2074
2075 /* management frames go into ring 0 */
2076 if (sc->txq[0].queued > sc->txq[0].count - 8) {
9ed293e0 2077 ifq_set_oactive(&ifp->if_snd);
4db7dd1b 2078 m_freem(m);
4db7dd1b
JT
2079 ieee80211_free_node(ni);
2080 return ENOBUFS; /* XXX */
2081 }
2082
d40991ef 2083 IFNET_STAT_INC(ifp, opackets, 1);
4db7dd1b
JT
2084 if (wpi_tx_data(sc, m, ni, 0) != 0)
2085 goto bad;
2086 sc->sc_tx_timer = 5;
81c64c9b 2087 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
4db7dd1b 2088
4db7dd1b
JT
2089 return 0;
2090bad:
d40991ef 2091 IFNET_STAT_INC(ifp, oerrors, 1);
4db7dd1b
JT
2092 ieee80211_free_node(ni);
2093 return EIO; /* XXX */
2094}
2095
2096static int
2097wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2098{
2099 struct wpi_softc *sc = ifp->if_softc;
2100 struct ieee80211com *ic = ifp->if_l2com;
2101 struct ifreq *ifr = (struct ifreq *) data;
2102 int error = 0, startall = 0;
2103
2104 switch (cmd) {
2105 case SIOCSIFFLAGS:
4db7dd1b
JT
2106 if ((ifp->if_flags & IFF_UP)) {
2107 if (!(ifp->if_flags & IFF_RUNNING)) {
2108 wpi_init_locked(sc, 0);
2109 startall = 1;
2110 }
2111 } else if ((ifp->if_flags & IFF_RUNNING) ||
2112 (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2113 wpi_stop_locked(sc);
4db7dd1b
JT
2114 if (startall)
2115 ieee80211_start_all(ic);
2116 break;
2117 case SIOCGIFMEDIA:
2118 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2119 break;
2120 case SIOCGIFADDR:
2121 error = ether_ioctl(ifp, cmd, data);
2122 break;
2123 default:
2124 error = EINVAL;
2125 break;
2126 }
2127 return error;
2128}
2129
2130/*
2131 * Extract various information from EEPROM.
2132 */
2133static void
2134wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2135{
2136 int i;
2137
2138 /* read the hardware capabilities, revision and SKU type */
2139 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2140 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2141 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2142
2143 /* read the regulatory domain */
2144 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2145
2146 /* read in the hw MAC address */
2147 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2148
2149 /* read the list of authorized channels */
2150 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2151 wpi_read_eeprom_channels(sc,i);
2152
2153 /* read the power level calibration info for each group */
2154 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2155 wpi_read_eeprom_group(sc,i);
2156}
2157
2158/*
2159 * Send a command to the firmware.
2160 */
2161static int
2162wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2163{
2164 struct wpi_tx_ring *ring = &sc->cmdq;
2165 struct wpi_tx_desc *desc;
2166 struct wpi_tx_cmd *cmd;
2167
2168#ifdef WPI_DEBUG
2169 if (!async) {
81c64c9b 2170 wlan_assert_serialized();
4db7dd1b
JT
2171 }
2172#endif
2173
2174 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2175 async));
2176
2177 if (sc->flags & WPI_FLAG_BUSY) {
2178 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2179 __func__, code);
2180 return EAGAIN;
2181 }
2182 sc->flags|= WPI_FLAG_BUSY;
2183
2184 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2185 code, size));
2186
2187 desc = &ring->desc[ring->cur];
2188 cmd = &ring->cmd[ring->cur];
2189
2190 cmd->code = code;
2191 cmd->flags = 0;
2192 cmd->qid = ring->qid;
2193 cmd->idx = ring->cur;
2194 memcpy(cmd->data, buf, size);
2195
2196 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2197 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2198 ring->cur * sizeof (struct wpi_tx_cmd));
2199 desc->segs[0].len = htole32(4 + size);
2200
2201 /* kick cmd ring */
2202 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2203 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2204
2205 if (async) {
2206 sc->flags &= ~ WPI_FLAG_BUSY;
2207 return 0;
2208 }
2209
81c64c9b 2210 return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
4db7dd1b
JT
2211}
2212
2213static int
2214wpi_wme_update(struct ieee80211com *ic)
2215{
2216#define WPI_EXP2(v) htole16((1 << (v)) - 1)
2217#define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2218 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2219 const struct wmeParams *wmep;
2220 struct wpi_wme_setup wme;
2221 int ac;
2222
2223 /* don't override default WME values if WME is not actually enabled */
2224 if (!(ic->ic_flags & IEEE80211_F_WME))
2225 return 0;
2226
2227 wme.flags = 0;
2228 for (ac = 0; ac < WME_NUM_AC; ac++) {
2229 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2230 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2231 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2232 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2233 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2234
2235 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2236 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2237 wme.ac[ac].cwmax, wme.ac[ac].txop));
2238 }
2239 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2240#undef WPI_USEC
2241#undef WPI_EXP2
2242}
2243
2244/*
2245 * Configure h/w multi-rate retries.
2246 */
2247static int
2248wpi_mrr_setup(struct wpi_softc *sc)
2249{
2250 struct ifnet *ifp = sc->sc_ifp;
2251 struct ieee80211com *ic = ifp->if_l2com;
2252 struct wpi_mrr_setup mrr;
2253 int i, error;
2254
2255 memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2256
2257 /* CCK rates (not used with 802.11a) */
2258 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2259 mrr.rates[i].flags = 0;
2260 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2261 /* fallback to the immediate lower CCK rate (if any) */
2262 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2263 /* try one time at this rate before falling back to "next" */
2264 mrr.rates[i].ntries = 1;
2265 }
2266
2267 /* OFDM rates (not used with 802.11b) */
2268 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2269 mrr.rates[i].flags = 0;
2270 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2271 /* fallback to the immediate lower OFDM rate (if any) */
2272 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2273 mrr.rates[i].next = (i == WPI_OFDM6) ?
2274 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2275 WPI_OFDM6 : WPI_CCK2) :
2276 i - 1;
2277 /* try one time at this rate before falling back to "next" */
2278 mrr.rates[i].ntries = 1;
2279 }
2280
2281 /* setup MRR for control frames */
2282 mrr.which = htole32(WPI_MRR_CTL);
2283 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2284 if (error != 0) {
2285 device_printf(sc->sc_dev,
2286 "could not setup MRR for control frames\n");
2287 return error;
2288 }
2289
2290 /* setup MRR for data frames */
2291 mrr.which = htole32(WPI_MRR_DATA);
2292 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293 if (error != 0) {
2294 device_printf(sc->sc_dev,
2295 "could not setup MRR for data frames\n");
2296 return error;
2297 }
2298
2299 return 0;
2300}
2301
2302static void
2303wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2304{
2305 struct wpi_cmd_led led;
2306
2307 led.which = which;
2308 led.unit = htole32(100000); /* on/off in unit of 100ms */
2309 led.off = off;
2310 led.on = on;
2311
2312 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2313}
2314
2315static void
2316wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2317{
2318 struct wpi_cmd_tsf tsf;
2319 uint64_t val, mod;
2320
2321 memset(&tsf, 0, sizeof tsf);
2322 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2323 tsf.bintval = htole16(ni->ni_intval);
2324 tsf.lintval = htole16(10);
2325
2326 /* compute remaining time until next beacon */
2327 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */
2328 mod = le64toh(tsf.tstamp) % val;
2329 tsf.binitval = htole32((uint32_t)(val - mod));
2330
2331 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2332 device_printf(sc->sc_dev, "could not enable TSF\n");
2333}
2334
2335#if 0
2336/*
2337 * Build a beacon frame that the firmware will broadcast periodically in
2338 * IBSS or HostAP modes.
2339 */
2340static int
2341wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2342{
2343 struct ifnet *ifp = sc->sc_ifp;
2344 struct ieee80211com *ic = ifp->if_l2com;
2345 struct wpi_tx_ring *ring = &sc->cmdq;
2346 struct wpi_tx_desc *desc;
2347 struct wpi_tx_data *data;
2348 struct wpi_tx_cmd *cmd;
2349 struct wpi_cmd_beacon *bcn;
2350 struct ieee80211_beacon_offsets bo;
2351 struct mbuf *m0;
2352 bus_addr_t physaddr;
2353 int error;
2354
2355 desc = &ring->desc[ring->cur];
2356 data = &ring->data[ring->cur];
2357
2358 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2359 if (m0 == NULL) {
2360 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2361 return ENOMEM;
2362 }
2363
2364 cmd = &ring->cmd[ring->cur];
2365 cmd->code = WPI_CMD_SET_BEACON;
2366 cmd->flags = 0;
2367 cmd->qid = ring->qid;
2368 cmd->idx = ring->cur;
2369
2370 bcn = (struct wpi_cmd_beacon *)cmd->data;
2371 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2372 bcn->id = WPI_ID_BROADCAST;
2373 bcn->ofdm_mask = 0xff;
2374 bcn->cck_mask = 0x0f;
2375 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2376 bcn->len = htole16(m0->m_pkthdr.len);
2377 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2378 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2379 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2380
2381 /* save and trim IEEE802.11 header */
2382 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2383 m_adj(m0, sizeof (struct ieee80211_frame));
2384
2385 /* assume beacon frame is contiguous */
2386 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2387 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2388 if (error != 0) {
2389 device_printf(sc->sc_dev, "could not map beacon\n");
2390 m_freem(m0);
2391 return error;
2392 }
2393
2394 data->m = m0;
2395
2396 /* first scatter/gather segment is used by the beacon command */
2397 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2398 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2399 ring->cur * sizeof (struct wpi_tx_cmd));
2400 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2401 desc->segs[1].addr = htole32(physaddr);
2402 desc->segs[1].len = htole32(m0->m_pkthdr.len);
2403
2404 /* kick cmd ring */
2405 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2406 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2407
2408 return 0;
2409}
2410#endif
2411
2412static int
2413wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2414{
2415 struct ieee80211com *ic = vap->iv_ic;
f688ab3e 2416 struct ieee80211_node *ni;
4db7dd1b
JT
2417 struct wpi_node_info node;
2418 int error;
2419
2420
2421 /* update adapter's configuration */
2422 sc->config.associd = 0;
2423 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
f688ab3e 2424 ni = ieee80211_ref_node(vap->iv_bss);
4db7dd1b
JT
2425 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2426 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2427 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2428 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2429 WPI_CONFIG_24GHZ);
2430 }
2431 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2432 sc->config.cck_mask = 0;
2433 sc->config.ofdm_mask = 0x15;
2434 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2435 sc->config.cck_mask = 0x03;
2436 sc->config.ofdm_mask = 0;
2437 } else {
2438 /* XXX assume 802.11b/g */
2439 sc->config.cck_mask = 0x0f;
2440 sc->config.ofdm_mask = 0x15;
2441 }
2442
2443 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2444 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2445 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2446 sizeof (struct wpi_config), 1);
2447 if (error != 0) {
2448 device_printf(sc->sc_dev, "could not configure\n");
f688ab3e 2449 ieee80211_free_node(ni);
4db7dd1b
JT
2450 return error;
2451 }
2452
2453 /* configuration has changed, set Tx power accordingly */
2454 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2455 device_printf(sc->sc_dev, "could not set Tx power\n");
f688ab3e 2456 ieee80211_free_node(ni);
4db7dd1b
JT
2457 return error;
2458 }
2459
2460 /* add default node */
2461 memset(&node, 0, sizeof node);
2462 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
f688ab3e 2463 ieee80211_free_node(ni);
4db7dd1b
JT
2464 node.id = WPI_ID_BSS;
2465 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2466 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2467 node.action = htole32(WPI_ACTION_SET_RATE);
2468 node.antenna = WPI_ANTENNA_BOTH;
2469 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2470 if (error != 0)
2471 device_printf(sc->sc_dev, "could not add BSS node\n");
2472
2473 return (error);
2474}
2475
2476static int
2477wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2478{
2479 struct ieee80211com *ic = vap->iv_ic;
f688ab3e 2480 struct ieee80211_node *ni;
4db7dd1b
JT
2481 int error;
2482
2483 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2484 /* link LED blinks while monitoring */
2485 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2486 return 0;
2487 }
2488
f688ab3e 2489 ni = ieee80211_ref_node(vap->iv_bss);
4db7dd1b
JT
2490 wpi_enable_tsf(sc, ni);
2491
2492 /* update adapter's configuration */
2493 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2494 /* short preamble/slot time are negotiated when associating */
2495 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2496 WPI_CONFIG_SHSLOT);
2497 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2498 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2499 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2500 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2501 sc->config.filter |= htole32(WPI_FILTER_BSS);
2502
2503 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2504
2505 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2506 sc->config.flags));
2507 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2508 wpi_config), 1);
2509 if (error != 0) {
2510 device_printf(sc->sc_dev, "could not update configuration\n");
f688ab3e 2511 ieee80211_free_node(ni);
4db7dd1b
JT
2512 return error;
2513 }
2514
2515 error = wpi_set_txpower(sc, ni->ni_chan, 1);
f688ab3e 2516 ieee80211_free_node(ni);
4db7dd1b
JT
2517 if (error != 0) {
2518 device_printf(sc->sc_dev, "could set txpower\n");
2519 return error;
2520 }
2521
2522 /* link LED always on while associated */
2523 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2524
2525 /* start automatic rate control timer */
81c64c9b 2526 callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
4db7dd1b
JT
2527
2528 return (error);
2529}
2530
2531/*
2532 * Send a scan request to the firmware. Since this command is huge, we map it
2533 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2534 * much of this code is similar to that in wpi_cmd but because we must manually
2535 * construct the probe & channels, we duplicate what's needed here. XXX In the
2536 * future, this function should be modified to use wpi_cmd to help cleanup the
2537 * code base.
2538 */
2539static int
2540wpi_scan(struct wpi_softc *sc)
2541{
2542 struct ifnet *ifp = sc->sc_ifp;
2543 struct ieee80211com *ic = ifp->if_l2com;
2544 struct ieee80211_scan_state *ss = ic->ic_scan;
2545 struct wpi_tx_ring *ring = &sc->cmdq;
2546 struct wpi_tx_desc *desc;
2547 struct wpi_tx_data *data;
2548 struct wpi_tx_cmd *cmd;
2549 struct wpi_scan_hdr *hdr;
2550 struct wpi_scan_chan *chan;
2551 struct ieee80211_frame *wh;
2552 struct ieee80211_rateset *rs;
2553 struct ieee80211_channel *c;
2554 enum ieee80211_phymode mode;
2555 uint8_t *frm;
2556 int nrates, pktlen, error, i, nssid;
2557 bus_addr_t physaddr;
2558
2559 desc = &ring->desc[ring->cur];
2560 data = &ring->data[ring->cur];
2561
a2f24108 2562 data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4db7dd1b
JT
2563 if (data->m == NULL) {
2564 device_printf(sc->sc_dev,
2565 "could not allocate mbuf for scan command\n");
2566 return ENOMEM;
2567 }
2568
2569 cmd = mtod(data->m, struct wpi_tx_cmd *);
2570 cmd->code = WPI_CMD_SCAN;
2571 cmd->flags = 0;
2572 cmd->qid = ring->qid;
2573 cmd->idx = ring->cur;
2574
2575 hdr = (struct wpi_scan_hdr *)cmd->data;
2576 memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2577
2578 /*
2579 * Move to the next channel if no packets are received within 5 msecs
2580 * after sending the probe request (this helps to reduce the duration
2581 * of active scans).
2582 */
2583 hdr->quiet = htole16(5);
2584 hdr->threshold = htole16(1);
2585
2586 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2587 /* send probe requests at 6Mbps */
2588 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2589
2590 /* Enable crc checking */
2591 hdr->promotion = htole16(1);
2592 } else {
2593 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2594 /* send probe requests at 1Mbps */
2595 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2596 }
2597 hdr->tx.id = WPI_ID_BROADCAST;
2598 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2599 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2600
2601 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2602 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2603 for (i = 0; i < nssid; i++) {
2604 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2605 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2606 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2607 hdr->scan_essids[i].esslen);
2608#ifdef WPI_DEBUG
2609 if (wpi_debug & WPI_DEBUG_SCANNING) {
2610 kprintf("Scanning Essid: ");
2611 ieee80211_print_essid(hdr->scan_essids[i].essid,
2612 hdr->scan_essids[i].esslen);
2613 kprintf("\n");
2614 }
2615#endif
2616 }
2617
2618 /*
2619 * Build a probe request frame. Most of the following code is a
2620 * copy & paste of what is done in net80211.
2621 */
2622 wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2623 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2624 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2625 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2626 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2627 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2628 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2629 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2630 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2631
2632 frm = (uint8_t *)(wh + 1);
2633
2634 /* add essid IE, the hardware will fill this in for us */
2635 *frm++ = IEEE80211_ELEMID_SSID;
2636 *frm++ = 0;
2637
2638 mode = ieee80211_chan2mode(ic->ic_curchan);
2639 rs = &ic->ic_sup_rates[mode];
2640
2641 /* add supported rates IE */
2642 *frm++ = IEEE80211_ELEMID_RATES;
2643 nrates = rs->rs_nrates;
2644 if (nrates > IEEE80211_RATE_SIZE)
2645 nrates = IEEE80211_RATE_SIZE;
2646 *frm++ = nrates;
2647 memcpy(frm, rs->rs_rates, nrates);
2648 frm += nrates;
2649
2650 /* add supported xrates IE */
2651 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2652 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2653 *frm++ = IEEE80211_ELEMID_XRATES;
2654 *frm++ = nrates;
2655 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2656 frm += nrates;
2657 }
2658
2659 /* setup length of probe request */
2660 hdr->tx.len = htole16(frm - (uint8_t *)wh);
2661
2662 /*
2663 * Construct information about the channel that we
2664 * want to scan. The firmware expects this to be directly
2665 * after the scan probe request
2666 */
2667 c = ic->ic_curchan;
2668 chan = (struct wpi_scan_chan *)frm;
2669 chan->chan = ieee80211_chan2ieee(ic, c);
2670 chan->flags = 0;
2671 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2672 chan->flags |= WPI_CHAN_ACTIVE;
2673 if (nssid != 0)
2674 chan->flags |= WPI_CHAN_DIRECT;
2675 }
2676 chan->gain_dsp = 0x6e; /* Default level */
2677 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2678 chan->active = htole16(10);
2679 chan->passive = htole16(ss->ss_maxdwell);
2680 chan->gain_radio = 0x3b;
2681 } else {
2682 chan->active = htole16(20);
2683 chan->passive = htole16(ss->ss_maxdwell);
2684 chan->gain_radio = 0x28;
2685 }
2686
2687 DPRINTFN(WPI_DEBUG_SCANNING,
2688 ("Scanning %u Passive: %d\n",
2689 chan->chan,
2690 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2691
2692 hdr->nchan++;
2693 chan++;
2694
2695 frm += sizeof (struct wpi_scan_chan);
2696#if 0
2697 // XXX All Channels....
2698 for (c = &ic->ic_channels[1];
2699 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2700 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2701 continue;
2702
2703 chan->chan = ieee80211_chan2ieee(ic, c);
2704 chan->flags = 0;
2705 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2706 chan->flags |= WPI_CHAN_ACTIVE;
2707 if (ic->ic_des_ssid[0].len != 0)
2708 chan->flags |= WPI_CHAN_DIRECT;
2709 }
2710 chan->gain_dsp = 0x6e; /* Default level */
2711 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2712 chan->active = htole16(10);
2713 chan->passive = htole16(110);
2714 chan->gain_radio = 0x3b;
2715 } else {
2716 chan->active = htole16(20);
2717 chan->passive = htole16(120);
2718 chan->gain_radio = 0x28;
2719 }
2720
2721 DPRINTFN(WPI_DEBUG_SCANNING,
2722 ("Scanning %u Passive: %d\n",
2723 chan->chan,
2724 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2725
2726 hdr->nchan++;
2727 chan++;
2728
2729 frm += sizeof (struct wpi_scan_chan);
2730 }
2731#endif
2732
2733 hdr->len = htole16(frm - (uint8_t *)hdr);
2734 pktlen = frm - (uint8_t *)cmd;
2735
2736 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2737 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2738 if (error != 0) {
2739 device_printf(sc->sc_dev, "could not map scan command\n");
2740 m_freem(data->m);
2741 data->m = NULL;
2742 return error;
2743 }
2744
2745 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2746 desc->segs[0].addr = htole32(physaddr);
2747 desc->segs[0].len = htole32(pktlen);
2748
2749 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2750 BUS_DMASYNC_PREWRITE);
2751 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2752
2753 /* kick cmd ring */
2754 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2755 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2756
2757 sc->sc_scan_timer = 5;
2758 return 0; /* will be notified async. of failure/success */
2759}
2760
2761/**
2762 * Configure the card to listen to a particular channel, this transisions the
2763 * card in to being able to receive frames from remote devices.
2764 */
2765static int
2766wpi_config(struct wpi_softc *sc)
2767{
2768 struct ifnet *ifp = sc->sc_ifp;
2769 struct ieee80211com *ic = ifp->if_l2com;
2770 struct wpi_power power;
2771 struct wpi_bluetooth bluetooth;
2772 struct wpi_node_info node;
2773 int error;
2774
2775 /* set power mode */
2776 memset(&power, 0, sizeof power);
2777 power.flags = htole32(WPI_POWER_CAM|0x8);
2778 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2779 if (error != 0) {
2780 device_printf(sc->sc_dev, "could not set power mode\n");
2781 return error;
2782 }
2783
2784 /* configure bluetooth coexistence */
2785 memset(&bluetooth, 0, sizeof bluetooth);
2786 bluetooth.flags = 3;
2787 bluetooth.lead = 0xaa;
2788 bluetooth.kill = 1;
2789 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2790 0);
2791 if (error != 0) {
2792 device_printf(sc->sc_dev,
2793 "could not configure bluetooth coexistence\n");
2794 return error;
2795 }
2796
2797 /* configure adapter */
2798 memset(&sc->config, 0, sizeof (struct wpi_config));
2799 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2800 /*set default channel*/
2801 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2802 sc->config.flags = htole32(WPI_CONFIG_TSF);
2803 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2804 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2805 WPI_CONFIG_24GHZ);
2806 }
2807 sc->config.filter = 0;
2808 switch (ic->ic_opmode) {
2809 case IEEE80211_M_STA:
2810 case IEEE80211_M_WDS: /* No know setup, use STA for now */
2811 sc->config.mode = WPI_MODE_STA;
2812 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2813 break;
2814 case IEEE80211_M_IBSS:
2815 case IEEE80211_M_AHDEMO:
2816 sc->config.mode = WPI_MODE_IBSS;
2817 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2818 WPI_FILTER_MULTICAST);
2819 break;
2820 case IEEE80211_M_HOSTAP:
2821 sc->config.mode = WPI_MODE_HOSTAP;
2822 break;
2823 case IEEE80211_M_MONITOR:
2824 sc->config.mode = WPI_MODE_MONITOR;
2825 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2826 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2827 break;
2828 default:
2829 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2830 return EINVAL;
2831 }
2832 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2833 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2834 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2835 sizeof (struct wpi_config), 0);
2836 if (error != 0) {
2837 device_printf(sc->sc_dev, "configure command failed\n");
2838 return error;
2839 }
2840
2841 /* configuration has changed, set Tx power accordingly */
2842 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2843 device_printf(sc->sc_dev, "could not set Tx power\n");
2844 return error;
2845 }
2846
2847 /* add broadcast node */
2848 memset(&node, 0, sizeof node);
2849 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2850 node.id = WPI_ID_BROADCAST;
2851 node.rate = wpi_plcp_signal(2);
2852 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2853 if (error != 0) {
2854 device_printf(sc->sc_dev, "could not add broadcast node\n");
2855 return error;
2856 }
2857
2858 /* Setup rate scalling */
2859 error = wpi_mrr_setup(sc);
2860 if (error != 0) {
2861 device_printf(sc->sc_dev, "could not setup MRR\n");
2862 return error;
2863 }
2864
2865 return 0;
2866}
2867
2868static void
2869wpi_stop_master(struct wpi_softc *sc)
2870{
2871 uint32_t tmp;
2872 int ntries;
2873
2874 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2875
2876 tmp = WPI_READ(sc, WPI_RESET);
2877 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2878
2879 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2880 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2881 return; /* already asleep */
2882
2883 for (ntries = 0; ntries < 100; ntries++) {
2884 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2885 break;
2886 DELAY(10);
2887 }
2888 if (ntries == 100) {
2889 device_printf(sc->sc_dev, "timeout waiting for master\n");
2890 }
2891}
2892
2893static int
2894wpi_power_up(struct wpi_softc *sc)
2895{
2896 uint32_t tmp;
2897 int ntries;
2898
2899 wpi_mem_lock(sc);
2900 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2901 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2902 wpi_mem_unlock(sc);
2903
2904 for (ntries = 0; ntries < 5000; ntries++) {
2905 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2906 break;
2907 DELAY(10);
2908 }
2909 if (ntries == 5000) {
2910 device_printf(sc->sc_dev,
2911 "timeout waiting for NIC to power up\n");
2912 return ETIMEDOUT;
2913 }
2914 return 0;
2915}
2916
2917static int
2918wpi_reset(struct wpi_softc *sc)
2919{
2920 uint32_t tmp;
2921 int ntries;
2922
2923 DPRINTFN(WPI_DEBUG_HW,
2924 ("Resetting the card - clearing any uploaded firmware\n"));
2925
2926 /* clear any pending interrupts */
2927 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2928
2929 tmp = WPI_READ(sc, WPI_PLL_CTL);
2930 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2931
2932 tmp = WPI_READ(sc, WPI_CHICKEN);
2933 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2934
2935 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2936 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2937
2938 /* wait for clock stabilization */
2939 for (ntries = 0; ntries < 25000; ntries++) {
2940 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2941 break;
2942 DELAY(10);
2943 }
2944 if (ntries == 25000) {
2945 device_printf(sc->sc_dev,
2946 "timeout waiting for clock stabilization\n");
2947 return ETIMEDOUT;
2948 }
2949
2950 /* initialize EEPROM */
2951 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2952
2953 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2954 device_printf(sc->sc_dev, "EEPROM not found\n");
2955 return EIO;
2956 }
2957 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2958
2959 return 0;
2960}
2961
2962static void
2963wpi_hw_config(struct wpi_softc *sc)
2964{
2965 uint32_t rev, hw;
2966
2967 /* voodoo from the Linux "driver".. */
2968 hw = WPI_READ(sc, WPI_HWCONFIG);
2969
2970 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2971 if ((rev & 0xc0) == 0x40)
2972 hw |= WPI_HW_ALM_MB;
2973 else if (!(rev & 0x80))
2974 hw |= WPI_HW_ALM_MM;
2975
2976 if (sc->cap == 0x80)
2977 hw |= WPI_HW_SKU_MRC;
2978
2979 hw &= ~WPI_HW_REV_D;
2980 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2981 hw |= WPI_HW_REV_D;
2982
2983 if (sc->type > 1)
2984 hw |= WPI_HW_TYPE_B;
2985
2986 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2987}
2988
2989static void
2990wpi_rfkill_resume(struct wpi_softc *sc)
2991{
2992 struct ifnet *ifp = sc->sc_ifp;
2993 struct ieee80211com *ic = ifp->if_l2com;
2994 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2995 int ntries;
2996
2997 /* enable firmware again */
2998 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2999 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3000
3001 /* wait for thermal sensors to calibrate */
3002 for (ntries = 0; ntries < 1000; ntries++) {
3003 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3004 break;
3005 DELAY(10);
3006 }
3007
3008 if (ntries == 1000) {
3009 device_printf(sc->sc_dev,
3010 "timeout waiting for thermal calibration\n");
4db7dd1b
JT
3011 return;
3012 }
3013 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3014
3015 if (wpi_config(sc) != 0) {
3016 device_printf(sc->sc_dev, "device config failed\n");
4db7dd1b
JT
3017 return;
3018 }
3019
9ed293e0 3020 ifq_clr_oactive(&ifp->if_snd);
4db7dd1b
JT
3021 ifp->if_flags |= IFF_RUNNING;
3022 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3023
3024 if (vap != NULL) {
3025 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3026 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3027 ieee80211_beacon_miss(ic);
3028 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3029 } else
3030 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3031 } else {
3032 ieee80211_scan_next(vap);
3033 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3034 }
3035 }
3036
81c64c9b 3037 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
4db7dd1b
JT
3038}
3039
3040static void
3041wpi_init_locked(struct wpi_softc *sc, int force)
3042{
3043 struct ifnet *ifp = sc->sc_ifp;
3044 uint32_t tmp;
3045 int ntries, qid;
3046
3047 wpi_stop_locked(sc);
3048 (void)wpi_reset(sc);
3049
3050 wpi_mem_lock(sc);
3051 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3052 DELAY(20);
3053 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3054 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3055 wpi_mem_unlock(sc);
3056
3057 (void)wpi_power_up(sc);
3058 wpi_hw_config(sc);
3059
3060 /* init Rx ring */
3061 wpi_mem_lock(sc);
3062 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3063 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3064 offsetof(struct wpi_shared, next));
3065 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3066 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3067 wpi_mem_unlock(sc);
3068
3069 /* init Tx rings */
3070 wpi_mem_lock(sc);
3071 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3072 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3073 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3074 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3075 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3076 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3077 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3078
3079 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3080 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3081
3082 for (qid = 0; qid < 6; qid++) {
3083 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3084 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3085 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3086 }
3087 wpi_mem_unlock(sc);
3088
3089 /* clear "radio off" and "disable command" bits (reversed logic) */
3090 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3091 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3092 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3093
3094 /* clear any pending interrupts */
3095 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3096
3097 /* enable interrupts */
3098 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3099
3100 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3101 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102
3103 if ((wpi_load_firmware(sc)) != 0) {
3104 device_printf(sc->sc_dev,
3105 "A problem occurred loading the firmware to the driver\n");
3106 return;
3107 }
3108
3109 /* At this point the firmware is up and running. If the hardware
3110 * RF switch is turned off thermal calibration will fail, though
3111 * the card is still happy to continue to accept commands, catch
3112 * this case and schedule a task to watch for it to be turned on.
3113 */
3114 wpi_mem_lock(sc);
3115 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3116 wpi_mem_unlock(sc);
3117
3118 if (!(tmp & 0x1)) {
3119 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3120 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3121 goto out;
3122 }
3123
3124 /* wait for thermal sensors to calibrate */
3125 for (ntries = 0; ntries < 1000; ntries++) {
3126 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3127 break;
3128 DELAY(10);
3129 }
3130
3131 if (ntries == 1000) {
3132 device_printf(sc->sc_dev,
3133 "timeout waiting for thermal sensors calibration\n");
3134 return;
3135 }
3136 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3137
3138 if (wpi_config(sc) != 0) {
3139 device_printf(sc->sc_dev, "device config failed\n");
3140 return;
3141 }
3142
9ed293e0 3143 ifq_clr_oactive(&ifp->if_snd);
4db7dd1b
JT
3144 ifp->if_flags |= IFF_RUNNING;
3145out:
81c64c9b 3146 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
4db7dd1b
JT
3147}
3148
3149static void
3150wpi_init(void *arg)
3151{
3152 struct wpi_softc *sc = arg;
3153 struct ifnet *ifp = sc->sc_ifp;
3154 struct ieee80211com *ic = ifp->if_l2com;
3155
4db7dd1b 3156 wpi_init_locked(sc, 0);
4db7dd1b
JT
3157
3158 if (ifp->if_flags & IFF_RUNNING)
3159 ieee80211_start_all(ic); /* start all vaps */
3160}
3161
3162static void
3163wpi_stop_locked(struct wpi_softc *sc)
3164{
3165 struct ifnet *ifp = sc->sc_ifp;
3166 uint32_t tmp;
3167 int ac;
3168
3169 sc->sc_tx_timer = 0;
3170 sc->sc_scan_timer = 0;
9ed293e0
SZ
3171 ifp->if_flags &= ~IFF_RUNNING;
3172 ifq_clr_oactive(&ifp->if_snd);
4db7dd1b 3173 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
81c64c9b
JT
3174 callout_stop(&sc->watchdog_to_callout);
3175 callout_stop(&sc->calib_to_callout);
4db7dd1b
JT
3176
3177
3178 /* disable interrupts */
3179 WPI_WRITE(sc, WPI_MASK, 0);
3180 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3181 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3182 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3183
3184 wpi_mem_lock(sc);
3185 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3186 wpi_mem_unlock(sc);
3187
3188 /* reset all Tx rings */
3189 for (ac = 0; ac < 4; ac++)
3190 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3191 wpi_reset_tx_ring(sc, &sc->cmdq);
3192
3193 /* reset Rx ring */
3194 wpi_reset_rx_ring(sc, &sc->rxq);
3195
3196 wpi_mem_lock(sc);
3197 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3198 wpi_mem_unlock(sc);
3199
3200 DELAY(5);
3201
3202 wpi_stop_master(sc);
3203
3204 tmp = WPI_READ(sc, WPI_RESET);
3205 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3206 sc->flags &= ~WPI_FLAG_BUSY;
3207}
3208
3209static void
3210wpi_stop(struct wpi_softc *sc)
3211{
4db7dd1b 3212 wpi_stop_locked(sc);
4db7dd1b
JT
3213}
3214
4db7dd1b 3215static void
81c64c9b 3216wpi_calib_timeout_callout(void *arg)
4db7dd1b
JT
3217{
3218 struct wpi_softc *sc = arg;
3219 struct ifnet *ifp = sc->sc_ifp;
3220 struct ieee80211com *ic = ifp->if_l2com;
3221 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3222 int temp;
3223
3224 if (vap->iv_state != IEEE80211_S_RUN)
3225 return;
3226
3227 /* update sensor data */
3228 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3229 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3230
3231 wpi_power_calibration(sc, temp);
3232
81c64c9b 3233 callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
4db7dd1b
JT
3234}
3235
3236/*
3237 * This function is called periodically (every 60 seconds) to adjust output
3238 * power to temperature changes.
3239 */
3240static void
3241wpi_power_calibration(struct wpi_softc *sc, int temp)
3242{
3243 struct ifnet *ifp = sc->sc_ifp;
3244 struct ieee80211com *ic = ifp->if_l2com;
3245 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3246
3247 /* sanity-check read value */
3248 if (temp < -260 || temp > 25) {
3249 /* this can't be correct, ignore */
3250 DPRINTFN(WPI_DEBUG_TEMP,
3251 ("out-of-range temperature reported: %d\n", temp));
3252 return;
3253 }
3254
3255 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3256
3257 /* adjust Tx power if need be */
3258 if (abs(temp - sc->temp) <= 6)
3259 return;
3260
3261 sc->temp = temp;
3262
3263 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3264 /* just warn, too bad for the automatic calibration... */
3265 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3266 }
3267}
3268
3269/**
3270 * Read the eeprom to find out what channels are valid for the given
3271 * band and update net80211 with what we find.
3272 */
3273static void
3274wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3275{
3276 struct ifnet *ifp = sc->sc_ifp;
3277 struct ieee80211com *ic = ifp->if_l2com;
3278 const struct wpi_chan_band *band = &wpi_bands[n];
3279 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3280 struct ieee80211_channel *c;
3281 int chan, i, passive;
3282
3283 wpi_read_prom_data(sc, band->addr, channels,
3284 band->nchan * sizeof (struct wpi_eeprom_chan));
3285
3286 for (i = 0; i < band->nchan; i++) {
3287 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3288 DPRINTFN(WPI_DEBUG_HW,
3289 ("Channel Not Valid: %d, band %d\n",
3290 band->chan[i],n));
3291 continue;
3292 }
3293
3294 passive = 0;
3295 chan = band->chan[i];
3296 c = &ic->ic_channels[ic->ic_nchans++];
3297
3298 /* is active scan allowed on this channel? */
3299 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3300 passive = IEEE80211_CHAN_PASSIVE;
3301 }
3302
3303 if (n == 0) { /* 2GHz band */
3304 c->ic_ieee = chan;
3305 c->ic_freq = ieee80211_ieee2mhz(chan,
3306 IEEE80211_CHAN_2GHZ);
3307 c->ic_flags = IEEE80211_CHAN_B | passive;
3308
3309 c = &ic->ic_channels[ic->ic_nchans++];
3310 c->ic_ieee = chan;
3311 c->ic_freq = ieee80211_ieee2mhz(chan,
3312 IEEE80211_CHAN_2GHZ);
3313 c->ic_flags = IEEE80211_CHAN_G | passive;
3314
3315 } else { /* 5GHz band */
3316 /*
3317 * Some 3945ABG adapters support channels 7, 8, 11
3318 * and 12 in the 2GHz *and* 5GHz bands.
3319 * Because of limitations in our net80211(9) stack,
3320 * we can't support these channels in 5GHz band.
3321 * XXX not true; just need to map to proper frequency
3322 */
3323 if (chan <= 14)
3324 continue;
3325
3326 c->ic_ieee = chan;
3327 c->ic_freq = ieee80211_ieee2mhz(chan,
3328 IEEE80211_CHAN_5GHZ);
3329 c->ic_flags = IEEE80211_CHAN_A | passive;
3330 }
3331
3332 /* save maximum allowed power for this channel */
3333 sc->maxpwr[chan] = channels[i].maxpwr;
3334
3335#if 0
3336 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3337 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3338 //ic->ic_channels[chan].ic_minpower...
3339 //ic->ic_channels[chan].ic_maxregtxpower...
3340#endif
3341
3342 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3343 " passive=%d, offset %d\n", chan, c->ic_freq,
3344 channels[i].flags, sc->maxpwr[chan],
3345 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3346 ic->ic_nchans));
3347 }
3348}
3349
3350static void
3351wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3352{
3353 struct wpi_power_group *group = &sc->groups[n];
3354 struct wpi_eeprom_group rgroup;
3355 int i;
3356
3357 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3358 sizeof rgroup);
3359
3360 /* save power group information */
3361 group->chan = rgroup.chan;
3362 group->maxpwr = rgroup.maxpwr;
3363 /* temperature at which the samples were taken */
3364 group->temp = (int16_t)le16toh(rgroup.temp);
3365
3366 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3367 group->chan, group->maxpwr, group->temp));
3368
3369 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3370 group->samples[i].index = rgroup.samples[i].index;
3371 group->samples[i].power = rgroup.samples[i].power;
3372
3373 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3374 group->samples[i].index, group->samples[i].power));
3375 }
3376}
3377
3378/*
3379 * Update Tx power to match what is defined for channel `c'.
3380 */
3381static int
3382wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3383{
3384 struct ifnet *ifp = sc->sc_ifp;
3385 struct ieee80211com *ic = ifp->if_l2com;
3386 struct wpi_power_group *group;
3387 struct wpi_cmd_txpower txpower;
3388 u_int chan;
3389 int i;
3390
3391 /* get channel number */
3392 chan = ieee80211_chan2ieee(ic, c);
3393
3394 /* find the power group to which this channel belongs */
3395 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3396 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3397 if (chan <= group->chan)
3398 break;
3399 } else
3400 group = &sc->groups[0];
3401
3402 memset(&txpower, 0, sizeof txpower);
3403 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3404 txpower.channel = htole16(chan);
3405
3406 /* set Tx power for all OFDM and CCK rates */
3407 for (i = 0; i <= 11 ; i++) {
3408 /* retrieve Tx power for this channel/rate combination */
3409 int idx = wpi_get_power_index(sc, group, c,
3410 wpi_ridx_to_rate[i]);
3411
3412 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3413
3414 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3416 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3417 } else {
3418 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3419 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3420 }
3421 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3422 chan, wpi_ridx_to_rate[i], idx));
3423 }
3424
3425 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3426}
3427
3428/*
3429 * Determine Tx power index for a given channel/rate combination.
3430 * This takes into account the regulatory information from EEPROM and the
3431 * current temperature.
3432 */
3433static int
3434wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3435 struct ieee80211_channel *c, int rate)
3436{
3437/* fixed-point arithmetic division using a n-bit fractional part */
3438#define fdivround(a, b, n) \
3439 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3440
3441/* linear interpolation */
3442#define interpolate(x, x1, y1, x2, y2, n) \
3443 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3444
3445 struct ifnet *ifp = sc->sc_ifp;
3446 struct ieee80211com *ic = ifp->if_l2com;
3447 struct wpi_power_sample *sample;
3448 int pwr, idx;
3449 u_int chan;
3450
3451 /* get channel number */
3452 chan = ieee80211_chan2ieee(ic, c);
3453
3454 /* default power is group's maximum power - 3dB */
3455 pwr = group->maxpwr / 2;
3456
3457 /* decrease power for highest OFDM rates to reduce distortion */
3458 switch (rate) {
3459 case 72: /* 36Mb/s */
3460 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
3461 break;
3462 case 96: /* 48Mb/s */
3463 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3464 break;
3465 case 108: /* 54Mb/s */
3466 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3467 break;
3468 }
3469
3470 /* never exceed channel's maximum allowed Tx power */
3471 pwr = min(pwr, sc->maxpwr[chan]);
3472
3473 /* retrieve power index into gain tables from samples */
3474 for (sample = group->samples; sample < &group->samples[3]; sample++)
3475 if (pwr > sample[1].power)
3476 break;
3477 /* fixed-point linear interpolation using a 19-bit fractional part */
3478 idx = interpolate(pwr, sample[0].power, sample[0].index,
3479 sample[1].power, sample[1].index, 19);
3480
3481 /*
3482 * Adjust power index based on current temperature
3483 * - if colder than factory-calibrated: decreate output power
3484 * - if warmer than factory-calibrated: increase output power
3485 */
3486 idx -= (sc->temp - group->temp) * 11 / 100;
3487
3488 /* decrease power for CCK rates (-5dB) */
3489 if (!WPI_RATE_IS_OFDM(rate))
3490 idx += 10;
3491
3492 /* keep power index in a valid range */
3493 if (idx < 0)
3494 return 0;
3495 if (idx > WPI_MAX_PWR_INDEX)
3496 return WPI_MAX_PWR_INDEX;
3497 return idx;
3498
3499#undef interpolate
3500#undef fdivround
3501}
3502
3503/**
3504 * Called by net80211 framework to indicate that a scan
3505 * is starting. This function doesn't actually do the scan,
3506 * wpi_scan_curchan starts things off. This function is more
3507 * of an early warning from the framework we should get ready
3508 * for the scan.
3509 */
3510static void
3511wpi_scan_start(struct ieee80211com *ic)
3512{
3513 struct ifnet *ifp = ic->ic_ifp;
3514 struct wpi_softc *sc = ifp->if_softc;
3515
4db7dd1b 3516 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4db7dd1b
JT
3517}
3518
3519/**
3520 * Called by the net80211 framework, indicates that the
3521 * scan has ended. If there is a scan in progress on the card
3522 * then it should be aborted.
3523 */
3524static void
3525wpi_scan_end(struct ieee80211com *ic)
3526{
3527 /* XXX ignore */
3528}
3529
3530/**
3531 * Called by the net80211 framework to indicate to the driver
3532 * that the channel should be changed
3533 */
3534static void
3535wpi_set_channel(struct ieee80211com *ic)
3536{
3537 struct ifnet *ifp = ic->ic_ifp;
3538 struct wpi_softc *sc = ifp->if_softc;
3539 int error;
3540
3541 /*
3542 * Only need to set the channel in Monitor mode. AP scanning and auth
3543 * are already taken care of by their respective firmware commands.
3544 */
3545 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3546 error = wpi_config(sc);
3547 if (error != 0)
3548 device_printf(sc->sc_dev,
3549 "error %d settting channel\n", error);
3550 }
3551}
3552
3553/**
3554 * Called by net80211 to indicate that we need to scan the current
3555 * channel. The channel is previously be set via the wpi_set_channel
3556 * callback.
3557 */
3558static void
3559wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3560{
3561 struct ieee80211vap *vap = ss->ss_vap;
3562 struct ifnet *ifp = vap->iv_ic->ic_ifp;
3563 struct wpi_softc *sc = ifp->if_softc;
3564
4db7dd1b
JT
3565 if (wpi_scan(sc))
3566 ieee80211_cancel_scan(vap);
4db7dd1b
JT
3567}
3568
3569/**
3570 * Called by the net80211 framework to indicate
3571 * the minimum dwell time has been met, terminate the scan.
3572 * We don't actually terminate the scan as the firmware will notify
3573 * us when it's finished and we have no way to interrupt it.
3574 */
3575static void
3576wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3577{
3578 /* NB: don't try to abort scan; wait for firmware to finish */
3579}
3580
3581static void
81c64c9b 3582wpi_hwreset_task(void *arg, int pending)
4db7dd1b 3583{
2446872c 3584 struct wpi_softc *sc;
4db7dd1b 3585
81c64c9b 3586 wlan_serialize_enter();
2446872c 3587 sc = arg;
4db7dd1b 3588 wpi_init_locked(sc, 0);
81c64c9b 3589 wlan_serialize_exit();
4db7dd1b
JT
3590}
3591
3592static void
81c64c9b 3593wpi_rfreset_task(void *arg, int pending)
4db7dd1b 3594{
2446872c 3595 struct wpi_softc *sc;
4db7dd1b 3596
81c64c9b 3597 wlan_serialize_enter();
2446872c 3598 sc = arg;
4db7dd1b 3599 wpi_rfkill_resume(sc);
81c64c9b 3600 wlan_serialize_exit();
4db7dd1b
JT
3601}
3602
3603/*
3604 * Allocate DMA-safe memory for firmware transfer.
3605 */
3606static int
3607wpi_alloc_fwmem(struct wpi_softc *sc)
3608{
3609 /* allocate enough contiguous space to store text and data */
3610 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3611 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3612 BUS_DMA_NOWAIT);
3613}
3614
3615static void
3616wpi_free_fwmem(struct wpi_softc *sc)
3617{
3618 wpi_dma_contig_free(&sc->fw_dma);
3619}
3620
3621/**
81c64c9b 3622 * Called every second, wpi_watchdog_callout used by the watch dog timer
4db7dd1b
JT
3623 * to check that the card is still alive
3624 */
3625static void
81c64c9b 3626wpi_watchdog_callout(void *arg)
4db7dd1b 3627{
2446872c
JT
3628 struct wpi_softc *sc;
3629 struct ifnet *ifp;
3630 struct ieee80211com *ic;
4db7dd1b
JT
3631 uint32_t tmp;
3632
81c64c9b 3633 wlan_serialize_enter();
2446872c
JT
3634 sc = arg;
3635 ifp = sc->sc_ifp;
3636 ic = ifp->if_l2com;
4db7dd1b
JT
3637 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3638
3639 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3640 /* No need to lock firmware memory */
3641 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3642
3643 if ((tmp & 0x1) == 0) {
3644 /* Radio kill switch is still off */
81c64c9b
JT
3645 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3646 wlan_serialize_exit();
4db7dd1b
JT
3647 return;
3648 }
3649
3650 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3651 ieee80211_runtask(ic, &sc->sc_radiotask);
81c64c9b 3652 wlan_serialize_exit();
4db7dd1b
JT
3653 return;
3654 }
3655
3656 if (sc->sc_tx_timer > 0) {
3657 if (--sc->sc_tx_timer == 0) {
3658 device_printf(sc->sc_dev,"device timeout\n");
d40991ef 3659 IFNET_STAT_INC(ifp, oerrors, 1);
81c64c9b 3660 wlan_serialize_exit();
4db7dd1b 3661 ieee80211_runtask(ic, &sc->sc_restarttask);
81c64c9b 3662 wlan_serialize_enter();
4db7dd1b
JT
3663 }
3664 }
3665 if (sc->sc_scan_timer > 0) {
3666 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3667 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3668 device_printf(sc->sc_dev,"scan timeout\n");
3669 ieee80211_cancel_scan(vap);
81c64c9b 3670 wlan_serialize_exit();
4db7dd1b 3671 ieee80211_runtask(ic, &sc->sc_restarttask);
81c64c9b 3672 wlan_serialize_enter();
4db7dd1b
JT
3673 }
3674 }
3675
3676 if (ifp->if_flags & IFF_RUNNING)
81c64c9b
JT
3677 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3678
3679 wlan_serialize_exit();
4db7dd1b
JT
3680}
3681
3682#ifdef WPI_DEBUG
3683static const char *wpi_cmd_str(int cmd)
3684{
3685 switch (cmd) {
3686 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD";
3687 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3688 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3689 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME";
3690 case WPI_CMD_TSF: return "WPI_CMD_TSF";
3691 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE";
3692 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA";
3693 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3694 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED";
3695 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3696 case WPI_CMD_SCAN: return "WPI_CMD_SCAN";
3697 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3698 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER";
3699 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3700
3701 default:
ed20d0e3 3702 KASSERT(1, ("Unknown Command: %d", cmd));
4db7dd1b
JT
3703 return "UNKNOWN CMD"; /* Make the compiler happy */
3704 }
3705}
3706#endif
3707
3708MODULE_DEPEND(wpi, pci, 1, 1, 1);
3709MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3710MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3711MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);