Nuke huge mbuf macros stage 1/2: Remove massive inline mbuf macros to reduce
[dragonfly.git] / sys / vfs / nfs / nfs_socket.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1989, 1991, 1993, 1995
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
37 * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
b70ddfbf 38 * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.4 2003/07/01 18:48:31 dillon Exp $
984263bc
MD
39 */
40
41/*
42 * Socket operations for use by nfs
43 */
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/proc.h>
48#include <sys/malloc.h>
49#include <sys/mount.h>
50#include <sys/kernel.h>
51#include <sys/mbuf.h>
52#include <sys/vnode.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/syslog.h>
57#include <sys/tprintf.h>
58#include <sys/sysctl.h>
59#include <sys/signalvar.h>
60
61#include <netinet/in.h>
62#include <netinet/tcp.h>
63
64#include <nfs/rpcv2.h>
65#include <nfs/nfsproto.h>
66#include <nfs/nfs.h>
67#include <nfs/xdr_subs.h>
68#include <nfs/nfsm_subs.h>
69#include <nfs/nfsmount.h>
70#include <nfs/nfsnode.h>
71#include <nfs/nfsrtt.h>
72#include <nfs/nqnfs.h>
73
74#define TRUE 1
75#define FALSE 0
76
77/*
78 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
79 * Use the mean and mean deviation of rtt for the appropriate type of rpc
80 * for the frequent rpcs and a default for the others.
81 * The justification for doing "other" this way is that these rpcs
82 * happen so infrequently that timer est. would probably be stale.
83 * Also, since many of these rpcs are
84 * non-idempotent, a conservative timeout is desired.
85 * getattr, lookup - A+2D
86 * read, write - A+4D
87 * other - nm_timeo
88 */
89#define NFS_RTO(n, t) \
90 ((t) == 0 ? (n)->nm_timeo : \
91 ((t) < 3 ? \
92 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
93 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
94#define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
95#define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
96/*
97 * External data, mostly RPC constants in XDR form
98 */
99extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
100 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
101 rpc_auth_kerb;
102extern u_int32_t nfs_prog, nqnfs_prog;
103extern time_t nqnfsstarttime;
104extern struct nfsstats nfsstats;
105extern int nfsv3_procid[NFS_NPROCS];
106extern int nfs_ticks;
107
108/*
109 * Defines which timer to use for the procnum.
110 * 0 - default
111 * 1 - getattr
112 * 2 - lookup
113 * 3 - read
114 * 4 - write
115 */
116static int proct[NFS_NPROCS] = {
117 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
118 0, 0, 0,
119};
120
121static int nfs_realign_test;
122static int nfs_realign_count;
123static int nfs_bufpackets = 4;
124
125SYSCTL_DECL(_vfs_nfs);
126
127SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
128SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
129SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, "");
130
131
132/*
133 * There is a congestion window for outstanding rpcs maintained per mount
134 * point. The cwnd size is adjusted in roughly the way that:
135 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
136 * SIGCOMM '88". ACM, August 1988.
137 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
138 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
139 * of rpcs is in progress.
140 * (The sent count and cwnd are scaled for integer arith.)
141 * Variants of "slow start" were tried and were found to be too much of a
142 * performance hit (ave. rtt 3 times larger),
143 * I suspect due to the large rtt that nfs rpcs have.
144 */
145#define NFS_CWNDSCALE 256
146#define NFS_MAXCWND (NFS_CWNDSCALE * 32)
147static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
148int nfsrtton = 0;
149struct nfsrtt nfsrtt;
150struct callout_handle nfs_timer_handle;
151
dadab5e9 152static int nfs_msg __P((struct thread *,char *,char *));
984263bc
MD
153static int nfs_rcvlock __P((struct nfsreq *));
154static void nfs_rcvunlock __P((struct nfsreq *));
155static void nfs_realign __P((struct mbuf **pm, int hsiz));
156static int nfs_receive __P((struct nfsreq *rep, struct sockaddr **aname,
157 struct mbuf **mp));
158static void nfs_softterm __P((struct nfsreq *rep));
159static int nfs_reconnect __P((struct nfsreq *rep));
160#ifndef NFS_NOSERVER
161static int nfsrv_getstream __P((struct nfssvc_sock *,int));
162
163int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *nd,
164 struct nfssvc_sock *slp,
dadab5e9 165 struct thread *td,
984263bc
MD
166 struct mbuf **mreqp)) = {
167 nfsrv_null,
168 nfsrv_getattr,
169 nfsrv_setattr,
170 nfsrv_lookup,
171 nfsrv3_access,
172 nfsrv_readlink,
173 nfsrv_read,
174 nfsrv_write,
175 nfsrv_create,
176 nfsrv_mkdir,
177 nfsrv_symlink,
178 nfsrv_mknod,
179 nfsrv_remove,
180 nfsrv_rmdir,
181 nfsrv_rename,
182 nfsrv_link,
183 nfsrv_readdir,
184 nfsrv_readdirplus,
185 nfsrv_statfs,
186 nfsrv_fsinfo,
187 nfsrv_pathconf,
188 nfsrv_commit,
189 nqnfsrv_getlease,
190 nqnfsrv_vacated,
191 nfsrv_noop,
192 nfsrv_noop
193};
194#endif /* NFS_NOSERVER */
195
196/*
197 * Initialize sockets and congestion for a new NFS connection.
198 * We do not free the sockaddr if error.
199 */
200int
dadab5e9 201nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
984263bc 202{
dadab5e9 203 struct socket *so;
984263bc
MD
204 int s, error, rcvreserve, sndreserve;
205 int pktscale;
206 struct sockaddr *saddr;
207 struct sockaddr_in *sin;
dadab5e9 208 struct thread *td = &thread0; /* only used for socreate and sobind */
984263bc
MD
209
210 nmp->nm_so = (struct socket *)0;
211 saddr = nmp->nm_nam;
212 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
dadab5e9 213 nmp->nm_soproto, td);
984263bc
MD
214 if (error)
215 goto bad;
216 so = nmp->nm_so;
217 nmp->nm_soflags = so->so_proto->pr_flags;
218
219 /*
220 * Some servers require that the client port be a reserved port number.
221 */
222 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
223 struct sockopt sopt;
224 int ip;
225 struct sockaddr_in ssin;
226
227 bzero(&sopt, sizeof sopt);
228 ip = IP_PORTRANGE_LOW;
229 sopt.sopt_dir = SOPT_SET;
230 sopt.sopt_level = IPPROTO_IP;
231 sopt.sopt_name = IP_PORTRANGE;
232 sopt.sopt_val = (void *)&ip;
233 sopt.sopt_valsize = sizeof(ip);
dadab5e9 234 sopt.sopt_td = NULL;
984263bc
MD
235 error = sosetopt(so, &sopt);
236 if (error)
237 goto bad;
238 bzero(&ssin, sizeof ssin);
239 sin = &ssin;
240 sin->sin_len = sizeof (struct sockaddr_in);
241 sin->sin_family = AF_INET;
242 sin->sin_addr.s_addr = INADDR_ANY;
243 sin->sin_port = htons(0);
dadab5e9 244 error = sobind(so, (struct sockaddr *)sin, td);
984263bc
MD
245 if (error)
246 goto bad;
247 bzero(&sopt, sizeof sopt);
248 ip = IP_PORTRANGE_DEFAULT;
249 sopt.sopt_dir = SOPT_SET;
250 sopt.sopt_level = IPPROTO_IP;
251 sopt.sopt_name = IP_PORTRANGE;
252 sopt.sopt_val = (void *)&ip;
253 sopt.sopt_valsize = sizeof(ip);
dadab5e9 254 sopt.sopt_td = NULL;
984263bc
MD
255 error = sosetopt(so, &sopt);
256 if (error)
257 goto bad;
258 }
259
260 /*
261 * Protocols that do not require connections may be optionally left
262 * unconnected for servers that reply from a port other than NFS_PORT.
263 */
264 if (nmp->nm_flag & NFSMNT_NOCONN) {
265 if (nmp->nm_soflags & PR_CONNREQUIRED) {
266 error = ENOTCONN;
267 goto bad;
268 }
269 } else {
dadab5e9 270 error = soconnect(so, nmp->nm_nam, td);
984263bc
MD
271 if (error)
272 goto bad;
273
274 /*
275 * Wait for the connection to complete. Cribbed from the
276 * connect system call but with the wait timing out so
277 * that interruptible mounts don't hang here for a long time.
278 */
279 s = splnet();
280 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
281 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
282 "nfscon", 2 * hz);
283 if ((so->so_state & SS_ISCONNECTING) &&
284 so->so_error == 0 && rep &&
dadab5e9 285 (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
984263bc
MD
286 so->so_state &= ~SS_ISCONNECTING;
287 splx(s);
288 goto bad;
289 }
290 }
291 if (so->so_error) {
292 error = so->so_error;
293 so->so_error = 0;
294 splx(s);
295 goto bad;
296 }
297 splx(s);
298 }
299 so->so_rcv.sb_timeo = (5 * hz);
300 so->so_snd.sb_timeo = (5 * hz);
301
302 /*
303 * Get buffer reservation size from sysctl, but impose reasonable
304 * limits.
305 */
306 pktscale = nfs_bufpackets;
307 if (pktscale < 2)
308 pktscale = 2;
309 if (pktscale > 64)
310 pktscale = 64;
311
312 if (nmp->nm_sotype == SOCK_DGRAM) {
313 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
314 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
315 NFS_MAXPKTHDR) * pktscale;
316 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
317 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
318 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
319 NFS_MAXPKTHDR) * pktscale;
320 } else {
321 if (nmp->nm_sotype != SOCK_STREAM)
322 panic("nfscon sotype");
323 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
324 struct sockopt sopt;
325 int val;
326
327 bzero(&sopt, sizeof sopt);
328 sopt.sopt_level = SOL_SOCKET;
329 sopt.sopt_name = SO_KEEPALIVE;
330 sopt.sopt_val = &val;
331 sopt.sopt_valsize = sizeof val;
332 val = 1;
333 sosetopt(so, &sopt);
334 }
335 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
336 struct sockopt sopt;
337 int val;
338
339 bzero(&sopt, sizeof sopt);
340 sopt.sopt_level = IPPROTO_TCP;
341 sopt.sopt_name = TCP_NODELAY;
342 sopt.sopt_val = &val;
343 sopt.sopt_valsize = sizeof val;
344 val = 1;
345 sosetopt(so, &sopt);
346 }
347 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
348 sizeof (u_int32_t)) * pktscale;
349 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
350 sizeof (u_int32_t)) * pktscale;
351 }
352 error = soreserve(so, sndreserve, rcvreserve);
353 if (error)
354 goto bad;
355 so->so_rcv.sb_flags |= SB_NOINTR;
356 so->so_snd.sb_flags |= SB_NOINTR;
357
358 /* Initialize other non-zero congestion variables */
359 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
360 nmp->nm_srtt[3] = (NFS_TIMEO << 3);
361 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
362 nmp->nm_sdrtt[3] = 0;
363 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
364 nmp->nm_sent = 0;
365 nmp->nm_timeouts = 0;
366 return (0);
367
368bad:
369 nfs_disconnect(nmp);
370 return (error);
371}
372
373/*
374 * Reconnect routine:
375 * Called when a connection is broken on a reliable protocol.
376 * - clean up the old socket
377 * - nfs_connect() again
378 * - set R_MUSTRESEND for all outstanding requests on mount point
379 * If this fails the mount point is DEAD!
380 * nb: Must be called with the nfs_sndlock() set on the mount point.
381 */
382static int
383nfs_reconnect(rep)
384 register struct nfsreq *rep;
385{
386 register struct nfsreq *rp;
387 register struct nfsmount *nmp = rep->r_nmp;
388 int error;
389
390 nfs_disconnect(nmp);
391 while ((error = nfs_connect(nmp, rep)) != 0) {
392 if (error == EINTR || error == ERESTART)
393 return (EINTR);
394 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
395 }
396
397 /*
398 * Loop through outstanding request list and fix up all requests
399 * on old socket.
400 */
401 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
402 if (rp->r_nmp == nmp)
403 rp->r_flags |= R_MUSTRESEND;
404 }
405 return (0);
406}
407
408/*
409 * NFS disconnect. Clean up and unlink.
410 */
411void
412nfs_disconnect(nmp)
413 register struct nfsmount *nmp;
414{
415 register struct socket *so;
416
417 if (nmp->nm_so) {
418 so = nmp->nm_so;
419 nmp->nm_so = (struct socket *)0;
420 soshutdown(so, 2);
421 soclose(so);
422 }
423}
424
425void
426nfs_safedisconnect(nmp)
427 struct nfsmount *nmp;
428{
429 struct nfsreq dummyreq;
430
431 bzero(&dummyreq, sizeof(dummyreq));
432 dummyreq.r_nmp = nmp;
433 nfs_rcvlock(&dummyreq);
434 nfs_disconnect(nmp);
435 nfs_rcvunlock(&dummyreq);
436}
437
438/*
439 * This is the nfs send routine. For connection based socket types, it
440 * must be called with an nfs_sndlock() on the socket.
441 * "rep == NULL" indicates that it has been called from a server.
442 * For the client side:
443 * - return EINTR if the RPC is terminated, 0 otherwise
444 * - set R_MUSTRESEND if the send fails for any reason
445 * - do any cleanup required by recoverable socket errors (?)
446 * For the server side:
447 * - return EINTR or ERESTART if interrupted by a signal
448 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
449 * - do any cleanup required by recoverable socket errors (?)
450 */
451int
452nfs_send(so, nam, top, rep)
453 register struct socket *so;
454 struct sockaddr *nam;
455 register struct mbuf *top;
456 struct nfsreq *rep;
457{
458 struct sockaddr *sendnam;
459 int error, soflags, flags;
460
461 if (rep) {
462 if (rep->r_flags & R_SOFTTERM) {
463 m_freem(top);
464 return (EINTR);
465 }
466 if ((so = rep->r_nmp->nm_so) == NULL) {
467 rep->r_flags |= R_MUSTRESEND;
468 m_freem(top);
469 return (0);
470 }
471 rep->r_flags &= ~R_MUSTRESEND;
472 soflags = rep->r_nmp->nm_soflags;
473 } else
474 soflags = so->so_proto->pr_flags;
475 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
476 sendnam = (struct sockaddr *)0;
477 else
478 sendnam = nam;
479 if (so->so_type == SOCK_SEQPACKET)
480 flags = MSG_EOR;
481 else
482 flags = 0;
483
dadab5e9
MD
484 error = so->so_proto->pr_usrreqs->pru_sosend
485 (so, sendnam, 0, top, 0, flags, curthread /*XXX*/);
984263bc
MD
486 /*
487 * ENOBUFS for dgram sockets is transient and non fatal.
488 * No need to log, and no need to break a soft mount.
489 */
490 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
491 error = 0;
492 if (rep) /* do backoff retransmit on client */
493 rep->r_flags |= R_MUSTRESEND;
494 }
495
496 if (error) {
497 if (rep) {
498 log(LOG_INFO, "nfs send error %d for server %s\n",error,
499 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
500 /*
501 * Deal with errors for the client side.
502 */
503 if (rep->r_flags & R_SOFTTERM)
504 error = EINTR;
505 else
506 rep->r_flags |= R_MUSTRESEND;
507 } else
508 log(LOG_INFO, "nfsd send error %d\n", error);
509
510 /*
511 * Handle any recoverable (soft) socket errors here. (?)
512 */
513 if (error != EINTR && error != ERESTART &&
514 error != EWOULDBLOCK && error != EPIPE)
515 error = 0;
516 }
517 return (error);
518}
519
520/*
521 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
522 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
523 * Mark and consolidate the data into a new mbuf list.
524 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
525 * small mbufs.
526 * For SOCK_STREAM we must be very careful to read an entire record once
527 * we have read any of it, even if the system call has been interrupted.
528 */
529static int
dadab5e9 530nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp)
984263bc
MD
531{
532 register struct socket *so;
533 struct uio auio;
534 struct iovec aio;
535 register struct mbuf *m;
536 struct mbuf *control;
537 u_int32_t len;
538 struct sockaddr **getnam;
539 int error, sotype, rcvflg;
dadab5e9 540 struct thread *td = curthread; /* XXX */
984263bc
MD
541
542 /*
543 * Set up arguments for soreceive()
544 */
545 *mp = (struct mbuf *)0;
546 *aname = (struct sockaddr *)0;
547 sotype = rep->r_nmp->nm_sotype;
548
549 /*
550 * For reliable protocols, lock against other senders/receivers
551 * in case a reconnect is necessary.
552 * For SOCK_STREAM, first get the Record Mark to find out how much
553 * more there is to get.
554 * We must lock the socket against other receivers
555 * until we have an entire rpc request/reply.
556 */
557 if (sotype != SOCK_DGRAM) {
558 error = nfs_sndlock(rep);
559 if (error)
560 return (error);
561tryagain:
562 /*
563 * Check for fatal errors and resending request.
564 */
565 /*
566 * Ugh: If a reconnect attempt just happened, nm_so
567 * would have changed. NULL indicates a failed
568 * attempt that has essentially shut down this
569 * mount point.
570 */
571 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
572 nfs_sndunlock(rep);
573 return (EINTR);
574 }
575 so = rep->r_nmp->nm_so;
576 if (!so) {
577 error = nfs_reconnect(rep);
578 if (error) {
579 nfs_sndunlock(rep);
580 return (error);
581 }
582 goto tryagain;
583 }
584 while (rep->r_flags & R_MUSTRESEND) {
585 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
586 nfsstats.rpcretries++;
587 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
588 if (error) {
589 if (error == EINTR || error == ERESTART ||
590 (error = nfs_reconnect(rep)) != 0) {
591 nfs_sndunlock(rep);
592 return (error);
593 }
594 goto tryagain;
595 }
596 }
597 nfs_sndunlock(rep);
598 if (sotype == SOCK_STREAM) {
599 aio.iov_base = (caddr_t) &len;
600 aio.iov_len = sizeof(u_int32_t);
601 auio.uio_iov = &aio;
602 auio.uio_iovcnt = 1;
603 auio.uio_segflg = UIO_SYSSPACE;
604 auio.uio_rw = UIO_READ;
605 auio.uio_offset = 0;
606 auio.uio_resid = sizeof(u_int32_t);
dadab5e9 607 auio.uio_td = td;
984263bc
MD
608 do {
609 rcvflg = MSG_WAITALL;
610 error = so->so_proto->pr_usrreqs->pru_soreceive
611 (so, (struct sockaddr **)0, &auio,
612 (struct mbuf **)0, (struct mbuf **)0,
613 &rcvflg);
614 if (error == EWOULDBLOCK && rep) {
615 if (rep->r_flags & R_SOFTTERM)
616 return (EINTR);
617 }
618 } while (error == EWOULDBLOCK);
619 if (!error && auio.uio_resid > 0) {
620 /*
621 * Don't log a 0 byte receive; it means
622 * that the socket has been closed, and
623 * can happen during normal operation
624 * (forcible unmount or Solaris server).
625 */
626 if (auio.uio_resid != sizeof (u_int32_t))
627 log(LOG_INFO,
628 "short receive (%d/%d) from nfs server %s\n",
629 (int)(sizeof(u_int32_t) - auio.uio_resid),
630 (int)sizeof(u_int32_t),
631 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
632 error = EPIPE;
633 }
634 if (error)
635 goto errout;
636 len = ntohl(len) & ~0x80000000;
637 /*
638 * This is SERIOUS! We are out of sync with the sender
639 * and forcing a disconnect/reconnect is all I can do.
640 */
641 if (len > NFS_MAXPACKET) {
642 log(LOG_ERR, "%s (%d) from nfs server %s\n",
643 "impossible packet length",
644 len,
645 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
646 error = EFBIG;
647 goto errout;
648 }
649 auio.uio_resid = len;
650 do {
651 rcvflg = MSG_WAITALL;
652 error = so->so_proto->pr_usrreqs->pru_soreceive
653 (so, (struct sockaddr **)0,
654 &auio, mp, (struct mbuf **)0, &rcvflg);
655 } while (error == EWOULDBLOCK || error == EINTR ||
656 error == ERESTART);
657 if (!error && auio.uio_resid > 0) {
658 if (len != auio.uio_resid)
659 log(LOG_INFO,
660 "short receive (%d/%d) from nfs server %s\n",
661 len - auio.uio_resid, len,
662 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
663 error = EPIPE;
664 }
665 } else {
666 /*
667 * NB: Since uio_resid is big, MSG_WAITALL is ignored
668 * and soreceive() will return when it has either a
669 * control msg or a data msg.
670 * We have no use for control msg., but must grab them
671 * and then throw them away so we know what is going
672 * on.
673 */
674 auio.uio_resid = len = 100000000; /* Anything Big */
dadab5e9 675 auio.uio_td = td;
984263bc
MD
676 do {
677 rcvflg = 0;
678 error = so->so_proto->pr_usrreqs->pru_soreceive
679 (so, (struct sockaddr **)0,
680 &auio, mp, &control, &rcvflg);
681 if (control)
682 m_freem(control);
683 if (error == EWOULDBLOCK && rep) {
684 if (rep->r_flags & R_SOFTTERM)
685 return (EINTR);
686 }
687 } while (error == EWOULDBLOCK ||
688 (!error && *mp == NULL && control));
689 if ((rcvflg & MSG_EOR) == 0)
690 printf("Egad!!\n");
691 if (!error && *mp == NULL)
692 error = EPIPE;
693 len -= auio.uio_resid;
694 }
695errout:
696 if (error && error != EINTR && error != ERESTART) {
697 m_freem(*mp);
698 *mp = (struct mbuf *)0;
699 if (error != EPIPE)
700 log(LOG_INFO,
701 "receive error %d from nfs server %s\n",
702 error,
703 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
704 error = nfs_sndlock(rep);
705 if (!error) {
706 error = nfs_reconnect(rep);
707 if (!error)
708 goto tryagain;
709 else
710 nfs_sndunlock(rep);
711 }
712 }
713 } else {
714 if ((so = rep->r_nmp->nm_so) == NULL)
715 return (EACCES);
716 if (so->so_state & SS_ISCONNECTED)
717 getnam = (struct sockaddr **)0;
718 else
719 getnam = aname;
720 auio.uio_resid = len = 1000000;
dadab5e9 721 auio.uio_td = td;
984263bc
MD
722 do {
723 rcvflg = 0;
724 error = so->so_proto->pr_usrreqs->pru_soreceive
725 (so, getnam, &auio, mp,
726 (struct mbuf **)0, &rcvflg);
727 if (error == EWOULDBLOCK &&
728 (rep->r_flags & R_SOFTTERM))
729 return (EINTR);
730 } while (error == EWOULDBLOCK);
731 len -= auio.uio_resid;
732 }
733 if (error) {
734 m_freem(*mp);
735 *mp = (struct mbuf *)0;
736 }
737 /*
738 * Search for any mbufs that are not a multiple of 4 bytes long
739 * or with m_data not longword aligned.
740 * These could cause pointer alignment problems, so copy them to
741 * well aligned mbufs.
742 */
743 nfs_realign(mp, 5 * NFSX_UNSIGNED);
744 return (error);
745}
746
747/*
748 * Implement receipt of reply on a socket.
749 * We must search through the list of received datagrams matching them
750 * with outstanding requests using the xid, until ours is found.
751 */
752/* ARGSUSED */
753int
754nfs_reply(myrep)
755 struct nfsreq *myrep;
756{
757 register struct nfsreq *rep;
758 register struct nfsmount *nmp = myrep->r_nmp;
759 register int32_t t1;
760 struct mbuf *mrep, *md;
761 struct sockaddr *nam;
762 u_int32_t rxid, *tl;
763 caddr_t dpos, cp2;
764 int error;
765
766 /*
767 * Loop around until we get our own reply
768 */
769 for (;;) {
770 /*
771 * Lock against other receivers so that I don't get stuck in
772 * sbwait() after someone else has received my reply for me.
773 * Also necessary for connection based protocols to avoid
774 * race conditions during a reconnect.
775 * If nfs_rcvlock() returns EALREADY, that means that
776 * the reply has already been recieved by another
777 * process and we can return immediately. In this
778 * case, the lock is not taken to avoid races with
779 * other processes.
780 */
781 error = nfs_rcvlock(myrep);
782 if (error == EALREADY)
783 return (0);
784 if (error)
785 return (error);
786 /*
787 * Get the next Rpc reply off the socket
788 */
789 error = nfs_receive(myrep, &nam, &mrep);
790 nfs_rcvunlock(myrep);
791 if (error) {
792
793 /*
794 * Ignore routing errors on connectionless protocols??
795 */
796 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
797 nmp->nm_so->so_error = 0;
798 if (myrep->r_flags & R_GETONEREP)
799 return (0);
800 continue;
801 }
802 return (error);
803 }
804 if (nam)
805 FREE(nam, M_SONAME);
806
807 /*
808 * Get the xid and check that it is an rpc reply
809 */
810 md = mrep;
811 dpos = mtod(md, caddr_t);
812 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
813 rxid = *tl++;
814 if (*tl != rpc_reply) {
815#ifndef NFS_NOSERVER
816 if (nmp->nm_flag & NFSMNT_NQNFS) {
817 if (nqnfs_callback(nmp, mrep, md, dpos))
818 nfsstats.rpcinvalid++;
819 } else {
820 nfsstats.rpcinvalid++;
821 m_freem(mrep);
822 }
823#else
824 nfsstats.rpcinvalid++;
825 m_freem(mrep);
826#endif
827nfsmout:
828 if (myrep->r_flags & R_GETONEREP)
829 return (0);
830 continue;
831 }
832
833 /*
834 * Loop through the request list to match up the reply
835 * Iff no match, just drop the datagram
836 */
837 for (rep = nfs_reqq.tqh_first; rep != 0;
838 rep = rep->r_chain.tqe_next) {
839 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
840 /* Found it.. */
841 rep->r_mrep = mrep;
842 rep->r_md = md;
843 rep->r_dpos = dpos;
844 if (nfsrtton) {
845 struct rttl *rt;
846
847 rt = &nfsrtt.rttl[nfsrtt.pos];
848 rt->proc = rep->r_procnum;
849 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
850 rt->sent = nmp->nm_sent;
851 rt->cwnd = nmp->nm_cwnd;
852 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
853 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
854 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
855 getmicrotime(&rt->tstamp);
856 if (rep->r_flags & R_TIMING)
857 rt->rtt = rep->r_rtt;
858 else
859 rt->rtt = 1000000;
860 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
861 }
862 /*
863 * Update congestion window.
864 * Do the additive increase of
865 * one rpc/rtt.
866 */
867 if (nmp->nm_cwnd <= nmp->nm_sent) {
868 nmp->nm_cwnd +=
869 (NFS_CWNDSCALE * NFS_CWNDSCALE +
870 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
871 if (nmp->nm_cwnd > NFS_MAXCWND)
872 nmp->nm_cwnd = NFS_MAXCWND;
873 }
874 if (rep->r_flags & R_SENT) {
875 rep->r_flags &= ~R_SENT;
876 nmp->nm_sent -= NFS_CWNDSCALE;
877 }
878 /*
879 * Update rtt using a gain of 0.125 on the mean
880 * and a gain of 0.25 on the deviation.
881 */
882 if (rep->r_flags & R_TIMING) {
883 /*
884 * Since the timer resolution of
885 * NFS_HZ is so course, it can often
886 * result in r_rtt == 0. Since
887 * r_rtt == N means that the actual
888 * rtt is between N+dt and N+2-dt ticks,
889 * add 1.
890 */
891 t1 = rep->r_rtt + 1;
892 t1 -= (NFS_SRTT(rep) >> 3);
893 NFS_SRTT(rep) += t1;
894 if (t1 < 0)
895 t1 = -t1;
896 t1 -= (NFS_SDRTT(rep) >> 2);
897 NFS_SDRTT(rep) += t1;
898 }
899 nmp->nm_timeouts = 0;
900 break;
901 }
902 }
903 /*
904 * If not matched to a request, drop it.
905 * If it's mine, get out.
906 */
907 if (rep == 0) {
908 nfsstats.rpcunexpected++;
909 m_freem(mrep);
910 } else if (rep == myrep) {
911 if (rep->r_mrep == NULL)
912 panic("nfsreply nil");
913 return (0);
914 }
915 if (myrep->r_flags & R_GETONEREP)
916 return (0);
917 }
918}
919
920/*
921 * nfs_request - goes something like this
922 * - fill in request struct
923 * - links it into list
924 * - calls nfs_send() for first transmit
925 * - calls nfs_receive() to get reply
926 * - break down rpc header and return with nfs reply pointed to
927 * by mrep or error
928 * nb: always frees up mreq mbuf list
929 */
930int
dadab5e9 931nfs_request(vp, mrest, procnum, td, cred, mrp, mdp, dposp)
984263bc
MD
932 struct vnode *vp;
933 struct mbuf *mrest;
934 int procnum;
dadab5e9 935 struct thread *td;
984263bc
MD
936 struct ucred *cred;
937 struct mbuf **mrp;
938 struct mbuf **mdp;
939 caddr_t *dposp;
940{
941 register struct mbuf *mrep, *m2;
942 register struct nfsreq *rep;
943 register u_int32_t *tl;
944 register int i;
945 struct nfsmount *nmp;
946 struct mbuf *m, *md, *mheadend;
947 struct nfsnode *np;
948 char nickv[RPCX_NICKVERF];
949 time_t reqtime, waituntil;
950 caddr_t dpos, cp2;
951 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
952 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
953 int verf_len, verf_type;
954 u_int32_t xid;
955 u_quad_t frev;
956 char *auth_str, *verf_str;
957 NFSKERBKEY_T key; /* save session key */
958
959 /* Reject requests while attempting a forced unmount. */
960 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
961 m_freem(mrest);
962 return (ESTALE);
963 }
964 nmp = VFSTONFS(vp->v_mount);
965 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
966 rep->r_nmp = nmp;
967 rep->r_vp = vp;
dadab5e9 968 rep->r_td = td;
984263bc
MD
969 rep->r_procnum = procnum;
970 i = 0;
971 m = mrest;
972 while (m) {
973 i += m->m_len;
974 m = m->m_next;
975 }
976 mrest_len = i;
977
978 /*
979 * Get the RPC header with authorization.
980 */
981kerbauth:
982 verf_str = auth_str = (char *)0;
983 if (nmp->nm_flag & NFSMNT_KERB) {
984 verf_str = nickv;
985 verf_len = sizeof (nickv);
986 auth_type = RPCAUTH_KERB4;
987 bzero((caddr_t)key, sizeof (key));
988 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
989 &auth_len, verf_str, verf_len)) {
990 error = nfs_getauth(nmp, rep, cred, &auth_str,
991 &auth_len, verf_str, &verf_len, key);
992 if (error) {
993 free((caddr_t)rep, M_NFSREQ);
994 m_freem(mrest);
995 return (error);
996 }
997 }
998 } else {
999 auth_type = RPCAUTH_UNIX;
1000 if (cred->cr_ngroups < 1)
1001 panic("nfsreq nogrps");
1002 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1003 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1004 5 * NFSX_UNSIGNED;
1005 }
1006 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1007 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1008 if (auth_str)
1009 free(auth_str, M_TEMP);
1010
1011 /*
1012 * For stream protocols, insert a Sun RPC Record Mark.
1013 */
1014 if (nmp->nm_sotype == SOCK_STREAM) {
1015 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1016 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1017 (m->m_pkthdr.len - NFSX_UNSIGNED));
1018 }
1019 rep->r_mreq = m;
1020 rep->r_xid = xid;
1021tryagain:
1022 if (nmp->nm_flag & NFSMNT_SOFT)
1023 rep->r_retry = nmp->nm_retry;
1024 else
1025 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1026 rep->r_rtt = rep->r_rexmit = 0;
1027 if (proct[procnum] > 0)
1028 rep->r_flags = R_TIMING;
1029 else
1030 rep->r_flags = 0;
1031 rep->r_mrep = NULL;
1032
1033 /*
1034 * Do the client side RPC.
1035 */
1036 nfsstats.rpcrequests++;
1037 /*
1038 * Chain request into list of outstanding requests. Be sure
1039 * to put it LAST so timer finds oldest requests first.
1040 */
1041 s = splsoftclock();
1042 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1043
1044 /* Get send time for nqnfs */
1045 reqtime = time_second;
1046
1047 /*
1048 * If backing off another request or avoiding congestion, don't
1049 * send this one now but let timer do it. If not timing a request,
1050 * do it now.
1051 */
1052 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1053 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1054 nmp->nm_sent < nmp->nm_cwnd)) {
1055 splx(s);
1056 if (nmp->nm_soflags & PR_CONNREQUIRED)
1057 error = nfs_sndlock(rep);
1058 if (!error) {
1059 m2 = m_copym(m, 0, M_COPYALL, M_WAIT);
1060 error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1061 if (nmp->nm_soflags & PR_CONNREQUIRED)
1062 nfs_sndunlock(rep);
1063 }
1064 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1065 nmp->nm_sent += NFS_CWNDSCALE;
1066 rep->r_flags |= R_SENT;
1067 }
1068 } else {
1069 splx(s);
1070 rep->r_rtt = -1;
1071 }
1072
1073 /*
1074 * Wait for the reply from our send or the timer's.
1075 */
1076 if (!error || error == EPIPE)
1077 error = nfs_reply(rep);
1078
1079 /*
1080 * RPC done, unlink the request.
1081 */
1082 s = splsoftclock();
1083 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1084 splx(s);
1085
1086 /*
1087 * Decrement the outstanding request count.
1088 */
1089 if (rep->r_flags & R_SENT) {
1090 rep->r_flags &= ~R_SENT; /* paranoia */
1091 nmp->nm_sent -= NFS_CWNDSCALE;
1092 }
1093
1094 /*
1095 * If there was a successful reply and a tprintf msg.
1096 * tprintf a response.
1097 */
1098 if (!error && (rep->r_flags & R_TPRINTFMSG))
dadab5e9 1099 nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
984263bc
MD
1100 "is alive again");
1101 mrep = rep->r_mrep;
1102 md = rep->r_md;
1103 dpos = rep->r_dpos;
1104 if (error) {
1105 m_freem(rep->r_mreq);
1106 free((caddr_t)rep, M_NFSREQ);
1107 return (error);
1108 }
1109
1110 /*
1111 * break down the rpc header and check if ok
1112 */
1113 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1114 if (*tl++ == rpc_msgdenied) {
1115 if (*tl == rpc_mismatch)
1116 error = EOPNOTSUPP;
1117 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1118 if (!failed_auth) {
1119 failed_auth++;
1120 mheadend->m_next = (struct mbuf *)0;
1121 m_freem(mrep);
1122 m_freem(rep->r_mreq);
1123 goto kerbauth;
1124 } else
1125 error = EAUTH;
1126 } else
1127 error = EACCES;
1128 m_freem(mrep);
1129 m_freem(rep->r_mreq);
1130 free((caddr_t)rep, M_NFSREQ);
1131 return (error);
1132 }
1133
1134 /*
1135 * Grab any Kerberos verifier, otherwise just throw it away.
1136 */
1137 verf_type = fxdr_unsigned(int, *tl++);
1138 i = fxdr_unsigned(int32_t, *tl);
1139 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1140 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1141 if (error)
1142 goto nfsmout;
1143 } else if (i > 0)
1144 nfsm_adv(nfsm_rndup(i));
1145 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1146 /* 0 == ok */
1147 if (*tl == 0) {
1148 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1149 if (*tl != 0) {
1150 error = fxdr_unsigned(int, *tl);
1151 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1152 error == NFSERR_TRYLATER) {
1153 m_freem(mrep);
1154 error = 0;
1155 waituntil = time_second + trylater_delay;
1156 while (time_second < waituntil)
1157 (void) tsleep((caddr_t)&lbolt,
1158 PSOCK, "nqnfstry", 0);
1159 trylater_delay *= nfs_backoff[trylater_cnt];
1160 if (trylater_cnt < 7)
1161 trylater_cnt++;
1162 goto tryagain;
1163 }
1164
1165 /*
1166 * If the File Handle was stale, invalidate the
1167 * lookup cache, just in case.
1168 */
1169 if (error == ESTALE)
1170 cache_purge(vp);
1171 if (nmp->nm_flag & NFSMNT_NFSV3) {
1172 *mrp = mrep;
1173 *mdp = md;
1174 *dposp = dpos;
1175 error |= NFSERR_RETERR;
1176 } else
1177 m_freem(mrep);
1178 m_freem(rep->r_mreq);
1179 free((caddr_t)rep, M_NFSREQ);
1180 return (error);
1181 }
1182
1183 /*
1184 * For nqnfs, get any lease in reply
1185 */
1186 if (nmp->nm_flag & NFSMNT_NQNFS) {
1187 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1188 if (*tl) {
1189 np = VTONFS(vp);
1190 nqlflag = fxdr_unsigned(int, *tl);
1191 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1192 cachable = fxdr_unsigned(int, *tl++);
1193 reqtime += fxdr_unsigned(int, *tl++);
1194 if (reqtime > time_second) {
1195 frev = fxdr_hyper(tl);
1196 nqnfs_clientlease(nmp, np, nqlflag,
1197 cachable, reqtime, frev);
1198 }
1199 }
1200 }
1201 *mrp = mrep;
1202 *mdp = md;
1203 *dposp = dpos;
1204 m_freem(rep->r_mreq);
1205 FREE((caddr_t)rep, M_NFSREQ);
1206 return (0);
1207 }
1208 m_freem(mrep);
1209 error = EPROTONOSUPPORT;
1210nfsmout:
1211 m_freem(rep->r_mreq);
1212 free((caddr_t)rep, M_NFSREQ);
1213 return (error);
1214}
1215
1216#ifndef NFS_NOSERVER
1217/*
1218 * Generate the rpc reply header
1219 * siz arg. is used to decide if adding a cluster is worthwhile
1220 */
1221int
1222nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1223 int siz;
1224 struct nfsrv_descript *nd;
1225 struct nfssvc_sock *slp;
1226 int err;
1227 int cache;
1228 u_quad_t *frev;
1229 struct mbuf **mrq;
1230 struct mbuf **mbp;
1231 caddr_t *bposp;
1232{
1233 register u_int32_t *tl;
1234 register struct mbuf *mreq;
1235 caddr_t bpos;
1236 struct mbuf *mb, *mb2;
1237
1238 MGETHDR(mreq, M_WAIT, MT_DATA);
1239 mb = mreq;
1240 /*
1241 * If this is a big reply, use a cluster else
1242 * try and leave leading space for the lower level headers.
1243 */
1244 siz += RPC_REPLYSIZ;
1245 if ((max_hdr + siz) >= MINCLSIZE) {
1246 MCLGET(mreq, M_WAIT);
1247 } else
1248 mreq->m_data += max_hdr;
1249 tl = mtod(mreq, u_int32_t *);
1250 mreq->m_len = 6 * NFSX_UNSIGNED;
1251 bpos = ((caddr_t)tl) + mreq->m_len;
1252 *tl++ = txdr_unsigned(nd->nd_retxid);
1253 *tl++ = rpc_reply;
1254 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1255 *tl++ = rpc_msgdenied;
1256 if (err & NFSERR_AUTHERR) {
1257 *tl++ = rpc_autherr;
1258 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1259 mreq->m_len -= NFSX_UNSIGNED;
1260 bpos -= NFSX_UNSIGNED;
1261 } else {
1262 *tl++ = rpc_mismatch;
1263 *tl++ = txdr_unsigned(RPC_VER2);
1264 *tl = txdr_unsigned(RPC_VER2);
1265 }
1266 } else {
1267 *tl++ = rpc_msgaccepted;
1268
1269 /*
1270 * For Kerberos authentication, we must send the nickname
1271 * verifier back, otherwise just RPCAUTH_NULL.
1272 */
1273 if (nd->nd_flag & ND_KERBFULL) {
1274 register struct nfsuid *nuidp;
1275 struct timeval ktvin, ktvout;
1276
1277 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1278 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1279 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1280 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1281 &nuidp->nu_haddr, nd->nd_nam2)))
1282 break;
1283 }
1284 if (nuidp) {
1285 ktvin.tv_sec =
1286 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1287 ktvin.tv_usec =
1288 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1289
1290 /*
1291 * Encrypt the timestamp in ecb mode using the
1292 * session key.
1293 */
1294#ifdef NFSKERB
1295 XXX
1296#endif
1297
1298 *tl++ = rpc_auth_kerb;
1299 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1300 *tl = ktvout.tv_sec;
1301 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1302 *tl++ = ktvout.tv_usec;
1303 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1304 } else {
1305 *tl++ = 0;
1306 *tl++ = 0;
1307 }
1308 } else {
1309 *tl++ = 0;
1310 *tl++ = 0;
1311 }
1312 switch (err) {
1313 case EPROGUNAVAIL:
1314 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1315 break;
1316 case EPROGMISMATCH:
1317 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1318 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1319 if (nd->nd_flag & ND_NQNFS) {
1320 *tl++ = txdr_unsigned(3);
1321 *tl = txdr_unsigned(3);
1322 } else {
1323 *tl++ = txdr_unsigned(2);
1324 *tl = txdr_unsigned(3);
1325 }
1326 break;
1327 case EPROCUNAVAIL:
1328 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1329 break;
1330 case EBADRPC:
1331 *tl = txdr_unsigned(RPC_GARBAGE);
1332 break;
1333 default:
1334 *tl = 0;
1335 if (err != NFSERR_RETVOID) {
1336 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1337 if (err)
1338 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1339 else
1340 *tl = 0;
1341 }
1342 break;
1343 };
1344 }
1345
1346 /*
1347 * For nqnfs, piggyback lease as requested.
1348 */
1349 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1350 if (nd->nd_flag & ND_LEASE) {
1351 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1352 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1353 *tl++ = txdr_unsigned(cache);
1354 *tl++ = txdr_unsigned(nd->nd_duration);
1355 txdr_hyper(*frev, tl);
1356 } else {
1357 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1358 *tl = 0;
1359 }
1360 }
1361 if (mrq != NULL)
1362 *mrq = mreq;
1363 *mbp = mb;
1364 *bposp = bpos;
1365 if (err != 0 && err != NFSERR_RETVOID)
1366 nfsstats.srvrpc_errs++;
1367 return (0);
1368}
1369
1370
1371#endif /* NFS_NOSERVER */
1372/*
1373 * Nfs timer routine
1374 * Scan the nfsreq list and retranmit any requests that have timed out
1375 * To avoid retransmission attempts on STREAM sockets (in the future) make
1376 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1377 */
1378void
1379nfs_timer(arg)
1380 void *arg; /* never used */
1381{
1382 register struct nfsreq *rep;
1383 register struct mbuf *m;
1384 register struct socket *so;
1385 register struct nfsmount *nmp;
1386 register int timeo;
1387 int s, error;
1388#ifndef NFS_NOSERVER
1389 static long lasttime = 0;
1390 register struct nfssvc_sock *slp;
1391 u_quad_t cur_usec;
1392#endif /* NFS_NOSERVER */
dadab5e9 1393 struct thread *td = &thread0; /* XXX for credentials, will break if sleep */
984263bc
MD
1394
1395 s = splnet();
1396 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1397 nmp = rep->r_nmp;
1398 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1399 continue;
dadab5e9 1400 if (nfs_sigintr(nmp, rep, rep->r_td)) {
984263bc
MD
1401 nfs_softterm(rep);
1402 continue;
1403 }
1404 if (rep->r_rtt >= 0) {
1405 rep->r_rtt++;
1406 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1407 timeo = nmp->nm_timeo;
1408 else
1409 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1410 if (nmp->nm_timeouts > 0)
1411 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1412 if (rep->r_rtt <= timeo)
1413 continue;
1414 if (nmp->nm_timeouts < 8)
1415 nmp->nm_timeouts++;
1416 }
1417 /*
1418 * Check for server not responding
1419 */
1420 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1421 rep->r_rexmit > nmp->nm_deadthresh) {
dadab5e9 1422 nfs_msg(rep->r_td,
984263bc
MD
1423 nmp->nm_mountp->mnt_stat.f_mntfromname,
1424 "not responding");
1425 rep->r_flags |= R_TPRINTFMSG;
1426 }
1427 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1428 nfsstats.rpctimeouts++;
1429 nfs_softterm(rep);
1430 continue;
1431 }
1432 if (nmp->nm_sotype != SOCK_DGRAM) {
1433 if (++rep->r_rexmit > NFS_MAXREXMIT)
1434 rep->r_rexmit = NFS_MAXREXMIT;
1435 continue;
1436 }
1437 if ((so = nmp->nm_so) == NULL)
1438 continue;
1439
1440 /*
1441 * If there is enough space and the window allows..
1442 * Resend it
1443 * Set r_rtt to -1 in case we fail to send it now.
1444 */
1445 rep->r_rtt = -1;
1446 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1447 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1448 (rep->r_flags & R_SENT) ||
1449 nmp->nm_sent < nmp->nm_cwnd) &&
1450 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1451 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1452 error = (*so->so_proto->pr_usrreqs->pru_send)
1453 (so, 0, m, (struct sockaddr *)0,
dadab5e9 1454 (struct mbuf *)0, td);
984263bc
MD
1455 else
1456 error = (*so->so_proto->pr_usrreqs->pru_send)
1457 (so, 0, m, nmp->nm_nam, (struct mbuf *)0,
dadab5e9 1458 td);
984263bc
MD
1459 if (error) {
1460 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1461 so->so_error = 0;
1462 } else {
1463 /*
1464 * Iff first send, start timing
1465 * else turn timing off, backoff timer
1466 * and divide congestion window by 2.
1467 */
1468 if (rep->r_flags & R_SENT) {
1469 rep->r_flags &= ~R_TIMING;
1470 if (++rep->r_rexmit > NFS_MAXREXMIT)
1471 rep->r_rexmit = NFS_MAXREXMIT;
1472 nmp->nm_cwnd >>= 1;
1473 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1474 nmp->nm_cwnd = NFS_CWNDSCALE;
1475 nfsstats.rpcretries++;
1476 } else {
1477 rep->r_flags |= R_SENT;
1478 nmp->nm_sent += NFS_CWNDSCALE;
1479 }
1480 rep->r_rtt = 0;
1481 }
1482 }
1483 }
1484#ifndef NFS_NOSERVER
1485 /*
1486 * Call the nqnfs server timer once a second to handle leases.
1487 */
1488 if (lasttime != time_second) {
1489 lasttime = time_second;
1490 nqnfs_serverd();
1491 }
1492
1493 /*
1494 * Scan the write gathering queues for writes that need to be
1495 * completed now.
1496 */
1497 cur_usec = nfs_curusec();
1498 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1499 slp = slp->ns_chain.tqe_next) {
1500 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1501 nfsrv_wakenfsd(slp);
1502 }
1503#endif /* NFS_NOSERVER */
1504 splx(s);
1505 nfs_timer_handle = timeout(nfs_timer, (void *)0, nfs_ticks);
1506}
1507
1508/*
1509 * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1510 * wait for all requests to complete. This is used by forced unmounts
1511 * to terminate any outstanding RPCs.
1512 */
1513int
1514nfs_nmcancelreqs(nmp)
1515 struct nfsmount *nmp;
1516{
1517 struct nfsreq *req;
1518 int i, s;
1519
1520 s = splnet();
1521 TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
1522 if (nmp != req->r_nmp || req->r_mrep != NULL ||
1523 (req->r_flags & R_SOFTTERM))
1524 continue;
1525 nfs_softterm(req);
1526 }
1527 splx(s);
1528
1529 for (i = 0; i < 30; i++) {
1530 s = splnet();
1531 TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
1532 if (nmp == req->r_nmp)
1533 break;
1534 }
1535 splx(s);
1536 if (req == NULL)
1537 return (0);
1538 tsleep(&lbolt, PSOCK, "nfscancel", 0);
1539 }
1540 return (EBUSY);
1541}
1542
1543/*
1544 * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT).
1545 * The nm_send count is decremented now to avoid deadlocks when the process in
1546 * soreceive() hasn't yet managed to send its own request.
1547 */
1548
1549static void
1550nfs_softterm(rep)
1551 struct nfsreq *rep;
1552{
1553 rep->r_flags |= R_SOFTTERM;
1554
1555 if (rep->r_flags & R_SENT) {
1556 rep->r_nmp->nm_sent -= NFS_CWNDSCALE;
1557 rep->r_flags &= ~R_SENT;
1558 }
1559}
1560
1561/*
1562 * Test for a termination condition pending on the process.
1563 * This is used for NFSMNT_INT mounts.
1564 */
1565int
dadab5e9 1566nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
984263bc
MD
1567{
1568 sigset_t tmpset;
dadab5e9 1569 struct proc *p;
984263bc
MD
1570
1571 if (rep && (rep->r_flags & R_SOFTTERM))
1572 return (EINTR);
1573 /* Terminate all requests while attempting a forced unmount. */
1574 if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
1575 return (EINTR);
1576 if (!(nmp->nm_flag & NFSMNT_INT))
1577 return (0);
dadab5e9
MD
1578 KKASSERT(td);
1579 if ((p = td->td_proc) == NULL)
984263bc
MD
1580 return (0);
1581
1582 tmpset = p->p_siglist;
1583 SIGSETNAND(tmpset, p->p_sigmask);
1584 SIGSETNAND(tmpset, p->p_sigignore);
1585 if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset))
1586 return (EINTR);
1587
1588 return (0);
1589}
1590
1591/*
1592 * Lock a socket against others.
1593 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1594 * and also to avoid race conditions between the processes with nfs requests
1595 * in progress when a reconnect is necessary.
1596 */
1597int
dadab5e9 1598nfs_sndlock(struct nfsreq *rep)
984263bc 1599{
dadab5e9
MD
1600 int *statep = &rep->r_nmp->nm_state;
1601 struct thread *td;
984263bc
MD
1602 int slpflag = 0, slptimeo = 0;
1603
dadab5e9 1604 td = rep->r_td;
984263bc
MD
1605 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1606 slpflag = PCATCH;
1607 while (*statep & NFSSTA_SNDLOCK) {
dadab5e9 1608 if (nfs_sigintr(rep->r_nmp, rep, td))
984263bc
MD
1609 return (EINTR);
1610 *statep |= NFSSTA_WANTSND;
1611 (void) tsleep((caddr_t)statep, slpflag | (PZERO - 1),
1612 "nfsndlck", slptimeo);
1613 if (slpflag == PCATCH) {
1614 slpflag = 0;
1615 slptimeo = 2 * hz;
1616 }
1617 }
1618 /* Always fail if our request has been cancelled. */
1619 if ((rep->r_flags & R_SOFTTERM))
1620 return (EINTR);
1621 *statep |= NFSSTA_SNDLOCK;
1622 return (0);
1623}
1624
1625/*
1626 * Unlock the stream socket for others.
1627 */
1628void
1629nfs_sndunlock(rep)
1630 struct nfsreq *rep;
1631{
1632 register int *statep = &rep->r_nmp->nm_state;
1633
1634 if ((*statep & NFSSTA_SNDLOCK) == 0)
1635 panic("nfs sndunlock");
1636 *statep &= ~NFSSTA_SNDLOCK;
1637 if (*statep & NFSSTA_WANTSND) {
1638 *statep &= ~NFSSTA_WANTSND;
1639 wakeup((caddr_t)statep);
1640 }
1641}
1642
1643static int
1644nfs_rcvlock(rep)
1645 register struct nfsreq *rep;
1646{
1647 register int *statep = &rep->r_nmp->nm_state;
1648 int slpflag, slptimeo = 0;
1649
1650 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1651 slpflag = PCATCH;
1652 else
1653 slpflag = 0;
1654 while (*statep & NFSSTA_RCVLOCK) {
dadab5e9 1655 if (nfs_sigintr(rep->r_nmp, rep, rep->r_td))
984263bc
MD
1656 return (EINTR);
1657 *statep |= NFSSTA_WANTRCV;
1658 (void) tsleep((caddr_t)statep, slpflag | (PZERO - 1), "nfsrcvlk",
1659 slptimeo);
1660 /*
1661 * If our reply was recieved while we were sleeping,
1662 * then just return without taking the lock to avoid a
1663 * situation where a single iod could 'capture' the
1664 * recieve lock.
1665 */
1666 if (rep->r_mrep != NULL)
1667 return (EALREADY);
1668 if (slpflag == PCATCH) {
1669 slpflag = 0;
1670 slptimeo = 2 * hz;
1671 }
1672 }
1673 *statep |= NFSSTA_RCVLOCK;
1674 return (0);
1675}
1676
1677/*
1678 * Unlock the stream socket for others.
1679 */
1680static void
1681nfs_rcvunlock(rep)
1682 register struct nfsreq *rep;
1683{
1684 register int *statep = &rep->r_nmp->nm_state;
1685
1686 if ((*statep & NFSSTA_RCVLOCK) == 0)
1687 panic("nfs rcvunlock");
1688 *statep &= ~NFSSTA_RCVLOCK;
1689 if (*statep & NFSSTA_WANTRCV) {
1690 *statep &= ~NFSSTA_WANTRCV;
1691 wakeup((caddr_t)statep);
1692 }
1693}
1694
1695/*
1696 * nfs_realign:
1697 *
1698 * Check for badly aligned mbuf data and realign by copying the unaligned
1699 * portion of the data into a new mbuf chain and freeing the portions
1700 * of the old chain that were replaced.
1701 *
1702 * We cannot simply realign the data within the existing mbuf chain
1703 * because the underlying buffers may contain other rpc commands and
1704 * we cannot afford to overwrite them.
1705 *
1706 * We would prefer to avoid this situation entirely. The situation does
1707 * not occur with NFS/UDP and is supposed to only occassionally occur
1708 * with TCP. Use vfs.nfs.realign_count and realign_test to check this.
1709 */
1710static void
1711nfs_realign(pm, hsiz)
1712 register struct mbuf **pm;
1713 int hsiz;
1714{
1715 struct mbuf *m;
1716 struct mbuf *n = NULL;
1717 int off = 0;
1718
1719 ++nfs_realign_test;
1720
1721 while ((m = *pm) != NULL) {
1722 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) {
1723 MGET(n, M_WAIT, MT_DATA);
1724 if (m->m_len >= MINCLSIZE) {
1725 MCLGET(n, M_WAIT);
1726 }
1727 n->m_len = 0;
1728 break;
1729 }
1730 pm = &m->m_next;
1731 }
1732
1733 /*
1734 * If n is non-NULL, loop on m copying data, then replace the
1735 * portion of the chain that had to be realigned.
1736 */
1737 if (n != NULL) {
1738 ++nfs_realign_count;
1739 while (m) {
1740 m_copyback(n, off, m->m_len, mtod(m, caddr_t));
1741 off += m->m_len;
1742 m = m->m_next;
1743 }
1744 m_freem(*pm);
1745 *pm = n;
1746 }
1747}
1748
1749#ifndef NFS_NOSERVER
1750
1751/*
1752 * Parse an RPC request
1753 * - verify it
1754 * - fill in the cred struct.
1755 */
1756int
1757nfs_getreq(nd, nfsd, has_header)
1758 register struct nfsrv_descript *nd;
1759 struct nfsd *nfsd;
1760 int has_header;
1761{
1762 register int len, i;
1763 register u_int32_t *tl;
1764 register int32_t t1;
1765 struct uio uio;
1766 struct iovec iov;
1767 caddr_t dpos, cp2, cp;
1768 u_int32_t nfsvers, auth_type;
1769 uid_t nickuid;
1770 int error = 0, nqnfs = 0, ticklen;
1771 struct mbuf *mrep, *md;
1772 register struct nfsuid *nuidp;
1773 struct timeval tvin, tvout;
1774#if 0 /* until encrypted keys are implemented */
1775 NFSKERBKEYSCHED_T keys; /* stores key schedule */
1776#endif
1777
1778 mrep = nd->nd_mrep;
1779 md = nd->nd_md;
1780 dpos = nd->nd_dpos;
1781 if (has_header) {
1782 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1783 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1784 if (*tl++ != rpc_call) {
1785 m_freem(mrep);
1786 return (EBADRPC);
1787 }
1788 } else
1789 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1790 nd->nd_repstat = 0;
1791 nd->nd_flag = 0;
1792 if (*tl++ != rpc_vers) {
1793 nd->nd_repstat = ERPCMISMATCH;
1794 nd->nd_procnum = NFSPROC_NOOP;
1795 return (0);
1796 }
1797 if (*tl != nfs_prog) {
1798 if (*tl == nqnfs_prog)
1799 nqnfs++;
1800 else {
1801 nd->nd_repstat = EPROGUNAVAIL;
1802 nd->nd_procnum = NFSPROC_NOOP;
1803 return (0);
1804 }
1805 }
1806 tl++;
1807 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1808 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1809 (nfsvers != NQNFS_VER3 && nqnfs)) {
1810 nd->nd_repstat = EPROGMISMATCH;
1811 nd->nd_procnum = NFSPROC_NOOP;
1812 return (0);
1813 }
1814 if (nqnfs)
1815 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1816 else if (nfsvers == NFS_VER3)
1817 nd->nd_flag = ND_NFSV3;
1818 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1819 if (nd->nd_procnum == NFSPROC_NULL)
1820 return (0);
1821 if (nd->nd_procnum >= NFS_NPROCS ||
1822 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1823 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1824 nd->nd_repstat = EPROCUNAVAIL;
1825 nd->nd_procnum = NFSPROC_NOOP;
1826 return (0);
1827 }
1828 if ((nd->nd_flag & ND_NFSV3) == 0)
1829 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1830 auth_type = *tl++;
1831 len = fxdr_unsigned(int, *tl++);
1832 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1833 m_freem(mrep);
1834 return (EBADRPC);
1835 }
1836
1837 nd->nd_flag &= ~ND_KERBAUTH;
1838 /*
1839 * Handle auth_unix or auth_kerb.
1840 */
1841 if (auth_type == rpc_auth_unix) {
1842 len = fxdr_unsigned(int, *++tl);
1843 if (len < 0 || len > NFS_MAXNAMLEN) {
1844 m_freem(mrep);
1845 return (EBADRPC);
1846 }
1847 nfsm_adv(nfsm_rndup(len));
1848 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1849 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1850 nd->nd_cr.cr_ref = 1;
1851 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1852 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1853 len = fxdr_unsigned(int, *tl);
1854 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1855 m_freem(mrep);
1856 return (EBADRPC);
1857 }
1858 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1859 for (i = 1; i <= len; i++)
1860 if (i < NGROUPS)
1861 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1862 else
1863 tl++;
1864 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
1865 if (nd->nd_cr.cr_ngroups > 1)
1866 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1867 len = fxdr_unsigned(int, *++tl);
1868 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1869 m_freem(mrep);
1870 return (EBADRPC);
1871 }
1872 if (len > 0)
1873 nfsm_adv(nfsm_rndup(len));
1874 } else if (auth_type == rpc_auth_kerb) {
1875 switch (fxdr_unsigned(int, *tl++)) {
1876 case RPCAKN_FULLNAME:
1877 ticklen = fxdr_unsigned(int, *tl);
1878 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1879 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1880 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1881 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1882 m_freem(mrep);
1883 return (EBADRPC);
1884 }
1885 uio.uio_offset = 0;
1886 uio.uio_iov = &iov;
1887 uio.uio_iovcnt = 1;
1888 uio.uio_segflg = UIO_SYSSPACE;
1889 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1890 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1891 nfsm_mtouio(&uio, uio.uio_resid);
1892 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1893 if (*tl++ != rpc_auth_kerb ||
1894 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1895 printf("Bad kerb verifier\n");
1896 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1897 nd->nd_procnum = NFSPROC_NOOP;
1898 return (0);
1899 }
1900 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1901 tl = (u_int32_t *)cp;
1902 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1903 printf("Not fullname kerb verifier\n");
1904 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1905 nd->nd_procnum = NFSPROC_NOOP;
1906 return (0);
1907 }
1908 cp += NFSX_UNSIGNED;
1909 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1910 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1911 nd->nd_flag |= ND_KERBFULL;
1912 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1913 break;
1914 case RPCAKN_NICKNAME:
1915 if (len != 2 * NFSX_UNSIGNED) {
1916 printf("Kerb nickname short\n");
1917 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1918 nd->nd_procnum = NFSPROC_NOOP;
1919 return (0);
1920 }
1921 nickuid = fxdr_unsigned(uid_t, *tl);
1922 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1923 if (*tl++ != rpc_auth_kerb ||
1924 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1925 printf("Kerb nick verifier bad\n");
1926 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1927 nd->nd_procnum = NFSPROC_NOOP;
1928 return (0);
1929 }
1930 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1931 tvin.tv_sec = *tl++;
1932 tvin.tv_usec = *tl;
1933
1934 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1935 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1936 if (nuidp->nu_cr.cr_uid == nickuid &&
1937 (!nd->nd_nam2 ||
1938 netaddr_match(NU_NETFAM(nuidp),
1939 &nuidp->nu_haddr, nd->nd_nam2)))
1940 break;
1941 }
1942 if (!nuidp) {
1943 nd->nd_repstat =
1944 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1945 nd->nd_procnum = NFSPROC_NOOP;
1946 return (0);
1947 }
1948
1949 /*
1950 * Now, decrypt the timestamp using the session key
1951 * and validate it.
1952 */
1953#ifdef NFSKERB
1954 XXX
1955#endif
1956
1957 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1958 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1959 if (nuidp->nu_expire < time_second ||
1960 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1961 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1962 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1963 nuidp->nu_expire = 0;
1964 nd->nd_repstat =
1965 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1966 nd->nd_procnum = NFSPROC_NOOP;
1967 return (0);
1968 }
1969 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1970 nd->nd_flag |= ND_KERBNICK;
1971 };
1972 } else {
1973 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1974 nd->nd_procnum = NFSPROC_NOOP;
1975 return (0);
1976 }
1977
1978 /*
1979 * For nqnfs, get piggybacked lease request.
1980 */
1981 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1982 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1983 nd->nd_flag |= fxdr_unsigned(int, *tl);
1984 if (nd->nd_flag & ND_LEASE) {
1985 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1986 nd->nd_duration = fxdr_unsigned(int32_t, *tl);
1987 } else
1988 nd->nd_duration = NQ_MINLEASE;
1989 } else
1990 nd->nd_duration = NQ_MINLEASE;
1991 nd->nd_md = md;
1992 nd->nd_dpos = dpos;
1993 return (0);
1994nfsmout:
1995 return (error);
1996}
1997
1998#endif
1999
b70ddfbf
MD
2000/*
2001 * Send a message to the originating process's terminal. The thread and/or
2002 * process may be NULL. YYY the thread should not be NULL but there may
2003 * still be some uio_td's that are still being passed as NULL through to
2004 * nfsm_request().
2005 */
984263bc 2006static int
dadab5e9 2007nfs_msg(struct thread *td, char *server, char *msg)
984263bc
MD
2008{
2009 tpr_t tpr;
2010
b70ddfbf 2011 if (td && td->td_proc)
dadab5e9 2012 tpr = tprintf_open(td->td_proc);
984263bc
MD
2013 else
2014 tpr = NULL;
2015 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2016 tprintf_close(tpr);
2017 return (0);
2018}
2019
2020#ifndef NFS_NOSERVER
2021/*
2022 * Socket upcall routine for the nfsd sockets.
2023 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
2024 * Essentially do as much as possible non-blocking, else punt and it will
2025 * be called with M_WAIT from an nfsd.
2026 */
2027void
2028nfsrv_rcv(so, arg, waitflag)
2029 struct socket *so;
2030 void *arg;
2031 int waitflag;
2032{
2033 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2034 register struct mbuf *m;
2035 struct mbuf *mp;
2036 struct sockaddr *nam;
2037 struct uio auio;
2038 int flags, error;
2039
2040 if ((slp->ns_flag & SLP_VALID) == 0)
2041 return;
2042#ifdef notdef
2043 /*
2044 * Define this to test for nfsds handling this under heavy load.
2045 */
2046 if (waitflag == M_DONTWAIT) {
2047 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
2048 }
2049#endif
dadab5e9 2050 auio.uio_td = NULL;
984263bc
MD
2051 if (so->so_type == SOCK_STREAM) {
2052 /*
2053 * If there are already records on the queue, defer soreceive()
2054 * to an nfsd so that there is feedback to the TCP layer that
2055 * the nfs servers are heavily loaded.
2056 */
2057 if (STAILQ_FIRST(&slp->ns_rec) && waitflag == M_DONTWAIT) {
2058 slp->ns_flag |= SLP_NEEDQ;
2059 goto dorecs;
2060 }
2061
2062 /*
2063 * Do soreceive().
2064 */
2065 auio.uio_resid = 1000000000;
2066 flags = MSG_DONTWAIT;
2067 error = so->so_proto->pr_usrreqs->pru_soreceive
2068 (so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
2069 if (error || mp == (struct mbuf *)0) {
2070 if (error == EWOULDBLOCK)
2071 slp->ns_flag |= SLP_NEEDQ;
2072 else
2073 slp->ns_flag |= SLP_DISCONN;
2074 goto dorecs;
2075 }
2076 m = mp;
2077 if (slp->ns_rawend) {
2078 slp->ns_rawend->m_next = m;
2079 slp->ns_cc += 1000000000 - auio.uio_resid;
2080 } else {
2081 slp->ns_raw = m;
2082 slp->ns_cc = 1000000000 - auio.uio_resid;
2083 }
2084 while (m->m_next)
2085 m = m->m_next;
2086 slp->ns_rawend = m;
2087
2088 /*
2089 * Now try and parse record(s) out of the raw stream data.
2090 */
2091 error = nfsrv_getstream(slp, waitflag);
2092 if (error) {
2093 if (error == EPERM)
2094 slp->ns_flag |= SLP_DISCONN;
2095 else
2096 slp->ns_flag |= SLP_NEEDQ;
2097 }
2098 } else {
2099 do {
2100 auio.uio_resid = 1000000000;
2101 flags = MSG_DONTWAIT;
2102 error = so->so_proto->pr_usrreqs->pru_soreceive
2103 (so, &nam, &auio, &mp,
2104 (struct mbuf **)0, &flags);
2105 if (mp) {
2106 struct nfsrv_rec *rec;
2107 rec = malloc(sizeof(struct nfsrv_rec),
2108 M_NFSRVDESC, waitflag);
2109 if (!rec) {
2110 if (nam)
2111 FREE(nam, M_SONAME);
2112 m_freem(mp);
2113 continue;
2114 }
2115 nfs_realign(&mp, 10 * NFSX_UNSIGNED);
2116 rec->nr_address = nam;
2117 rec->nr_packet = mp;
2118 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2119 }
2120 if (error) {
2121 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2122 && error != EWOULDBLOCK) {
2123 slp->ns_flag |= SLP_DISCONN;
2124 goto dorecs;
2125 }
2126 }
2127 } while (mp);
2128 }
2129
2130 /*
2131 * Now try and process the request records, non-blocking.
2132 */
2133dorecs:
2134 if (waitflag == M_DONTWAIT &&
2135 (STAILQ_FIRST(&slp->ns_rec)
2136 || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
2137 nfsrv_wakenfsd(slp);
2138}
2139
2140/*
2141 * Try and extract an RPC request from the mbuf data list received on a
2142 * stream socket. The "waitflag" argument indicates whether or not it
2143 * can sleep.
2144 */
2145static int
2146nfsrv_getstream(slp, waitflag)
2147 register struct nfssvc_sock *slp;
2148 int waitflag;
2149{
2150 register struct mbuf *m, **mpp;
2151 register char *cp1, *cp2;
2152 register int len;
2153 struct mbuf *om, *m2, *recm;
2154 u_int32_t recmark;
2155
2156 if (slp->ns_flag & SLP_GETSTREAM)
2157 panic("nfs getstream");
2158 slp->ns_flag |= SLP_GETSTREAM;
2159 for (;;) {
2160 if (slp->ns_reclen == 0) {
2161 if (slp->ns_cc < NFSX_UNSIGNED) {
2162 slp->ns_flag &= ~SLP_GETSTREAM;
2163 return (0);
2164 }
2165 m = slp->ns_raw;
2166 if (m->m_len >= NFSX_UNSIGNED) {
2167 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2168 m->m_data += NFSX_UNSIGNED;
2169 m->m_len -= NFSX_UNSIGNED;
2170 } else {
2171 cp1 = (caddr_t)&recmark;
2172 cp2 = mtod(m, caddr_t);
2173 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2174 while (m->m_len == 0) {
2175 m = m->m_next;
2176 cp2 = mtod(m, caddr_t);
2177 }
2178 *cp1++ = *cp2++;
2179 m->m_data++;
2180 m->m_len--;
2181 }
2182 }
2183 slp->ns_cc -= NFSX_UNSIGNED;
2184 recmark = ntohl(recmark);
2185 slp->ns_reclen = recmark & ~0x80000000;
2186 if (recmark & 0x80000000)
2187 slp->ns_flag |= SLP_LASTFRAG;
2188 else
2189 slp->ns_flag &= ~SLP_LASTFRAG;
2190 if (slp->ns_reclen > NFS_MAXPACKET) {
2191 slp->ns_flag &= ~SLP_GETSTREAM;
2192 return (EPERM);
2193 }
2194 }
2195
2196 /*
2197 * Now get the record part.
2198 *
2199 * Note that slp->ns_reclen may be 0. Linux sometimes
2200 * generates 0-length RPCs
2201 */
2202 recm = NULL;
2203 if (slp->ns_cc == slp->ns_reclen) {
2204 recm = slp->ns_raw;
2205 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2206 slp->ns_cc = slp->ns_reclen = 0;
2207 } else if (slp->ns_cc > slp->ns_reclen) {
2208 len = 0;
2209 m = slp->ns_raw;
2210 om = (struct mbuf *)0;
2211
2212 while (len < slp->ns_reclen) {
2213 if ((len + m->m_len) > slp->ns_reclen) {
2214 m2 = m_copym(m, 0, slp->ns_reclen - len,
2215 waitflag);
2216 if (m2) {
2217 if (om) {
2218 om->m_next = m2;
2219 recm = slp->ns_raw;
2220 } else
2221 recm = m2;
2222 m->m_data += slp->ns_reclen - len;
2223 m->m_len -= slp->ns_reclen - len;
2224 len = slp->ns_reclen;
2225 } else {
2226 slp->ns_flag &= ~SLP_GETSTREAM;
2227 return (EWOULDBLOCK);
2228 }
2229 } else if ((len + m->m_len) == slp->ns_reclen) {
2230 om = m;
2231 len += m->m_len;
2232 m = m->m_next;
2233 recm = slp->ns_raw;
2234 om->m_next = (struct mbuf *)0;
2235 } else {
2236 om = m;
2237 len += m->m_len;
2238 m = m->m_next;
2239 }
2240 }
2241 slp->ns_raw = m;
2242 slp->ns_cc -= len;
2243 slp->ns_reclen = 0;
2244 } else {
2245 slp->ns_flag &= ~SLP_GETSTREAM;
2246 return (0);
2247 }
2248
2249 /*
2250 * Accumulate the fragments into a record.
2251 */
2252 mpp = &slp->ns_frag;
2253 while (*mpp)
2254 mpp = &((*mpp)->m_next);
2255 *mpp = recm;
2256 if (slp->ns_flag & SLP_LASTFRAG) {
2257 struct nfsrv_rec *rec;
2258 rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, waitflag);
2259 if (!rec) {
2260 m_freem(slp->ns_frag);
2261 } else {
2262 nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2263 rec->nr_address = (struct sockaddr *)0;
2264 rec->nr_packet = slp->ns_frag;
2265 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2266 }
2267 slp->ns_frag = (struct mbuf *)0;
2268 }
2269 }
2270}
2271
2272/*
2273 * Parse an RPC header.
2274 */
2275int
2276nfsrv_dorec(slp, nfsd, ndp)
2277 register struct nfssvc_sock *slp;
2278 struct nfsd *nfsd;
2279 struct nfsrv_descript **ndp;
2280{
2281 struct nfsrv_rec *rec;
2282 register struct mbuf *m;
2283 struct sockaddr *nam;
2284 register struct nfsrv_descript *nd;
2285 int error;
2286
2287 *ndp = NULL;
2288 if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2289 return (ENOBUFS);
2290 rec = STAILQ_FIRST(&slp->ns_rec);
2291 STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2292 nam = rec->nr_address;
2293 m = rec->nr_packet;
2294 free(rec, M_NFSRVDESC);
2295 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2296 M_NFSRVDESC, M_WAITOK);
2297 nd->nd_md = nd->nd_mrep = m;
2298 nd->nd_nam2 = nam;
2299 nd->nd_dpos = mtod(m, caddr_t);
2300 error = nfs_getreq(nd, nfsd, TRUE);
2301 if (error) {
2302 if (nam) {
2303 FREE(nam, M_SONAME);
2304 }
2305 free((caddr_t)nd, M_NFSRVDESC);
2306 return (error);
2307 }
2308 *ndp = nd;
2309 nfsd->nfsd_nd = nd;
2310 return (0);
2311}
2312
2313/*
2314 * Search for a sleeping nfsd and wake it up.
2315 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2316 * running nfsds will go look for the work in the nfssvc_sock list.
2317 */
2318void
2319nfsrv_wakenfsd(slp)
2320 struct nfssvc_sock *slp;
2321{
2322 register struct nfsd *nd;
2323
2324 if ((slp->ns_flag & SLP_VALID) == 0)
2325 return;
2326 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2327 if (nd->nfsd_flag & NFSD_WAITING) {
2328 nd->nfsd_flag &= ~NFSD_WAITING;
2329 if (nd->nfsd_slp)
2330 panic("nfsd wakeup");
2331 slp->ns_sref++;
2332 nd->nfsd_slp = slp;
2333 wakeup((caddr_t)nd);
2334 return;
2335 }
2336 }
2337 slp->ns_flag |= SLP_DOREC;
2338 nfsd_head_flag |= NFSD_CHECKSLP;
2339}
2340#endif /* NFS_NOSERVER */