Use ASSERT_IFAC_VALID whenever possible
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
CommitLineData
427e5fc6 1/*
b84de5af 2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
427e5fc6
MD
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
51c35492 34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.64 2008/06/03 18:47:25 dillon Exp $
427e5fc6
MD
35 */
36
37#include "hammer.h"
869e8f55 38#include <vm/vm_extern.h>
427e5fc6
MD
39#include <sys/buf.h>
40#include <sys/buf2.h>
41
ec4e8497 42static int hammer_unload_inode(struct hammer_inode *ip);
1f07f686
MD
43static void hammer_flush_inode_core(hammer_inode_t ip, int flags);
44static int hammer_setup_child_callback(hammer_record_t rec, void *data);
1f07f686 45static int hammer_setup_parent_inodes(hammer_record_t record);
b84de5af 46
d113fda1
MD
47/*
48 * The kernel is not actively referencing this vnode but is still holding
49 * it cached.
b84de5af
MD
50 *
51 * This is called from the frontend.
d113fda1 52 */
427e5fc6
MD
53int
54hammer_vop_inactive(struct vop_inactive_args *ap)
55{
66325755 56 struct hammer_inode *ip = VTOI(ap->a_vp);
27ea2398 57
c0ade690
MD
58 /*
59 * Degenerate case
60 */
61 if (ip == NULL) {
66325755 62 vrecycle(ap->a_vp);
c0ade690
MD
63 return(0);
64 }
65
66 /*
1f07f686
MD
67 * If the inode no longer has visibility in the filesystem and is
68 * fairly clean, try to recycle it immediately. This can deadlock
69 * in vfsync() if we aren't careful.
4e97774c
MD
70 *
71 * Do not queue the inode to the flusher if we still have visibility,
72 * otherwise namespace calls such as chmod will unnecessarily generate
73 * multiple inode updates.
c0ade690 74 */
e8599db1 75 hammer_inode_unloadable_check(ip, 0);
4e97774c
MD
76 if (ip->ino_data.nlinks == 0) {
77 if (ip->flags & HAMMER_INODE_MODMASK)
78 hammer_flush_inode(ip, 0);
79 else
80 vrecycle(ap->a_vp);
81 }
427e5fc6
MD
82 return(0);
83}
84
d113fda1
MD
85/*
86 * Release the vnode association. This is typically (but not always)
1f07f686 87 * the last reference on the inode.
d113fda1 88 *
1f07f686
MD
89 * Once the association is lost we are on our own with regards to
90 * flushing the inode.
d113fda1 91 */
427e5fc6
MD
92int
93hammer_vop_reclaim(struct vop_reclaim_args *ap)
94{
427e5fc6
MD
95 struct hammer_inode *ip;
96 struct vnode *vp;
97
98 vp = ap->a_vp;
c0ade690 99
a89aec1b
MD
100 if ((ip = vp->v_data) != NULL) {
101 vp->v_data = NULL;
102 ip->vp = NULL;
ec4e8497 103 hammer_rel_inode(ip, 1);
a89aec1b 104 }
427e5fc6
MD
105 return(0);
106}
107
66325755
MD
108/*
109 * Return a locked vnode for the specified inode. The inode must be
110 * referenced but NOT LOCKED on entry and will remain referenced on
111 * return.
b84de5af
MD
112 *
113 * Called from the frontend.
66325755
MD
114 */
115int
e8599db1 116hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
66325755
MD
117{
118 struct vnode *vp;
119 int error = 0;
120
121 for (;;) {
122 if ((vp = ip->vp) == NULL) {
123 error = getnewvnode(VT_HAMMER, ip->hmp->mp, vpp, 0, 0);
124 if (error)
125 break;
8cd0a023
MD
126 hammer_lock_ex(&ip->lock);
127 if (ip->vp != NULL) {
128 hammer_unlock(&ip->lock);
129 vp->v_type = VBAD;
130 vx_put(vp);
131 continue;
66325755 132 }
8cd0a023
MD
133 hammer_ref(&ip->lock);
134 vp = *vpp;
135 ip->vp = vp;
11ad5ade
MD
136 vp->v_type =
137 hammer_get_vnode_type(ip->ino_data.obj_type);
7a04d74f 138
11ad5ade 139 switch(ip->ino_data.obj_type) {
7a04d74f
MD
140 case HAMMER_OBJTYPE_CDEV:
141 case HAMMER_OBJTYPE_BDEV:
142 vp->v_ops = &ip->hmp->mp->mnt_vn_spec_ops;
143 addaliasu(vp, ip->ino_data.rmajor,
144 ip->ino_data.rminor);
145 break;
146 case HAMMER_OBJTYPE_FIFO:
147 vp->v_ops = &ip->hmp->mp->mnt_vn_fifo_ops;
148 break;
149 default:
150 break;
151 }
42c7d26b
MD
152
153 /*
154 * Only mark as the root vnode if the ip is not
155 * historical, otherwise the VFS cache will get
156 * confused. The other half of the special handling
157 * is in hammer_vop_nlookupdotdot().
158 */
159 if (ip->obj_id == HAMMER_OBJID_ROOT &&
160 ip->obj_asof == ip->hmp->asof) {
7a04d74f 161 vp->v_flag |= VROOT;
42c7d26b 162 }
7a04d74f 163
8cd0a023
MD
164 vp->v_data = (void *)ip;
165 /* vnode locked by getnewvnode() */
166 /* make related vnode dirty if inode dirty? */
167 hammer_unlock(&ip->lock);
a89aec1b 168 if (vp->v_type == VREG)
11ad5ade 169 vinitvmio(vp, ip->ino_data.size);
8cd0a023
MD
170 break;
171 }
172
173 /*
174 * loop if the vget fails (aka races), or if the vp
175 * no longer matches ip->vp.
176 */
177 if (vget(vp, LK_EXCLUSIVE) == 0) {
178 if (vp == ip->vp)
179 break;
180 vput(vp);
66325755
MD
181 }
182 }
a89aec1b 183 *vpp = vp;
66325755
MD
184 return(error);
185}
186
187/*
8cd0a023
MD
188 * Acquire a HAMMER inode. The returned inode is not locked. These functions
189 * do not attach or detach the related vnode (use hammer_get_vnode() for
190 * that).
d113fda1
MD
191 *
192 * The flags argument is only applied for newly created inodes, and only
193 * certain flags are inherited.
b84de5af
MD
194 *
195 * Called from the frontend.
66325755
MD
196 */
197struct hammer_inode *
36f82b23 198hammer_get_inode(hammer_transaction_t trans, struct hammer_node **cache,
61aeeb33 199 u_int64_t obj_id, hammer_tid_t asof, int flags, int *errorp)
66325755 200{
36f82b23 201 hammer_mount_t hmp = trans->hmp;
427e5fc6 202 struct hammer_inode_info iinfo;
8cd0a023 203 struct hammer_cursor cursor;
427e5fc6 204 struct hammer_inode *ip;
427e5fc6
MD
205
206 /*
207 * Determine if we already have an inode cached. If we do then
208 * we are golden.
209 */
66325755 210 iinfo.obj_id = obj_id;
7f7c1f84 211 iinfo.obj_asof = asof;
427e5fc6
MD
212loop:
213 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
214 if (ip) {
8cd0a023 215 hammer_ref(&ip->lock);
66325755
MD
216 *errorp = 0;
217 return(ip);
427e5fc6
MD
218 }
219
427e5fc6 220 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
b3deaf57 221 ++hammer_count_inodes;
66325755 222 ip->obj_id = obj_id;
27ea2398 223 ip->obj_asof = iinfo.obj_asof;
66325755 224 ip->hmp = hmp;
d113fda1
MD
225 ip->flags = flags & HAMMER_INODE_RO;
226 if (hmp->ronly)
227 ip->flags |= HAMMER_INODE_RO;
a5fddc16 228 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
8cd0a023 229 RB_INIT(&ip->rec_tree);
059819e3 230 TAILQ_INIT(&ip->bio_list);
b84de5af 231 TAILQ_INIT(&ip->bio_alt_list);
1f07f686 232 TAILQ_INIT(&ip->target_list);
427e5fc6
MD
233
234 /*
8cd0a023 235 * Locate the on-disk inode.
427e5fc6 236 */
6a37e7e4 237retry:
4e17f465 238 hammer_init_cursor(trans, &cursor, cache, NULL);
2f85fa4d 239 cursor.key_beg.localization = HAMMER_LOCALIZE_INODE;
8cd0a023
MD
240 cursor.key_beg.obj_id = ip->obj_id;
241 cursor.key_beg.key = 0;
d5530d22 242 cursor.key_beg.create_tid = 0;
8cd0a023
MD
243 cursor.key_beg.delete_tid = 0;
244 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
245 cursor.key_beg.obj_type = 0;
d5530d22 246 cursor.asof = iinfo.obj_asof;
11ad5ade 247 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
d5530d22 248 HAMMER_CURSOR_ASOF;
8cd0a023
MD
249
250 *errorp = hammer_btree_lookup(&cursor);
6a37e7e4
MD
251 if (*errorp == EDEADLK) {
252 hammer_done_cursor(&cursor);
253 goto retry;
254 }
427e5fc6
MD
255
256 /*
257 * On success the B-Tree lookup will hold the appropriate
258 * buffer cache buffers and provide a pointer to the requested
d113fda1
MD
259 * information. Copy the information to the in-memory inode
260 * and cache the B-Tree node to improve future operations.
427e5fc6 261 */
66325755 262 if (*errorp == 0) {
11ad5ade 263 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
40043e7f 264 ip->ino_data = cursor.data->inode;
61aeeb33
MD
265 hammer_cache_node(cursor.node, &ip->cache[0]);
266 if (cache)
267 hammer_cache_node(cursor.node, cache);
427e5fc6 268 }
427e5fc6
MD
269
270 /*
271 * On success load the inode's record and data and insert the
272 * inode into the B-Tree. It is possible to race another lookup
273 * insertion of the same inode so deal with that condition too.
b3deaf57
MD
274 *
275 * The cursor's locked node interlocks against others creating and
276 * destroying ip while we were blocked.
427e5fc6 277 */
66325755 278 if (*errorp == 0) {
8cd0a023 279 hammer_ref(&ip->lock);
427e5fc6 280 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
61aeeb33
MD
281 hammer_uncache_node(&ip->cache[0]);
282 hammer_uncache_node(&ip->cache[1]);
b84de5af 283 KKASSERT(ip->lock.refs == 1);
b3deaf57 284 --hammer_count_inodes;
427e5fc6 285 kfree(ip, M_HAMMER);
b3deaf57 286 hammer_done_cursor(&cursor);
427e5fc6
MD
287 goto loop;
288 }
c0ade690 289 ip->flags |= HAMMER_INODE_ONDISK;
427e5fc6 290 } else {
19619882
MD
291 /*
292 * Do not panic on read-only accesses which fail, particularly
293 * historical accesses where the snapshot might not have
294 * complete connectivity.
295 */
296 if ((flags & HAMMER_INODE_RO) == 0) {
297 kprintf("hammer_get_inode: failed ip %p obj_id %016llx cursor %p error %d\n",
298 ip, ip->obj_id, &cursor, *errorp);
77062c8a 299 Debugger("x");
19619882 300 }
e63644f0
MD
301 if (ip->flags & HAMMER_INODE_RSV_INODES) {
302 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
303 --ip->hmp->rsv_inodes;
304 }
305 ip->hmp->rsv_databufs -= ip->rsv_databufs;
306 ip->rsv_databufs = 0; /* sanity */
307
b3deaf57 308 --hammer_count_inodes;
66325755
MD
309 kfree(ip, M_HAMMER);
310 ip = NULL;
427e5fc6 311 }
b3deaf57 312 hammer_done_cursor(&cursor);
66325755
MD
313 return (ip);
314}
315
8cd0a023
MD
316/*
317 * Create a new filesystem object, returning the inode in *ipp. The
1f07f686 318 * returned inode will be referenced.
8cd0a023 319 *
b84de5af 320 * The inode is created in-memory.
8cd0a023
MD
321 */
322int
a89aec1b
MD
323hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
324 struct ucred *cred, hammer_inode_t dip,
8cd0a023 325 struct hammer_inode **ipp)
66325755 326{
a89aec1b
MD
327 hammer_mount_t hmp;
328 hammer_inode_t ip;
6b4f890b 329 uid_t xuid;
66325755 330
8cd0a023
MD
331 hmp = trans->hmp;
332 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
b3deaf57 333 ++hammer_count_inodes;
0729c8c8 334 ip->obj_id = hammer_alloc_objid(trans, dip);
8cd0a023 335 KKASSERT(ip->obj_id != 0);
7f7c1f84 336 ip->obj_asof = hmp->asof;
8cd0a023 337 ip->hmp = hmp;
b84de5af 338 ip->flush_state = HAMMER_FST_IDLE;
11ad5ade 339 ip->flags = HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES;
8cd0a023 340
a5fddc16 341 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
8cd0a023 342 RB_INIT(&ip->rec_tree);
059819e3 343 TAILQ_INIT(&ip->bio_list);
b84de5af 344 TAILQ_INIT(&ip->bio_alt_list);
1f07f686 345 TAILQ_INIT(&ip->target_list);
8cd0a023 346
11ad5ade
MD
347 ip->ino_leaf.atime = trans->time;
348 ip->ino_data.mtime = trans->time;
349 ip->ino_data.size = 0;
350 ip->ino_data.nlinks = 0;
e63644f0
MD
351
352 /*
353 * A nohistory designator on the parent directory is inherited by
354 * the child.
355 */
356 ip->ino_data.uflags = dip->ino_data.uflags &
357 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
358
11ad5ade 359 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
2f85fa4d 360 ip->ino_leaf.base.localization = HAMMER_LOCALIZE_INODE;
11ad5ade
MD
361 ip->ino_leaf.base.obj_id = ip->obj_id;
362 ip->ino_leaf.base.key = 0;
363 ip->ino_leaf.base.create_tid = 0;
364 ip->ino_leaf.base.delete_tid = 0;
365 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
366 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
367
368 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
8cd0a023
MD
369 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
370 ip->ino_data.mode = vap->va_mode;
b84de5af 371 ip->ino_data.ctime = trans->time;
11ad5ade 372 ip->ino_data.parent_obj_id = (dip) ? dip->ino_leaf.base.obj_id : 0;
6b4f890b 373
11ad5ade 374 switch(ip->ino_leaf.base.obj_type) {
7a04d74f
MD
375 case HAMMER_OBJTYPE_CDEV:
376 case HAMMER_OBJTYPE_BDEV:
377 ip->ino_data.rmajor = vap->va_rmajor;
378 ip->ino_data.rminor = vap->va_rminor;
379 break;
380 default:
381 break;
382 }
383
6b4f890b
MD
384 /*
385 * Calculate default uid/gid and overwrite with information from
386 * the vap.
387 */
388 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
6b4f890b
MD
389 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
390 &vap->va_mode);
391 ip->ino_data.mode = vap->va_mode;
392
8cd0a023
MD
393 if (vap->va_vaflags & VA_UID_UUID_VALID)
394 ip->ino_data.uid = vap->va_uid_uuid;
6b4f890b 395 else if (vap->va_uid != (uid_t)VNOVAL)
7538695e
MD
396 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
397 else
6b4f890b 398 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
7538695e 399
8cd0a023
MD
400 if (vap->va_vaflags & VA_GID_UUID_VALID)
401 ip->ino_data.gid = vap->va_gid_uuid;
6b4f890b 402 else if (vap->va_gid != (gid_t)VNOVAL)
8cd0a023 403 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
7538695e
MD
404 else
405 ip->ino_data.gid = dip->ino_data.gid;
8cd0a023
MD
406
407 hammer_ref(&ip->lock);
408 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
409 hammer_unref(&ip->lock);
a89aec1b 410 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
8cd0a023
MD
411 }
412 *ipp = ip;
413 return(0);
66325755
MD
414}
415
d113fda1
MD
416/*
417 * Called by hammer_sync_inode().
418 */
419static int
4e17f465 420hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
c0ade690 421{
4e17f465 422 hammer_transaction_t trans = cursor->trans;
c0ade690
MD
423 hammer_record_t record;
424 int error;
425
d26d0ae9 426retry:
c0ade690
MD
427 error = 0;
428
869e8f55
MD
429 /*
430 * If the inode has a presence on-disk then locate it and mark
431 * it deleted, setting DELONDISK.
432 *
433 * The record may or may not be physically deleted, depending on
434 * the retention policy.
435 */
76376933
MD
436 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
437 HAMMER_INODE_ONDISK) {
4e17f465 438 hammer_normalize_cursor(cursor);
2f85fa4d 439 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
4e17f465
MD
440 cursor->key_beg.obj_id = ip->obj_id;
441 cursor->key_beg.key = 0;
442 cursor->key_beg.create_tid = 0;
443 cursor->key_beg.delete_tid = 0;
444 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
445 cursor->key_beg.obj_type = 0;
446 cursor->asof = ip->obj_asof;
447 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
11ad5ade 448 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
4e17f465
MD
449 cursor->flags |= HAMMER_CURSOR_BACKEND;
450
451 error = hammer_btree_lookup(cursor);
e8599db1
MD
452 if (hammer_debug_inode)
453 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
b84de5af
MD
454 if (error) {
455 kprintf("error %d\n", error);
456 Debugger("hammer_update_inode");
457 }
458
c0ade690 459 if (error == 0) {
e63644f0 460 error = hammer_ip_delete_record(cursor, ip, trans->tid);
e8599db1
MD
461 if (hammer_debug_inode)
462 kprintf(" error %d\n", error);
f90dde4c 463 if (error && error != EDEADLK) {
b84de5af
MD
464 kprintf("error %d\n", error);
465 Debugger("hammer_update_inode2");
466 }
1f07f686 467 if (error == 0) {
195c19a1 468 ip->flags |= HAMMER_INODE_DELONDISK;
1f07f686 469 }
e8599db1
MD
470 if (cursor->node)
471 hammer_cache_node(cursor->node, &ip->cache[0]);
4e17f465
MD
472 }
473 if (error == EDEADLK) {
474 hammer_done_cursor(cursor);
475 error = hammer_init_cursor(trans, cursor,
476 &ip->cache[0], ip);
e8599db1
MD
477 if (hammer_debug_inode)
478 kprintf("IPDED %p %d\n", ip, error);
4e17f465
MD
479 if (error == 0)
480 goto retry;
c0ade690 481 }
c0ade690
MD
482 }
483
484 /*
869e8f55
MD
485 * Ok, write out the initial record or a new record (after deleting
486 * the old one), unless the DELETED flag is set. This routine will
487 * clear DELONDISK if it writes out a record.
76376933 488 *
869e8f55
MD
489 * Update our inode statistics if this is the first application of
490 * the inode on-disk.
c0ade690 491 */
869e8f55
MD
492 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
493 /*
494 * Generate a record and write it to the media
495 */
11ad5ade 496 record = hammer_alloc_mem_record(ip, 0);
930bf163 497 record->type = HAMMER_MEM_RECORD_INODE;
1f07f686 498 record->flush_state = HAMMER_FST_FLUSH;
11ad5ade
MD
499 record->leaf = ip->sync_ino_leaf;
500 record->leaf.base.create_tid = trans->tid;
501 record->leaf.data_len = sizeof(ip->sync_ino_data);
b84de5af 502 record->data = (void *)&ip->sync_ino_data;
d36ec43b 503 record->flags |= HAMMER_RECF_INTERLOCK_BE;
4e17f465
MD
504 for (;;) {
505 error = hammer_ip_sync_record_cursor(cursor, record);
e8599db1
MD
506 if (hammer_debug_inode)
507 kprintf("GENREC %p rec %08x %d\n",
508 ip, record->flags, error);
4e17f465
MD
509 if (error != EDEADLK)
510 break;
511 hammer_done_cursor(cursor);
512 error = hammer_init_cursor(trans, cursor,
513 &ip->cache[0], ip);
e8599db1
MD
514 if (hammer_debug_inode)
515 kprintf("GENREC reinit %d\n", error);
4e17f465
MD
516 if (error)
517 break;
518 }
b84de5af
MD
519 if (error) {
520 kprintf("error %d\n", error);
521 Debugger("hammer_update_inode3");
522 }
d36ec43b
MD
523
524 /*
525 * The record isn't managed by the inode's record tree,
526 * destroy it whether we succeed or fail.
527 */
528 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
529 record->flags |= HAMMER_RECF_DELETED_FE;
1f07f686 530 record->flush_state = HAMMER_FST_IDLE;
b3deaf57 531 hammer_rel_mem_record(record);
d36ec43b 532
869e8f55
MD
533 /*
534 * Finish up.
535 */
d26d0ae9 536 if (error == 0) {
e8599db1
MD
537 if (hammer_debug_inode)
538 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
11ad5ade 539 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
b84de5af
MD
540 HAMMER_INODE_ITIMES);
541 ip->flags &= ~HAMMER_INODE_DELONDISK;
1f07f686
MD
542
543 /*
544 * Root volume count of inodes
545 */
d26d0ae9 546 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
e8599db1
MD
547 hammer_modify_volume_field(trans,
548 trans->rootvol,
549 vol0_stat_inodes);
0b075555 550 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
10a5d1ba 551 hammer_modify_volume_done(trans->rootvol);
d26d0ae9 552 ip->flags |= HAMMER_INODE_ONDISK;
e8599db1
MD
553 if (hammer_debug_inode)
554 kprintf("NOWONDISK %p\n", ip);
d26d0ae9 555 }
fbc6e32a 556 }
c0ade690 557 }
869e8f55
MD
558
559 /*
560 * If the inode has been destroyed, clean out any left-over flags
561 * that may have been set by the frontend.
562 */
f90dde4c 563 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
11ad5ade 564 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
f90dde4c
MD
565 HAMMER_INODE_ITIMES);
566 }
c0ade690
MD
567 return(error);
568}
569
a89aec1b 570/*
d113fda1
MD
571 * Update only the itimes fields. This is done no-historically. The
572 * record is updated in-place on the disk.
573 */
574static int
4e17f465 575hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
d113fda1 576{
4e17f465 577 hammer_transaction_t trans = cursor->trans;
11ad5ade 578 struct hammer_btree_leaf_elm *leaf;
d113fda1
MD
579 int error;
580
6a37e7e4 581retry:
d113fda1
MD
582 error = 0;
583 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
584 HAMMER_INODE_ONDISK) {
4e17f465 585 hammer_normalize_cursor(cursor);
2f85fa4d 586 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
4e17f465
MD
587 cursor->key_beg.obj_id = ip->obj_id;
588 cursor->key_beg.key = 0;
589 cursor->key_beg.create_tid = 0;
590 cursor->key_beg.delete_tid = 0;
591 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
592 cursor->key_beg.obj_type = 0;
593 cursor->asof = ip->obj_asof;
594 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
11ad5ade 595 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
4e17f465
MD
596 cursor->flags |= HAMMER_CURSOR_BACKEND;
597
598 error = hammer_btree_lookup(cursor);
b84de5af
MD
599 if (error) {
600 kprintf("error %d\n", error);
601 Debugger("hammer_update_itimes1");
602 }
d113fda1 603 if (error == 0) {
10a5d1ba 604 /*
11ad5ade 605 * Do not generate UNDO records for atime updates.
10a5d1ba 606 */
11ad5ade
MD
607 leaf = cursor->leaf;
608 hammer_modify_node(trans, cursor->node,
609 &leaf->atime, sizeof(leaf->atime));
610 leaf->atime = ip->sync_ino_leaf.atime;
611 hammer_modify_node_done(cursor->node);
612 /*rec->ino_mtime = ip->sync_ino_rec.ino_mtime;*/
b84de5af 613 ip->sync_flags &= ~HAMMER_INODE_ITIMES;
d113fda1 614 /* XXX recalculate crc */
4e17f465
MD
615 hammer_cache_node(cursor->node, &ip->cache[0]);
616 }
617 if (error == EDEADLK) {
618 hammer_done_cursor(cursor);
619 error = hammer_init_cursor(trans, cursor,
620 &ip->cache[0], ip);
621 if (error == 0)
622 goto retry;
d113fda1 623 }
d113fda1
MD
624 }
625 return(error);
626}
627
628/*
1f07f686 629 * Release a reference on an inode, flush as requested.
b84de5af
MD
630 *
631 * On the last reference we queue the inode to the flusher for its final
632 * disposition.
a89aec1b 633 */
66325755 634void
a89aec1b 635hammer_rel_inode(struct hammer_inode *ip, int flush)
66325755 636{
1f07f686
MD
637 hammer_mount_t hmp = ip->hmp;
638
f90dde4c
MD
639 /*
640 * Handle disposition when dropping the last ref.
641 */
1f07f686
MD
642 for (;;) {
643 if (ip->lock.refs == 1) {
644 /*
645 * Determine whether on-disk action is needed for
646 * the inode's final disposition.
647 */
e8599db1
MD
648 KKASSERT(ip->vp == NULL);
649 hammer_inode_unloadable_check(ip, 0);
4e17f465
MD
650 if (ip->flags & HAMMER_INODE_MODMASK) {
651 hammer_flush_inode(ip, 0);
652 } else if (ip->lock.refs == 1) {
1f07f686
MD
653 hammer_unload_inode(ip);
654 break;
655 }
b84de5af 656 } else {
4e17f465 657 if (flush)
1f07f686 658 hammer_flush_inode(ip, 0);
4e17f465 659
1f07f686
MD
660 /*
661 * The inode still has multiple refs, try to drop
662 * one ref.
663 */
664 KKASSERT(ip->lock.refs >= 1);
665 if (ip->lock.refs > 1) {
666 hammer_unref(&ip->lock);
667 break;
668 }
b84de5af 669 }
f90dde4c
MD
670 }
671
672 /*
1f07f686
MD
673 * XXX bad hack until I add code to track inodes in SETUP. We
674 * can queue a lot of inodes to the syncer but if we don't wake
675 * it up the undo sets will be too large or too many unflushed
676 * records will build up and blow our malloc limit.
f90dde4c 677 */
1f07f686
MD
678 if (++hmp->reclaim_count > 256) {
679 hmp->reclaim_count = 0;
680 hammer_flusher_async(hmp);
9480ff55 681 }
427e5fc6
MD
682}
683
27ea2398 684/*
b84de5af
MD
685 * Unload and destroy the specified inode. Must be called with one remaining
686 * reference. The reference is disposed of.
8cd0a023 687 *
b84de5af 688 * This can only be called in the context of the flusher.
27ea2398 689 */
b84de5af 690static int
ec4e8497 691hammer_unload_inode(struct hammer_inode *ip)
27ea2398 692{
b84de5af 693 KASSERT(ip->lock.refs == 1,
a89aec1b 694 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
8cd0a023 695 KKASSERT(ip->vp == NULL);
f90dde4c
MD
696 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
697 KKASSERT(ip->cursor_ip_refs == 0);
45a014dc 698 KKASSERT(ip->lock.lockcount == 0);
f90dde4c
MD
699 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
700
701 KKASSERT(RB_EMPTY(&ip->rec_tree));
1f07f686 702 KKASSERT(TAILQ_EMPTY(&ip->target_list));
f90dde4c
MD
703 KKASSERT(TAILQ_EMPTY(&ip->bio_list));
704 KKASSERT(TAILQ_EMPTY(&ip->bio_alt_list));
705
706 RB_REMOVE(hammer_ino_rb_tree, &ip->hmp->rb_inos_root, ip);
707
708 hammer_uncache_node(&ip->cache[0]);
709 hammer_uncache_node(&ip->cache[1]);
0729c8c8
MD
710 if (ip->objid_cache)
711 hammer_clear_objid(ip);
f90dde4c
MD
712 --hammer_count_inodes;
713 kfree(ip, M_HAMMER);
6b4f890b 714
27ea2398
MD
715 return(0);
716}
717
51c35492
MD
718/*
719 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
720 * the read-only flag for cached inodes.
721 *
722 * This routine is called from a RB_SCAN().
723 */
724int
725hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
726{
727 hammer_mount_t hmp = ip->hmp;
728
729 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
730 ip->flags |= HAMMER_INODE_RO;
731 else
732 ip->flags &= ~HAMMER_INODE_RO;
733 return(0);
734}
735
427e5fc6 736/*
d113fda1
MD
737 * A transaction has modified an inode, requiring updates as specified by
738 * the passed flags.
7f7c1f84 739 *
d113fda1 740 * HAMMER_INODE_DDIRTY: Inode data has been updated
1f07f686 741 * HAMMER_INODE_XDIRTY: Dirty in-memory records
4e17f465 742 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
d113fda1
MD
743 * HAMMER_INODE_DELETED: Inode record/data must be deleted
744 * HAMMER_INODE_ITIMES: mtime/atime has been updated
427e5fc6 745 */
66325755 746void
b84de5af 747hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
427e5fc6 748{
d113fda1 749 KKASSERT ((ip->flags & HAMMER_INODE_RO) == 0 ||
11ad5ade
MD
750 (flags & (HAMMER_INODE_DDIRTY |
751 HAMMER_INODE_XDIRTY | HAMMER_INODE_BUFS |
752 HAMMER_INODE_DELETED | HAMMER_INODE_ITIMES)) == 0);
e63644f0
MD
753 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
754 ip->flags |= HAMMER_INODE_RSV_INODES;
755 ++ip->hmp->rsv_inodes;
756 }
b84de5af
MD
757
758 ip->flags |= flags;
759}
760
761/*
1f07f686
MD
762 * Request that an inode be flushed. This whole mess cannot block and may
763 * recurse. Once requested HAMMER will attempt to actively flush it until
764 * the flush can be done.
b84de5af 765 *
1f07f686
MD
766 * The inode may already be flushing, or may be in a setup state. We can
767 * place the inode in a flushing state if it is currently idle and flag it
768 * to reflush if it is currently flushing.
b84de5af
MD
769 */
770void
f90dde4c 771hammer_flush_inode(hammer_inode_t ip, int flags)
b84de5af 772{
1f07f686
MD
773 hammer_record_t depend;
774 int r, good;
775
776 /*
777 * Trivial 'nothing to flush' case. If the inode is ina SETUP
778 * state we have to put it back into an IDLE state so we can
779 * drop the extra ref.
780 */
4e17f465 781 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1f07f686
MD
782 if (ip->flush_state == HAMMER_FST_SETUP) {
783 ip->flush_state = HAMMER_FST_IDLE;
784 hammer_rel_inode(ip, 0);
ec4e8497 785 }
b84de5af
MD
786 return;
787 }
42c7d26b 788
1f07f686
MD
789 /*
790 * Our flush action will depend on the current state.
791 */
792 switch(ip->flush_state) {
793 case HAMMER_FST_IDLE:
794 /*
795 * We have no dependancies and can flush immediately. Some
796 * our children may not be flushable so we have to re-test
797 * with that additional knowledge.
798 */
799 hammer_flush_inode_core(ip, flags);
800 break;
801 case HAMMER_FST_SETUP:
802 /*
803 * Recurse upwards through dependancies via target_list
804 * and start their flusher actions going if possible.
805 *
806 * 'good' is our connectivity. -1 means we have none and
807 * can't flush, 0 means there weren't any dependancies, and
808 * 1 means we have good connectivity.
809 */
810 good = 0;
811 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
812 r = hammer_setup_parent_inodes(depend);
813 if (r < 0 && good == 0)
814 good = -1;
815 if (r > 0)
816 good = 1;
817 }
818
819 /*
820 * We can continue if good >= 0. Determine how many records
821 * under our inode can be flushed (and mark them).
822 */
1f07f686
MD
823 if (good >= 0) {
824 hammer_flush_inode_core(ip, flags);
825 } else {
826 ip->flags |= HAMMER_INODE_REFLUSH;
4e17f465
MD
827 if (flags & HAMMER_FLUSH_SIGNAL) {
828 ip->flags |= HAMMER_INODE_RESIGNAL;
829 hammer_flusher_async(ip->hmp);
830 }
1f07f686
MD
831 }
832 break;
833 default:
834 /*
835 * We are already flushing, flag the inode to reflush
836 * if needed after it completes its current flush.
837 */
838 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
839 ip->flags |= HAMMER_INODE_REFLUSH;
4e17f465
MD
840 if (flags & HAMMER_FLUSH_SIGNAL) {
841 ip->flags |= HAMMER_INODE_RESIGNAL;
842 hammer_flusher_async(ip->hmp);
843 }
1f07f686
MD
844 break;
845 }
846}
847
848/*
849 * We are asked to recurse upwards and convert the record from SETUP
850 * to FLUSH if possible. record->ip is a parent of the caller's inode,
851 * and record->target_ip is the caller's inode.
852 *
853 * Return 1 if the record gives us connectivity
854 *
855 * Return 0 if the record is not relevant
856 *
857 * Return -1 if we can't resolve the dependancy and there is no connectivity.
858 */
859static int
860hammer_setup_parent_inodes(hammer_record_t record)
861{
862 hammer_mount_t hmp = record->ip->hmp;
863 hammer_record_t depend;
864 hammer_inode_t ip;
865 int r, good;
866
867 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
868 ip = record->ip;
869
870 /*
871 * If the record is already flushing, is it in our flush group?
872 *
e8599db1
MD
873 * If it is in our flush group but it is a general record or a
874 * delete-on-disk, it does not improve our connectivity (return 0),
875 * and if the target inode is not trying to destroy itself we can't
876 * allow the operation yet anyway (the second return -1).
1f07f686
MD
877 */
878 if (record->flush_state == HAMMER_FST_FLUSH) {
879 if (record->flush_group != hmp->flusher_next) {
880 ip->flags |= HAMMER_INODE_REFLUSH;
881 return(-1);
f90dde4c 882 }
1f07f686
MD
883 if (record->type == HAMMER_MEM_RECORD_ADD)
884 return(1);
e8599db1 885 /* GENERAL or DEL */
1f07f686
MD
886 return(0);
887 }
888
889 /*
890 * It must be a setup record. Try to resolve the setup dependancies
891 * by recursing upwards so we can place ip on the flush list.
892 */
893 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
894
895 good = 0;
896 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
897 r = hammer_setup_parent_inodes(depend);
898 if (r < 0 && good == 0)
899 good = -1;
900 if (r > 0)
901 good = 1;
902 }
903
904 /*
905 * We can't flush ip because it has no connectivity (XXX also check
906 * nlinks for pre-existing connectivity!). Flag it so any resolution
907 * recurses back down.
908 */
909 if (good < 0) {
910 ip->flags |= HAMMER_INODE_REFLUSH;
911 return(good);
912 }
913
914 /*
915 * We are go, place the parent inode in a flushing state so we can
916 * place its record in a flushing state. Note that the parent
917 * may already be flushing. The record must be in the same flush
918 * group as the parent.
919 */
920 if (ip->flush_state != HAMMER_FST_FLUSH)
921 hammer_flush_inode_core(ip, HAMMER_FLUSH_RECURSION);
922 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
923 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
924
925#if 0
926 if (record->type == HAMMER_MEM_RECORD_DEL &&
869e8f55 927 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1f07f686
MD
928 /*
929 * Regardless of flushing state we cannot sync this path if the
930 * record represents a delete-on-disk but the target inode
931 * is not ready to sync its own deletion.
932 *
933 * XXX need to count effective nlinks to determine whether
934 * the flush is ok, otherwise removing a hardlink will
935 * just leave the DEL record to rot.
936 */
937 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
938 return(-1);
939 } else
940#endif
941 if (ip->flush_group == ip->hmp->flusher_next) {
942 /*
943 * This is the record we wanted to synchronize.
944 */
945 record->flush_state = HAMMER_FST_FLUSH;
946 record->flush_group = ip->flush_group;
947 hammer_ref(&record->lock);
948 if (record->type == HAMMER_MEM_RECORD_ADD)
949 return(1);
950
951 /*
e8599db1
MD
952 * A general or delete-on-disk record does not contribute
953 * to our visibility. We can still flush it, however.
1f07f686
MD
954 */
955 return(0);
956 } else {
957 /*
958 * We couldn't resolve the dependancies, request that the
959 * inode be flushed when the dependancies can be resolved.
960 */
961 ip->flags |= HAMMER_INODE_REFLUSH;
962 return(-1);
7f7c1f84 963 }
c0ade690
MD
964}
965
966/*
1f07f686 967 * This is the core routine placing an inode into the FST_FLUSH state.
c0ade690 968 */
b84de5af 969static void
1f07f686 970hammer_flush_inode_core(hammer_inode_t ip, int flags)
b84de5af 971{
1f07f686 972 int go_count;
1f07f686 973
4e17f465
MD
974 /*
975 * Set flush state and prevent the flusher from cycling into
976 * the next flush group. Do not place the ip on the list yet.
977 * Inodes not in the idle state get an extra reference.
978 */
1f07f686
MD
979 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
980 if (ip->flush_state == HAMMER_FST_IDLE)
981 hammer_ref(&ip->lock);
982 ip->flush_state = HAMMER_FST_FLUSH;
983 ip->flush_group = ip->hmp->flusher_next;
4e17f465 984 ++ip->hmp->flusher_lock;
b84de5af 985
e8599db1
MD
986 /*
987 * We need to be able to vfsync/truncate from the backend.
988 */
989 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
990 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
991 ip->flags |= HAMMER_INODE_VHELD;
992 vref(ip->vp);
993 }
994
ec4e8497 995 /*
1f07f686
MD
996 * Figure out how many in-memory records we can actually flush
997 * (not including inode meta-data, buffers, etc).
ec4e8497 998 */
1f07f686
MD
999 if (flags & HAMMER_FLUSH_RECURSION) {
1000 go_count = 1;
1001 } else {
1002 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1003 hammer_setup_child_callback, NULL);
1004 }
b84de5af
MD
1005
1006 /*
1f07f686
MD
1007 * This is a more involved test that includes go_count. If we
1008 * can't flush, flag the inode and return. If go_count is 0 we
1009 * were are unable to flush any records in our rec_tree and
1010 * must ignore the XDIRTY flag.
b84de5af 1011 */
1f07f686
MD
1012 if (go_count == 0) {
1013 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1014 ip->flags |= HAMMER_INODE_REFLUSH;
1015 ip->flush_state = HAMMER_FST_SETUP;
e8599db1
MD
1016 if (ip->flags & HAMMER_INODE_VHELD) {
1017 ip->flags &= ~HAMMER_INODE_VHELD;
1018 vrele(ip->vp);
1019 }
4e17f465
MD
1020 if (flags & HAMMER_FLUSH_SIGNAL) {
1021 ip->flags |= HAMMER_INODE_RESIGNAL;
1022 hammer_flusher_async(ip->hmp);
1023 }
1024 if (--ip->hmp->flusher_lock == 0)
1025 wakeup(&ip->hmp->flusher_lock);
1f07f686
MD
1026 return;
1027 }
1028 }
b84de5af 1029
b84de5af
MD
1030 /*
1031 * Snapshot the state of the inode for the backend flusher.
1032 *
1033 * The truncation must be retained in the frontend until after
1034 * we've actually performed the record deletion.
1f07f686
MD
1035 *
1036 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1037 * and stays in ip->flags. Once set, it stays set until the
1038 * inode is destroyed.
b84de5af
MD
1039 */
1040 ip->sync_flags = (ip->flags & HAMMER_INODE_MODMASK);
1041 ip->sync_trunc_off = ip->trunc_off;
11ad5ade 1042 ip->sync_ino_leaf = ip->ino_leaf;
b84de5af 1043 ip->sync_ino_data = ip->ino_data;
4e17f465 1044 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
b84de5af
MD
1045
1046 /*
4e17f465 1047 * The flusher list inherits our inode and reference.
b84de5af 1048 */
1f07f686 1049 TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
4e17f465
MD
1050 if (--ip->hmp->flusher_lock == 0)
1051 wakeup(&ip->hmp->flusher_lock);
1f07f686
MD
1052
1053 if (flags & HAMMER_FLUSH_SIGNAL)
1054 hammer_flusher_async(ip->hmp);
b84de5af
MD
1055}
1056
ec4e8497 1057/*
1f07f686
MD
1058 * Callback for scan of ip->rec_tree. Try to include each record in our
1059 * flush. ip->flush_group has been set but the inode has not yet been
1060 * moved into a flushing state.
1061 *
1062 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1063 * both inodes.
1064 *
1065 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1066 * the caller from shortcutting the flush.
ec4e8497 1067 */
c0ade690 1068static int
1f07f686 1069hammer_setup_child_callback(hammer_record_t rec, void *data)
b84de5af 1070{
1f07f686
MD
1071 hammer_inode_t target_ip;
1072 hammer_inode_t ip;
1073 int r;
1074
1075 /*
1076 * If the record has been deleted by the backend (it's being held
1077 * by the frontend in a race), just ignore it.
1078 */
1079 if (rec->flags & HAMMER_RECF_DELETED_BE)
ec4e8497 1080 return(0);
1f07f686
MD
1081
1082 /*
1083 * If the record is in an idle state it has no dependancies and
1084 * can be flushed.
1085 */
1086 ip = rec->ip;
1087 r = 0;
1088
1089 switch(rec->flush_state) {
1090 case HAMMER_FST_IDLE:
1091 /*
1092 * Record has no setup dependancy, we can flush it.
1093 */
1094 KKASSERT(rec->target_ip == NULL);
1095 rec->flush_state = HAMMER_FST_FLUSH;
1096 rec->flush_group = ip->flush_group;
b84de5af 1097 hammer_ref(&rec->lock);
1f07f686
MD
1098 r = 1;
1099 break;
1100 case HAMMER_FST_SETUP:
1101 /*
1102 * Record has a setup dependancy. Try to include the
1103 * target ip in the flush.
1104 *
1105 * We have to be careful here, if we do not do the right
1106 * thing we can lose track of dirty inodes and the system
1107 * will lockup trying to allocate buffers.
1108 */
1109 target_ip = rec->target_ip;
1110 KKASSERT(target_ip != NULL);
1111 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1112 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1113 /*
1114 * If the target IP is already flushing in our group
1115 * we are golden, otherwise make sure the target
1116 * reflushes.
1117 */
1118 if (target_ip->flush_group == ip->flush_group) {
1119 rec->flush_state = HAMMER_FST_FLUSH;
1120 rec->flush_group = ip->flush_group;
1121 hammer_ref(&rec->lock);
1122 r = 1;
1123 } else {
1124 target_ip->flags |= HAMMER_INODE_REFLUSH;
1125 }
1126 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1127 /*
1128 * If the target IP is not flushing we can force
1129 * it to flush, even if it is unable to write out
1130 * any of its own records we have at least one in
1131 * hand that we CAN deal with.
1132 */
1133 rec->flush_state = HAMMER_FST_FLUSH;
1134 rec->flush_group = ip->flush_group;
1135 hammer_ref(&rec->lock);
1136 hammer_flush_inode_core(target_ip,
1137 HAMMER_FLUSH_RECURSION);
1138 r = 1;
1139 } else {
1140 /*
e8599db1
MD
1141 * General or delete-on-disk record.
1142 *
1143 * XXX this needs help. If a delete-on-disk we could
1144 * disconnect the target. If the target has its own
1145 * dependancies they really need to be flushed.
1f07f686
MD
1146 *
1147 * XXX
1148 */
1149 rec->flush_state = HAMMER_FST_FLUSH;
1150 rec->flush_group = ip->flush_group;
1151 hammer_ref(&rec->lock);
1152 hammer_flush_inode_core(target_ip,
1153 HAMMER_FLUSH_RECURSION);
1154 r = 1;
1155 }
1156 break;
1157 case HAMMER_FST_FLUSH:
1158 /*
1159 * Record already associated with a flush group. It had
1160 * better be ours.
1161 */
1162 KKASSERT(rec->flush_group == ip->flush_group);
1163 r = 1;
1164 break;
b84de5af 1165 }
1f07f686 1166 return(r);
b84de5af
MD
1167}
1168
b84de5af
MD
1169/*
1170 * Wait for a previously queued flush to complete
1171 */
1172void
1173hammer_wait_inode(hammer_inode_t ip)
1174{
e8599db1 1175 while (ip->flush_state != HAMMER_FST_IDLE) {
b84de5af
MD
1176 ip->flags |= HAMMER_INODE_FLUSHW;
1177 tsleep(&ip->flags, 0, "hmrwin", 0);
1178 }
1179}
1180
1181/*
1182 * Called by the backend code when a flush has been completed.
1183 * The inode has already been removed from the flush list.
1184 *
1185 * A pipelined flush can occur, in which case we must re-enter the
1186 * inode on the list and re-copy its fields.
1187 */
1188void
1189hammer_flush_inode_done(hammer_inode_t ip)
1190{
1955afa7 1191 struct bio *bio;
1f07f686 1192 int dorel = 0;
1955afa7 1193
b84de5af
MD
1194 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1195
1f07f686
MD
1196 /*
1197 * Allow BIOs to queue to the inode's primary bioq again.
1198 */
1199 ip->flags &= ~HAMMER_INODE_WRITE_ALT;
1200
1201 /*
1202 * Merge left-over flags back into the frontend and fix the state.
1203 */
b84de5af 1204 ip->flags |= ip->sync_flags;
1f07f686
MD
1205
1206 /*
1207 * The backend may have adjusted nlinks, so if the adjusted nlinks
1208 * does not match the fronttend set the frontend's RDIRTY flag again.
1209 */
11ad5ade
MD
1210 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1211 ip->flags |= HAMMER_INODE_DDIRTY;
b84de5af 1212
b84de5af 1213 /*
1955afa7
MD
1214 * Reflush any BIOs that wound up in the alt list. Our inode will
1215 * also wind up at the end of the flusher's list.
b84de5af
MD
1216 */
1217 while ((bio = TAILQ_FIRST(&ip->bio_alt_list)) != NULL) {
1218 TAILQ_REMOVE(&ip->bio_alt_list, bio, bio_act);
1219 TAILQ_INSERT_TAIL(&ip->bio_list, bio, bio_act);
4e17f465
MD
1220 }
1221 /*
e63644f0
MD
1222 * Fix up the dirty buffer status. IO completions will also
1223 * try to clean up rsv_databufs.
4e17f465
MD
1224 */
1225 if (TAILQ_FIRST(&ip->bio_list) ||
1226 (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree))) {
1f07f686 1227 ip->flags |= HAMMER_INODE_BUFS;
e63644f0
MD
1228 } else {
1229 ip->hmp->rsv_databufs -= ip->rsv_databufs;
1230 ip->rsv_databufs = 0;
1f07f686
MD
1231 }
1232
1233 /*
1234 * Re-set the XDIRTY flag if some of the inode's in-memory records
1235 * could not be flushed.
1236 */
4e17f465 1237 if (RB_ROOT(&ip->rec_tree))
f90dde4c 1238 ip->flags |= HAMMER_INODE_XDIRTY;
4e17f465
MD
1239
1240 /*
1241 * Do not lose track of inodes which no longer have vnode
1242 * assocations, otherwise they may never get flushed again.
1243 */
1244 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
b84de5af 1245 ip->flags |= HAMMER_INODE_REFLUSH;
4e17f465
MD
1246
1247 /*
1248 * Adjust flush_state. The target state (idle or setup) shouldn't
1249 * be terribly important since we will reflush if we really need
1250 * to do anything. XXX
1251 */
1252 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1253 ip->flush_state = HAMMER_FST_IDLE;
1254 dorel = 1;
1255 } else {
1256 ip->flush_state = HAMMER_FST_SETUP;
b84de5af 1257 }
b84de5af 1258
e8599db1
MD
1259 /*
1260 * Clean up the vnode ref
1261 */
1262 if (ip->flags & HAMMER_INODE_VHELD) {
1263 ip->flags &= ~HAMMER_INODE_VHELD;
1264 vrele(ip->vp);
1265 }
1266
b84de5af
MD
1267 /*
1268 * If the frontend made more changes and requested another flush,
4e17f465 1269 * then try to get it running.
b84de5af
MD
1270 */
1271 if (ip->flags & HAMMER_INODE_REFLUSH) {
1272 ip->flags &= ~HAMMER_INODE_REFLUSH;
4e17f465
MD
1273 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1274 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1275 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1276 } else {
1277 hammer_flush_inode(ip, 0);
0729c8c8 1278 }
4e17f465
MD
1279 }
1280
e63644f0
MD
1281 /*
1282 * If the inode is now clean drop the space reservation.
1283 */
1284 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1285 (ip->flags & HAMMER_INODE_RSV_INODES)) {
1286 ip->flags &= ~HAMMER_INODE_RSV_INODES;
1287 --ip->hmp->rsv_inodes;
1288 }
1289
4e17f465
MD
1290 /*
1291 * Finally, if the frontend is waiting for a flush to complete,
1292 * wake it up.
1293 */
1294 if (ip->flush_state != HAMMER_FST_FLUSH) {
b84de5af
MD
1295 if (ip->flags & HAMMER_INODE_FLUSHW) {
1296 ip->flags &= ~HAMMER_INODE_FLUSHW;
1297 wakeup(&ip->flags);
1298 }
1299 }
1f07f686
MD
1300 if (dorel)
1301 hammer_rel_inode(ip, 0);
b84de5af
MD
1302}
1303
1304/*
1305 * Called from hammer_sync_inode() to synchronize in-memory records
1306 * to the media.
1307 */
1308static int
1309hammer_sync_record_callback(hammer_record_t record, void *data)
c0ade690 1310{
4e17f465
MD
1311 hammer_cursor_t cursor = data;
1312 hammer_transaction_t trans = cursor->trans;
c0ade690
MD
1313 int error;
1314
b84de5af 1315 /*
1f07f686 1316 * Skip records that do not belong to the current flush.
b84de5af 1317 */
1f07f686 1318 if (record->flush_state != HAMMER_FST_FLUSH)
b84de5af 1319 return(0);
1f07f686
MD
1320 KKASSERT((record->flags & HAMMER_RECF_DELETED_BE) == 0);
1321#if 1
1322 if (record->flush_group != record->ip->flush_group) {
1323 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1324 Debugger("blah2");
1325 return(0);
1326 }
1327#endif
1328 KKASSERT(record->flush_group == record->ip->flush_group);
d36ec43b
MD
1329
1330 /*
1331 * Interlock the record using the BE flag. Once BE is set the
1332 * frontend cannot change the state of FE.
1333 *
1334 * NOTE: If FE is set prior to us setting BE we still sync the
1335 * record out, but the flush completion code converts it to
1336 * a delete-on-disk record instead of destroying it.
1337 */
4e17f465 1338 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
d36ec43b
MD
1339 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1340
98f7132d
MD
1341 /*
1342 * If the whole inode is being deleting all on-disk records will
930bf163
MD
1343 * be deleted very soon, we can't sync any new records to disk
1344 * because they will be deleted in the same transaction they were
1345 * created in (delete_tid == create_tid), which will assert.
1346 *
1347 * XXX There may be a case with RECORD_ADD with DELETED_FE set
1348 * that we currently panic on.
98f7132d
MD
1349 */
1350 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
930bf163
MD
1351 switch(record->type) {
1352 case HAMMER_MEM_RECORD_GENERAL:
98f7132d
MD
1353 record->flags |= HAMMER_RECF_DELETED_FE;
1354 record->flags |= HAMMER_RECF_DELETED_BE;
930bf163
MD
1355 error = 0;
1356 goto done;
1357 case HAMMER_MEM_RECORD_ADD:
1358 panic("hammer_sync_record_callback: illegal add "
1359 "during inode deletion record %p", record);
1360 break; /* NOT REACHED */
1361 case HAMMER_MEM_RECORD_INODE:
1362 panic("hammer_sync_record_callback: attempt to "
1363 "sync inode record %p?", record);
1364 break; /* NOT REACHED */
1365 case HAMMER_MEM_RECORD_DEL:
1366 /*
1367 * Follow through and issue the on-disk deletion
98f7132d 1368 */
930bf163 1369 break;
98f7132d 1370 }
98f7132d
MD
1371 }
1372
d36ec43b
MD
1373 /*
1374 * If DELETED_FE is set we may have already sent dependant pieces
1375 * to the disk and we must flush the record as if it hadn't been
1376 * deleted. This creates a bit of a mess because we have to
1f07f686 1377 * have ip_sync_record convert the record to MEM_RECORD_DEL before
d36ec43b
MD
1378 * it inserts the B-Tree record. Otherwise the media sync might
1379 * be visible to the frontend.
1380 */
1f07f686 1381 if (record->flags & HAMMER_RECF_DELETED_FE) {
e8599db1
MD
1382 if (record->type == HAMMER_MEM_RECORD_ADD) {
1383 record->flags |= HAMMER_RECF_CONVERT_DELETE;
1384 } else {
1385 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
1386 return(0);
1387 }
1f07f686 1388 }
b84de5af
MD
1389
1390 /*
1391 * Assign the create_tid for new records. Deletions already
1392 * have the record's entire key properly set up.
1393 */
1f07f686 1394 if (record->type != HAMMER_MEM_RECORD_DEL)
11ad5ade 1395 record->leaf.base.create_tid = trans->tid;
4e17f465
MD
1396 for (;;) {
1397 error = hammer_ip_sync_record_cursor(cursor, record);
1398 if (error != EDEADLK)
1399 break;
1400 hammer_done_cursor(cursor);
1401 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
1402 record->ip);
1403 if (error)
1404 break;
1405 }
1406 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
c0ade690
MD
1407
1408 if (error) {
b3deaf57
MD
1409 error = -error;
1410 if (error != -ENOSPC) {
b84de5af
MD
1411 kprintf("hammer_sync_record_callback: sync failed rec "
1412 "%p, error %d\n", record, error);
1413 Debugger("sync failed rec");
b3deaf57 1414 }
c0ade690 1415 }
98f7132d 1416done:
d36ec43b 1417 hammer_flush_record_done(record, error);
b3deaf57 1418 return(error);
c0ade690
MD
1419}
1420
1421/*
1422 * XXX error handling
1423 */
1424int
1f07f686 1425hammer_sync_inode(hammer_inode_t ip)
c0ade690
MD
1426{
1427 struct hammer_transaction trans;
4e17f465 1428 struct hammer_cursor cursor;
059819e3 1429 struct bio *bio;
1f07f686
MD
1430 hammer_record_t depend;
1431 hammer_record_t next;
ec4e8497 1432 int error, tmp_error;
1f07f686 1433 u_int64_t nlinks;
c0ade690 1434
1f07f686 1435 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
d113fda1 1436 return(0);
d113fda1 1437
b84de5af 1438 hammer_start_transaction_fls(&trans, ip->hmp);
4e17f465
MD
1439 error = hammer_init_cursor(&trans, &cursor, &ip->cache[0], ip);
1440 if (error)
1441 goto done;
c0ade690 1442
ec4e8497 1443 /*
1f07f686
MD
1444 * Any directory records referencing this inode which are not in
1445 * our current flush group must adjust our nlink count for the
1446 * purposes of synchronization to disk.
1447 *
1448 * Records which are in our flush group can be unlinked from our
c4bae5fd
MD
1449 * inode now, potentially allowing the inode to be physically
1450 * deleted.
ec4e8497 1451 */
11ad5ade 1452 nlinks = ip->ino_data.nlinks;
1f07f686
MD
1453 next = TAILQ_FIRST(&ip->target_list);
1454 while ((depend = next) != NULL) {
1455 next = TAILQ_NEXT(depend, target_entry);
1456 if (depend->flush_state == HAMMER_FST_FLUSH &&
1457 depend->flush_group == ip->hmp->flusher_act) {
c4bae5fd
MD
1458 /*
1459 * If this is an ADD that was deleted by the frontend
1460 * the frontend nlinks count will have already been
1461 * decremented, but the backend is going to sync its
1462 * directory entry and must account for it. The
1463 * record will be converted to a delete-on-disk when
1464 * it gets synced.
1465 *
1466 * If the ADD was not deleted by the frontend we
1467 * can remove the dependancy from our target_list.
1468 */
1469 if (depend->flags & HAMMER_RECF_DELETED_FE) {
1470 ++nlinks;
1471 } else {
1472 TAILQ_REMOVE(&ip->target_list, depend,
1473 target_entry);
1474 depend->target_ip = NULL;
1475 }
1f07f686 1476 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
c4bae5fd
MD
1477 /*
1478 * Not part of our flush group
1479 */
1480 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
1f07f686
MD
1481 switch(depend->type) {
1482 case HAMMER_MEM_RECORD_ADD:
1483 --nlinks;
1484 break;
1485 case HAMMER_MEM_RECORD_DEL:
1486 ++nlinks;
1487 break;
e8599db1
MD
1488 default:
1489 break;
1f07f686 1490 }
ec4e8497 1491 }
ec4e8497
MD
1492 }
1493
c0ade690 1494 /*
1f07f686 1495 * Set dirty if we had to modify the link count.
c0ade690 1496 */
11ad5ade 1497 if (ip->sync_ino_data.nlinks != nlinks) {
1f07f686 1498 KKASSERT((int64_t)nlinks >= 0);
11ad5ade
MD
1499 ip->sync_ino_data.nlinks = nlinks;
1500 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1f07f686 1501 }
b84de5af 1502
4e17f465 1503 /*
e8599db1
MD
1504 * Queue up as many dirty buffers as we can then set a flag to
1505 * cause any further BIOs to go to the alternative queue.
4e17f465 1506 */
e8599db1 1507 if (ip->flags & HAMMER_INODE_VHELD)
4e17f465
MD
1508 error = vfsync(ip->vp, MNT_NOWAIT, 1, NULL, NULL);
1509 ip->flags |= HAMMER_INODE_WRITE_ALT;
1510
1511 /*
1512 * The buffer cache may contain dirty buffers beyond the inode
1513 * state we copied from the frontend to the backend. Because
1514 * we are syncing our buffer cache on the backend, resync
1515 * the truncation point and the file size so we don't wipe out
1516 * any data.
1517 *
1518 * Syncing the buffer cache on the frontend has serious problems
1519 * because it prevents us from passively queueing dirty inodes
1520 * to the backend (the BIO's could stall indefinitely).
1521 */
1522 if (ip->flags & HAMMER_INODE_TRUNCATED) {
1523 ip->sync_trunc_off = ip->trunc_off;
1524 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1525 }
11ad5ade
MD
1526 if (ip->sync_ino_data.size != ip->ino_data.size) {
1527 ip->sync_ino_data.size = ip->ino_data.size;
1528 ip->sync_flags |= HAMMER_INODE_DDIRTY;
4e17f465
MD
1529 }
1530
1f07f686 1531 /*
869e8f55
MD
1532 * If there is a trunction queued destroy any data past the (aligned)
1533 * truncation point. Userland will have dealt with the buffer
1534 * containing the truncation point for us.
1535 *
1536 * We don't flush pending frontend data buffers until after we've
1537 * dealth with the truncation.
1f07f686 1538 *
869e8f55 1539 * Don't bother if the inode is or has been deleted.
1f07f686 1540 */
869e8f55 1541 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
b84de5af
MD
1542 /*
1543 * Interlock trunc_off. The VOP front-end may continue to
1544 * make adjustments to it while we are blocked.
1545 */
1546 off_t trunc_off;
1547 off_t aligned_trunc_off;
c0ade690 1548
b84de5af
MD
1549 trunc_off = ip->sync_trunc_off;
1550 aligned_trunc_off = (trunc_off + HAMMER_BUFMASK) &
1551 ~HAMMER_BUFMASK64;
1552
1553 /*
1554 * Delete any whole blocks on-media. The front-end has
1555 * already cleaned out any partial block and made it
1556 * pending. The front-end may have updated trunc_off
1557 * while we were blocked so do not just unconditionally
1558 * set it to the maximum offset.
1559 */
4e17f465 1560 error = hammer_ip_delete_range(&cursor, ip,
b84de5af
MD
1561 aligned_trunc_off,
1562 0x7FFFFFFFFFFFFFFFLL);
1563 if (error)
1564 Debugger("hammer_ip_delete_range errored");
1565 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1566 if (ip->trunc_off >= trunc_off) {
1567 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1568 ip->flags &= ~HAMMER_INODE_TRUNCATED;
1569 }
1f07f686
MD
1570 } else {
1571 error = 0;
f3b0f382
MD
1572 }
1573
1f07f686
MD
1574 /*
1575 * Now sync related records. These will typically be directory
1576 * entries or delete-on-disk records.
869e8f55
MD
1577 *
1578 * Not all records will be flushed, but clear XDIRTY anyway. We
1579 * will set it again in the frontend hammer_flush_inode_done()
1580 * if records remain.
1f07f686
MD
1581 */
1582 if (error == 0) {
1583 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
4e17f465 1584 hammer_sync_record_callback, &cursor);
1f07f686
MD
1585 if (tmp_error < 0)
1586 tmp_error = -error;
1587 if (tmp_error)
1588 error = tmp_error;
930bf163 1589 if (RB_EMPTY(&ip->rec_tree))
869e8f55 1590 ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
1f07f686
MD
1591 }
1592
1593 /*
869e8f55
MD
1594 * If we are deleting the inode the frontend had better not have
1595 * any active references on elements making up the inode.
1f07f686 1596 */
11ad5ade 1597 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
869e8f55
MD
1598 RB_EMPTY(&ip->rec_tree) &&
1599 (ip->sync_flags & HAMMER_INODE_DELETING) &&
1600 (ip->flags & HAMMER_INODE_DELETED) == 0) {
1601 int count1 = 0;
1f07f686 1602
77062c8a 1603 hkprintf("Y");
869e8f55 1604 ip->flags |= HAMMER_INODE_DELETED;
4e17f465 1605 error = hammer_ip_delete_range_all(&cursor, ip, &count1);
869e8f55
MD
1606 if (error == 0) {
1607 ip->sync_flags &= ~HAMMER_INODE_DELETING;
1608 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1609 KKASSERT(RB_EMPTY(&ip->rec_tree));
1f07f686 1610
869e8f55
MD
1611 /*
1612 * Set delete_tid in both the frontend and backend
1613 * copy of the inode record. The DELETED flag handles
1614 * this, do not set RDIRTY.
1615 */
11ad5ade
MD
1616 ip->ino_leaf.base.delete_tid = trans.tid;
1617 ip->sync_ino_leaf.base.delete_tid = trans.tid;
1f07f686 1618
869e8f55
MD
1619 /*
1620 * Adjust the inode count in the volume header
1621 */
f36a9737
MD
1622 if (ip->flags & HAMMER_INODE_ONDISK) {
1623 hammer_modify_volume_field(&trans,
1624 trans.rootvol,
1625 vol0_stat_inodes);
1626 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1627 hammer_modify_volume_done(trans.rootvol);
1628 }
869e8f55
MD
1629 } else {
1630 ip->flags &= ~HAMMER_INODE_DELETED;
1631 Debugger("hammer_ip_delete_range_all errored");
1632 }
1f07f686 1633 }
b84de5af 1634
059819e3 1635 /*
869e8f55
MD
1636 * Flush any queued BIOs. These will just biodone() the IO's if
1637 * the inode has been deleted.
059819e3
MD
1638 */
1639 while ((bio = TAILQ_FIRST(&ip->bio_list)) != NULL) {
1640 TAILQ_REMOVE(&ip->bio_list, bio, bio_act);
4e17f465 1641 tmp_error = hammer_dowrite(&cursor, ip, bio);
ec4e8497
MD
1642 if (tmp_error)
1643 error = tmp_error;
059819e3 1644 }
b84de5af 1645 ip->sync_flags &= ~HAMMER_INODE_BUFS;
c0ade690 1646
b84de5af
MD
1647 if (error)
1648 Debugger("RB_SCAN errored");
c0ade690
MD
1649
1650 /*
1651 * Now update the inode's on-disk inode-data and/or on-disk record.
b84de5af 1652 * DELETED and ONDISK are managed only in ip->flags.
c0ade690 1653 */
b84de5af 1654 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
c0ade690
MD
1655 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
1656 /*
1657 * If deleted and on-disk, don't set any additional flags.
1658 * the delete flag takes care of things.
869e8f55
MD
1659 *
1660 * Clear flags which may have been set by the frontend.
c0ade690 1661 */
11ad5ade 1662 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
869e8f55
MD
1663 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1664 HAMMER_INODE_DELETING);
c0ade690
MD
1665 break;
1666 case HAMMER_INODE_DELETED:
1667 /*
1668 * Take care of the case where a deleted inode was never
1669 * flushed to the disk in the first place.
869e8f55
MD
1670 *
1671 * Clear flags which may have been set by the frontend.
c0ade690 1672 */
11ad5ade 1673 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
869e8f55
MD
1674 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1675 HAMMER_INODE_DELETING);
d26d0ae9 1676 while (RB_ROOT(&ip->rec_tree)) {
d36ec43b
MD
1677 hammer_record_t record = RB_ROOT(&ip->rec_tree);
1678 hammer_ref(&record->lock);
1679 KKASSERT(record->lock.refs == 1);
1680 record->flags |= HAMMER_RECF_DELETED_FE;
1681 record->flags |= HAMMER_RECF_DELETED_BE;
d36ec43b 1682 hammer_rel_mem_record(record);
d26d0ae9 1683 }
c0ade690
MD
1684 break;
1685 case HAMMER_INODE_ONDISK:
1686 /*
1687 * If already on-disk, do not set any additional flags.
1688 */
1689 break;
1690 default:
1691 /*
1692 * If not on-disk and not deleted, set both dirty flags
b84de5af
MD
1693 * to force an initial record to be written. Also set
1694 * the create_tid for the inode.
1695 *
1696 * Set create_tid in both the frontend and backend
1697 * copy of the inode record.
c0ade690 1698 */
11ad5ade
MD
1699 ip->ino_leaf.base.create_tid = trans.tid;
1700 ip->sync_ino_leaf.base.create_tid = trans.tid;
1701 ip->sync_flags |= HAMMER_INODE_DDIRTY;
c0ade690
MD
1702 break;
1703 }
1704
1705 /*
d113fda1
MD
1706 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
1707 * is already on-disk the old record is marked as deleted.
1708 *
1709 * If DELETED is set hammer_update_inode() will delete the existing
1710 * record without writing out a new one.
1711 *
1712 * If *ONLY* the ITIMES flag is set we can update the record in-place.
c0ade690 1713 */
b84de5af 1714 if (ip->flags & HAMMER_INODE_DELETED) {
4e17f465 1715 error = hammer_update_inode(&cursor, ip);
b84de5af 1716 } else
11ad5ade
MD
1717 if ((ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) ==
1718 HAMMER_INODE_ITIMES) {
4e17f465 1719 error = hammer_update_itimes(&cursor, ip);
d113fda1 1720 } else
11ad5ade 1721 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) {
4e17f465 1722 error = hammer_update_inode(&cursor, ip);
c0ade690 1723 }
b84de5af
MD
1724 if (error)
1725 Debugger("hammer_update_itimes/inode errored");
4e17f465 1726done:
b84de5af
MD
1727 /*
1728 * Save the TID we used to sync the inode with to make sure we
1729 * do not improperly reuse it.
1730 */
4e17f465 1731 hammer_done_cursor(&cursor);
b84de5af 1732 hammer_done_transaction(&trans);
c0ade690 1733 return(error);
8cd0a023
MD
1734}
1735
1f07f686
MD
1736/*
1737 * This routine is called when the OS is no longer actively referencing
1738 * the inode (but might still be keeping it cached), or when releasing
1739 * the last reference to an inode.
1740 *
1741 * At this point if the inode's nlinks count is zero we want to destroy
1742 * it, which may mean destroying it on-media too.
1743 */
3bf2d80a 1744void
e8599db1 1745hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
1f07f686 1746{
e8599db1 1747 struct vnode *vp;
29ce0677 1748 struct bio *bio;
e8599db1 1749
1f07f686 1750 /*
c4bae5fd
MD
1751 * Set the DELETING flag when the link count drops to 0 and the
1752 * OS no longer has any opens on the inode.
1753 *
1754 * The backend will clear DELETING (a mod flag) and set DELETED
1755 * (a state flag) when it is actually able to perform the
1756 * operation.
1f07f686 1757 */
11ad5ade 1758 if (ip->ino_data.nlinks == 0 &&
869e8f55 1759 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
e8599db1
MD
1760 ip->flags |= HAMMER_INODE_DELETING;
1761 ip->flags |= HAMMER_INODE_TRUNCATED;
1762 ip->trunc_off = 0;
1763 vp = NULL;
1764 if (getvp) {
1765 if (hammer_get_vnode(ip, &vp) != 0)
1766 return;
1767 }
29ce0677
MD
1768
1769 /*
1770 * biodone any buffers with pending IO. These buffers are
1771 * holding a BUF_KERNPROC() exclusive lock and our
1772 * vtruncbuf() call will deadlock if any remain.
1773 *
1774 * (interlocked against hammer_vop_strategy_write via
1775 * HAMMER_INODE_DELETING|HAMMER_INODE_DELETED).
1776 */
1777 while ((bio = TAILQ_FIRST(&ip->bio_list)) != NULL) {
1778 TAILQ_REMOVE(&ip->bio_list, bio, bio_act);
1779 bio->bio_buf->b_resid = 0;
1780 biodone(bio);
e63644f0
MD
1781 if (ip->rsv_databufs) {
1782 --ip->rsv_databufs;
1783 --ip->hmp->rsv_databufs;
1784 }
29ce0677
MD
1785 }
1786 while ((bio = TAILQ_FIRST(&ip->bio_alt_list)) != NULL) {
1787 TAILQ_REMOVE(&ip->bio_alt_list, bio, bio_act);
1788 bio->bio_buf->b_resid = 0;
1789 biodone(bio);
e63644f0
MD
1790 if (ip->rsv_databufs) {
1791 --ip->rsv_databufs;
1792 --ip->hmp->rsv_databufs;
1793 }
29ce0677
MD
1794 }
1795
1796 /*
1797 * Final cleanup
1798 */
869e8f55
MD
1799 if (ip->vp) {
1800 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
1801 vnode_pager_setsize(ip->vp, 0);
1802 }
e8599db1
MD
1803 if (getvp) {
1804 vput(vp);
1805 }
1f07f686 1806 }
1f07f686
MD
1807}
1808
3bf2d80a
MD
1809/*
1810 * Re-test an inode when a dependancy had gone away to see if we
1811 * can chain flush it.
1812 */
1f07f686
MD
1813void
1814hammer_test_inode(hammer_inode_t ip)
1815{
1816 if (ip->flags & HAMMER_INODE_REFLUSH) {
1817 ip->flags &= ~HAMMER_INODE_REFLUSH;
1818 hammer_ref(&ip->lock);
3bf2d80a
MD
1819 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1820 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1821 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1822 } else {
1823 hammer_flush_inode(ip, 0);
1824 }
1f07f686
MD
1825 hammer_rel_inode(ip, 0);
1826 }
1827}
1828