kernel - Add TDF_RUNNING assertions
[dragonfly.git] / sys / kern / lwkt_thread.c
CommitLineData
8ad65e08 1/*
b12defdc 2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
60f60350 3 *
8c10bfcf
MD
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
60f60350 6 *
8ad65e08
MD
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
60f60350 10 *
8ad65e08
MD
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
8c10bfcf
MD
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
60f60350 20 *
8c10bfcf
MD
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
8ad65e08 32 * SUCH DAMAGE.
75cdbe6c
MD
33 */
34
35/*
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
8ad65e08
MD
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/proc.h>
46#include <sys/rtprio.h>
b37f18d6 47#include <sys/kinfo.h>
8ad65e08 48#include <sys/queue.h>
7d0bac62 49#include <sys/sysctl.h>
99df837e 50#include <sys/kthread.h>
f1d1c3fa 51#include <machine/cpu.h>
99df837e 52#include <sys/lock.h>
f6bf3af1 53#include <sys/caps.h>
9d265729 54#include <sys/spinlock.h>
57aa743c 55#include <sys/ktr.h>
9d265729
MD
56
57#include <sys/thread2.h>
58#include <sys/spinlock2.h>
684a93c4 59#include <sys/mplock2.h>
f1d1c3fa 60
8c72e3d5
AH
61#include <sys/dsched.h>
62
7d0bac62
MD
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_object.h>
67#include <vm/vm_page.h>
68#include <vm/vm_map.h>
69#include <vm/vm_pager.h>
70#include <vm/vm_extern.h>
7d0bac62 71
99df837e 72#include <machine/stdarg.h>
96728c05 73#include <machine/smp.h>
99df837e 74
d850923c
AE
75#if !defined(KTR_CTXSW)
76#define KTR_CTXSW KTR_ALL
77#endif
78KTR_INFO_MASTER(ctxsw);
a1f0fb66
AE
79KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80 sizeof(int) + sizeof(struct thread *));
81KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82 sizeof(int) + sizeof(struct thread *));
83KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84 sizeof (struct thread *) + sizeof(char *));
85KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
1541028a 86
40aaf5fc
NT
87static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88
0f7a3396
MD
89#ifdef INVARIANTS
90static int panic_on_cscount = 0;
91#endif
05220613
MD
92static __int64_t switch_count = 0;
93static __int64_t preempt_hit = 0;
94static __int64_t preempt_miss = 0;
95static __int64_t preempt_weird = 0;
85946b6c 96static __int64_t token_contention_count[TDPRI_MAX+1] __debugvar;
fb0f29c4 97static int lwkt_use_spin_port;
40aaf5fc 98static struct objcache *thread_cache;
05220613 99
88ebb169 100#ifdef SMP
e381e77c 101static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
cc9b6223 102static void lwkt_setcpu_remote(void *arg);
88ebb169 103#endif
e381e77c 104
0855a2af
JG
105extern void cpu_heavy_restore(void);
106extern void cpu_lwkt_restore(void);
107extern void cpu_kthread_restore(void);
108extern void cpu_idle_restore(void);
109
fb0f29c4
MD
110/*
111 * We can make all thread ports use the spin backend instead of the thread
112 * backend. This should only be set to debug the spin backend.
113 */
114TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
115
0f7a3396 116#ifdef INVARIANTS
0c52fa62
SG
117SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
118 "Panic if attempting to switch lwkt's while mastering cpusync");
0f7a3396 119#endif
0c52fa62
SG
120SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
121 "Number of switched threads");
9733f757 122SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
0c52fa62 123 "Successful preemption events");
9733f757 124SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
0c52fa62
SG
125 "Failed preemption events");
126SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
127 "Number of preempted threads.");
38717797 128#ifdef INVARIANTS
85946b6c
MD
129SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_00, CTLFLAG_RW,
130 &token_contention_count[0], 0, "spinning due to token contention");
131SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_01, CTLFLAG_RW,
132 &token_contention_count[1], 0, "spinning due to token contention");
133SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_02, CTLFLAG_RW,
134 &token_contention_count[2], 0, "spinning due to token contention");
135SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_03, CTLFLAG_RW,
136 &token_contention_count[3], 0, "spinning due to token contention");
137SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_04, CTLFLAG_RW,
138 &token_contention_count[4], 0, "spinning due to token contention");
139SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_05, CTLFLAG_RW,
140 &token_contention_count[5], 0, "spinning due to token contention");
141SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_06, CTLFLAG_RW,
142 &token_contention_count[6], 0, "spinning due to token contention");
143SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_07, CTLFLAG_RW,
144 &token_contention_count[7], 0, "spinning due to token contention");
145SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_08, CTLFLAG_RW,
146 &token_contention_count[8], 0, "spinning due to token contention");
147SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_09, CTLFLAG_RW,
148 &token_contention_count[9], 0, "spinning due to token contention");
149SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_10, CTLFLAG_RW,
150 &token_contention_count[10], 0, "spinning due to token contention");
151SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_11, CTLFLAG_RW,
152 &token_contention_count[11], 0, "spinning due to token contention");
153SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_12, CTLFLAG_RW,
154 &token_contention_count[12], 0, "spinning due to token contention");
155SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_13, CTLFLAG_RW,
156 &token_contention_count[13], 0, "spinning due to token contention");
157SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_14, CTLFLAG_RW,
158 &token_contention_count[14], 0, "spinning due to token contention");
159SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_15, CTLFLAG_RW,
160 &token_contention_count[15], 0, "spinning due to token contention");
161SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_16, CTLFLAG_RW,
162 &token_contention_count[16], 0, "spinning due to token contention");
163SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_17, CTLFLAG_RW,
164 &token_contention_count[17], 0, "spinning due to token contention");
165SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_18, CTLFLAG_RW,
166 &token_contention_count[18], 0, "spinning due to token contention");
167SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_19, CTLFLAG_RW,
168 &token_contention_count[19], 0, "spinning due to token contention");
169SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_20, CTLFLAG_RW,
170 &token_contention_count[20], 0, "spinning due to token contention");
171SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_21, CTLFLAG_RW,
172 &token_contention_count[21], 0, "spinning due to token contention");
173SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_22, CTLFLAG_RW,
174 &token_contention_count[22], 0, "spinning due to token contention");
175SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_23, CTLFLAG_RW,
176 &token_contention_count[23], 0, "spinning due to token contention");
177SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_24, CTLFLAG_RW,
178 &token_contention_count[24], 0, "spinning due to token contention");
179SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_25, CTLFLAG_RW,
180 &token_contention_count[25], 0, "spinning due to token contention");
181SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_26, CTLFLAG_RW,
182 &token_contention_count[26], 0, "spinning due to token contention");
183SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_27, CTLFLAG_RW,
184 &token_contention_count[27], 0, "spinning due to token contention");
185SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_28, CTLFLAG_RW,
186 &token_contention_count[28], 0, "spinning due to token contention");
187SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_29, CTLFLAG_RW,
188 &token_contention_count[29], 0, "spinning due to token contention");
189SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_30, CTLFLAG_RW,
190 &token_contention_count[30], 0, "spinning due to token contention");
191SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_31, CTLFLAG_RW,
192 &token_contention_count[31], 0, "spinning due to token contention");
38717797 193#endif
b12defdc 194static int fairq_enable = 0;
2a418930
MD
195SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
196 &fairq_enable, 0, "Turn on fairq priority accumulators");
85946b6c 197static int fairq_bypass = -1;
b12defdc
MD
198SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
199 &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
200extern int lwkt_sched_debug;
201int lwkt_sched_debug = 0;
202SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
203 &lwkt_sched_debug, 0, "Scheduler debug");
2a418930
MD
204static int lwkt_spin_loops = 10;
205SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
b12defdc
MD
206 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
207static int lwkt_spin_reseq = 0;
208SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
209 &lwkt_spin_reseq, 0, "Scheduler resequencer enable");
210static int lwkt_spin_monitor = 0;
211SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
212 &lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
d5b2d319
MD
213static int lwkt_spin_fatal = 0; /* disabled */
214SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
215 &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
fbc024e4 216static int preempt_enable = 1;
2a418930
MD
217SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
218 &preempt_enable, 0, "Enable preemption");
765b1ae0
MD
219static int lwkt_cache_threads = 32;
220SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
221 &lwkt_cache_threads, 0, "thread+kstack cache");
fbc024e4 222
2a418930
MD
223static __cachealign int lwkt_cseq_rindex;
224static __cachealign int lwkt_cseq_windex;
05220613 225
4b5f931b
MD
226/*
227 * These helper procedures handle the runq, they can only be called from
228 * within a critical section.
75cdbe6c
MD
229 *
230 * WARNING! Prior to SMP being brought up it is possible to enqueue and
231 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
232 * instead of 'mycpu' when referencing the globaldata structure. Once
233 * SMP live enqueuing and dequeueing only occurs on the current cpu.
4b5f931b 234 */
f1d1c3fa
MD
235static __inline
236void
237_lwkt_dequeue(thread_t td)
238{
239 if (td->td_flags & TDF_RUNQ) {
75cdbe6c 240 struct globaldata *gd = td->td_gd;
4b5f931b 241
f1d1c3fa 242 td->td_flags &= ~TDF_RUNQ;
f9235b6d 243 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
f9235b6d 244 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
2a418930 245 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
f1d1c3fa
MD
246 }
247}
248
f9235b6d
MD
249/*
250 * Priority enqueue.
251 *
252 * NOTE: There are a limited number of lwkt threads runnable since user
253 * processes only schedule one at a time per cpu.
254 */
f1d1c3fa
MD
255static __inline
256void
257_lwkt_enqueue(thread_t td)
258{
f9235b6d
MD
259 thread_t xtd;
260
7f5d7ed7 261 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
75cdbe6c 262 struct globaldata *gd = td->td_gd;
4b5f931b 263
f1d1c3fa 264 td->td_flags |= TDF_RUNQ;
f9235b6d
MD
265 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
266 if (xtd == NULL) {
85946b6c
MD
267 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
268 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
f9235b6d 269 } else {
85946b6c
MD
270 while (xtd && xtd->td_pri >= td->td_pri)
271 xtd = TAILQ_NEXT(xtd, td_threadq);
272 if (xtd)
273 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
274 else
275 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
f9235b6d 276 }
b12defdc
MD
277
278 /*
85946b6c 279 * Request a LWKT reschedule if we are now at the head of the queue.
b12defdc 280 */
85946b6c
MD
281 if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
282 need_lwkt_resched();
f1d1c3fa
MD
283 }
284}
8ad65e08 285
40aaf5fc
NT
286static __boolean_t
287_lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
288{
289 struct thread *td = (struct thread *)obj;
290
291 td->td_kstack = NULL;
292 td->td_kstack_size = 0;
293 td->td_flags = TDF_ALLOCATED_THREAD;
4643740a 294 td->td_mpflags = 0;
40aaf5fc
NT
295 return (1);
296}
297
298static void
299_lwkt_thread_dtor(void *obj, void *privdata)
300{
301 struct thread *td = (struct thread *)obj;
302
303 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
304 ("_lwkt_thread_dtor: not allocated from objcache"));
305 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
306 td->td_kstack_size > 0,
307 ("_lwkt_thread_dtor: corrupted stack"));
308 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
309}
310
311/*
312 * Initialize the lwkt s/system.
765b1ae0
MD
313 *
314 * Nominally cache up to 32 thread + kstack structures.
40aaf5fc
NT
315 */
316void
317lwkt_init(void)
318{
765b1ae0
MD
319 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
320 thread_cache = objcache_create_mbacked(
321 M_THREAD, sizeof(struct thread),
322 NULL, lwkt_cache_threads,
323 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
40aaf5fc
NT
324}
325
37af14fe
MD
326/*
327 * Schedule a thread to run. As the current thread we can always safely
328 * schedule ourselves, and a shortcut procedure is provided for that
329 * function.
330 *
331 * (non-blocking, self contained on a per cpu basis)
332 */
333void
334lwkt_schedule_self(thread_t td)
335{
cfaeae2a 336 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
37af14fe 337 crit_enter_quick(td);
f9235b6d
MD
338 KASSERT(td != &td->td_gd->gd_idlethread,
339 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
4643740a
MD
340 KKASSERT(td->td_lwp == NULL ||
341 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
37af14fe 342 _lwkt_enqueue(td);
37af14fe
MD
343 crit_exit_quick(td);
344}
345
346/*
347 * Deschedule a thread.
348 *
349 * (non-blocking, self contained on a per cpu basis)
350 */
351void
352lwkt_deschedule_self(thread_t td)
353{
354 crit_enter_quick(td);
37af14fe
MD
355 _lwkt_dequeue(td);
356 crit_exit_quick(td);
357}
358
8ad65e08
MD
359/*
360 * LWKTs operate on a per-cpu basis
361 *
73e4f7b9 362 * WARNING! Called from early boot, 'mycpu' may not work yet.
8ad65e08
MD
363 */
364void
365lwkt_gdinit(struct globaldata *gd)
366{
f9235b6d 367 TAILQ_INIT(&gd->gd_tdrunq);
73e4f7b9 368 TAILQ_INIT(&gd->gd_tdallq);
8ad65e08
MD
369}
370
371/*
7d0bac62 372 * Create a new thread. The thread must be associated with a process context
75cdbe6c
MD
373 * or LWKT start address before it can be scheduled. If the target cpu is
374 * -1 the thread will be created on the current cpu.
0cfcada1
MD
375 *
376 * If you intend to create a thread without a process context this function
377 * does everything except load the startup and switcher function.
7d0bac62
MD
378 */
379thread_t
d3d32139 380lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
7d0bac62 381{
d2d8515b 382 static int cpu_rotator;
c070746a 383 globaldata_t gd = mycpu;
99df837e 384 void *stack;
7d0bac62 385
c070746a
MD
386 /*
387 * If static thread storage is not supplied allocate a thread. Reuse
388 * a cached free thread if possible. gd_freetd is used to keep an exiting
389 * thread intact through the exit.
390 */
ef0fdad1 391 if (td == NULL) {
cf709dd2
MD
392 crit_enter_gd(gd);
393 if ((td = gd->gd_freetd) != NULL) {
394 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
395 TDF_RUNQ)) == 0);
c070746a 396 gd->gd_freetd = NULL;
cf709dd2 397 } else {
c070746a 398 td = objcache_get(thread_cache, M_WAITOK);
cf709dd2
MD
399 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
400 TDF_RUNQ)) == 0);
401 }
402 crit_exit_gd(gd);
40aaf5fc 403 KASSERT((td->td_flags &
2af9d75d
MD
404 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
405 TDF_ALLOCATED_THREAD,
40aaf5fc
NT
406 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
407 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
ef0fdad1 408 }
c070746a
MD
409
410 /*
411 * Try to reuse cached stack.
412 */
f470d0c8
MD
413 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
414 if (flags & TDF_ALLOCATED_STACK) {
e4846942 415 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
f470d0c8
MD
416 stack = NULL;
417 }
418 }
419 if (stack == NULL) {
e40cfbd7 420 stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
ef0fdad1 421 flags |= TDF_ALLOCATED_STACK;
99df837e 422 }
d2d8515b
MD
423 if (cpu < 0) {
424 cpu = ++cpu_rotator;
425 cpu_ccfence();
426 cpu %= ncpus;
427 }
428 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
99df837e 429 return(td);
7d0bac62
MD
430}
431
432/*
433 * Initialize a preexisting thread structure. This function is used by
434 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
435 *
f8c3996b
MD
436 * All threads start out in a critical section at a priority of
437 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
75cdbe6c
MD
438 * appropriate. This function may send an IPI message when the
439 * requested cpu is not the current cpu and consequently gd_tdallq may
440 * not be initialized synchronously from the point of view of the originating
441 * cpu.
442 *
443 * NOTE! we have to be careful in regards to creating threads for other cpus
444 * if SMP has not yet been activated.
7d0bac62 445 */
41a01a4d
MD
446#ifdef SMP
447
75cdbe6c
MD
448static void
449lwkt_init_thread_remote(void *arg)
450{
451 thread_t td = arg;
452
52eedfb5
MD
453 /*
454 * Protected by critical section held by IPI dispatch
455 */
75cdbe6c
MD
456 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
457}
458
41a01a4d
MD
459#endif
460
fdce8919
MD
461/*
462 * lwkt core thread structural initialization.
463 *
464 * NOTE: All threads are initialized as mpsafe threads.
465 */
7d0bac62 466void
f470d0c8
MD
467lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
468 struct globaldata *gd)
7d0bac62 469{
37af14fe
MD
470 globaldata_t mygd = mycpu;
471
99df837e
MD
472 bzero(td, sizeof(struct thread));
473 td->td_kstack = stack;
f470d0c8 474 td->td_kstack_size = stksize;
d3d32139 475 td->td_flags = flags;
4643740a 476 td->td_mpflags = 0;
26a0694b 477 td->td_gd = gd;
f9235b6d
MD
478 td->td_pri = TDPRI_KERN_DAEMON;
479 td->td_critcount = 1;
54341a3b 480 td->td_toks_have = NULL;
3b998fa9 481 td->td_toks_stop = &td->td_toks_base;
392cd266 482 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT))
fb0f29c4
MD
483 lwkt_initport_spin(&td->td_msgport);
484 else
485 lwkt_initport_thread(&td->td_msgport, td);
99df837e 486 pmap_init_thread(td);
0f7a3396 487#ifdef SMP
5d21b981
MD
488 /*
489 * Normally initializing a thread for a remote cpu requires sending an
490 * IPI. However, the idlethread is setup before the other cpus are
491 * activated so we have to treat it as a special case. XXX manipulation
492 * of gd_tdallq requires the BGL.
493 */
494 if (gd == mygd || td == &gd->gd_idlethread) {
37af14fe 495 crit_enter_gd(mygd);
75cdbe6c 496 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
37af14fe 497 crit_exit_gd(mygd);
75cdbe6c 498 } else {
2db3b277 499 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
75cdbe6c 500 }
0f7a3396 501#else
37af14fe 502 crit_enter_gd(mygd);
0f7a3396 503 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
37af14fe 504 crit_exit_gd(mygd);
0f7a3396 505#endif
8c72e3d5
AH
506
507 dsched_new_thread(td);
73e4f7b9
MD
508}
509
510void
511lwkt_set_comm(thread_t td, const char *ctl, ...)
512{
e2565a42 513 __va_list va;
73e4f7b9 514
e2565a42 515 __va_start(va, ctl);
379210cb 516 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
e2565a42 517 __va_end(va);
e7c0dbba 518 KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
7d0bac62
MD
519}
520
eb2adbf5
MD
521/*
522 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE
523 * this does not prevent the thread from migrating to another cpu so the
524 * gd_tdallq state is not protected by this.
525 */
99df837e 526void
73e4f7b9 527lwkt_hold(thread_t td)
99df837e 528{
74c9628e 529 atomic_add_int(&td->td_refs, 1);
73e4f7b9
MD
530}
531
532void
533lwkt_rele(thread_t td)
534{
535 KKASSERT(td->td_refs > 0);
74c9628e 536 atomic_add_int(&td->td_refs, -1);
73e4f7b9
MD
537}
538
539void
73e4f7b9
MD
540lwkt_free_thread(thread_t td)
541{
74c9628e 542 KKASSERT(td->td_refs == 0);
c17a6852
MD
543 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
544 TDF_RUNQ | TDF_TSLEEPQ)) == 0);
40aaf5fc
NT
545 if (td->td_flags & TDF_ALLOCATED_THREAD) {
546 objcache_put(thread_cache, td);
547 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
548 /* client-allocated struct with internally allocated stack */
549 KASSERT(td->td_kstack && td->td_kstack_size > 0,
550 ("lwkt_free_thread: corrupted stack"));
551 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
552 td->td_kstack = NULL;
553 td->td_kstack_size = 0;
99df837e 554 }
e7c0dbba 555 KTR_LOG(ctxsw_deadtd, td);
99df837e
MD
556}
557
558
7d0bac62 559/*
8ad65e08 560 * Switch to the next runnable lwkt. If no LWKTs are runnable then
f1d1c3fa
MD
561 * switch to the idlethread. Switching must occur within a critical
562 * section to avoid races with the scheduling queue.
563 *
564 * We always have full control over our cpu's run queue. Other cpus
565 * that wish to manipulate our queue must use the cpu_*msg() calls to
566 * talk to our cpu, so a critical section is all that is needed and
567 * the result is very, very fast thread switching.
568 *
96728c05
MD
569 * The LWKT scheduler uses a fixed priority model and round-robins at
570 * each priority level. User process scheduling is a totally
571 * different beast and LWKT priorities should not be confused with
572 * user process priorities.
f1d1c3fa 573 *
69d78e99
MD
574 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
575 * is not called by the current thread in the preemption case, only when
576 * the preempting thread blocks (in order to return to the original thread).
cfaeae2a
MD
577 *
578 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
579 * migration and tsleep deschedule the current lwkt thread and call
580 * lwkt_switch(). In particular, the target cpu of the migration fully
581 * expects the thread to become non-runnable and can deadlock against
582 * cpusync operations if we run any IPIs prior to switching the thread out.
583 *
584 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
95858b91 585 * THE CURRENT THREAD HAS BEEN DESCHEDULED!
8ad65e08
MD
586 */
587void
588lwkt_switch(void)
589{
37af14fe
MD
590 globaldata_t gd = mycpu;
591 thread_t td = gd->gd_curthread;
8ad65e08 592 thread_t ntd;
f9235b6d 593 thread_t xtd;
b12defdc 594 int spinning = 0;
8ad65e08 595
da0b0e8b 596 KKASSERT(gd->gd_processing_ipiq == 0);
121f93bc 597 KKASSERT(td->td_flags & TDF_RUNNING);
da0b0e8b 598
46a3f46d 599 /*
27e88a6e
MD
600 * Switching from within a 'fast' (non thread switched) interrupt or IPI
601 * is illegal. However, we may have to do it anyway if we hit a fatal
602 * kernel trap or we have paniced.
603 *
604 * If this case occurs save and restore the interrupt nesting level.
46a3f46d 605 */
27e88a6e
MD
606 if (gd->gd_intr_nesting_level) {
607 int savegdnest;
608 int savegdtrap;
609
5fddbda2 610 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
4a28fe22
MD
611 panic("lwkt_switch: Attempt to switch from a "
612 "a fast interrupt, ipi, or hard code section, "
613 "td %p\n",
614 td);
27e88a6e
MD
615 } else {
616 savegdnest = gd->gd_intr_nesting_level;
617 savegdtrap = gd->gd_trap_nesting_level;
618 gd->gd_intr_nesting_level = 0;
619 gd->gd_trap_nesting_level = 0;
a7422615
MD
620 if ((td->td_flags & TDF_PANICWARN) == 0) {
621 td->td_flags |= TDF_PANICWARN;
4a28fe22
MD
622 kprintf("Warning: thread switch from interrupt, IPI, "
623 "or hard code section.\n"
a7422615 624 "thread %p (%s)\n", td, td->td_comm);
7ce2998e 625 print_backtrace(-1);
a7422615 626 }
27e88a6e
MD
627 lwkt_switch();
628 gd->gd_intr_nesting_level = savegdnest;
629 gd->gd_trap_nesting_level = savegdtrap;
630 return;
631 }
96728c05 632 }
ef0fdad1 633
cb973d15 634 /*
85946b6c
MD
635 * Release our current user process designation if we are blocking
636 * or if a user reschedule was requested.
637 *
638 * NOTE: This function is NOT called if we are switching into or
639 * returning from a preemption.
640 *
641 * NOTE: Releasing our current user process designation may cause
642 * it to be assigned to another thread, which in turn will
643 * cause us to block in the usched acquire code when we attempt
644 * to return to userland.
645 *
646 * NOTE: On SMP systems this can be very nasty when heavy token
647 * contention is present so we want to be careful not to
648 * release the designation gratuitously.
cb973d15 649 */
85946b6c
MD
650 if (td->td_release &&
651 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
cb973d15 652 td->td_release(td);
85946b6c 653 }
cb973d15 654
85946b6c
MD
655 /*
656 * Release all tokens
657 */
37af14fe 658 crit_enter_gd(gd);
3b998fa9 659 if (TD_TOKS_HELD(td))
9d265729
MD
660 lwkt_relalltokens(td);
661
662 /*
b02926de
MD
663 * We had better not be holding any spin locks, but don't get into an
664 * endless panic loop.
9d265729 665 */
d666840a
MD
666 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
667 ("lwkt_switch: still holding %d exclusive spinlocks!",
668 gd->gd_spinlocks_wr));
9d265729 669
8a8d5d85
MD
670
671#ifdef SMP
0f7a3396
MD
672#ifdef INVARIANTS
673 if (td->td_cscount) {
6ea70f76 674 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
0f7a3396
MD
675 td);
676 if (panic_on_cscount)
677 panic("switching while mastering cpusync");
678 }
679#endif
8a8d5d85 680#endif
f9235b6d
MD
681
682 /*
683 * If we had preempted another thread on this cpu, resume the preempted
684 * thread. This occurs transparently, whether the preempted thread
685 * was scheduled or not (it may have been preempted after descheduling
686 * itself).
687 *
688 * We have to setup the MP lock for the original thread after backing
689 * out the adjustment that was made to curthread when the original
690 * was preempted.
691 */
99df837e 692 if ((ntd = td->td_preempted) != NULL) {
26a0694b
MD
693 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
694 ntd->td_flags |= TDF_PREEMPT_DONE;
8ec60c3f
MD
695
696 /*
b9eb1c19
MD
697 * The interrupt may have woken a thread up, we need to properly
698 * set the reschedule flag if the originally interrupted thread is
699 * at a lower priority.
85946b6c
MD
700 *
701 * The interrupt may not have descheduled.
8ec60c3f 702 */
85946b6c 703 if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
8ec60c3f 704 need_lwkt_resched();
f9235b6d
MD
705 goto havethread_preempted;
706 }
707
708 /*
f9235b6d 709 * If we cannot obtain ownership of the tokens we cannot immediately
cfaeae2a
MD
710 * schedule the target thread.
711 *
712 * Reminder: Again, we cannot afford to run any IPIs in this path if
713 * the current thread has been descheduled.
f9235b6d
MD
714 */
715 for (;;) {
b12defdc 716 clear_lwkt_resched();
f9235b6d 717
4b5f931b 718 /*
2a418930 719 * Hotpath - pull the head of the run queue and attempt to schedule
85946b6c 720 * it.
41a01a4d 721 */
2a418930
MD
722 for (;;) {
723 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
724
725 if (ntd == NULL) {
726 /*
b12defdc 727 * Runq is empty, switch to idle to allow it to halt.
2a418930
MD
728 */
729 ntd = &gd->gd_idlethread;
6f207a2c 730#ifdef SMP
2a418930 731 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
b5d16701 732 ASSERT_NO_TOKENS_HELD(ntd);
6f207a2c 733#endif
2a418930
MD
734 cpu_time.cp_msg[0] = 0;
735 cpu_time.cp_stallpc = 0;
2a418930
MD
736 goto haveidle;
737 }
b12defdc 738 break;
f9235b6d 739 }
41a01a4d
MD
740
741 /*
b12defdc 742 * Hotpath - schedule ntd.
6f207a2c
MD
743 *
744 * NOTE: For UP there is no mplock and lwkt_getalltokens()
745 * always succeeds.
8ec60c3f 746 */
b12defdc
MD
747 if (TD_TOKS_NOT_HELD(ntd) ||
748 lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
749 {
f9235b6d 750 goto havethread;
b12defdc 751 }
f9235b6d 752
f9235b6d 753 /*
2a418930
MD
754 * Coldpath (SMP only since tokens always succeed on UP)
755 *
756 * We had some contention on the thread we wanted to schedule.
757 * What we do now is try to find a thread that we can schedule
b12defdc 758 * in its stead.
2a418930 759 *
85946b6c
MD
760 * The coldpath scan does NOT rearrange threads in the run list.
761 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
762 * the next tick whenever the current head is not the current thread.
f9235b6d 763 */
b12defdc 764#ifdef INVARIANTS
85946b6c
MD
765 ++token_contention_count[ntd->td_pri];
766 ++ntd->td_contended;
b12defdc
MD
767#endif
768
85946b6c 769 if (fairq_bypass > 0)
b12defdc
MD
770 goto skip;
771
b12defdc
MD
772 xtd = NULL;
773 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
85946b6c
MD
774 /*
775 * Never schedule threads returning to userland or the
776 * user thread scheduler helper thread when higher priority
777 * threads are present.
778 */
779 if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
780 ntd = NULL;
781 break;
782 }
783
784 /*
785 * Try this one.
786 */
b12defdc
MD
787 if (TD_TOKS_NOT_HELD(ntd) ||
788 lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
789 goto havethread;
790 }
85946b6c
MD
791#ifdef INVARIANTS
792 ++token_contention_count[ntd->td_pri];
793 ++ntd->td_contended;
b12defdc 794#endif
2a418930
MD
795 }
796
b12defdc 797skip:
2a418930
MD
798 /*
799 * We exhausted the run list, meaning that all runnable threads
b12defdc 800 * are contested.
2a418930
MD
801 */
802 cpu_pause();
803 ntd = &gd->gd_idlethread;
804#ifdef SMP
805 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
806 ASSERT_NO_TOKENS_HELD(ntd);
807 /* contention case, do not clear contention mask */
808#endif
809
810 /*
b12defdc
MD
811 * We are going to have to retry but if the current thread is not
812 * on the runq we instead switch through the idle thread to get away
813 * from the current thread. We have to flag for lwkt reschedule
814 * to prevent the idle thread from halting.
2a418930 815 *
b12defdc
MD
816 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
817 * instruct it to deal with the potential for deadlocks by
818 * ordering the tokens by address.
2a418930 819 */
b12defdc 820 if ((td->td_flags & TDF_RUNQ) == 0) {
85946b6c 821 need_lwkt_resched(); /* prevent hlt */
2a418930 822 goto haveidle;
4b5f931b 823 }
bd52bedf 824#if defined(INVARIANTS) && defined(__amd64__)
d5b2d319
MD
825 if ((read_rflags() & PSL_I) == 0) {
826 cpu_enable_intr();
827 panic("lwkt_switch() called with interrupts disabled");
828 }
829#endif
b12defdc
MD
830
831 /*
832 * Number iterations so far. After a certain point we switch to
833 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
834 */
835 if (spinning < 0x7FFFFFFF)
836 ++spinning;
837
838#ifdef SMP
839 /*
840 * lwkt_getalltokens() failed in sorted token mode, we can use
841 * monitor/mwait in this case.
842 */
843 if (spinning >= lwkt_spin_loops &&
844 (cpu_mi_feature & CPU_MI_MONITOR) &&
845 lwkt_spin_monitor)
846 {
847 cpu_mmw_pause_int(&gd->gd_reqflags,
848 (gd->gd_reqflags | RQF_SPINNING) &
849 ~RQF_IDLECHECK_WK_MASK);
850 }
851#endif
852
853 /*
854 * We already checked that td is still scheduled so this should be
855 * safe.
856 */
857 splz_check();
858
859 /*
860 * This experimental resequencer is used as a fall-back to reduce
861 * hw cache line contention by placing each core's scheduler into a
862 * time-domain-multplexed slot.
863 *
864 * The resequencer is disabled by default. It's functionality has
865 * largely been superceeded by the token algorithm which limits races
866 * to a subset of cores.
867 *
868 * The resequencer algorithm tends to break down when more than
869 * 20 cores are contending. What appears to happen is that new
870 * tokens can be obtained out of address-sorted order by new cores
871 * while existing cores languish in long delays between retries and
872 * wind up being starved-out of the token acquisition.
873 */
874 if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
875 int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
876 int oseq;
877
878 while ((oseq = lwkt_cseq_rindex) != cseq) {
879 cpu_ccfence();
880#if 1
881 if (cpu_mi_feature & CPU_MI_MONITOR) {
882 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
883 } else {
884#endif
885 cpu_pause();
886 cpu_lfence();
887#if 1
888 }
8b402283 889#endif
0f0466c0 890 }
b12defdc
MD
891 DELAY(1);
892 atomic_add_int(&lwkt_cseq_rindex, 1);
2a418930 893 }
2a418930 894 /* highest level for(;;) loop */
f1d1c3fa 895 }
8a8d5d85 896
2a418930 897havethread:
8a8d5d85 898 /*
be71787b
MD
899 * Clear gd_idle_repeat when doing a normal switch to a non-idle
900 * thread.
f9235b6d 901 */
9ac1ee6e 902 ntd->td_wmesg = NULL;
b12defdc 903 ++gd->gd_cnt.v_swtch;
be71787b 904 gd->gd_idle_repeat = 0;
2a418930 905
f9235b6d 906havethread_preempted:
f9235b6d
MD
907 /*
908 * If the new target does not need the MP lock and we are holding it,
909 * release the MP lock. If the new target requires the MP lock we have
910 * already acquired it for the target.
8a8d5d85 911 */
2a418930 912 ;
f9235b6d
MD
913haveidle:
914 KASSERT(ntd->td_critcount,
b5d16701
MD
915 ("priority problem in lwkt_switch %d %d",
916 td->td_critcount, ntd->td_critcount));
917
94f6d86e 918 if (td != ntd) {
cc9b6223
MD
919 /*
920 * Execute the actual thread switch operation. This function
921 * returns to the current thread and returns the previous thread
922 * (which may be different from the thread we switched to).
923 *
924 * We are responsible for marking ntd as TDF_RUNNING.
925 */
121f93bc 926 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
94f6d86e 927 ++switch_count;
a1f0fb66 928 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
cc9b6223
MD
929 ntd->td_flags |= TDF_RUNNING;
930 lwkt_switch_return(td->td_switch(ntd));
931 /* ntd invalid, td_switch() can return a different thread_t */
94f6d86e 932 }
b12defdc 933
b12defdc 934 /*
54341a3b 935 * catch-all. XXX is this strictly needed?
b12defdc
MD
936 */
937 splz_check();
54341a3b 938
37af14fe
MD
939 /* NOTE: current cpu may have changed after switch */
940 crit_exit_quick(td);
8ad65e08
MD
941}
942
f1d1c3fa 943/*
cc9b6223
MD
944 * Called by assembly in the td_switch (thread restore path) for thread
945 * bootstrap cases which do not 'return' to lwkt_switch().
946 */
947void
948lwkt_switch_return(thread_t otd)
949{
950#ifdef SMP
951 globaldata_t rgd;
952
953 /*
954 * Check if otd was migrating. Now that we are on ntd we can finish
955 * up the migration. This is a bit messy but it is the only place
956 * where td is known to be fully descheduled.
957 *
958 * We can only activate the migration if otd was migrating but not
959 * held on the cpu due to a preemption chain. We still have to
960 * clear TDF_RUNNING on the old thread either way.
961 *
962 * We are responsible for clearing the previously running thread's
963 * TDF_RUNNING.
964 */
965 if ((rgd = otd->td_migrate_gd) != NULL &&
966 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
967 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
968 (TDF_MIGRATING | TDF_RUNNING));
969 otd->td_migrate_gd = NULL;
970 otd->td_flags &= ~TDF_RUNNING;
971 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
972 } else {
973 otd->td_flags &= ~TDF_RUNNING;
974 }
975#else
976 otd->td_flags &= ~TDF_RUNNING;
977#endif
978}
979
980/*
96728c05 981 * Request that the target thread preempt the current thread. Preemption
54341a3b
MD
982 * can only occur if our only critical section is the one that we were called
983 * with, the relative priority of the target thread is higher, and the target
984 * thread holds no tokens. This also only works if we are not holding any
985 * spinlocks (obviously).
96728c05
MD
986 *
987 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
988 * this is called via lwkt_schedule() through the td_preemptable callback.
f9235b6d 989 * critcount is the managed critical priority that we should ignore in order
96728c05
MD
990 * to determine whether preemption is possible (aka usually just the crit
991 * priority of lwkt_schedule() itself).
b68b7282 992 *
54341a3b
MD
993 * Preemption is typically limited to interrupt threads.
994 *
995 * Operation works in a fairly straight-forward manner. The normal
996 * scheduling code is bypassed and we switch directly to the target
997 * thread. When the target thread attempts to block or switch away
998 * code at the base of lwkt_switch() will switch directly back to our
999 * thread. Our thread is able to retain whatever tokens it holds and
1000 * if the target needs one of them the target will switch back to us
1001 * and reschedule itself normally.
b68b7282
MD
1002 */
1003void
f9235b6d 1004lwkt_preempt(thread_t ntd, int critcount)
b68b7282 1005{
46a3f46d 1006 struct globaldata *gd = mycpu;
cc9b6223 1007 thread_t xtd;
0a3f9b47 1008 thread_t td;
2d910aaf 1009 int save_gd_intr_nesting_level;
b68b7282 1010
26a0694b 1011 /*
96728c05
MD
1012 * The caller has put us in a critical section. We can only preempt
1013 * if the caller of the caller was not in a critical section (basically
f9235b6d 1014 * a local interrupt), as determined by the 'critcount' parameter. We
47737962 1015 * also can't preempt if the caller is holding any spinlocks (even if
d666840a 1016 * he isn't in a critical section). This also handles the tokens test.
96728c05
MD
1017 *
1018 * YYY The target thread must be in a critical section (else it must
1019 * inherit our critical section? I dunno yet).
26a0694b 1020 */
f9235b6d 1021 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
26a0694b 1022
b12defdc 1023 td = gd->gd_curthread;
fbc024e4
MD
1024 if (preempt_enable == 0) {
1025 ++preempt_miss;
1026 return;
1027 }
f9235b6d 1028 if (ntd->td_pri <= td->td_pri) {
57c254db
MD
1029 ++preempt_miss;
1030 return;
1031 }
f9235b6d 1032 if (td->td_critcount > critcount) {
96728c05
MD
1033 ++preempt_miss;
1034 return;
1035 }
1036#ifdef SMP
121f93bc
MD
1037 if (td->td_cscount) {
1038 ++preempt_miss;
1039 return;
1040 }
46a3f46d 1041 if (ntd->td_gd != gd) {
96728c05
MD
1042 ++preempt_miss;
1043 return;
1044 }
1045#endif
41a01a4d 1046 /*
77912481
MD
1047 * We don't have to check spinlocks here as they will also bump
1048 * td_critcount.
d3d1cbc8
MD
1049 *
1050 * Do not try to preempt if the target thread is holding any tokens.
1051 * We could try to acquire the tokens but this case is so rare there
1052 * is no need to support it.
41a01a4d 1053 */
77912481
MD
1054 KKASSERT(gd->gd_spinlocks_wr == 0);
1055
3b998fa9 1056 if (TD_TOKS_HELD(ntd)) {
d3d1cbc8 1057 ++preempt_miss;
d3d1cbc8
MD
1058 return;
1059 }
26a0694b
MD
1060 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1061 ++preempt_weird;
1062 return;
1063 }
1064 if (ntd->td_preempted) {
4b5f931b 1065 ++preempt_hit;
26a0694b 1066 return;
b68b7282 1067 }
da0b0e8b 1068 KKASSERT(gd->gd_processing_ipiq == 0);
26a0694b 1069
8ec60c3f
MD
1070 /*
1071 * Since we are able to preempt the current thread, there is no need to
1072 * call need_lwkt_resched().
2d910aaf
MD
1073 *
1074 * We must temporarily clear gd_intr_nesting_level around the switch
1075 * since switchouts from the target thread are allowed (they will just
1076 * return to our thread), and since the target thread has its own stack.
cc9b6223
MD
1077 *
1078 * A preemption must switch back to the original thread, assert the
1079 * case.
8ec60c3f 1080 */
26a0694b
MD
1081 ++preempt_hit;
1082 ntd->td_preempted = td;
1083 td->td_flags |= TDF_PREEMPT_LOCK;
a1f0fb66 1084 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
2d910aaf
MD
1085 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1086 gd->gd_intr_nesting_level = 0;
121f93bc
MD
1087
1088 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
cc9b6223
MD
1089 ntd->td_flags |= TDF_RUNNING;
1090 xtd = td->td_switch(ntd);
1091 KKASSERT(xtd == ntd);
1092 lwkt_switch_return(xtd);
2d910aaf 1093 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
b9eb1c19 1094
26a0694b
MD
1095 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1096 ntd->td_preempted = NULL;
1097 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
b68b7282
MD
1098}
1099
1100/*
faaeffac 1101 * Conditionally call splz() if gd_reqflags indicates work is pending.
4a28fe22
MD
1102 * This will work inside a critical section but not inside a hard code
1103 * section.
ef0fdad1 1104 *
f1d1c3fa
MD
1105 * (self contained on a per cpu basis)
1106 */
1107void
faaeffac 1108splz_check(void)
f1d1c3fa 1109{
7966cb69
MD
1110 globaldata_t gd = mycpu;
1111 thread_t td = gd->gd_curthread;
ef0fdad1 1112
4a28fe22
MD
1113 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1114 gd->gd_intr_nesting_level == 0 &&
1115 td->td_nest_count < 2)
1116 {
f1d1c3fa 1117 splz();
4a28fe22
MD
1118 }
1119}
1120
1121/*
1122 * This version is integrated into crit_exit, reqflags has already
1123 * been tested but td_critcount has not.
1124 *
1125 * We only want to execute the splz() on the 1->0 transition of
1126 * critcount and not in a hard code section or if too deeply nested.
1127 */
1128void
1129lwkt_maybe_splz(thread_t td)
1130{
1131 globaldata_t gd = td->td_gd;
1132
1133 if (td->td_critcount == 0 &&
1134 gd->gd_intr_nesting_level == 0 &&
1135 td->td_nest_count < 2)
1136 {
1137 splz();
1138 }
f1d1c3fa
MD
1139}
1140
8ad65e08 1141/*
e6546af9
MD
1142 * Drivers which set up processing co-threads can call this function to
1143 * run the co-thread at a higher priority and to allow it to preempt
1144 * normal threads.
1145 */
1146void
1147lwkt_set_interrupt_support_thread(void)
1148{
1149 thread_t td = curthread;
1150
1151 lwkt_setpri_self(TDPRI_INT_SUPPORT);
1152 td->td_flags |= TDF_INTTHREAD;
1153 td->td_preemptable = lwkt_preempt;
1154}
1155
1156
1157/*
f9235b6d
MD
1158 * This function is used to negotiate a passive release of the current
1159 * process/lwp designation with the user scheduler, allowing the user
1160 * scheduler to schedule another user thread. The related kernel thread
1161 * (curthread) continues running in the released state.
8ad65e08
MD
1162 */
1163void
f9235b6d 1164lwkt_passive_release(struct thread *td)
8ad65e08 1165{
f9235b6d
MD
1166 struct lwp *lp = td->td_lwp;
1167
1168 td->td_release = NULL;
1169 lwkt_setpri_self(TDPRI_KERN_USER);
1170 lp->lwp_proc->p_usched->release_curproc(lp);
f1d1c3fa
MD
1171}
1172
f9235b6d 1173
f1d1c3fa 1174/*
d2d8515b
MD
1175 * This implements a LWKT yield, allowing a kernel thread to yield to other
1176 * kernel threads at the same or higher priority. This function can be
1177 * called in a tight loop and will typically only yield once per tick.
f9235b6d 1178 *
d2d8515b
MD
1179 * Most kernel threads run at the same priority in order to allow equal
1180 * sharing.
f9235b6d
MD
1181 *
1182 * (self contained on a per cpu basis)
3824f392
MD
1183 */
1184void
f9235b6d 1185lwkt_yield(void)
3824f392 1186{
f9235b6d
MD
1187 globaldata_t gd = mycpu;
1188 thread_t td = gd->gd_curthread;
3824f392 1189
f9235b6d
MD
1190 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1191 splz();
85946b6c 1192 if (lwkt_resched_wanted()) {
f9235b6d
MD
1193 lwkt_schedule_self(curthread);
1194 lwkt_switch();
f9235b6d 1195 }
3824f392
MD
1196}
1197
1198/*
f9235b6d
MD
1199 * This yield is designed for kernel threads with a user context.
1200 *
1201 * The kernel acting on behalf of the user is potentially cpu-bound,
1202 * this function will efficiently allow other threads to run and also
1203 * switch to other processes by releasing.
3824f392
MD
1204 *
1205 * The lwkt_user_yield() function is designed to have very low overhead
1206 * if no yield is determined to be needed.
1207 */
1208void
1209lwkt_user_yield(void)
1210{
f9235b6d
MD
1211 globaldata_t gd = mycpu;
1212 thread_t td = gd->gd_curthread;
1213
1214 /*
1215 * Always run any pending interrupts in case we are in a critical
1216 * section.
1217 */
1218 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1219 splz();
3824f392 1220
3824f392 1221 /*
f9235b6d
MD
1222 * Switch (which forces a release) if another kernel thread needs
1223 * the cpu, if userland wants us to resched, or if our kernel
1224 * quantum has run out.
3824f392 1225 */
f9235b6d 1226 if (lwkt_resched_wanted() ||
85946b6c 1227 user_resched_wanted())
f9235b6d 1228 {
3824f392 1229 lwkt_switch();
3824f392
MD
1230 }
1231
f9235b6d 1232#if 0
3824f392 1233 /*
f9235b6d
MD
1234 * Reacquire the current process if we are released.
1235 *
1236 * XXX not implemented atm. The kernel may be holding locks and such,
1237 * so we want the thread to continue to receive cpu.
3824f392 1238 */
f9235b6d
MD
1239 if (td->td_release == NULL && lp) {
1240 lp->lwp_proc->p_usched->acquire_curproc(lp);
1241 td->td_release = lwkt_passive_release;
1242 lwkt_setpri_self(TDPRI_USER_NORM);
3824f392 1243 }
f9235b6d 1244#endif
b9eb1c19
MD
1245}
1246
1247/*
f1d1c3fa
MD
1248 * Generic schedule. Possibly schedule threads belonging to other cpus and
1249 * deal with threads that might be blocked on a wait queue.
1250 *
0a3f9b47
MD
1251 * We have a little helper inline function which does additional work after
1252 * the thread has been enqueued, including dealing with preemption and
1253 * setting need_lwkt_resched() (which prevents the kernel from returning
1254 * to userland until it has processed higher priority threads).
6330a558
MD
1255 *
1256 * It is possible for this routine to be called after a failed _enqueue
1257 * (due to the target thread migrating, sleeping, or otherwise blocked).
1258 * We have to check that the thread is actually on the run queue!
8ad65e08 1259 */
0a3f9b47
MD
1260static __inline
1261void
85946b6c 1262_lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
0a3f9b47 1263{
6330a558 1264 if (ntd->td_flags & TDF_RUNQ) {
85946b6c 1265 if (ntd->td_preemptable) {
f9235b6d 1266 ntd->td_preemptable(ntd, ccount); /* YYY +token */
6330a558 1267 }
0a3f9b47
MD
1268 }
1269}
1270
361d01dd 1271static __inline
8ad65e08 1272void
85946b6c 1273_lwkt_schedule(thread_t td)
8ad65e08 1274{
37af14fe
MD
1275 globaldata_t mygd = mycpu;
1276
cf709dd2
MD
1277 KASSERT(td != &td->td_gd->gd_idlethread,
1278 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
cfaeae2a 1279 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
37af14fe 1280 crit_enter_gd(mygd);
4643740a
MD
1281 KKASSERT(td->td_lwp == NULL ||
1282 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1283
37af14fe 1284 if (td == mygd->gd_curthread) {
f1d1c3fa
MD
1285 _lwkt_enqueue(td);
1286 } else {
f1d1c3fa 1287 /*
7cd8d145
MD
1288 * If we own the thread, there is no race (since we are in a
1289 * critical section). If we do not own the thread there might
1290 * be a race but the target cpu will deal with it.
f1d1c3fa 1291 */
0f7a3396 1292#ifdef SMP
7cd8d145 1293 if (td->td_gd == mygd) {
9d265729 1294 _lwkt_enqueue(td);
85946b6c 1295 _lwkt_schedule_post(mygd, td, 1);
f1d1c3fa 1296 } else {
e381e77c 1297 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
7cd8d145 1298 }
0f7a3396 1299#else
7cd8d145 1300 _lwkt_enqueue(td);
85946b6c 1301 _lwkt_schedule_post(mygd, td, 1);
0f7a3396 1302#endif
8ad65e08 1303 }
37af14fe 1304 crit_exit_gd(mygd);
8ad65e08
MD
1305}
1306
361d01dd
MD
1307void
1308lwkt_schedule(thread_t td)
1309{
85946b6c 1310 _lwkt_schedule(td);
361d01dd
MD
1311}
1312
1313void
85946b6c 1314lwkt_schedule_noresched(thread_t td) /* XXX not impl */
361d01dd 1315{
85946b6c 1316 _lwkt_schedule(td);
361d01dd
MD
1317}
1318
88ebb169
SW
1319#ifdef SMP
1320
e381e77c
MD
1321/*
1322 * When scheduled remotely if frame != NULL the IPIQ is being
1323 * run via doreti or an interrupt then preemption can be allowed.
1324 *
1325 * To allow preemption we have to drop the critical section so only
1326 * one is present in _lwkt_schedule_post.
1327 */
1328static void
1329lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1330{
1331 thread_t td = curthread;
1332 thread_t ntd = arg;
1333
1334 if (frame && ntd->td_preemptable) {
1335 crit_exit_noyield(td);
85946b6c 1336 _lwkt_schedule(ntd);
e381e77c
MD
1337 crit_enter_quick(td);
1338 } else {
85946b6c 1339 _lwkt_schedule(ntd);
e381e77c
MD
1340 }
1341}
1342
d9eea1a5 1343/*
52eedfb5
MD
1344 * Thread migration using a 'Pull' method. The thread may or may not be
1345 * the current thread. It MUST be descheduled and in a stable state.
1346 * lwkt_giveaway() must be called on the cpu owning the thread.
1347 *
1348 * At any point after lwkt_giveaway() is called, the target cpu may
1349 * 'pull' the thread by calling lwkt_acquire().
1350 *
ae8e83e6
MD
1351 * We have to make sure the thread is not sitting on a per-cpu tsleep
1352 * queue or it will blow up when it moves to another cpu.
1353 *
52eedfb5 1354 * MPSAFE - must be called under very specific conditions.
d9eea1a5 1355 */
a2a5ad0d 1356void
52eedfb5
MD
1357lwkt_giveaway(thread_t td)
1358{
3b4192fb 1359 globaldata_t gd = mycpu;
52eedfb5 1360
3b4192fb
MD
1361 crit_enter_gd(gd);
1362 if (td->td_flags & TDF_TSLEEPQ)
1363 tsleep_remove(td);
1364 KKASSERT(td->td_gd == gd);
1365 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1366 td->td_flags |= TDF_MIGRATING;
1367 crit_exit_gd(gd);
52eedfb5
MD
1368}
1369
1370void
a2a5ad0d
MD
1371lwkt_acquire(thread_t td)
1372{
37af14fe
MD
1373 globaldata_t gd;
1374 globaldata_t mygd;
cc9b6223 1375 int retry = 10000000;
a2a5ad0d 1376
52eedfb5 1377 KKASSERT(td->td_flags & TDF_MIGRATING);
a2a5ad0d 1378 gd = td->td_gd;
37af14fe 1379 mygd = mycpu;
52eedfb5 1380 if (gd != mycpu) {
35238fa5 1381 cpu_lfence();
52eedfb5 1382 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
37af14fe 1383 crit_enter_gd(mygd);
cfaeae2a 1384 DEBUG_PUSH_INFO("lwkt_acquire");
df910c23
MD
1385 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1386#ifdef SMP
1387 lwkt_process_ipiq();
1388#endif
52eedfb5 1389 cpu_lfence();
cc9b6223
MD
1390 if (--retry == 0) {
1391 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1392 td, td->td_flags);
1393 retry = 10000000;
1394 }
df910c23 1395 }
cfaeae2a 1396 DEBUG_POP_INFO();
562273ea 1397 cpu_mfence();
37af14fe 1398 td->td_gd = mygd;
52eedfb5
MD
1399 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1400 td->td_flags &= ~TDF_MIGRATING;
1401 crit_exit_gd(mygd);
1402 } else {
1403 crit_enter_gd(mygd);
1404 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1405 td->td_flags &= ~TDF_MIGRATING;
37af14fe 1406 crit_exit_gd(mygd);
a2a5ad0d
MD
1407 }
1408}
1409
52eedfb5
MD
1410#endif
1411
8ad65e08 1412/*
f1d1c3fa
MD
1413 * Generic deschedule. Descheduling threads other then your own should be
1414 * done only in carefully controlled circumstances. Descheduling is
1415 * asynchronous.
1416 *
1417 * This function may block if the cpu has run out of messages.
8ad65e08
MD
1418 */
1419void
1420lwkt_deschedule(thread_t td)
1421{
f1d1c3fa 1422 crit_enter();
b8a98473 1423#ifdef SMP
f1d1c3fa
MD
1424 if (td == curthread) {
1425 _lwkt_dequeue(td);
1426 } else {
a72187e9 1427 if (td->td_gd == mycpu) {
f1d1c3fa
MD
1428 _lwkt_dequeue(td);
1429 } else {
b8a98473 1430 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
f1d1c3fa
MD
1431 }
1432 }
b8a98473
MD
1433#else
1434 _lwkt_dequeue(td);
1435#endif
f1d1c3fa
MD
1436 crit_exit();
1437}
1438
1439/*
4b5f931b
MD
1440 * Set the target thread's priority. This routine does not automatically
1441 * switch to a higher priority thread, LWKT threads are not designed for
1442 * continuous priority changes. Yield if you want to switch.
4b5f931b
MD
1443 */
1444void
1445lwkt_setpri(thread_t td, int pri)
1446{
f9235b6d
MD
1447 if (td->td_pri != pri) {
1448 KKASSERT(pri >= 0);
1449 crit_enter();
1450 if (td->td_flags & TDF_RUNQ) {
d2d8515b 1451 KKASSERT(td->td_gd == mycpu);
f9235b6d
MD
1452 _lwkt_dequeue(td);
1453 td->td_pri = pri;
1454 _lwkt_enqueue(td);
1455 } else {
1456 td->td_pri = pri;
1457 }
1458 crit_exit();
26a0694b 1459 }
26a0694b
MD
1460}
1461
03bd0a5e
MD
1462/*
1463 * Set the initial priority for a thread prior to it being scheduled for
1464 * the first time. The thread MUST NOT be scheduled before or during
1465 * this call. The thread may be assigned to a cpu other then the current
1466 * cpu.
1467 *
1468 * Typically used after a thread has been created with TDF_STOPPREQ,
1469 * and before the thread is initially scheduled.
1470 */
1471void
1472lwkt_setpri_initial(thread_t td, int pri)
1473{
1474 KKASSERT(pri >= 0);
1475 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
f9235b6d 1476 td->td_pri = pri;
03bd0a5e
MD
1477}
1478
26a0694b
MD
1479void
1480lwkt_setpri_self(int pri)
1481{
1482 thread_t td = curthread;
1483
4b5f931b
MD
1484 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1485 crit_enter();
1486 if (td->td_flags & TDF_RUNQ) {
1487 _lwkt_dequeue(td);
f9235b6d 1488 td->td_pri = pri;
4b5f931b
MD
1489 _lwkt_enqueue(td);
1490 } else {
f9235b6d 1491 td->td_pri = pri;
4b5f931b
MD
1492 }
1493 crit_exit();
1494}
1495
5d21b981 1496/*
85946b6c 1497 * hz tick scheduler clock for LWKT threads
f9235b6d
MD
1498 */
1499void
85946b6c 1500lwkt_schedulerclock(thread_t td)
f9235b6d 1501{
85946b6c
MD
1502 globaldata_t gd = td->td_gd;
1503 thread_t xtd;
2a418930 1504
85946b6c
MD
1505 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1506 /*
1507 * If the current thread is at the head of the runq shift it to the
1508 * end of any equal-priority threads and request a LWKT reschedule
1509 * if it moved.
1510 */
1511 xtd = TAILQ_NEXT(td, td_threadq);
1512 if (xtd && xtd->td_pri == td->td_pri) {
1513 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1514 while (xtd && xtd->td_pri == td->td_pri)
1515 xtd = TAILQ_NEXT(xtd, td_threadq);
1516 if (xtd)
1517 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1518 else
1519 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1520 need_lwkt_resched();
f9235b6d 1521 }
85946b6c
MD
1522 } else {
1523 /*
1524 * If we scheduled a thread other than the one at the head of the
1525 * queue always request a reschedule every tick.
1526 */
1527 need_lwkt_resched();
f9235b6d
MD
1528 }
1529}
1530
f9235b6d 1531/*
52eedfb5
MD
1532 * Migrate the current thread to the specified cpu.
1533 *
cc9b6223
MD
1534 * This is accomplished by descheduling ourselves from the current cpu
1535 * and setting td_migrate_gd. The lwkt_switch() code will detect that the
1536 * 'old' thread wants to migrate after it has been completely switched out
1537 * and will complete the migration.
1538 *
1539 * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1540 *
1541 * We must be sure to release our current process designation (if a user
1542 * process) before clearing out any tsleepq we are on because the release
1543 * code may re-add us.
ae8e83e6
MD
1544 *
1545 * We must be sure to remove ourselves from the current cpu's tsleepq
1546 * before potentially moving to another queue. The thread can be on
1547 * a tsleepq due to a left-over tsleep_interlock().
5d21b981 1548 */
5d21b981
MD
1549
1550void
1551lwkt_setcpu_self(globaldata_t rgd)
1552{
1553#ifdef SMP
1554 thread_t td = curthread;
1555
1556 if (td->td_gd != rgd) {
1557 crit_enter_quick(td);
cc9b6223 1558
95858b91
MD
1559 if (td->td_release)
1560 td->td_release(td);
ae8e83e6 1561 if (td->td_flags & TDF_TSLEEPQ)
3b4192fb 1562 tsleep_remove(td);
cc9b6223
MD
1563
1564 /*
1565 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1566 * trying to deschedule ourselves and switch away, then deschedule
1567 * ourself, remove us from tdallq, and set td_migrate_gd. Finally,
1568 * call lwkt_switch() to complete the operation.
1569 */
5d21b981
MD
1570 td->td_flags |= TDF_MIGRATING;
1571 lwkt_deschedule_self(td);
52eedfb5 1572 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
cc9b6223 1573 td->td_migrate_gd = rgd;
5d21b981 1574 lwkt_switch();
cc9b6223
MD
1575
1576 /*
1577 * We are now on the target cpu
1578 */
1579 KKASSERT(rgd == mycpu);
52eedfb5 1580 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
5d21b981
MD
1581 crit_exit_quick(td);
1582 }
1583#endif
1584}
1585
ecdefdda
MD
1586void
1587lwkt_migratecpu(int cpuid)
1588{
1589#ifdef SMP
1590 globaldata_t rgd;
1591
1592 rgd = globaldata_find(cpuid);
1593 lwkt_setcpu_self(rgd);
1594#endif
1595}
1596
cc9b6223 1597#ifdef SMP
5d21b981
MD
1598/*
1599 * Remote IPI for cpu migration (called while in a critical section so we
cc9b6223
MD
1600 * do not have to enter another one).
1601 *
1602 * The thread (td) has already been completely descheduled from the
1603 * originating cpu and we can simply assert the case. The thread is
1604 * assigned to the new cpu and enqueued.
5d21b981 1605 *
cc9b6223 1606 * The thread will re-add itself to tdallq when it resumes execution.
5d21b981
MD
1607 */
1608static void
1609lwkt_setcpu_remote(void *arg)
1610{
1611 thread_t td = arg;
1612 globaldata_t gd = mycpu;
1613
cc9b6223 1614 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
5d21b981 1615 td->td_gd = gd;
562273ea 1616 cpu_mfence();
5d21b981 1617 td->td_flags &= ~TDF_MIGRATING;
cc9b6223 1618 KKASSERT(td->td_migrate_gd == NULL);
4643740a
MD
1619 KKASSERT(td->td_lwp == NULL ||
1620 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
5d21b981
MD
1621 _lwkt_enqueue(td);
1622}
3d28ff59 1623#endif
5d21b981 1624
553ea3c8 1625struct lwp *
4b5f931b
MD
1626lwkt_preempted_proc(void)
1627{
73e4f7b9 1628 thread_t td = curthread;
4b5f931b
MD
1629 while (td->td_preempted)
1630 td = td->td_preempted;
553ea3c8 1631 return(td->td_lwp);
4b5f931b
MD
1632}
1633
4b5f931b 1634/*
99df837e
MD
1635 * Create a kernel process/thread/whatever. It shares it's address space
1636 * with proc0 - ie: kernel only.
1637 *
d2d8515b
MD
1638 * If the cpu is not specified one will be selected. In the future
1639 * specifying a cpu of -1 will enable kernel thread migration between
1640 * cpus.
99df837e
MD
1641 */
1642int
c9e9fb21
MD
1643lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1644 thread_t template, int tdflags, int cpu, const char *fmt, ...)
99df837e 1645{
73e4f7b9 1646 thread_t td;
e2565a42 1647 __va_list ap;
99df837e 1648
d3d32139 1649 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
dbcd0c9b 1650 tdflags);
a2a5ad0d
MD
1651 if (tdp)
1652 *tdp = td;
709799ea 1653 cpu_set_thread_handler(td, lwkt_exit, func, arg);
99df837e
MD
1654
1655 /*
1656 * Set up arg0 for 'ps' etc
1657 */
e2565a42 1658 __va_start(ap, fmt);
379210cb 1659 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
e2565a42 1660 __va_end(ap);
99df837e
MD
1661
1662 /*
1663 * Schedule the thread to run
1664 */
4643740a
MD
1665 if (td->td_flags & TDF_NOSTART)
1666 td->td_flags &= ~TDF_NOSTART;
ef0fdad1 1667 else
4643740a 1668 lwkt_schedule(td);
99df837e
MD
1669 return 0;
1670}
1671
1672/*
1673 * Destroy an LWKT thread. Warning! This function is not called when
1674 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1675 * uses a different reaping mechanism.
1676 */
1677void
1678lwkt_exit(void)
1679{
1680 thread_t td = curthread;
c070746a 1681 thread_t std;
8826f33a 1682 globaldata_t gd;
99df837e 1683
2883d2d8
MD
1684 /*
1685 * Do any cleanup that might block here
1686 */
99df837e 1687 if (td->td_flags & TDF_VERBOSE)
6ea70f76 1688 kprintf("kthread %p %s has exited\n", td, td->td_comm);
f6bf3af1 1689 caps_exit(td);
2883d2d8
MD
1690 biosched_done(td);
1691 dsched_exit_thread(td);
c070746a
MD
1692
1693 /*
1694 * Get us into a critical section to interlock gd_freetd and loop
1695 * until we can get it freed.
1696 *
1697 * We have to cache the current td in gd_freetd because objcache_put()ing
1698 * it would rip it out from under us while our thread is still active.
2af9d75d
MD
1699 *
1700 * We are the current thread so of course our own TDF_RUNNING bit will
1701 * be set, so unlike the lwp reap code we don't wait for it to clear.
c070746a
MD
1702 */
1703 gd = mycpu;
37af14fe 1704 crit_enter_quick(td);
2af9d75d
MD
1705 for (;;) {
1706 if (td->td_refs) {
1707 tsleep(td, 0, "tdreap", 1);
1708 continue;
1709 }
1710 if ((std = gd->gd_freetd) != NULL) {
1711 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1712 gd->gd_freetd = NULL;
1713 objcache_put(thread_cache, std);
1714 continue;
1715 }
1716 break;
c070746a 1717 }
3b4192fb
MD
1718
1719 /*
1720 * Remove thread resources from kernel lists and deschedule us for
2883d2d8
MD
1721 * the last time. We cannot block after this point or we may end
1722 * up with a stale td on the tsleepq.
eb2adbf5
MD
1723 *
1724 * None of this may block, the critical section is the only thing
1725 * protecting tdallq and the only thing preventing new lwkt_hold()
1726 * thread refs now.
3b4192fb
MD
1727 */
1728 if (td->td_flags & TDF_TSLEEPQ)
1729 tsleep_remove(td);
37af14fe 1730 lwkt_deschedule_self(td);
e56e4dea 1731 lwkt_remove_tdallq(td);
74c9628e 1732 KKASSERT(td->td_refs == 0);
2883d2d8
MD
1733
1734 /*
1735 * Final cleanup
1736 */
1737 KKASSERT(gd->gd_freetd == NULL);
c070746a
MD
1738 if (td->td_flags & TDF_ALLOCATED_THREAD)
1739 gd->gd_freetd = td;
99df837e
MD
1740 cpu_thread_exit();
1741}
1742
e56e4dea
MD
1743void
1744lwkt_remove_tdallq(thread_t td)
1745{
1746 KKASSERT(td->td_gd == mycpu);
1747 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1748}
1749
9cf43f91
MD
1750/*
1751 * Code reduction and branch prediction improvements. Call/return
1752 * overhead on modern cpus often degenerates into 0 cycles due to
1753 * the cpu's branch prediction hardware and return pc cache. We
1754 * can take advantage of this by not inlining medium-complexity
1755 * functions and we can also reduce the branch prediction impact
1756 * by collapsing perfectly predictable branches into a single
1757 * procedure instead of duplicating it.
1758 *
1759 * Is any of this noticeable? Probably not, so I'll take the
1760 * smaller code size.
1761 */
1762void
b6468f56 1763crit_exit_wrapper(__DEBUG_CRIT_ARG__)
9cf43f91 1764{
b6468f56 1765 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
9cf43f91
MD
1766}
1767
2d93b37a
MD
1768void
1769crit_panic(void)
1770{
1771 thread_t td = curthread;
850634cc 1772 int lcrit = td->td_critcount;
2d93b37a 1773
850634cc
AH
1774 td->td_critcount = 0;
1775 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
4a28fe22 1776 /* NOT REACHED */
2d93b37a
MD
1777}
1778
d165e668
MD
1779#ifdef SMP
1780
bd8015ca
MD
1781/*
1782 * Called from debugger/panic on cpus which have been stopped. We must still
1783 * process the IPIQ while stopped, even if we were stopped while in a critical
1784 * section (XXX).
1785 *
1786 * If we are dumping also try to process any pending interrupts. This may
1787 * or may not work depending on the state of the cpu at the point it was
1788 * stopped.
1789 */
1790void
1791lwkt_smp_stopped(void)
1792{
1793 globaldata_t gd = mycpu;
1794
1795 crit_enter_gd(gd);
1796 if (dumping) {
1797 lwkt_process_ipiq();
1798 splz();
1799 } else {
1800 lwkt_process_ipiq();
1801 }
1802 crit_exit_gd(gd);
1803}
1804
d165e668 1805#endif