Style(9) cleanup to src/sys/vfs, stage 20/21: umapfs.
[dragonfly.git] / sys / kern / vfs_subr.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
ce6da7e4 40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.29 2004/04/08 17:56:48 dillon Exp $
984263bc
MD
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
984263bc 61#include <sys/proc.h>
dadab5e9 62#include <sys/namei.h>
984263bc
MD
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72
73#include <vm/vm.h>
74#include <vm/vm_object.h>
75#include <vm/vm_extern.h>
6ef943a3 76#include <vm/vm_kern.h>
984263bc
MD
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
3020e3be 84#include <sys/buf2.h>
f5865223 85#include <sys/thread2.h>
3020e3be 86
984263bc
MD
87static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88
402ed7e1 89static void insmntque (struct vnode *vp, struct mount *mp);
41a01a4d 90static void vclean (struct vnode *vp, lwkt_tokref_t vlock, int flags, struct thread *td);
984263bc 91static unsigned long numvnodes;
984263bc
MD
92SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
93
94enum vtype iftovt_tab[16] = {
95 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
96 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
97};
98int vttoif_tab[9] = {
99 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
100 S_IFSOCK, S_IFIFO, S_IFMT,
101};
102
103static TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
104
105static u_long wantfreevnodes = 25;
106SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
107static u_long freevnodes = 0;
108SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
109
110static int reassignbufcalls;
111SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
112static int reassignbufloops;
113SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
114static int reassignbufsortgood;
115SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
116static int reassignbufsortbad;
117SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
118static int reassignbufmethod = 1;
119SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
984263bc
MD
120
121#ifdef ENABLE_VFS_IOOPT
122int vfs_ioopt = 0;
123SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
124#endif
125
126struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
8a8d5d85
MD
127struct lwkt_token mountlist_token;
128struct lwkt_token mntvnode_token;
984263bc 129int nfs_mount_type = -1;
8a8d5d85
MD
130static struct lwkt_token mntid_token;
131static struct lwkt_token vnode_free_list_token;
132static struct lwkt_token spechash_token;
984263bc
MD
133struct nfs_public nfs_pub; /* publicly exported FS */
134static vm_zone_t vnode_zone;
135
136/*
137 * The workitem queue.
138 */
139#define SYNCER_MAXDELAY 32
140static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
141time_t syncdelay = 30; /* max time to delay syncing data */
99138c2f
HP
142SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW, &syncdelay, 0,
143 "VFS data synchronization delay");
984263bc 144time_t filedelay = 30; /* time to delay syncing files */
99138c2f
HP
145SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
146 "File synchronization delay");
984263bc 147time_t dirdelay = 29; /* time to delay syncing directories */
99138c2f
HP
148SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
149 "Directory synchronization delay");
984263bc 150time_t metadelay = 28; /* time to delay syncing metadata */
99138c2f
HP
151SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
152 "VFS metadata synchronization delay");
984263bc
MD
153static int rushjob; /* number of slots to run ASAP */
154static int stat_rush_requests; /* number of times I/O speeded up */
155SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
156
157static int syncer_delayno = 0;
158static long syncer_mask;
159LIST_HEAD(synclist, vnode);
160static struct synclist *syncer_workitem_pending;
161
162int desiredvnodes;
163SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
164 &desiredvnodes, 0, "Maximum number of vnodes");
165static int minvnodes;
166SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
167 &minvnodes, 0, "Minimum number of vnodes");
168static int vnlru_nowhere = 0;
169SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
170 "Number of times the vnlru process ran without success");
171
402ed7e1
RG
172static void vfs_free_addrlist (struct netexport *nep);
173static int vfs_free_netcred (struct radix_node *rn, void *w);
174static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
175 struct export_args *argp);
984263bc 176
41a01a4d
MD
177#define VSHOULDFREE(vp) \
178 (!((vp)->v_flag & (VFREE|VDOOMED)) && \
179 !(vp)->v_holdcnt && !(vp)->v_usecount && \
180 (!(vp)->v_object || \
181 !((vp)->v_object->ref_count || (vp)->v_object->resident_page_count)))
182
183#define VMIGHTFREE(vp) \
184 (((vp)->v_flag & (VFREE|VDOOMED|VXLOCK)) == 0 && \
185 cache_leaf_test(vp) == 0 && (vp)->v_usecount == 0)
186
187#define VSHOULDBUSY(vp) \
188 (((vp)->v_flag & VFREE) && \
189 ((vp)->v_holdcnt || (vp)->v_usecount))
190
191static void vbusy(struct vnode *vp);
192static void vfree(struct vnode *vp);
193static void vmaybefree(struct vnode *vp);
194
195/*
196 * NOTE: the vnode interlock must be held on call.
197 */
198static __inline void
199vmaybefree(struct vnode *vp)
200{
201 if (VSHOULDFREE(vp))
202 vfree(vp);
203}
204
984263bc
MD
205/*
206 * Initialize the vnode management data structures.
207 */
208void
209vntblinit()
210{
211
6ef943a3
MD
212 /*
213 * Desired vnodes is a result of the physical page count
214 * and the size of kernel's heap. It scales in proportion
215 * to the amount of available physical memory. This can
216 * cause trouble on 64-bit and large memory platforms.
217 */
218 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
219 desiredvnodes =
220 min(maxproc + vmstats.v_page_count /4,
221 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
222 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
223
984263bc 224 minvnodes = desiredvnodes / 4;
41a01a4d
MD
225 lwkt_token_init(&mountlist_token);
226 lwkt_token_init(&mntvnode_token);
227 lwkt_token_init(&mntid_token);
228 lwkt_token_init(&spechash_token);
984263bc 229 TAILQ_INIT(&vnode_free_list);
41a01a4d 230 lwkt_token_init(&vnode_free_list_token);
984263bc
MD
231 vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
232 /*
233 * Initialize the filesystem syncer.
234 */
235 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
236 &syncer_mask);
237 syncer_maxdelay = syncer_mask + 1;
238}
239
240/*
241 * Mark a mount point as busy. Used to synchronize access and to delay
242 * unmounting. Interlock is not released on failure.
243 */
244int
41a01a4d 245vfs_busy(struct mount *mp, int flags, lwkt_tokref_t interlkp, struct thread *td)
984263bc
MD
246{
247 int lkflags;
248
249 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
250 if (flags & LK_NOWAIT)
251 return (ENOENT);
252 mp->mnt_kern_flag |= MNTK_MWAIT;
984263bc
MD
253 /*
254 * Since all busy locks are shared except the exclusive
255 * lock granted when unmounting, the only place that a
256 * wakeup needs to be done is at the release of the
257 * exclusive lock at the end of dounmount.
41a01a4d
MD
258 *
259 * note: interlkp is a serializer and thus can be safely
260 * held through any sleep
984263bc 261 */
377d4740 262 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
984263bc
MD
263 return (ENOENT);
264 }
265 lkflags = LK_SHARED | LK_NOPAUSE;
266 if (interlkp)
267 lkflags |= LK_INTERLOCK;
dadab5e9 268 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
984263bc
MD
269 panic("vfs_busy: unexpected lock failure");
270 return (0);
271}
272
273/*
274 * Free a busy filesystem.
275 */
276void
dadab5e9 277vfs_unbusy(struct mount *mp, struct thread *td)
984263bc 278{
dadab5e9 279 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
984263bc
MD
280}
281
282/*
283 * Lookup a filesystem type, and if found allocate and initialize
284 * a mount structure for it.
285 *
286 * Devname is usually updated by mount(8) after booting.
287 */
288int
dadab5e9 289vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
984263bc 290{
dadab5e9 291 struct thread *td = curthread; /* XXX */
984263bc
MD
292 struct vfsconf *vfsp;
293 struct mount *mp;
294
295 if (fstypename == NULL)
296 return (ENODEV);
297 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
298 if (!strcmp(vfsp->vfc_name, fstypename))
299 break;
300 if (vfsp == NULL)
301 return (ENODEV);
302 mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
303 bzero((char *)mp, (u_long)sizeof(struct mount));
377d4740 304 lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
41a01a4d 305 vfs_busy(mp, LK_NOWAIT, NULL, td);
984263bc
MD
306 TAILQ_INIT(&mp->mnt_nvnodelist);
307 TAILQ_INIT(&mp->mnt_reservedvnlist);
308 mp->mnt_nvnodelistsize = 0;
309 mp->mnt_vfc = vfsp;
310 mp->mnt_op = vfsp->vfc_vfsops;
311 mp->mnt_flag = MNT_RDONLY;
312 mp->mnt_vnodecovered = NULLVP;
313 vfsp->vfc_refcount++;
314 mp->mnt_iosize_max = DFLTPHYS;
315 mp->mnt_stat.f_type = vfsp->vfc_typenum;
316 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
317 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
318 mp->mnt_stat.f_mntonname[0] = '/';
319 mp->mnt_stat.f_mntonname[1] = 0;
320 (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
321 *mpp = mp;
322 return (0);
323}
324
325/*
326 * Find an appropriate filesystem to use for the root. If a filesystem
327 * has not been preselected, walk through the list of known filesystems
328 * trying those that have mountroot routines, and try them until one
329 * works or we have tried them all.
330 */
331#ifdef notdef /* XXX JH */
332int
333lite2_vfs_mountroot()
334{
335 struct vfsconf *vfsp;
402ed7e1 336 extern int (*lite2_mountroot) (void);
984263bc
MD
337 int error;
338
339 if (lite2_mountroot != NULL)
340 return ((*lite2_mountroot)());
341 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
342 if (vfsp->vfc_mountroot == NULL)
343 continue;
344 if ((error = (*vfsp->vfc_mountroot)()) == 0)
345 return (0);
346 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
347 }
348 return (ENODEV);
349}
350#endif
351
352/*
353 * Lookup a mount point by filesystem identifier.
354 */
355struct mount *
356vfs_getvfs(fsid)
357 fsid_t *fsid;
358{
1fd87d54 359 struct mount *mp;
41a01a4d 360 lwkt_tokref ilock;
984263bc 361
41a01a4d 362 lwkt_gettoken(&ilock, &mountlist_token);
984263bc
MD
363 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
364 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
365 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
41a01a4d 366 break;
984263bc
MD
367 }
368 }
41a01a4d
MD
369 lwkt_reltoken(&ilock);
370 return (mp);
984263bc
MD
371}
372
373/*
374 * Get a new unique fsid. Try to make its val[0] unique, since this value
375 * will be used to create fake device numbers for stat(). Also try (but
376 * not so hard) make its val[0] unique mod 2^16, since some emulators only
377 * support 16-bit device numbers. We end up with unique val[0]'s for the
378 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
379 *
380 * Keep in mind that several mounts may be running in parallel. Starting
381 * the search one past where the previous search terminated is both a
382 * micro-optimization and a defense against returning the same fsid to
383 * different mounts.
384 */
385void
386vfs_getnewfsid(mp)
387 struct mount *mp;
388{
389 static u_int16_t mntid_base;
41a01a4d 390 lwkt_tokref ilock;
984263bc
MD
391 fsid_t tfsid;
392 int mtype;
393
41a01a4d 394 lwkt_gettoken(&ilock, &mntid_token);
984263bc
MD
395 mtype = mp->mnt_vfc->vfc_typenum;
396 tfsid.val[1] = mtype;
397 mtype = (mtype & 0xFF) << 24;
398 for (;;) {
399 tfsid.val[0] = makeudev(255,
400 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
401 mntid_base++;
402 if (vfs_getvfs(&tfsid) == NULL)
403 break;
404 }
405 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
406 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
41a01a4d 407 lwkt_reltoken(&ilock);
984263bc
MD
408}
409
410/*
411 * Knob to control the precision of file timestamps:
412 *
413 * 0 = seconds only; nanoseconds zeroed.
414 * 1 = seconds and nanoseconds, accurate within 1/HZ.
415 * 2 = seconds and nanoseconds, truncated to microseconds.
416 * >=3 = seconds and nanoseconds, maximum precision.
417 */
418enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
419
420static int timestamp_precision = TSP_SEC;
421SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
422 &timestamp_precision, 0, "");
423
424/*
425 * Get a current timestamp.
426 */
427void
428vfs_timestamp(tsp)
429 struct timespec *tsp;
430{
431 struct timeval tv;
432
433 switch (timestamp_precision) {
434 case TSP_SEC:
435 tsp->tv_sec = time_second;
436 tsp->tv_nsec = 0;
437 break;
438 case TSP_HZ:
439 getnanotime(tsp);
440 break;
441 case TSP_USEC:
442 microtime(&tv);
443 TIMEVAL_TO_TIMESPEC(&tv, tsp);
444 break;
445 case TSP_NSEC:
446 default:
447 nanotime(tsp);
448 break;
449 }
450}
451
452/*
453 * Set vnode attributes to VNOVAL
454 */
455void
456vattr_null(vap)
1fd87d54 457 struct vattr *vap;
984263bc
MD
458{
459
460 vap->va_type = VNON;
461 vap->va_size = VNOVAL;
462 vap->va_bytes = VNOVAL;
463 vap->va_mode = VNOVAL;
464 vap->va_nlink = VNOVAL;
465 vap->va_uid = VNOVAL;
466 vap->va_gid = VNOVAL;
467 vap->va_fsid = VNOVAL;
468 vap->va_fileid = VNOVAL;
469 vap->va_blocksize = VNOVAL;
470 vap->va_rdev = VNOVAL;
471 vap->va_atime.tv_sec = VNOVAL;
472 vap->va_atime.tv_nsec = VNOVAL;
473 vap->va_mtime.tv_sec = VNOVAL;
474 vap->va_mtime.tv_nsec = VNOVAL;
475 vap->va_ctime.tv_sec = VNOVAL;
476 vap->va_ctime.tv_nsec = VNOVAL;
477 vap->va_flags = VNOVAL;
478 vap->va_gen = VNOVAL;
479 vap->va_vaflags = 0;
480}
481
482/*
483 * This routine is called when we have too many vnodes. It attempts
484 * to free <count> vnodes and will potentially free vnodes that still
485 * have VM backing store (VM backing store is typically the cause
486 * of a vnode blowout so we want to do this). Therefore, this operation
487 * is not considered cheap.
488 *
489 * A number of conditions may prevent a vnode from being reclaimed.
490 * the buffer cache may have references on the vnode, a directory
491 * vnode may still have references due to the namei cache representing
492 * underlying files, or the vnode may be in active use. It is not
493 * desireable to reuse such vnodes. These conditions may cause the
494 * number of vnodes to reach some minimum value regardless of what
495 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
496 */
497static int
498vlrureclaim(struct mount *mp)
499{
500 struct vnode *vp;
41a01a4d
MD
501 lwkt_tokref ilock;
502 lwkt_tokref vlock;
984263bc
MD
503 int done;
504 int trigger;
505 int usevnodes;
506 int count;
507
508 /*
509 * Calculate the trigger point, don't allow user
510 * screwups to blow us up. This prevents us from
511 * recycling vnodes with lots of resident pages. We
512 * aren't trying to free memory, we are trying to
513 * free vnodes.
514 */
515 usevnodes = desiredvnodes;
516 if (usevnodes <= 0)
517 usevnodes = 1;
12e4aaff 518 trigger = vmstats.v_page_count * 2 / usevnodes;
984263bc
MD
519
520 done = 0;
41a01a4d 521 lwkt_gettoken(&ilock, &mntvnode_token);
984263bc
MD
522 count = mp->mnt_nvnodelistsize / 10 + 1;
523 while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
41a01a4d
MD
524 /*
525 * __VNODESCAN__
526 *
527 * The VP will stick around while we hold mntvnode_token,
528 * at least until we block, so we can safely do an initial
529 * check. But we have to check again after obtaining
530 * the vnode interlock. vp->v_interlock points to stable
531 * storage so it's ok if the vp gets ripped out from
532 * under us while we are blocked.
533 */
534 if (vp->v_type == VNON ||
535 vp->v_type == VBAD ||
536 !VMIGHTFREE(vp) || /* critical path opt */
537 (vp->v_object &&
538 vp->v_object->resident_page_count >= trigger)
539 ) {
540 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
541 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
542 --count;
543 continue;
544 }
545
546 /*
547 * Get the interlock, delay moving the node to the tail so
548 * we don't race against new additions to the mountlist.
549 */
550 lwkt_gettoken(&vlock, vp->v_interlock);
551 if (TAILQ_FIRST(&mp->mnt_nvnodelist) != vp) {
552 lwkt_reltoken(&vlock);
553 continue;
554 }
984263bc 555 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
41a01a4d 556 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
984263bc 557
41a01a4d
MD
558 /*
559 * Must check again
560 */
561 if (vp->v_type == VNON ||
562 vp->v_type == VBAD ||
563 !VMIGHTFREE(vp) || /* critical path opt */
564 (vp->v_object &&
565 vp->v_object->resident_page_count >= trigger)
984263bc 566 ) {
41a01a4d
MD
567 lwkt_reltoken(&vlock);
568 --count;
569 continue;
984263bc 570 }
41a01a4d
MD
571 vgonel(vp, &vlock, curthread);
572 ++done;
984263bc
MD
573 --count;
574 }
41a01a4d 575 lwkt_reltoken(&ilock);
984263bc
MD
576 return done;
577}
578
579/*
580 * Attempt to recycle vnodes in a context that is always safe to block.
581 * Calling vlrurecycle() from the bowels of file system code has some
582 * interesting deadlock problems.
583 */
bc6dffab 584static struct thread *vnlruthread;
984263bc
MD
585static int vnlruproc_sig;
586
587static void
588vnlru_proc(void)
589{
590 struct mount *mp, *nmp;
41a01a4d 591 lwkt_tokref ilock;
984263bc
MD
592 int s;
593 int done;
0cfcada1 594 struct thread *td = curthread;
984263bc 595
bc6dffab 596 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
984263bc
MD
597 SHUTDOWN_PRI_FIRST);
598
599 s = splbio();
600 for (;;) {
0cfcada1 601 kproc_suspend_loop();
984263bc
MD
602 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
603 vnlruproc_sig = 0;
604 wakeup(&vnlruproc_sig);
377d4740 605 tsleep(td, 0, "vlruwt", hz);
984263bc
MD
606 continue;
607 }
608 done = 0;
41a01a4d 609 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 610 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 611 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
984263bc
MD
612 nmp = TAILQ_NEXT(mp, mnt_list);
613 continue;
614 }
615 done += vlrureclaim(mp);
41a01a4d 616 lwkt_gettokref(&ilock);
984263bc 617 nmp = TAILQ_NEXT(mp, mnt_list);
dadab5e9 618 vfs_unbusy(mp, td);
984263bc 619 }
41a01a4d 620 lwkt_reltoken(&ilock);
984263bc
MD
621 if (done == 0) {
622 vnlru_nowhere++;
377d4740 623 tsleep(td, 0, "vlrup", hz * 3);
984263bc
MD
624 }
625 }
626 splx(s);
627}
628
629static struct kproc_desc vnlru_kp = {
630 "vnlru",
631 vnlru_proc,
bc6dffab 632 &vnlruthread
984263bc
MD
633};
634SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
635
636/*
637 * Routines having to do with the management of the vnode table.
638 */
639extern vop_t **dead_vnodeop_p;
640
641/*
642 * Return the next vnode from the free list.
643 */
644int
645getnewvnode(tag, mp, vops, vpp)
646 enum vtagtype tag;
647 struct mount *mp;
648 vop_t **vops;
649 struct vnode **vpp;
650{
651 int s;
dadab5e9 652 struct thread *td = curthread; /* XXX */
984263bc 653 struct vnode *vp = NULL;
41a01a4d 654 struct vnode *xvp;
984263bc 655 vm_object_t object;
41a01a4d
MD
656 lwkt_tokref ilock;
657 lwkt_tokref vlock;
984263bc
MD
658
659 s = splbio();
660
661 /*
662 * Try to reuse vnodes if we hit the max. This situation only
663 * occurs in certain large-memory (2G+) situations. We cannot
664 * attempt to directly reclaim vnodes due to nasty recursion
665 * problems.
666 */
667 while (numvnodes - freevnodes > desiredvnodes) {
668 if (vnlruproc_sig == 0) {
669 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
bc6dffab 670 wakeup(vnlruthread);
984263bc 671 }
377d4740 672 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
984263bc
MD
673 }
674
675
676 /*
677 * Attempt to reuse a vnode already on the free list, allocating
678 * a new vnode if we can't find one or if we have not reached a
679 * good minimum for good LRU performance.
680 */
41a01a4d 681 lwkt_gettoken(&ilock, &vnode_free_list_token);
984263bc
MD
682 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
683 int count;
684
685 for (count = 0; count < freevnodes; count++) {
41a01a4d
MD
686 /*
687 * __VNODESCAN__
688 *
689 * Pull the next vnode off the free list and do some
690 * sanity checks. Note that regardless of how we
691 * block, if freevnodes is non-zero there had better
692 * be something on the list.
693 */
984263bc 694 vp = TAILQ_FIRST(&vnode_free_list);
41a01a4d 695 if (vp == NULL)
984263bc
MD
696 panic("getnewvnode: free vnode isn't");
697
8a8d5d85 698 /*
41a01a4d
MD
699 * Move the vnode to the end of the list so other
700 * processes do not double-block trying to recycle
701 * the same vnode (as an optimization), then get
702 * the interlock.
8a8d5d85 703 */
41a01a4d
MD
704 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
705 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
706
707 /*
708 * Skip vnodes that are in the process of being
709 * held or referenced. Since the act of adding or
710 * removing a vnode on the freelist requires a token
711 * and may block, the ref count may be adjusted
712 * prior to its addition or removal.
713 */
714 if (VSHOULDBUSY(vp)) {
8a8d5d85
MD
715 vp = NULL;
716 continue;
717 }
718
41a01a4d 719
8a8d5d85 720 /*
41a01a4d
MD
721 * Obtain the vnode interlock and check that the
722 * vnode is still on the free list.
723 *
724 * This normally devolves into a degenerate case so
725 * it is optimal. Loop up if it isn't. Note that
726 * the vnode could be in the middle of being moved
727 * off the free list (the VSHOULDBUSY() check) and
728 * must be skipped if so.
8a8d5d85 729 */
41a01a4d
MD
730 lwkt_gettoken(&vlock, vp->v_interlock);
731 TAILQ_FOREACH_REVERSE(xvp, &vnode_free_list,
732 freelst, v_freelist) {
733 if (vp == xvp)
734 break;
735 }
736 if (vp != xvp || VSHOULDBUSY(vp)) {
8a8d5d85
MD
737 vp = NULL;
738 continue;
739 }
740
741 /*
41a01a4d
MD
742 * We now safely own the vnode. If the vnode has
743 * an object do not recycle it if its VM object
744 * has resident pages or references.
8a8d5d85 745 */
41a01a4d
MD
746 if ((VOP_GETVOBJECT(vp, &object) == 0 &&
747 (object->resident_page_count || object->ref_count))
748 ) {
749 lwkt_reltoken(&vlock);
984263bc
MD
750 vp = NULL;
751 continue;
752 }
8a8d5d85 753
7ea21ed1 754 /*
41a01a4d
MD
755 * We can almost reuse this vnode. But we don't want
756 * to recycle it if the vnode has children in the
757 * namecache because that breaks the namecache's
758 * path element chain. (YYY use nc_refs for the
759 * check?)
7ea21ed1 760 */
41a01a4d
MD
761 KKASSERT(vp->v_flag & VFREE);
762 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
763
764 if (TAILQ_FIRST(&vp->v_namecache) == NULL ||
765 cache_leaf_test(vp) >= 0) {
766 /* ok, we can reuse this vnode */
767 break;
984263bc 768 }
41a01a4d
MD
769 lwkt_reltoken(&vlock);
770 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
771 vp = NULL;
984263bc
MD
772 }
773 }
774
41a01a4d
MD
775 /*
776 * If vp is non-NULL we hold it's interlock.
777 */
984263bc
MD
778 if (vp) {
779 vp->v_flag |= VDOOMED;
780 vp->v_flag &= ~VFREE;
781 freevnodes--;
41a01a4d 782 lwkt_reltoken(&ilock);
8a8d5d85 783 cache_purge(vp); /* YYY may block */
984263bc
MD
784 vp->v_lease = NULL;
785 if (vp->v_type != VBAD) {
41a01a4d 786 vgonel(vp, &vlock, td);
984263bc 787 } else {
41a01a4d 788 lwkt_reltoken(&vlock);
984263bc
MD
789 }
790
791#ifdef INVARIANTS
792 {
793 int s;
794
795 if (vp->v_data)
796 panic("cleaned vnode isn't");
797 s = splbio();
798 if (vp->v_numoutput)
799 panic("Clean vnode has pending I/O's");
800 splx(s);
801 }
802#endif
803 vp->v_flag = 0;
804 vp->v_lastw = 0;
805 vp->v_lasta = 0;
806 vp->v_cstart = 0;
807 vp->v_clen = 0;
808 vp->v_socket = 0;
809 vp->v_writecount = 0; /* XXX */
810 } else {
41a01a4d
MD
811 lwkt_reltoken(&ilock);
812 vp = zalloc(vnode_zone);
813 bzero(vp, sizeof(*vp));
814 vp->v_interlock = lwkt_token_pool_get(vp);
815 lwkt_token_init(&vp->v_pollinfo.vpi_token);
984263bc 816 cache_purge(vp);
7ea21ed1 817 TAILQ_INIT(&vp->v_namecache);
984263bc
MD
818 numvnodes++;
819 }
820
821 TAILQ_INIT(&vp->v_cleanblkhd);
822 TAILQ_INIT(&vp->v_dirtyblkhd);
823 vp->v_type = VNON;
824 vp->v_tag = tag;
825 vp->v_op = vops;
826 insmntque(vp, mp);
827 *vpp = vp;
828 vp->v_usecount = 1;
829 vp->v_data = 0;
830 splx(s);
831
3b568787 832 vfs_object_create(vp, td);
984263bc
MD
833 return (0);
834}
835
836/*
837 * Move a vnode from one mount queue to another.
838 */
839static void
840insmntque(vp, mp)
1fd87d54
RG
841 struct vnode *vp;
842 struct mount *mp;
984263bc 843{
41a01a4d 844 lwkt_tokref ilock;
984263bc 845
41a01a4d 846 lwkt_gettoken(&ilock, &mntvnode_token);
984263bc
MD
847 /*
848 * Delete from old mount point vnode list, if on one.
849 */
850 if (vp->v_mount != NULL) {
851 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
852 ("bad mount point vnode list size"));
853 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
854 vp->v_mount->mnt_nvnodelistsize--;
855 }
856 /*
857 * Insert into list of vnodes for the new mount point, if available.
858 */
859 if ((vp->v_mount = mp) == NULL) {
41a01a4d 860 lwkt_reltoken(&ilock);
984263bc
MD
861 return;
862 }
863 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
864 mp->mnt_nvnodelistsize++;
41a01a4d 865 lwkt_reltoken(&ilock);
984263bc
MD
866}
867
868/*
869 * Update outstanding I/O count and do wakeup if requested.
870 */
871void
872vwakeup(bp)
1fd87d54 873 struct buf *bp;
984263bc 874{
1fd87d54 875 struct vnode *vp;
984263bc
MD
876
877 bp->b_flags &= ~B_WRITEINPROG;
878 if ((vp = bp->b_vp)) {
879 vp->v_numoutput--;
880 if (vp->v_numoutput < 0)
881 panic("vwakeup: neg numoutput");
882 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
883 vp->v_flag &= ~VBWAIT;
884 wakeup((caddr_t) &vp->v_numoutput);
885 }
886 }
887}
888
889/*
890 * Flush out and invalidate all buffers associated with a vnode.
891 * Called with the underlying object locked.
892 */
893int
3b568787
MD
894vinvalbuf(struct vnode *vp, int flags, struct thread *td,
895 int slpflag, int slptimeo)
984263bc 896{
1fd87d54 897 struct buf *bp;
984263bc
MD
898 struct buf *nbp, *blist;
899 int s, error;
900 vm_object_t object;
41a01a4d 901 lwkt_tokref vlock;
984263bc
MD
902
903 if (flags & V_SAVE) {
904 s = splbio();
905 while (vp->v_numoutput) {
906 vp->v_flag |= VBWAIT;
907 error = tsleep((caddr_t)&vp->v_numoutput,
377d4740 908 slpflag, "vinvlbuf", slptimeo);
984263bc
MD
909 if (error) {
910 splx(s);
911 return (error);
912 }
913 }
914 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
915 splx(s);
3b568787 916 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
984263bc
MD
917 return (error);
918 s = splbio();
919 if (vp->v_numoutput > 0 ||
920 !TAILQ_EMPTY(&vp->v_dirtyblkhd))
921 panic("vinvalbuf: dirty bufs");
922 }
923 splx(s);
924 }
925 s = splbio();
926 for (;;) {
927 blist = TAILQ_FIRST(&vp->v_cleanblkhd);
928 if (!blist)
929 blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
930 if (!blist)
931 break;
932
933 for (bp = blist; bp; bp = nbp) {
934 nbp = TAILQ_NEXT(bp, b_vnbufs);
935 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
936 error = BUF_TIMELOCK(bp,
937 LK_EXCLUSIVE | LK_SLEEPFAIL,
938 "vinvalbuf", slpflag, slptimeo);
939 if (error == ENOLCK)
940 break;
941 splx(s);
942 return (error);
943 }
944 /*
945 * XXX Since there are no node locks for NFS, I
946 * believe there is a slight chance that a delayed
947 * write will occur while sleeping just above, so
948 * check for it. Note that vfs_bio_awrite expects
949 * buffers to reside on a queue, while VOP_BWRITE and
950 * brelse do not.
951 */
952 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
953 (flags & V_SAVE)) {
954
955 if (bp->b_vp == vp) {
956 if (bp->b_flags & B_CLUSTEROK) {
957 BUF_UNLOCK(bp);
958 vfs_bio_awrite(bp);
959 } else {
960 bremfree(bp);
961 bp->b_flags |= B_ASYNC;
962 VOP_BWRITE(bp->b_vp, bp);
963 }
964 } else {
965 bremfree(bp);
966 (void) VOP_BWRITE(bp->b_vp, bp);
967 }
968 break;
969 }
970 bremfree(bp);
971 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
972 bp->b_flags &= ~B_ASYNC;
973 brelse(bp);
974 }
975 }
976
977 /*
978 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
979 * have write I/O in-progress but if there is a VM object then the
980 * VM object can also have read-I/O in-progress.
981 */
982 do {
983 while (vp->v_numoutput > 0) {
984 vp->v_flag |= VBWAIT;
377d4740 985 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
984263bc
MD
986 }
987 if (VOP_GETVOBJECT(vp, &object) == 0) {
988 while (object->paging_in_progress)
989 vm_object_pip_sleep(object, "vnvlbx");
990 }
991 } while (vp->v_numoutput > 0);
992
993 splx(s);
994
995 /*
996 * Destroy the copy in the VM cache, too.
997 */
41a01a4d 998 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
999 if (VOP_GETVOBJECT(vp, &object) == 0) {
1000 vm_object_page_remove(object, 0, 0,
1001 (flags & V_SAVE) ? TRUE : FALSE);
1002 }
41a01a4d 1003 lwkt_reltoken(&vlock);
984263bc
MD
1004
1005 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
1006 panic("vinvalbuf: flush failed");
1007 return (0);
1008}
1009
1010/*
1011 * Truncate a file's buffer and pages to a specified length. This
1012 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1013 * sync activity.
1014 */
1015int
3b568787 1016vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
984263bc 1017{
dadab5e9 1018 struct buf *bp;
984263bc
MD
1019 struct buf *nbp;
1020 int s, anyfreed;
1021 int trunclbn;
1022
1023 /*
1024 * Round up to the *next* lbn.
1025 */
1026 trunclbn = (length + blksize - 1) / blksize;
1027
1028 s = splbio();
1029restart:
1030 anyfreed = 1;
1031 for (;anyfreed;) {
1032 anyfreed = 0;
1033 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1034 nbp = TAILQ_NEXT(bp, b_vnbufs);
1035 if (bp->b_lblkno >= trunclbn) {
1036 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1037 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1038 goto restart;
1039 } else {
1040 bremfree(bp);
1041 bp->b_flags |= (B_INVAL | B_RELBUF);
1042 bp->b_flags &= ~B_ASYNC;
1043 brelse(bp);
1044 anyfreed = 1;
1045 }
1046 if (nbp &&
1047 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1048 (nbp->b_vp != vp) ||
1049 (nbp->b_flags & B_DELWRI))) {
1050 goto restart;
1051 }
1052 }
1053 }
1054
1055 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1056 nbp = TAILQ_NEXT(bp, b_vnbufs);
1057 if (bp->b_lblkno >= trunclbn) {
1058 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1059 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1060 goto restart;
1061 } else {
1062 bremfree(bp);
1063 bp->b_flags |= (B_INVAL | B_RELBUF);
1064 bp->b_flags &= ~B_ASYNC;
1065 brelse(bp);
1066 anyfreed = 1;
1067 }
1068 if (nbp &&
1069 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1070 (nbp->b_vp != vp) ||
1071 (nbp->b_flags & B_DELWRI) == 0)) {
1072 goto restart;
1073 }
1074 }
1075 }
1076 }
1077
1078 if (length > 0) {
1079restartsync:
1080 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1081 nbp = TAILQ_NEXT(bp, b_vnbufs);
1082 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1083 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1084 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1085 goto restart;
1086 } else {
1087 bremfree(bp);
1088 if (bp->b_vp == vp) {
1089 bp->b_flags |= B_ASYNC;
1090 } else {
1091 bp->b_flags &= ~B_ASYNC;
1092 }
1093 VOP_BWRITE(bp->b_vp, bp);
1094 }
1095 goto restartsync;
1096 }
1097
1098 }
1099 }
1100
1101 while (vp->v_numoutput > 0) {
1102 vp->v_flag |= VBWAIT;
377d4740 1103 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
984263bc
MD
1104 }
1105
1106 splx(s);
1107
1108 vnode_pager_setsize(vp, length);
1109
1110 return (0);
1111}
1112
1113/*
1114 * Associate a buffer with a vnode.
1115 */
1116void
1117bgetvp(vp, bp)
1fd87d54
RG
1118 struct vnode *vp;
1119 struct buf *bp;
984263bc
MD
1120{
1121 int s;
1122
1123 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1124
1125 vhold(vp);
1126 bp->b_vp = vp;
1127 bp->b_dev = vn_todev(vp);
1128 /*
1129 * Insert onto list for new vnode.
1130 */
1131 s = splbio();
1132 bp->b_xflags |= BX_VNCLEAN;
1133 bp->b_xflags &= ~BX_VNDIRTY;
1134 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1135 splx(s);
1136}
1137
1138/*
1139 * Disassociate a buffer from a vnode.
1140 */
1141void
1142brelvp(bp)
1fd87d54 1143 struct buf *bp;
984263bc
MD
1144{
1145 struct vnode *vp;
1146 struct buflists *listheadp;
1147 int s;
1148
1149 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1150
1151 /*
1152 * Delete from old vnode list, if on one.
1153 */
1154 vp = bp->b_vp;
1155 s = splbio();
1156 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1157 if (bp->b_xflags & BX_VNDIRTY)
1158 listheadp = &vp->v_dirtyblkhd;
1159 else
1160 listheadp = &vp->v_cleanblkhd;
1161 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1162 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1163 }
1164 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1165 vp->v_flag &= ~VONWORKLST;
1166 LIST_REMOVE(vp, v_synclist);
1167 }
1168 splx(s);
1169 bp->b_vp = (struct vnode *) 0;
1170 vdrop(vp);
1171}
1172
1173/*
1174 * The workitem queue.
1175 *
1176 * It is useful to delay writes of file data and filesystem metadata
1177 * for tens of seconds so that quickly created and deleted files need
1178 * not waste disk bandwidth being created and removed. To realize this,
1179 * we append vnodes to a "workitem" queue. When running with a soft
1180 * updates implementation, most pending metadata dependencies should
1181 * not wait for more than a few seconds. Thus, mounted on block devices
1182 * are delayed only about a half the time that file data is delayed.
1183 * Similarly, directory updates are more critical, so are only delayed
1184 * about a third the time that file data is delayed. Thus, there are
1185 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1186 * one each second (driven off the filesystem syncer process). The
1187 * syncer_delayno variable indicates the next queue that is to be processed.
1188 * Items that need to be processed soon are placed in this queue:
1189 *
1190 * syncer_workitem_pending[syncer_delayno]
1191 *
1192 * A delay of fifteen seconds is done by placing the request fifteen
1193 * entries later in the queue:
1194 *
1195 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1196 *
1197 */
1198
1199/*
1200 * Add an item to the syncer work queue.
1201 */
1202static void
1203vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1204{
1205 int s, slot;
1206
1207 s = splbio();
1208
1209 if (vp->v_flag & VONWORKLST) {
1210 LIST_REMOVE(vp, v_synclist);
1211 }
1212
1213 if (delay > syncer_maxdelay - 2)
1214 delay = syncer_maxdelay - 2;
1215 slot = (syncer_delayno + delay) & syncer_mask;
1216
1217 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1218 vp->v_flag |= VONWORKLST;
1219 splx(s);
1220}
1221
bc6dffab 1222struct thread *updatethread;
402ed7e1 1223static void sched_sync (void);
984263bc
MD
1224static struct kproc_desc up_kp = {
1225 "syncer",
1226 sched_sync,
bc6dffab 1227 &updatethread
984263bc
MD
1228};
1229SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1230
1231/*
1232 * System filesystem synchronizer daemon.
1233 */
1234void
1235sched_sync(void)
1236{
1237 struct synclist *slp;
1238 struct vnode *vp;
1239 long starttime;
1240 int s;
0cfcada1 1241 struct thread *td = curthread;
984263bc 1242
bc6dffab 1243 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
984263bc
MD
1244 SHUTDOWN_PRI_LAST);
1245
1246 for (;;) {
0cfcada1 1247 kproc_suspend_loop();
984263bc
MD
1248
1249 starttime = time_second;
1250
1251 /*
1252 * Push files whose dirty time has expired. Be careful
1253 * of interrupt race on slp queue.
1254 */
1255 s = splbio();
1256 slp = &syncer_workitem_pending[syncer_delayno];
1257 syncer_delayno += 1;
1258 if (syncer_delayno == syncer_maxdelay)
1259 syncer_delayno = 0;
1260 splx(s);
1261
1262 while ((vp = LIST_FIRST(slp)) != NULL) {
1263 if (VOP_ISLOCKED(vp, NULL) == 0) {
41a01a4d 1264 vn_lock(vp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
3b568787 1265 (void) VOP_FSYNC(vp, MNT_LAZY, td);
41a01a4d 1266 VOP_UNLOCK(vp, NULL, 0, td);
984263bc
MD
1267 }
1268 s = splbio();
1269 if (LIST_FIRST(slp) == vp) {
1270 /*
1271 * Note: v_tag VT_VFS vps can remain on the
1272 * worklist too with no dirty blocks, but
1273 * since sync_fsync() moves it to a different
1274 * slot we are safe.
1275 */
1276 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1277 !vn_isdisk(vp, NULL))
1278 panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1279 /*
1280 * Put us back on the worklist. The worklist
1281 * routine will remove us from our current
1282 * position and then add us back in at a later
1283 * position.
1284 */
1285 vn_syncer_add_to_worklist(vp, syncdelay);
1286 }
1287 splx(s);
1288 }
1289
1290 /*
1291 * Do soft update processing.
1292 */
1293 if (bioops.io_sync)
1294 (*bioops.io_sync)(NULL);
1295
1296 /*
1297 * The variable rushjob allows the kernel to speed up the
1298 * processing of the filesystem syncer process. A rushjob
1299 * value of N tells the filesystem syncer to process the next
1300 * N seconds worth of work on its queue ASAP. Currently rushjob
1301 * is used by the soft update code to speed up the filesystem
1302 * syncer process when the incore state is getting so far
1303 * ahead of the disk that the kernel memory pool is being
1304 * threatened with exhaustion.
1305 */
1306 if (rushjob > 0) {
1307 rushjob -= 1;
1308 continue;
1309 }
1310 /*
1311 * If it has taken us less than a second to process the
1312 * current work, then wait. Otherwise start right over
1313 * again. We can still lose time if any single round
1314 * takes more than two seconds, but it does not really
1315 * matter as we are just trying to generally pace the
1316 * filesystem activity.
1317 */
1318 if (time_second == starttime)
377d4740 1319 tsleep(&lbolt, 0, "syncer", 0);
984263bc
MD
1320 }
1321}
1322
1323/*
1324 * Request the syncer daemon to speed up its work.
1325 * We never push it to speed up more than half of its
1326 * normal turn time, otherwise it could take over the cpu.
f5865223
MD
1327 *
1328 * YYY wchan field protected by the BGL.
984263bc
MD
1329 */
1330int
1331speedup_syncer()
1332{
f5865223
MD
1333 crit_enter();
1334 if (updatethread->td_wchan == &lbolt) { /* YYY */
1335 unsleep(updatethread);
1336 lwkt_schedule(updatethread);
1337 }
1338 crit_exit();
984263bc
MD
1339 if (rushjob < syncdelay / 2) {
1340 rushjob += 1;
1341 stat_rush_requests += 1;
1342 return (1);
1343 }
1344 return(0);
1345}
1346
1347/*
1348 * Associate a p-buffer with a vnode.
1349 *
1350 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1351 * with the buffer. i.e. the bp has not been linked into the vnode or
1352 * ref-counted.
1353 */
1354void
1355pbgetvp(vp, bp)
1fd87d54
RG
1356 struct vnode *vp;
1357 struct buf *bp;
984263bc
MD
1358{
1359
1360 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1361
1362 bp->b_vp = vp;
1363 bp->b_flags |= B_PAGING;
1364 bp->b_dev = vn_todev(vp);
1365}
1366
1367/*
1368 * Disassociate a p-buffer from a vnode.
1369 */
1370void
1371pbrelvp(bp)
1fd87d54 1372 struct buf *bp;
984263bc
MD
1373{
1374
1375 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1376
1377 /* XXX REMOVE ME */
1378 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1379 panic(
1380 "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1381 bp,
1382 (int)bp->b_flags
1383 );
1384 }
1385 bp->b_vp = (struct vnode *) 0;
1386 bp->b_flags &= ~B_PAGING;
1387}
1388
1389void
1390pbreassignbuf(bp, newvp)
1391 struct buf *bp;
1392 struct vnode *newvp;
1393{
1394 if ((bp->b_flags & B_PAGING) == 0) {
1395 panic(
1396 "pbreassignbuf() on non phys bp %p",
1397 bp
1398 );
1399 }
1400 bp->b_vp = newvp;
1401}
1402
1403/*
1404 * Reassign a buffer from one vnode to another.
1405 * Used to assign file specific control information
1406 * (indirect blocks) to the vnode to which they belong.
1407 */
1408void
1409reassignbuf(bp, newvp)
1fd87d54
RG
1410 struct buf *bp;
1411 struct vnode *newvp;
984263bc
MD
1412{
1413 struct buflists *listheadp;
1414 int delay;
1415 int s;
1416
1417 if (newvp == NULL) {
1418 printf("reassignbuf: NULL");
1419 return;
1420 }
1421 ++reassignbufcalls;
1422
1423 /*
1424 * B_PAGING flagged buffers cannot be reassigned because their vp
1425 * is not fully linked in.
1426 */
1427 if (bp->b_flags & B_PAGING)
1428 panic("cannot reassign paging buffer");
1429
1430 s = splbio();
1431 /*
1432 * Delete from old vnode list, if on one.
1433 */
1434 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1435 if (bp->b_xflags & BX_VNDIRTY)
1436 listheadp = &bp->b_vp->v_dirtyblkhd;
1437 else
1438 listheadp = &bp->b_vp->v_cleanblkhd;
1439 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1440 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1441 if (bp->b_vp != newvp) {
1442 vdrop(bp->b_vp);
1443 bp->b_vp = NULL; /* for clarification */
1444 }
1445 }
1446 /*
1447 * If dirty, put on list of dirty buffers; otherwise insert onto list
1448 * of clean buffers.
1449 */
1450 if (bp->b_flags & B_DELWRI) {
1451 struct buf *tbp;
1452
1453 listheadp = &newvp->v_dirtyblkhd;
1454 if ((newvp->v_flag & VONWORKLST) == 0) {
1455 switch (newvp->v_type) {
1456 case VDIR:
1457 delay = dirdelay;
1458 break;
1459 case VCHR:
1460 case VBLK:
1461 if (newvp->v_specmountpoint != NULL) {
1462 delay = metadelay;
1463 break;
1464 }
1465 /* fall through */
1466 default:
1467 delay = filedelay;
1468 }
1469 vn_syncer_add_to_worklist(newvp, delay);
1470 }
1471 bp->b_xflags |= BX_VNDIRTY;
1472 tbp = TAILQ_FIRST(listheadp);
1473 if (tbp == NULL ||
1474 bp->b_lblkno == 0 ||
1475 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1476 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1477 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1478 ++reassignbufsortgood;
1479 } else if (bp->b_lblkno < 0) {
1480 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1481 ++reassignbufsortgood;
1482 } else if (reassignbufmethod == 1) {
1483 /*
1484 * New sorting algorithm, only handle sequential case,
1485 * otherwise append to end (but before metadata)
1486 */
1487 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1488 (tbp->b_xflags & BX_VNDIRTY)) {
1489 /*
1490 * Found the best place to insert the buffer
1491 */
1492 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1493 ++reassignbufsortgood;
1494 } else {
1495 /*
1496 * Missed, append to end, but before meta-data.
1497 * We know that the head buffer in the list is
1498 * not meta-data due to prior conditionals.
1499 *
1500 * Indirect effects: NFS second stage write
1501 * tends to wind up here, giving maximum
1502 * distance between the unstable write and the
1503 * commit rpc.
1504 */
1505 tbp = TAILQ_LAST(listheadp, buflists);
1506 while (tbp && tbp->b_lblkno < 0)
1507 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1508 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1509 ++reassignbufsortbad;
1510 }
1511 } else {
1512 /*
1513 * Old sorting algorithm, scan queue and insert
1514 */
1515 struct buf *ttbp;
1516 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1517 (ttbp->b_lblkno < bp->b_lblkno)) {
1518 ++reassignbufloops;
1519 tbp = ttbp;
1520 }
1521 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1522 }
1523 } else {
1524 bp->b_xflags |= BX_VNCLEAN;
1525 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1526 if ((newvp->v_flag & VONWORKLST) &&
1527 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1528 newvp->v_flag &= ~VONWORKLST;
1529 LIST_REMOVE(newvp, v_synclist);
1530 }
1531 }
1532 if (bp->b_vp != newvp) {
1533 bp->b_vp = newvp;
1534 vhold(bp->b_vp);
1535 }
1536 splx(s);
1537}
1538
1539/*
1540 * Create a vnode for a block device.
1541 * Used for mounting the root file system.
1542 */
1543int
1544bdevvp(dev, vpp)
1545 dev_t dev;
1546 struct vnode **vpp;
1547{
1fd87d54 1548 struct vnode *vp;
984263bc
MD
1549 struct vnode *nvp;
1550 int error;
1551
1552 if (dev == NODEV) {
1553 *vpp = NULLVP;
1554 return (ENXIO);
1555 }
1556 error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1557 if (error) {
1558 *vpp = NULLVP;
1559 return (error);
1560 }
1561 vp = nvp;
1562 vp->v_type = VBLK;
1563 addalias(vp, dev);
1564 *vpp = vp;
1565 return (0);
1566}
1567
1568/*
7732c8cd 1569 * Add a vnode to the alias list hung off the dev_t.
984263bc
MD
1570 *
1571 * The reason for this gunk is that multiple vnodes can reference
1572 * the same physical device, so checking vp->v_usecount to see
1573 * how many users there are is inadequate; the v_usecount for
1574 * the vnodes need to be accumulated. vcount() does that.
1575 */
1576void
7732c8cd 1577addaliasu(struct vnode *nvp, udev_t nvp_rdev)
984263bc 1578{
7732c8cd 1579 dev_t dev;
984263bc
MD
1580
1581 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1582 panic("addaliasu on non-special vnode");
7732c8cd 1583 dev = udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0);
4908c260
JH
1584 if (dev != NODEV) {
1585 nvp->v_rdev = dev;
7732c8cd 1586 addalias(nvp, dev);
4908c260
JH
1587 } else
1588 nvp->v_rdev = NULL;
984263bc
MD
1589}
1590
1591void
7732c8cd 1592addalias(struct vnode *nvp, dev_t dev)
984263bc 1593{
41a01a4d 1594 lwkt_tokref ilock;
984263bc
MD
1595
1596 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1597 panic("addalias on non-special vnode");
1598
1599 nvp->v_rdev = dev;
41a01a4d 1600 lwkt_gettoken(&ilock, &spechash_token);
984263bc 1601 SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
41a01a4d 1602 lwkt_reltoken(&ilock);
984263bc
MD
1603}
1604
1605/*
1606 * Grab a particular vnode from the free list, increment its
1607 * reference count and lock it. The vnode lock bit is set if the
1608 * vnode is being eliminated in vgone. The process is awakened
1609 * when the transition is completed, and an error returned to
1610 * indicate that the vnode is no longer usable (possibly having
1611 * been changed to a new file system type).
41a01a4d
MD
1612 *
1613 * This code is very sensitive. We are depending on the vnode interlock
1614 * to be maintained through to the vn_lock() call, which means that we
1615 * cannot block which means that we cannot call vbusy() until after vn_lock().
1616 * If the interlock is not maintained, the VXLOCK check will not properly
1617 * interlock against a vclean()'s LK_DRAIN operation on the lock.
984263bc
MD
1618 */
1619int
41a01a4d 1620vget(struct vnode *vp, lwkt_tokref_t vlock, int flags, thread_t td)
984263bc
MD
1621{
1622 int error;
41a01a4d
MD
1623 lwkt_tokref vvlock;
1624
1625 /*
1626 * We need the interlock to safely modify the v_ fields. ZZZ it is
1627 * only legal to pass (1) the vnode's interlock and (2) only pass
1628 * NULL w/o LK_INTERLOCK if the vnode is *ALREADY* referenced or
1629 * held.
1630 */
1631 if ((flags & LK_INTERLOCK) == 0) {
1632 lwkt_gettoken(&vvlock, vp->v_interlock);
1633 vlock = &vvlock;
1634 }
984263bc
MD
1635
1636 /*
1637 * If the vnode is in the process of being cleaned out for
1638 * another use, we wait for the cleaning to finish and then
1639 * return failure. Cleaning is determined by checking that
41a01a4d
MD
1640 * the VXLOCK flag is set. It is possible for the vnode to be
1641 * self-referenced during the cleaning operation.
984263bc 1642 */
984263bc 1643 if (vp->v_flag & VXLOCK) {
41a01a4d 1644 if (vp->v_vxthread == curthread) {
984263bc
MD
1645#if 0
1646 /* this can now occur in normal operation */
1647 log(LOG_INFO, "VXLOCK interlock avoided\n");
1648#endif
1649 } else {
1650 vp->v_flag |= VXWANT;
41a01a4d 1651 lwkt_reltoken(vlock);
377d4740 1652 tsleep((caddr_t)vp, 0, "vget", 0);
984263bc
MD
1653 return (ENOENT);
1654 }
1655 }
1656
2811dfbd 1657 /*
41a01a4d
MD
1658 * Bump v_usecount to prevent the vnode from being recycled. The
1659 * usecount needs to be bumped before we successfully get our lock.
2811dfbd 1660 */
41a01a4d 1661 vp->v_usecount++;
984263bc 1662 if (flags & LK_TYPE_MASK) {
41a01a4d 1663 if ((error = vn_lock(vp, vlock, flags | LK_INTERLOCK, td)) != 0) {
984263bc
MD
1664 /*
1665 * must expand vrele here because we do not want
1666 * to call VOP_INACTIVE if the reference count
1667 * drops back to zero since it was never really
1668 * active. We must remove it from the free list
1669 * before sleeping so that multiple processes do
1670 * not try to recycle it.
1671 */
41a01a4d 1672 lwkt_gettokref(vlock);
984263bc 1673 vp->v_usecount--;
41a01a4d
MD
1674 vmaybefree(vp);
1675 lwkt_reltoken(vlock);
984263bc
MD
1676 }
1677 return (error);
1678 }
41a01a4d
MD
1679 if (VSHOULDBUSY(vp))
1680 vbusy(vp); /* interlock must be held on call */
1681 lwkt_reltoken(vlock);
984263bc
MD
1682 return (0);
1683}
1684
1685void
1686vref(struct vnode *vp)
1687{
5d28270e
MD
1688 crit_enter(); /* YYY use crit section for moment / BGL protected */
1689 vp->v_usecount++;
1690 crit_exit();
984263bc
MD
1691}
1692
1693/*
1694 * Vnode put/release.
1695 * If count drops to zero, call inactive routine and return to freelist.
1696 */
1697void
dadab5e9 1698vrele(struct vnode *vp)
984263bc 1699{
dadab5e9 1700 struct thread *td = curthread; /* XXX */
41a01a4d 1701 lwkt_tokref vlock;
984263bc 1702
5d28270e
MD
1703 KASSERT(vp != NULL && vp->v_usecount >= 0,
1704 ("vrele: null vp or <=0 v_usecount"));
984263bc 1705
41a01a4d 1706 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1707
1708 if (vp->v_usecount > 1) {
984263bc 1709 vp->v_usecount--;
41a01a4d 1710 lwkt_reltoken(&vlock);
984263bc
MD
1711 return;
1712 }
1713
1714 if (vp->v_usecount == 1) {
1715 vp->v_usecount--;
1716 /*
41a01a4d
MD
1717 * We must call VOP_INACTIVE with the node locked and the
1718 * usecount 0. If we are doing a vpu, the node is already
1719 * locked, but, in the case of vrele, we must explicitly lock
1720 * the vnode before calling VOP_INACTIVE.
984263bc
MD
1721 */
1722
41a01a4d 1723 if (vn_lock(vp, NULL, LK_EXCLUSIVE, td) == 0)
dadab5e9 1724 VOP_INACTIVE(vp, td);
41a01a4d
MD
1725 vmaybefree(vp);
1726 lwkt_reltoken(&vlock);
984263bc
MD
1727 } else {
1728#ifdef DIAGNOSTIC
1729 vprint("vrele: negative ref count", vp);
984263bc 1730#endif
41a01a4d 1731 lwkt_reltoken(&vlock);
984263bc
MD
1732 panic("vrele: negative ref cnt");
1733 }
1734}
1735
1736void
dadab5e9 1737vput(struct vnode *vp)
984263bc 1738{
dadab5e9 1739 struct thread *td = curthread; /* XXX */
41a01a4d 1740 lwkt_tokref vlock;
984263bc
MD
1741
1742 KASSERT(vp != NULL, ("vput: null vp"));
1743
41a01a4d 1744 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1745
1746 if (vp->v_usecount > 1) {
1747 vp->v_usecount--;
41a01a4d 1748 VOP_UNLOCK(vp, &vlock, LK_INTERLOCK, td);
984263bc
MD
1749 return;
1750 }
1751
1752 if (vp->v_usecount == 1) {
1753 vp->v_usecount--;
1754 /*
1755 * We must call VOP_INACTIVE with the node locked.
1756 * If we are doing a vpu, the node is already locked,
1757 * so we just need to release the vnode mutex.
1758 */
dadab5e9 1759 VOP_INACTIVE(vp, td);
41a01a4d
MD
1760 vmaybefree(vp);
1761 lwkt_reltoken(&vlock);
984263bc
MD
1762 } else {
1763#ifdef DIAGNOSTIC
1764 vprint("vput: negative ref count", vp);
1765#endif
41a01a4d 1766 lwkt_reltoken(&vlock);
984263bc
MD
1767 panic("vput: negative ref cnt");
1768 }
1769}
1770
1771/*
41a01a4d
MD
1772 * Somebody doesn't want the vnode recycled. ZZZ vnode interlock should
1773 * be held but isn't.
984263bc
MD
1774 */
1775void
1776vhold(vp)
1fd87d54 1777 struct vnode *vp;
984263bc
MD
1778{
1779 int s;
1780
1781 s = splbio();
1782 vp->v_holdcnt++;
1783 if (VSHOULDBUSY(vp))
41a01a4d 1784 vbusy(vp); /* interlock must be held on call */
984263bc
MD
1785 splx(s);
1786}
1787
1788/*
1789 * One less who cares about this vnode.
1790 */
1791void
1792vdrop(vp)
1fd87d54 1793 struct vnode *vp;
984263bc 1794{
41a01a4d 1795 lwkt_tokref vlock;
984263bc 1796
41a01a4d 1797 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1798 if (vp->v_holdcnt <= 0)
1799 panic("vdrop: holdcnt");
1800 vp->v_holdcnt--;
41a01a4d
MD
1801 vmaybefree(vp);
1802 lwkt_reltoken(&vlock);
1803}
1804
1805int
1806vmntvnodescan(
1807 struct mount *mp,
1808 int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1809 int (*slowfunc)(struct mount *mp, struct vnode *vp, lwkt_tokref_t vlock, void *data),
1810 void *data
1811) {
1812 lwkt_tokref ilock;
1813 lwkt_tokref vlock;
1814 struct vnode *pvp;
1815 struct vnode *vp;
1816 int r = 0;
1817
1818 /*
1819 * Scan the vnodes on the mount's vnode list. Use a placemarker
1820 */
1821 pvp = zalloc(vnode_zone);
1822 pvp->v_flag |= VPLACEMARKER;
1823
1824 lwkt_gettoken(&ilock, &mntvnode_token);
1825 TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1826
1827 while ((vp = TAILQ_NEXT(pvp, v_nmntvnodes)) != NULL) {
1828 /*
1829 * Move the placemarker and skip other placemarkers we
1830 * encounter. The nothing can get in our way so the
1831 * mount point on the vp must be valid.
1832 */
1833 TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1834 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, pvp, v_nmntvnodes);
1835 if (vp->v_flag & VPLACEMARKER)
1836 continue;
1837 KKASSERT(vp->v_mount == mp);
1838
1839 /*
1840 * Quick test
1841 */
1842 if (fastfunc) {
1843 if ((r = fastfunc(mp, vp, data)) < 0)
1844 continue;
1845 if (r)
1846 break;
1847 }
1848
1849 /*
1850 * Get the vnodes interlock and make sure it is still on the
1851 * mount list. Skip it if it has moved (we may encounter it
1852 * later). Then do the with-interlock test. The callback
1853 * is responsible for releasing the vnode interlock.
1854 *
1855 * The interlock is type-stable.
1856 */
1857 if (slowfunc) {
1858 lwkt_gettoken(&vlock, vp->v_interlock);
1859 if (vp != TAILQ_PREV(pvp, vnodelst, v_nmntvnodes)) {
1860 printf("vmntvnodescan (debug info only): f=%p vp=%p vnode ripped out from under us\n", slowfunc, vp);
1861 lwkt_reltoken(&vlock);
1862 continue;
1863 }
1864 if ((r = slowfunc(mp, vp, &vlock, data)) != 0) {
1865 KKASSERT(lwkt_havetokref(&vlock) == 0);
1866 break;
1867 }
1868 KKASSERT(lwkt_havetokref(&vlock) == 0);
1869 }
1870 }
1871 TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1872 zfree(vnode_zone, pvp);
1873 lwkt_reltoken(&ilock);
1874 return(r);
984263bc
MD
1875}
1876
1877/*
1878 * Remove any vnodes in the vnode table belonging to mount point mp.
1879 *
1880 * If FORCECLOSE is not specified, there should not be any active ones,
1881 * return error if any are found (nb: this is a user error, not a
1882 * system error). If FORCECLOSE is specified, detach any active vnodes
1883 * that are found.
1884 *
1885 * If WRITECLOSE is set, only flush out regular file vnodes open for
1886 * writing.
1887 *
1888 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1889 *
1890 * `rootrefs' specifies the base reference count for the root vnode
1891 * of this filesystem. The root vnode is considered busy if its
1892 * v_usecount exceeds this value. On a successful return, vflush()
1893 * will call vrele() on the root vnode exactly rootrefs times.
1894 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1895 * be zero.
1896 */
1897#ifdef DIAGNOSTIC
1898static int busyprt = 0; /* print out busy vnodes */
1899SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1900#endif
1901
41a01a4d
MD
1902static int vflush_scan(struct mount *mp, struct vnode *vp, lwkt_tokref_t vlock, void *data);
1903
1904struct vflush_info {
1905 int flags;
1906 int busy;
1907 thread_t td;
1908};
1909
984263bc
MD
1910int
1911vflush(mp, rootrefs, flags)
1912 struct mount *mp;
1913 int rootrefs;
1914 int flags;
1915{
dadab5e9 1916 struct thread *td = curthread; /* XXX */
41a01a4d
MD
1917 struct vnode *rootvp = NULL;
1918 int error;
1919 lwkt_tokref vlock;
1920 struct vflush_info vflush_info;
984263bc
MD
1921
1922 if (rootrefs > 0) {
1923 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1924 ("vflush: bad args"));
1925 /*
1926 * Get the filesystem root vnode. We can vput() it
1927 * immediately, since with rootrefs > 0, it won't go away.
1928 */
1929 if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1930 return (error);
1931 vput(rootvp);
1932 }
984263bc 1933
41a01a4d
MD
1934 vflush_info.busy = 0;
1935 vflush_info.flags = flags;
1936 vflush_info.td = td;
1937 vmntvnodescan(mp, NULL, vflush_scan, &vflush_info);
984263bc 1938
984263bc
MD
1939 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1940 /*
1941 * If just the root vnode is busy, and if its refcount
1942 * is equal to `rootrefs', then go ahead and kill it.
1943 */
41a01a4d
MD
1944 lwkt_gettoken(&vlock, rootvp->v_interlock);
1945 KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
984263bc 1946 KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
41a01a4d
MD
1947 if (vflush_info.busy == 1 && rootvp->v_usecount == rootrefs) {
1948 vgonel(rootvp, &vlock, td);
1949 vflush_info.busy = 0;
1950 } else {
1951 lwkt_reltoken(&vlock);
1952 }
984263bc 1953 }
41a01a4d 1954 if (vflush_info.busy)
984263bc
MD
1955 return (EBUSY);
1956 for (; rootrefs > 0; rootrefs--)
1957 vrele(rootvp);
1958 return (0);
1959}
1960
1961/*
41a01a4d 1962 * The scan callback is made with an interlocked vnode.
984263bc 1963 */
41a01a4d
MD
1964static int
1965vflush_scan(struct mount *mp, struct vnode *vp, lwkt_tokref_t vlock, void *data)
984263bc 1966{
41a01a4d
MD
1967 struct vflush_info *info = data;
1968 struct vattr vattr;
984263bc 1969
41a01a4d
MD
1970 /*
1971 * Skip over a vnodes marked VSYSTEM.
1972 */
1973 if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1974 lwkt_reltoken(vlock);
1975 return(0);
1976 }
1977
1978 /*
1979 * If WRITECLOSE is set, flush out unlinked but still open
1980 * files (even if open only for reading) and regular file
1981 * vnodes open for writing.
1982 */
1983 if ((info->flags & WRITECLOSE) &&
1984 (vp->v_type == VNON ||
1985 (VOP_GETATTR(vp, &vattr, info->td) == 0 &&
1986 vattr.va_nlink > 0)) &&
1987 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1988 lwkt_reltoken(vlock);
1989 return(0);
1990 }
1991
1992 /*
1993 * With v_usecount == 0, all we need to do is clear out the
1994 * vnode data structures and we are done.
1995 */
1996 if (vp->v_usecount == 0) {
1997 vgonel(vp, vlock, info->td);
1998 return(0);
1999 }
2000
2001 /*
2002 * If FORCECLOSE is set, forcibly close the vnode. For block
2003 * or character devices, revert to an anonymous device. For
2004 * all other files, just kill them.
2005 */
2006 if (info->flags & FORCECLOSE) {
2007 if (vp->v_type != VBLK && vp->v_type != VCHR) {
2008 vgonel(vp, vlock, info->td);
2009 } else {
2010 vclean(vp, vlock, 0, info->td);
2011 vp->v_op = spec_vnodeop_p;
2012 insmntque(vp, (struct mount *) 0);
2013 }
2014 return(0);
984263bc 2015 }
41a01a4d
MD
2016#ifdef DIAGNOSTIC
2017 if (busyprt)
2018 vprint("vflush: busy vnode", vp);
984263bc 2019#endif
41a01a4d
MD
2020 lwkt_reltoken(vlock);
2021 ++info->busy;
2022 return(0);
984263bc
MD
2023}
2024
2025/*
2026 * Disassociate the underlying file system from a vnode.
2027 */
2028static void
41a01a4d 2029vclean(struct vnode *vp, lwkt_tokref_t vlock, int flags, struct thread *td)
984263bc
MD
2030{
2031 int active;
2032
2033 /*
2034 * Check to see if the vnode is in use. If so we have to reference it
2035 * before we clean it out so that its count cannot fall to zero and
2036 * generate a race against ourselves to recycle it.
2037 */
2038 if ((active = vp->v_usecount))
2039 vp->v_usecount++;
2040
2041 /*
2042 * Prevent the vnode from being recycled or brought into use while we
2043 * clean it out.
2044 */
2045 if (vp->v_flag & VXLOCK)
2046 panic("vclean: deadlock");
2047 vp->v_flag |= VXLOCK;
41a01a4d
MD
2048 vp->v_vxthread = curthread;
2049
984263bc
MD
2050 /*
2051 * Even if the count is zero, the VOP_INACTIVE routine may still
2052 * have the object locked while it cleans it out. The VOP_LOCK
2053 * ensures that the VOP_INACTIVE routine is done with its work.
2054 * For active vnodes, it ensures that no other activity can
2055 * occur while the underlying object is being cleaned out.
41a01a4d
MD
2056 *
2057 * NOTE: we continue to hold the vnode interlock through to the
2058 * end of vclean().
984263bc 2059 */
41a01a4d 2060 VOP_LOCK(vp, NULL, LK_DRAIN, td);
984263bc
MD
2061
2062 /*
2063 * Clean out any buffers associated with the vnode.
2064 */
3b568787 2065 vinvalbuf(vp, V_SAVE, td, 0, 0);
984263bc
MD
2066 VOP_DESTROYVOBJECT(vp);
2067
2068 /*
2069 * If purging an active vnode, it must be closed and
2070 * deactivated before being reclaimed. Note that the
2071 * VOP_INACTIVE will unlock the vnode.
2072 */
2073 if (active) {
2074 if (flags & DOCLOSE)
3b568787 2075 VOP_CLOSE(vp, FNONBLOCK, td);
dadab5e9 2076 VOP_INACTIVE(vp, td);
984263bc
MD
2077 } else {
2078 /*
2079 * Any other processes trying to obtain this lock must first
2080 * wait for VXLOCK to clear, then call the new lock operation.
2081 */
41a01a4d 2082 VOP_UNLOCK(vp, NULL, 0, td);
984263bc
MD
2083 }
2084 /*
2085 * Reclaim the vnode.
2086 */
dadab5e9 2087 if (VOP_RECLAIM(vp, td))
984263bc
MD
2088 panic("vclean: cannot reclaim");
2089
2090 if (active) {
2091 /*
2092 * Inline copy of vrele() since VOP_INACTIVE
2093 * has already been called.
2094 */
984263bc
MD
2095 if (--vp->v_usecount <= 0) {
2096#ifdef DIAGNOSTIC
2097 if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2098 vprint("vclean: bad ref count", vp);
2099 panic("vclean: ref cnt");
2100 }
2101#endif
2102 vfree(vp);
2103 }
984263bc
MD
2104 }
2105
2106 cache_purge(vp);
2107 vp->v_vnlock = NULL;
41a01a4d 2108 vmaybefree(vp);
984263bc
MD
2109
2110 /*
2111 * Done with purge, notify sleepers of the grim news.
2112 */
2113 vp->v_op = dead_vnodeop_p;
2114 vn_pollgone(vp);
2115 vp->v_tag = VT_NON;
2116 vp->v_flag &= ~VXLOCK;
41a01a4d 2117 vp->v_vxthread = NULL;
984263bc
MD
2118 if (vp->v_flag & VXWANT) {
2119 vp->v_flag &= ~VXWANT;
2120 wakeup((caddr_t) vp);
2121 }
41a01a4d 2122 lwkt_reltoken(vlock);
984263bc
MD
2123}
2124
2125/*
2126 * Eliminate all activity associated with the requested vnode
2127 * and with all vnodes aliased to the requested vnode.
2128 */
2129int
2130vop_revoke(ap)
2131 struct vop_revoke_args /* {
2132 struct vnode *a_vp;
2133 int a_flags;
2134 } */ *ap;
2135{
2136 struct vnode *vp, *vq;
41a01a4d 2137 lwkt_tokref ilock;
984263bc
MD
2138 dev_t dev;
2139
2140 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2141
2142 vp = ap->a_vp;
2143 /*
2144 * If a vgone (or vclean) is already in progress,
2145 * wait until it is done and return.
2146 */
2147 if (vp->v_flag & VXLOCK) {
2148 vp->v_flag |= VXWANT;
41a01a4d 2149 /*lwkt_reltoken(vlock); ZZZ */
377d4740 2150 tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
984263bc
MD
2151 return (0);
2152 }
2153 dev = vp->v_rdev;
2154 for (;;) {
41a01a4d 2155 lwkt_gettoken(&ilock, &spechash_token);
984263bc 2156 vq = SLIST_FIRST(&dev->si_hlist);
41a01a4d 2157 lwkt_reltoken(&ilock);
984263bc
MD
2158 if (!vq)
2159 break;
2160 vgone(vq);
2161 }
2162 return (0);
2163}
2164
2165/*
2166 * Recycle an unused vnode to the front of the free list.
2167 * Release the passed interlock if the vnode will be recycled.
2168 */
2169int
41a01a4d 2170vrecycle(struct vnode *vp, lwkt_tokref_t inter_lkp, struct thread *td)
984263bc 2171{
41a01a4d
MD
2172 lwkt_tokref vlock;
2173
2174 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc 2175 if (vp->v_usecount == 0) {
41a01a4d 2176 if (inter_lkp)
8a8d5d85 2177 lwkt_reltoken(inter_lkp);
41a01a4d 2178 vgonel(vp, &vlock, td);
984263bc
MD
2179 return (1);
2180 }
41a01a4d 2181 lwkt_reltoken(&vlock);
984263bc
MD
2182 return (0);
2183}
2184
2185/*
2186 * Eliminate all activity associated with a vnode
2187 * in preparation for reuse.
2188 */
2189void
dadab5e9 2190vgone(struct vnode *vp)
984263bc 2191{
dadab5e9 2192 struct thread *td = curthread; /* XXX */
41a01a4d 2193 lwkt_tokref vlock;
984263bc 2194
41a01a4d
MD
2195 lwkt_gettoken(&vlock, vp->v_interlock);
2196 vgonel(vp, &vlock, td);
984263bc
MD
2197}
2198
2199/*
2200 * vgone, with the vp interlock held.
2201 */
2202void
41a01a4d 2203vgonel(struct vnode *vp, lwkt_tokref_t vlock, struct thread *td)
984263bc 2204{
41a01a4d 2205 lwkt_tokref ilock;
984263bc
MD
2206 int s;
2207
2208 /*
2209 * If a vgone (or vclean) is already in progress,
2210 * wait until it is done and return.
2211 */
2212 if (vp->v_flag & VXLOCK) {
2213 vp->v_flag |= VXWANT;
41a01a4d 2214 lwkt_reltoken(vlock);
377d4740 2215 tsleep((caddr_t)vp, 0, "vgone", 0);
984263bc
MD
2216 return;
2217 }
2218
2219 /*
2220 * Clean out the filesystem specific data.
2221 */
41a01a4d
MD
2222 vclean(vp, vlock, DOCLOSE, td);
2223 lwkt_gettokref(vlock);
984263bc
MD
2224
2225 /*
2226 * Delete from old mount point vnode list, if on one.
2227 */
2228 if (vp->v_mount != NULL)
2229 insmntque(vp, (struct mount *)0);
2230 /*
2231 * If special device, remove it from special device alias list
2232 * if it is on one.
2233 */
2234 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
41a01a4d 2235 lwkt_gettoken(&ilock, &spechash_token);
984263bc
MD
2236 SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
2237 freedev(vp->v_rdev);
41a01a4d 2238 lwkt_reltoken(&ilock);
984263bc
MD
2239 vp->v_rdev = NULL;
2240 }
2241
2242 /*
2243 * If it is on the freelist and not already at the head,
2244 * move it to the head of the list. The test of the
2245 * VDOOMED flag and the reference count of zero is because
2246 * it will be removed from the free list by getnewvnode,
2247 * but will not have its reference count incremented until
2248 * after calling vgone. If the reference count were
2249 * incremented first, vgone would (incorrectly) try to
2250 * close the previous instance of the underlying object.
2251 */
2252 if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2253 s = splbio();
41a01a4d 2254 lwkt_gettoken(&ilock, &vnode_free_list_token);
984263bc
MD
2255 if (vp->v_flag & VFREE)
2256 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2257 else
2258 freevnodes++;
2259 vp->v_flag |= VFREE;
2260 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
41a01a4d 2261 lwkt_reltoken(&ilock);
984263bc
MD
2262 splx(s);
2263 }
984263bc 2264 vp->v_type = VBAD;
41a01a4d 2265 lwkt_reltoken(vlock);
984263bc
MD
2266}
2267
2268/*
2269 * Lookup a vnode by device number.
2270 */
2271int
2272vfinddev(dev, type, vpp)
2273 dev_t dev;
2274 enum vtype type;
2275 struct vnode **vpp;
2276{
41a01a4d 2277 lwkt_tokref ilock;
984263bc
MD
2278 struct vnode *vp;
2279
41a01a4d 2280 lwkt_gettoken(&ilock, &spechash_token);
984263bc
MD
2281 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2282 if (type == vp->v_type) {
2283 *vpp = vp;
41a01a4d 2284 lwkt_reltoken(&ilock);
984263bc
MD
2285 return (1);
2286 }
2287 }
41a01a4d 2288 lwkt_reltoken(&ilock);
984263bc
MD
2289 return (0);
2290}
2291
2292/*
2293 * Calculate the total number of references to a special device.
2294 */
2295int
2296vcount(vp)
2297 struct vnode *vp;
2298{
41a01a4d 2299 lwkt_tokref ilock;
984263bc
MD
2300 struct vnode *vq;
2301 int count;
2302
2303 count = 0;
41a01a4d 2304 lwkt_gettoken(&ilock, &spechash_token);
984263bc
MD
2305 SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
2306 count += vq->v_usecount;
41a01a4d 2307 lwkt_reltoken(&ilock);
984263bc
MD
2308 return (count);
2309}
2310
2311/*
2312 * Same as above, but using the dev_t as argument
2313 */
2314
2315int
2316count_dev(dev)
2317 dev_t dev;
2318{
2319 struct vnode *vp;
2320
2321 vp = SLIST_FIRST(&dev->si_hlist);
2322 if (vp == NULL)
2323 return (0);
2324 return(vcount(vp));
2325}
2326
2327/*
2328 * Print out a description of a vnode.
2329 */
2330static char *typename[] =
2331{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2332
2333void
2334vprint(label, vp)
2335 char *label;
2336 struct vnode *vp;
2337{
2338 char buf[96];
2339
2340 if (label != NULL)
2341 printf("%s: %p: ", label, (void *)vp);
2342 else
2343 printf("%p: ", (void *)vp);
2344 printf("type %s, usecount %d, writecount %d, refcount %d,",
2345 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2346 vp->v_holdcnt);
2347 buf[0] = '\0';
2348 if (vp->v_flag & VROOT)
2349 strcat(buf, "|VROOT");
2350 if (vp->v_flag & VTEXT)
2351 strcat(buf, "|VTEXT");
2352 if (vp->v_flag & VSYSTEM)
2353 strcat(buf, "|VSYSTEM");
2354 if (vp->v_flag & VXLOCK)
2355 strcat(buf, "|VXLOCK");
2356 if (vp->v_flag & VXWANT)
2357 strcat(buf, "|VXWANT");
2358 if (vp->v_flag & VBWAIT)
2359 strcat(buf, "|VBWAIT");
2360 if (vp->v_flag & VDOOMED)
2361 strcat(buf, "|VDOOMED");
2362 if (vp->v_flag & VFREE)
2363 strcat(buf, "|VFREE");
2364 if (vp->v_flag & VOBJBUF)
2365 strcat(buf, "|VOBJBUF");
2366 if (buf[0] != '\0')
2367 printf(" flags (%s)", &buf[1]);
2368 if (vp->v_data == NULL) {
2369 printf("\n");
2370 } else {
2371 printf("\n\t");
2372 VOP_PRINT(vp);
2373 }
2374}
2375
2376#ifdef DDB
2377#include <ddb/ddb.h>
2378/*
2379 * List all of the locked vnodes in the system.
2380 * Called when debugging the kernel.
2381 */
2382DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2383{
dadab5e9 2384 struct thread *td = curthread; /* XXX */
41a01a4d 2385 lwkt_tokref ilock;
984263bc
MD
2386 struct mount *mp, *nmp;
2387 struct vnode *vp;
2388
2389 printf("Locked vnodes\n");
41a01a4d 2390 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 2391 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 2392 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
984263bc
MD
2393 nmp = TAILQ_NEXT(mp, mnt_list);
2394 continue;
2395 }
2396 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2397 if (VOP_ISLOCKED(vp, NULL))
2398 vprint((char *)0, vp);
2399 }
41a01a4d 2400 lwkt_gettokref(&ilock);
984263bc 2401 nmp = TAILQ_NEXT(mp, mnt_list);
dadab5e9 2402 vfs_unbusy(mp, td);
984263bc 2403 }
41a01a4d 2404 lwkt_reltoken(&ilock);
984263bc
MD
2405}
2406#endif
2407
2408/*
2409 * Top level filesystem related information gathering.
2410 */
402ed7e1 2411static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
984263bc
MD
2412
2413static int
2414vfs_sysctl(SYSCTL_HANDLER_ARGS)
2415{
2416 int *name = (int *)arg1 - 1; /* XXX */
2417 u_int namelen = arg2 + 1; /* XXX */
2418 struct vfsconf *vfsp;
2419
2420#if 1 || defined(COMPAT_PRELITE2)
2421 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2422 if (namelen == 1)
2423 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2424#endif
2425
2426#ifdef notyet
2427 /* all sysctl names at this level are at least name and field */
2428 if (namelen < 2)
2429 return (ENOTDIR); /* overloaded */
2430 if (name[0] != VFS_GENERIC) {
2431 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2432 if (vfsp->vfc_typenum == name[0])
2433 break;
2434 if (vfsp == NULL)
2435 return (EOPNOTSUPP);
2436 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2437 oldp, oldlenp, newp, newlen, p));
2438 }
2439#endif
2440 switch (name[1]) {
2441 case VFS_MAXTYPENUM:
2442 if (namelen != 2)
2443 return (ENOTDIR);
2444 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2445 case VFS_CONF:
2446 if (namelen != 3)
2447 return (ENOTDIR); /* overloaded */
2448 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2449 if (vfsp->vfc_typenum == name[2])
2450 break;
2451 if (vfsp == NULL)
2452 return (EOPNOTSUPP);
2453 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2454 }
2455 return (EOPNOTSUPP);
2456}
2457
2458SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2459 "Generic filesystem");
2460
2461#if 1 || defined(COMPAT_PRELITE2)
2462
2463static int
2464sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2465{
2466 int error;
2467 struct vfsconf *vfsp;
2468 struct ovfsconf ovfs;
2469
2470 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2471 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
2472 strcpy(ovfs.vfc_name, vfsp->vfc_name);
2473 ovfs.vfc_index = vfsp->vfc_typenum;
2474 ovfs.vfc_refcount = vfsp->vfc_refcount;
2475 ovfs.vfc_flags = vfsp->vfc_flags;
2476 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2477 if (error)
2478 return error;
2479 }
2480 return 0;
2481}
2482
2483#endif /* 1 || COMPAT_PRELITE2 */
2484
2485#if 0
2486#define KINFO_VNODESLOP 10
2487/*
2488 * Dump vnode list (via sysctl).
2489 * Copyout address of vnode followed by vnode.
2490 */
2491/* ARGSUSED */
2492static int
2493sysctl_vnode(SYSCTL_HANDLER_ARGS)
2494{
2495 struct proc *p = curproc; /* XXX */
2496 struct mount *mp, *nmp;
2497 struct vnode *nvp, *vp;
41a01a4d
MD
2498 lwkt_tokref ilock;
2499 lwkt_tokref jlock;
984263bc
MD
2500 int error;
2501
2502#define VPTRSZ sizeof (struct vnode *)
2503#define VNODESZ sizeof (struct vnode)
2504
2505 req->lock = 0;
2506 if (!req->oldptr) /* Make an estimate */
2507 return (SYSCTL_OUT(req, 0,
2508 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2509
41a01a4d 2510 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 2511 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 2512 if (vfs_busy(mp, LK_NOWAIT, &ilock, p)) {
984263bc
MD
2513 nmp = TAILQ_NEXT(mp, mnt_list);
2514 continue;
2515 }
41a01a4d 2516 lwkt_gettoken(&jlock, &mntvnode_token);
984263bc 2517again:
984263bc
MD
2518 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2519 vp != NULL;
2520 vp = nvp) {
2521 /*
2522 * Check that the vp is still associated with
2523 * this filesystem. RACE: could have been
2524 * recycled onto the same filesystem.
2525 */
41a01a4d 2526 if (vp->v_mount != mp)
984263bc 2527 goto again;
984263bc 2528 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
984263bc 2529 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
41a01a4d
MD
2530 (error = SYSCTL_OUT(req, vp, VNODESZ))) {
2531 lwkt_reltoken(&jlock);
984263bc 2532 return (error);
41a01a4d 2533 }
984263bc 2534 }
41a01a4d
MD
2535 lwkt_reltoken(&jlock);
2536 lwkt_gettokref(&ilock);
2537 nmp = TAILQ_NEXT(mp, mnt_list); /* ZZZ */
984263bc
MD
2538 vfs_unbusy(mp, p);
2539 }
41a01a4d 2540 lwkt_reltoken(&ilock);
984263bc
MD
2541
2542 return (0);
2543}
2544#endif
2545
2546/*
2547 * XXX
2548 * Exporting the vnode list on large systems causes them to crash.
2549 * Exporting the vnode list on medium systems causes sysctl to coredump.
2550 */
2551#if 0
2552SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2553 0, 0, sysctl_vnode, "S,vnode", "");
2554#endif
2555
2556/*
2557 * Check to see if a filesystem is mounted on a block device.
2558 */
2559int
2560vfs_mountedon(vp)
2561 struct vnode *vp;
2562{
2563
2564 if (vp->v_specmountpoint != NULL)
2565 return (EBUSY);
2566 return (0);
2567}
2568
2569/*
2570 * Unmount all filesystems. The list is traversed in reverse order
2571 * of mounting to avoid dependencies.
2572 */
2573void
2574vfs_unmountall()
2575{
2576 struct mount *mp;
dadab5e9 2577 struct thread *td = curthread;
984263bc
MD
2578 int error;
2579
dadab5e9
MD
2580 if (td->td_proc == NULL)
2581 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
2582
984263bc
MD
2583 /*
2584 * Since this only runs when rebooting, it is not interlocked.
2585 */
2586 while(!TAILQ_EMPTY(&mountlist)) {
2587 mp = TAILQ_LAST(&mountlist, mntlist);
dadab5e9 2588 error = dounmount(mp, MNT_FORCE, td);
984263bc
MD
2589 if (error) {
2590 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2591 printf("unmount of %s failed (",
2592 mp->mnt_stat.f_mntonname);
2593 if (error == EBUSY)
2594 printf("BUSY)\n");
2595 else
2596 printf("%d)\n", error);
2597 } else {
2598 /* The unmount has removed mp from the mountlist */
2599 }
2600 }
2601}
2602
2603/*
2604 * Build hash lists of net addresses and hang them off the mount point.
2605 * Called by ufs_mount() to set up the lists of export addresses.
2606 */
2607static int
2608vfs_hang_addrlist(mp, nep, argp)
2609 struct mount *mp;
2610 struct netexport *nep;
2611 struct export_args *argp;
2612{
1fd87d54
RG
2613 struct netcred *np;
2614 struct radix_node_head *rnh;
2615 int i;
984263bc
MD
2616 struct radix_node *rn;
2617 struct sockaddr *saddr, *smask = 0;
2618 struct domain *dom;
2619 int error;
2620
2621 if (argp->ex_addrlen == 0) {
2622 if (mp->mnt_flag & MNT_DEFEXPORTED)
2623 return (EPERM);
2624 np = &nep->ne_defexported;
2625 np->netc_exflags = argp->ex_flags;
2626 np->netc_anon = argp->ex_anon;
2627 np->netc_anon.cr_ref = 1;
2628 mp->mnt_flag |= MNT_DEFEXPORTED;
2629 return (0);
2630 }
2631
0260ddf9
MD
2632 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2633 return (EINVAL);
2634 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
984263bc
MD
2635 return (EINVAL);
2636
2637 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2638 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2639 bzero((caddr_t) np, i);
2640 saddr = (struct sockaddr *) (np + 1);
2641 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2642 goto out;
2643 if (saddr->sa_len > argp->ex_addrlen)
2644 saddr->sa_len = argp->ex_addrlen;
2645 if (argp->ex_masklen) {
2646 smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2647 error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2648 if (error)
2649 goto out;
2650 if (smask->sa_len > argp->ex_masklen)
2651 smask->sa_len = argp->ex_masklen;
2652 }
2653 i = saddr->sa_family;
2654 if ((rnh = nep->ne_rtable[i]) == 0) {
2655 /*
2656 * Seems silly to initialize every AF when most are not used,
2657 * do so on demand here
2658 */
2659 for (dom = domains; dom; dom = dom->dom_next)
2660 if (dom->dom_family == i && dom->dom_rtattach) {
2661 dom->dom_rtattach((void **) &nep->ne_rtable[i],
2662 dom->dom_rtoffset);
2663 break;
2664 }
2665 if ((rnh = nep->ne_rtable[i]) == 0) {
2666 error = ENOBUFS;
2667 goto out;
2668 }
2669 }
2670 rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2671 np->netc_rnodes);
2672 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
2673 error = EPERM;
2674 goto out;
2675 }
2676 np->netc_exflags = argp->ex_flags;
2677 np->netc_anon = argp->ex_anon;
2678 np->netc_anon.cr_ref = 1;
2679 return (0);
2680out:
2681 free(np, M_NETADDR);
2682 return (error);
2683}
2684
2685/* ARGSUSED */
2686static int
2687vfs_free_netcred(rn, w)
2688 struct radix_node *rn;
2689 void *w;
2690{
1fd87d54 2691 struct radix_node_head *rnh = (struct radix_node_head *) w;
984263bc
MD
2692
2693 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2694 free((caddr_t) rn, M_NETADDR);
2695 return (0);
2696}
2697
2698/*
2699 * Free the net address hash lists that are hanging off the mount points.
2700 */
2701static void
2702vfs_free_addrlist(nep)
2703 struct netexport *nep;
2704{
1fd87d54
RG
2705 int i;
2706 struct radix_node_head *rnh;
984263bc
MD
2707
2708 for (i = 0; i <= AF_MAX; i++)
2709 if ((rnh = nep->ne_rtable[i])) {
2710 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2711 (caddr_t) rnh);
2712 free((caddr_t) rnh, M_RTABLE);
2713 nep->ne_rtable[i] = 0;
2714 }
2715}
2716
2717int
2718vfs_export(mp, nep, argp)
2719 struct mount *mp;
2720 struct netexport *nep;
2721 struct export_args *argp;
2722{
2723 int error;
2724
2725 if (argp->ex_flags & MNT_DELEXPORT) {
2726 if (mp->mnt_flag & MNT_EXPUBLIC) {
2727 vfs_setpublicfs(NULL, NULL, NULL);
2728 mp->mnt_flag &= ~MNT_EXPUBLIC;
2729 }
2730 vfs_free_addrlist(nep);
2731 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2732 }
2733 if (argp->ex_flags & MNT_EXPORTED) {
2734 if (argp->ex_flags & MNT_EXPUBLIC) {
2735 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2736 return (error);
2737 mp->mnt_flag |= MNT_EXPUBLIC;
2738 }
2739 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2740 return (error);
2741 mp->mnt_flag |= MNT_EXPORTED;
2742 }
2743 return (0);
2744}
2745
2746
2747/*
2748 * Set the publicly exported filesystem (WebNFS). Currently, only
2749 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2750 */
2751int
2752vfs_setpublicfs(mp, nep, argp)
2753 struct mount *mp;
2754 struct netexport *nep;
2755 struct export_args *argp;
2756{
2757 int error;
2758 struct vnode *rvp;
2759 char *cp;
2760
2761 /*
2762 * mp == NULL -> invalidate the current info, the FS is
2763 * no longer exported. May be called from either vfs_export
2764 * or unmount, so check if it hasn't already been done.
2765 */
2766 if (mp == NULL) {
2767 if (nfs_pub.np_valid) {
2768 nfs_pub.np_valid = 0;
2769 if (nfs_pub.np_index != NULL) {
2770 FREE(nfs_pub.np_index, M_TEMP);
2771 nfs_pub.np_index = NULL;
2772 }
2773 }
2774 return (0);
2775 }
2776
2777 /*
2778 * Only one allowed at a time.
2779 */
2780 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2781 return (EBUSY);
2782
2783 /*
2784 * Get real filehandle for root of exported FS.
2785 */
2786 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2787 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2788
2789 if ((error = VFS_ROOT(mp, &rvp)))
2790 return (error);
2791
2792 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2793 return (error);
2794
2795 vput(rvp);
2796
2797 /*
2798 * If an indexfile was specified, pull it in.
2799 */
2800 if (argp->ex_indexfile != NULL) {
2801 MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2802 M_WAITOK);
2803 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2804 MAXNAMLEN, (size_t *)0);
2805 if (!error) {
2806 /*
2807 * Check for illegal filenames.
2808 */
2809 for (cp = nfs_pub.np_index; *cp; cp++) {
2810 if (*cp == '/') {
2811 error = EINVAL;
2812 break;
2813 }
2814 }
2815 }
2816 if (error) {
2817 FREE(nfs_pub.np_index, M_TEMP);
2818 return (error);
2819 }
2820 }
2821
2822 nfs_pub.np_mount = mp;
2823 nfs_pub.np_valid = 1;
2824 return (0);
2825}
2826
2827struct netcred *
2828vfs_export_lookup(mp, nep, nam)
1fd87d54 2829 struct mount *mp;
984263bc
MD
2830 struct netexport *nep;
2831 struct sockaddr *nam;
2832{
1fd87d54
RG
2833 struct netcred *np;
2834 struct radix_node_head *rnh;
984263bc
MD
2835 struct sockaddr *saddr;
2836
2837 np = NULL;
2838 if (mp->mnt_flag & MNT_EXPORTED) {
2839 /*
2840 * Lookup in the export list first.
2841 */
2842 if (nam != NULL) {
2843 saddr = nam;
2844 rnh = nep->ne_rtable[saddr->sa_family];
2845 if (rnh != NULL) {
2846 np = (struct netcred *)
2847 (*rnh->rnh_matchaddr)((caddr_t)saddr,
2848 rnh);
2849 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2850 np = NULL;
2851 }
2852 }
2853 /*
2854 * If no address match, use the default if it exists.
2855 */
2856 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2857 np = &nep->ne_defexported;
2858 }
2859 return (np);
2860}
2861
2862/*
41a01a4d
MD
2863 * perform msync on all vnodes under a mount point. The mount point must
2864 * be locked. This code is also responsible for lazy-freeing unreferenced
2865 * vnodes whos VM objects no longer contain pages.
2866 *
2867 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
984263bc 2868 */
41a01a4d
MD
2869static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2870static int vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2871 lwkt_tokref_t vlock, void *data);
2872
984263bc
MD
2873void
2874vfs_msync(struct mount *mp, int flags)
2875{
41a01a4d
MD
2876 vmntvnodescan(mp, vfs_msync_scan1, vfs_msync_scan2, (void *)flags);
2877}
984263bc 2878
41a01a4d
MD
2879/*
2880 * scan1 is a fast pre-check. There could be hundreds of thousands of
2881 * vnodes, we cannot afford to do anything heavy weight until we have a
2882 * fairly good indication that there is work to do.
2883 */
2884static
2885int
2886vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2887{
2888 int flags = (int)data;
984263bc 2889
41a01a4d
MD
2890 if ((vp->v_flag & VXLOCK) == 0) {
2891 if (VSHOULDFREE(vp))
2892 return(0);
2893 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2894 (vp->v_flag & VOBJDIRTY) &&
984263bc 2895 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
41a01a4d
MD
2896 return(0);
2897 }
2898 }
2899 return(-1);
2900}
2901
2902static
2903int
2904vfs_msync_scan2(struct mount *mp, struct vnode *vp, lwkt_tokref_t vlock, void *data)
2905{
2906 vm_object_t obj;
2907 int error;
2908 int flags = (int)data;
2909
2910 if (vp->v_flag & VXLOCK)
2911 return(0);
2912
2913 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2914 (vp->v_flag & VOBJDIRTY) &&
2915 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2916 error = vget(vp, vlock, LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ | LK_INTERLOCK, curthread);
2917 if (error == 0) {
2918 if (VOP_GETVOBJECT(vp, &obj) == 0) {
2919 vm_object_page_clean(obj, 0, 0,
2920 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
984263bc 2921 }
41a01a4d 2922 vput(vp);
984263bc 2923 }
41a01a4d 2924 return(0);
984263bc 2925 }
41a01a4d
MD
2926 vmaybefree(vp);
2927 lwkt_reltoken(vlock);
2928 return(0);
984263bc
MD
2929}
2930
2931/*
2932 * Create the VM object needed for VMIO and mmap support. This
2933 * is done for all VREG files in the system. Some filesystems might
2934 * afford the additional metadata buffering capability of the
2935 * VMIO code by making the device node be VMIO mode also.
2936 *
2937 * vp must be locked when vfs_object_create is called.
2938 */
2939int
3b568787 2940vfs_object_create(struct vnode *vp, struct thread *td)
984263bc 2941{
3b568787 2942 return (VOP_CREATEVOBJECT(vp, td));
984263bc
MD
2943}
2944
41a01a4d
MD
2945/*
2946 * NOTE: the vnode interlock must be held during the call. We have to recheck
2947 * the VFREE flag since the vnode may have been removed from the free list
2948 * while we were blocked on vnode_free_list_token. The use or hold count
2949 * must have already been bumped by the caller.
2950 */
2951static void
2952vbusy(struct vnode *vp)
984263bc 2953{
41a01a4d 2954 lwkt_tokref ilock;
984263bc 2955
41a01a4d
MD
2956 lwkt_gettoken(&ilock, &vnode_free_list_token);
2957 if ((vp->v_flag & VFREE) != 0) {
2958 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2959 freevnodes--;
2960 vp->v_flag &= ~(VFREE|VAGE);
984263bc 2961 }
41a01a4d 2962 lwkt_reltoken(&ilock);
984263bc
MD
2963}
2964
41a01a4d
MD
2965/*
2966 * NOTE: the vnode interlock must be held during the call. The use or hold
2967 * count must have already been bumped by the caller. We use a VINFREE to
2968 * interlock against other calls to vfree() which might occur while we
2969 * are blocked. The vnode cannot be reused until it has actually been
2970 * placed on the free list, so there are no other races even though the
2971 * use and hold counts are 0.
2972 */
2973static void
2974vfree(struct vnode *vp)
984263bc 2975{
41a01a4d 2976 lwkt_tokref ilock;
984263bc 2977
41a01a4d
MD
2978 if ((vp->v_flag & VINFREE) == 0) {
2979 vp->v_flag |= VINFREE;
2980 lwkt_gettoken(&ilock, &vnode_free_list_token); /* can block */
2981 KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2982 if (vp->v_flag & VAGE) {
2983 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2984 } else {
2985 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2986 }
2987 freevnodes++;
2988 vp->v_flag &= ~(VAGE|VINFREE);
2989 vp->v_flag |= VFREE;
2990 lwkt_reltoken(&ilock); /* can block */
2991 }
984263bc
MD
2992}
2993
41a01a4d 2994
984263bc
MD
2995/*
2996 * Record a process's interest in events which might happen to
2997 * a vnode. Because poll uses the historic select-style interface
2998 * internally, this routine serves as both the ``check for any
2999 * pending events'' and the ``record my interest in future events''
3000 * functions. (These are done together, while the lock is held,
3001 * to avoid race conditions.)
3002 */
3003int
dadab5e9 3004vn_pollrecord(struct vnode *vp, struct thread *td, int events)
984263bc 3005{
41a01a4d
MD
3006 lwkt_tokref ilock;
3007
3008 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
3009 if (vp->v_pollinfo.vpi_revents & events) {
3010 /*
3011 * This leaves events we are not interested
3012 * in available for the other process which
3013 * which presumably had requested them
3014 * (otherwise they would never have been
3015 * recorded).
3016 */
3017 events &= vp->v_pollinfo.vpi_revents;
3018 vp->v_pollinfo.vpi_revents &= ~events;
3019
41a01a4d 3020 lwkt_reltoken(&ilock);
984263bc
MD
3021 return events;
3022 }
3023 vp->v_pollinfo.vpi_events |= events;
dadab5e9 3024 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
41a01a4d 3025 lwkt_reltoken(&ilock);
984263bc
MD
3026 return 0;
3027}
3028
3029/*
3030 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
3031 * it is possible for us to miss an event due to race conditions, but
3032 * that condition is expected to be rare, so for the moment it is the
3033 * preferred interface.
3034 */
3035void
3036vn_pollevent(vp, events)
3037 struct vnode *vp;
3038 short events;
3039{
41a01a4d
MD
3040 lwkt_tokref ilock;
3041
3042 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
3043 if (vp->v_pollinfo.vpi_events & events) {
3044 /*
3045 * We clear vpi_events so that we don't
3046 * call selwakeup() twice if two events are
3047 * posted before the polling process(es) is
3048 * awakened. This also ensures that we take at
3049 * most one selwakeup() if the polling process
3050 * is no longer interested. However, it does
3051 * mean that only one event can be noticed at
3052 * a time. (Perhaps we should only clear those
3053 * event bits which we note?) XXX
3054 */
3055 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
3056 vp->v_pollinfo.vpi_revents |= events;
3057 selwakeup(&vp->v_pollinfo.vpi_selinfo);
3058 }
41a01a4d 3059 lwkt_reltoken(&ilock);
984263bc
MD
3060}
3061
3062/*
3063 * Wake up anyone polling on vp because it is being revoked.
3064 * This depends on dead_poll() returning POLLHUP for correct
3065 * behavior.
3066 */
3067void
3068vn_pollgone(vp)
3069 struct vnode *vp;
3070{
41a01a4d
MD
3071 lwkt_tokref ilock;
3072
3073 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
3074 if (vp->v_pollinfo.vpi_events) {
3075 vp->v_pollinfo.vpi_events = 0;
3076 selwakeup(&vp->v_pollinfo.vpi_selinfo);
3077 }
41a01a4d 3078 lwkt_reltoken(&ilock);
984263bc
MD
3079}
3080
3081
3082
3083/*
3084 * Routine to create and manage a filesystem syncer vnode.
3085 */
402ed7e1
RG
3086#define sync_close ((int (*) (struct vop_close_args *))nullop)
3087static int sync_fsync (struct vop_fsync_args *);
3088static int sync_inactive (struct vop_inactive_args *);
3089static int sync_reclaim (struct vop_reclaim_args *);
3090#define sync_lock ((int (*) (struct vop_lock_args *))vop_nolock)
3091#define sync_unlock ((int (*) (struct vop_unlock_args *))vop_nounlock)
3092static int sync_print (struct vop_print_args *);
3093#define sync_islocked ((int(*) (struct vop_islocked_args *))vop_noislocked)
984263bc
MD
3094
3095static vop_t **sync_vnodeop_p;
3096static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3097 { &vop_default_desc, (vop_t *) vop_eopnotsupp },
3098 { &vop_close_desc, (vop_t *) sync_close }, /* close */
3099 { &vop_fsync_desc, (vop_t *) sync_fsync }, /* fsync */
3100 { &vop_inactive_desc, (vop_t *) sync_inactive }, /* inactive */
3101 { &vop_reclaim_desc, (vop_t *) sync_reclaim }, /* reclaim */
3102 { &vop_lock_desc, (vop_t *) sync_lock }, /* lock */
3103 { &vop_unlock_desc, (vop_t *) sync_unlock }, /* unlock */
3104 { &vop_print_desc, (vop_t *) sync_print }, /* print */
3105 { &vop_islocked_desc, (vop_t *) sync_islocked }, /* islocked */
3106 { NULL, NULL }
3107};
3108static struct vnodeopv_desc sync_vnodeop_opv_desc =
3109 { &sync_vnodeop_p, sync_vnodeop_entries };
3110
3111VNODEOP_SET(sync_vnodeop_opv_desc);
3112
3113/*
3114 * Create a new filesystem syncer vnode for the specified mount point.
41a01a4d
MD
3115 * This vnode is placed on the worklist and is responsible for sync'ing
3116 * the filesystem.
3117 *
3118 * NOTE: read-only mounts are also placed on the worklist. The filesystem
3119 * sync code is also responsible for cleaning up vnodes.
984263bc
MD
3120 */
3121int
41a01a4d 3122vfs_allocate_syncvnode(struct mount *mp)
984263bc
MD
3123{
3124 struct vnode *vp;
3125 static long start, incr, next;
3126 int error;
3127
3128 /* Allocate a new vnode */
3129 if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
3130 mp->mnt_syncer = NULL;
3131 return (error);
3132 }
3133 vp->v_type = VNON;
3134 /*
3135 * Place the vnode onto the syncer worklist. We attempt to
3136 * scatter them about on the list so that they will go off
3137 * at evenly distributed times even if all the filesystems
3138 * are mounted at once.
3139 */
3140 next += incr;
3141 if (next == 0 || next > syncer_maxdelay) {
3142 start /= 2;
3143 incr /= 2;
3144 if (start == 0) {
3145 start = syncer_maxdelay / 2;
3146 incr = syncer_maxdelay;
3147 }
3148 next = start;
3149 }
3150 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3151 mp->mnt_syncer = vp;
3152 return (0);
3153}
3154
3155/*
3156 * Do a lazy sync of the filesystem.
3157 */
3158static int
3159sync_fsync(ap)
3160 struct vop_fsync_args /* {
3161 struct vnode *a_vp;
3162 struct ucred *a_cred;
3163 int a_waitfor;
dadab5e9 3164 struct thread *a_td;
984263bc
MD
3165 } */ *ap;
3166{
3167 struct vnode *syncvp = ap->a_vp;
3168 struct mount *mp = syncvp->v_mount;
dadab5e9 3169 struct thread *td = ap->a_td;
41a01a4d 3170 lwkt_tokref ilock;
984263bc
MD
3171 int asyncflag;
3172
3173 /*
3174 * We only need to do something if this is a lazy evaluation.
3175 */
3176 if (ap->a_waitfor != MNT_LAZY)
3177 return (0);
3178
3179 /*
3180 * Move ourselves to the back of the sync list.
3181 */
3182 vn_syncer_add_to_worklist(syncvp, syncdelay);
3183
3184 /*
3185 * Walk the list of vnodes pushing all that are dirty and
41a01a4d
MD
3186 * not already on the sync list, and freeing vnodes which have
3187 * no refs and whos VM objects are empty. vfs_msync() handles
3188 * the VM issues and must be called whether the mount is readonly
3189 * or not.
984263bc 3190 */
41a01a4d
MD
3191 lwkt_gettoken(&ilock, &mountlist_token);
3192 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &ilock, td) != 0) {
3193 lwkt_reltoken(&ilock);
984263bc
MD
3194 return (0);
3195 }
41a01a4d
MD
3196 if (mp->mnt_flag & MNT_RDONLY) {
3197 vfs_msync(mp, MNT_NOWAIT);
3198 } else {
3199 asyncflag = mp->mnt_flag & MNT_ASYNC;
3200 mp->mnt_flag &= ~MNT_ASYNC; /* ZZZ hack */
3201 vfs_msync(mp, MNT_NOWAIT);
3202 VFS_SYNC(mp, MNT_LAZY, td);
3203 if (asyncflag)
3204 mp->mnt_flag |= MNT_ASYNC;
3205 }
dadab5e9 3206 vfs_unbusy(mp, td);
984263bc
MD
3207 return (0);
3208}
3209
3210/*
3211 * The syncer vnode is no referenced.
3212 */
3213static int
3214sync_inactive(ap)
3215 struct vop_inactive_args /* {
3216 struct vnode *a_vp;
3217 struct proc *a_p;
3218 } */ *ap;
3219{
3220
3221 vgone(ap->a_vp);
3222 return (0);
3223}
3224
3225/*
3226 * The syncer vnode is no longer needed and is being decommissioned.
3227 *
3228 * Modifications to the worklist must be protected at splbio().
3229 */
3230static int
3231sync_reclaim(ap)
3232 struct vop_reclaim_args /* {
3233 struct vnode *a_vp;
3234 } */ *ap;
3235{
3236 struct vnode *vp = ap->a_vp;
3237 int s;
3238
3239 s = splbio();
3240 vp->v_mount->mnt_syncer = NULL;
3241 if (vp->v_flag & VONWORKLST) {
3242 LIST_REMOVE(vp, v_synclist);
3243 vp->v_flag &= ~VONWORKLST;
3244 }
3245 splx(s);
3246
3247 return (0);
3248}
3249
3250/*
3251 * Print out a syncer vnode.
3252 */
3253static int
3254sync_print(ap)
3255 struct vop_print_args /* {
3256 struct vnode *a_vp;
3257 } */ *ap;
3258{
3259 struct vnode *vp = ap->a_vp;
3260
3261 printf("syncer vnode");
3262 if (vp->v_vnlock != NULL)
3263 lockmgr_printinfo(vp->v_vnlock);
3264 printf("\n");
3265 return (0);
3266}
3267
3268/*
3269 * extract the dev_t from a VBLK or VCHR
3270 */
3271dev_t
3272vn_todev(vp)
3273 struct vnode *vp;
3274{
3275 if (vp->v_type != VBLK && vp->v_type != VCHR)
3276 return (NODEV);
3277 return (vp->v_rdev);
3278}
3279
3280/*
3281 * Check if vnode represents a disk device
3282 */
3283int
3284vn_isdisk(vp, errp)
3285 struct vnode *vp;
3286 int *errp;
3287{
3288 if (vp->v_type != VBLK && vp->v_type != VCHR) {
3289 if (errp != NULL)
3290 *errp = ENOTBLK;
3291 return (0);
3292 }
3293 if (vp->v_rdev == NULL) {
3294 if (errp != NULL)
3295 *errp = ENXIO;
3296 return (0);
3297 }
335dda38 3298 if (!dev_dport(vp->v_rdev)) {
984263bc
MD
3299 if (errp != NULL)
3300 *errp = ENXIO;
3301 return (0);
3302 }
335dda38 3303 if (!(dev_dflags(vp->v_rdev) & D_DISK)) {
984263bc
MD
3304 if (errp != NULL)
3305 *errp = ENOTBLK;
3306 return (0);
3307 }
3308 if (errp != NULL)
3309 *errp = 0;
3310 return (1);
3311}
3312
3313void
3314NDFREE(ndp, flags)
3315 struct nameidata *ndp;
3316 const uint flags;
3317{
3318 if (!(flags & NDF_NO_FREE_PNBUF) &&
2b69e610 3319 (ndp->ni_cnd.cn_flags & CNP_HASBUF)) {
984263bc 3320 zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2b69e610 3321 ndp->ni_cnd.cn_flags &= ~CNP_HASBUF;
984263bc 3322 }
bc0c094e
MD
3323 if (!(flags & NDF_NO_DNCP_RELE) &&
3324 (ndp->ni_cnd.cn_flags & CNP_WANTDNCP) &&
3325 ndp->ni_dncp) {
3326 cache_drop(ndp->ni_dncp);
3327 ndp->ni_dncp = NULL;
3328 }
3329 if (!(flags & NDF_NO_NCP_RELE) &&
3330 (ndp->ni_cnd.cn_flags & CNP_WANTNCP) &&
3331 ndp->ni_ncp) {
3332 cache_drop(ndp->ni_ncp);
3333 ndp->ni_ncp = NULL;
3334 }
984263bc 3335 if (!(flags & NDF_NO_DVP_UNLOCK) &&
2b69e610 3336 (ndp->ni_cnd.cn_flags & CNP_LOCKPARENT) &&
bc0c094e 3337 ndp->ni_dvp != ndp->ni_vp) {
41a01a4d 3338 VOP_UNLOCK(ndp->ni_dvp, NULL, 0, ndp->ni_cnd.cn_td);
bc0c094e 3339 }
984263bc 3340 if (!(flags & NDF_NO_DVP_RELE) &&
2b69e610 3341 (ndp->ni_cnd.cn_flags & (CNP_LOCKPARENT|CNP_WANTPARENT))) {
984263bc
MD
3342 vrele(ndp->ni_dvp);
3343 ndp->ni_dvp = NULL;
3344 }
3345 if (!(flags & NDF_NO_VP_UNLOCK) &&
bc0c094e 3346 (ndp->ni_cnd.cn_flags & CNP_LOCKLEAF) && ndp->ni_vp) {
41a01a4d 3347 VOP_UNLOCK(ndp->ni_vp, NULL, 0, ndp->ni_cnd.cn_td);
bc0c094e 3348 }
984263bc
MD
3349 if (!(flags & NDF_NO_VP_RELE) &&
3350 ndp->ni_vp) {
3351 vrele(ndp->ni_vp);
3352 ndp->ni_vp = NULL;
3353 }
3354 if (!(flags & NDF_NO_STARTDIR_RELE) &&
2b69e610 3355 (ndp->ni_cnd.cn_flags & CNP_SAVESTART)) {
984263bc
MD
3356 vrele(ndp->ni_startdir);
3357 ndp->ni_startdir = NULL;
3358 }
3359}
bc0c094e 3360
4f322a84
EN
3361#ifdef DEBUG_VFS_LOCKS
3362
3363void
3364assert_vop_locked(struct vnode *vp, const char *str)
3365{
3366
3367 if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
3368 panic("%s: %p is not locked shared but should be", str, vp);
3369 }
3370}
3371
3372void
3373assert_vop_unlocked(struct vnode *vp, const char *str)
3374{
3375
3376 if (vp && IS_LOCKING_VFS(vp)) {
3377 if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
3378 panic("%s: %p is locked but should not be", str, vp);
3379 }
3380 }
3381}
3382
3383#endif