wpi - Remove debugging leftovers.
[dragonfly.git] / sys / dev / netif / wpi / if_wpi.c
CommitLineData
4db7dd1b
JT
1/*-
2 * Copyright (c) 2006,2007
3 * Damien Bergamini <damien.bergamini@free.fr>
4 * Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
2fbc2f97
SW
17 *
18 * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
4db7dd1b
JT
19 */
20
21#define VERSION "20071127"
22
4db7dd1b
JT
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 *
26 * The 3945ABG network adapter doesn't use traditional hardware as
27 * many other adaptors do. Instead at run time the eeprom is set into a known
28 * state and told to load boot firmware. The boot firmware loads an init and a
29 * main binary firmware image into SRAM on the card via DMA.
30 * Once the firmware is loaded, the driver/hw then
31 * communicate by way of circular dma rings via the the SRAM to the firmware.
32 *
33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34 * The 4 tx data rings allow for prioritization QoS.
35 *
36 * The rx data ring consists of 32 dma buffers. Two registers are used to
37 * indicate where in the ring the driver and the firmware are up to. The
38 * driver sets the initial read index (reg1) and the initial write index (reg2),
39 * the firmware updates the read index (reg1) on rx of a packet and fires an
40 * interrupt. The driver then processes the buffers starting at reg1 indicating
41 * to the firmware which buffers have been accessed by updating reg2. At the
42 * same time allocating new memory for the processed buffer.
43 *
44 * A similar thing happens with the tx rings. The difference is the firmware
45 * stop processing buffers once the queue is full and until confirmation
46 * of a successful transmition (tx_intr) has occurred.
47 *
48 * The command ring operates in the same manner as the tx queues.
49 *
50 * All communication direct to the card (ie eeprom) is classed as Stage1
51 * communication
52 *
53 * All communication via the firmware to the card is classed as State2.
54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55 * firmware. The bootstrap firmware and runtime firmware are loaded
56 * from host memory via dma to the card then told to execute. From this point
57 * on the majority of communications between the driver and the card goes
58 * via the firmware.
59 */
60
61#include <sys/param.h>
62#include <sys/sysctl.h>
63#include <sys/sockio.h>
64#include <sys/mbuf.h>
65#include <sys/kernel.h>
66#include <sys/socket.h>
67#include <sys/systm.h>
68#include <sys/malloc.h>
69#include <sys/queue.h>
70#include <sys/taskqueue.h>
71#include <sys/module.h>
72#include <sys/bus.h>
73#include <sys/endian.h>
74#include <sys/linker.h>
75#include <sys/firmware.h>
76
77#include <sys/bus.h>
78#include <sys/resource.h>
79#include <sys/rman.h>
80
81#include <bus/pci/pcireg.h>
82#include <bus/pci/pcivar.h>
83
84#include <net/bpf.h>
85#include <net/if.h>
86#include <net/if_arp.h>
4db7dd1b
JT
87#include <net/ifq_var.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <netproto/802_11/ieee80211_var.h>
94#include <netproto/802_11/ieee80211_radiotap.h>
95#include <netproto/802_11/ieee80211_regdomain.h>
96#include <netproto/802_11/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104/* XXX: move elsewhere */
105#define abs(x) (((x) < 0) ? -(x) : (x))
106
4db7dd1b
JT
107#include "if_wpireg.h"
108#include "if_wpivar.h"
109
110#define WPI_DEBUG
111
112#ifdef WPI_DEBUG
113#define DPRINTF(x) do { if (wpi_debug != 0) kprintf x; } while (0)
114#define DPRINTFN(n, x) do { if (wpi_debug & n) kprintf x; } while (0)
115#define WPI_DEBUG_SET (wpi_debug != 0)
116
117enum {
118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */
119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */
120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/
121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */
122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/
123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */
124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */
125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */
126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */
127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */
128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */
129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */
130 WPI_DEBUG_ANY = 0xffffffff
131};
132
133static int wpi_debug = 1;
134SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135TUNABLE_INT("debug.wpi", &wpi_debug);
136
137#else
138#define DPRINTF(x)
139#define DPRINTFN(n, x)
140#define WPI_DEBUG_SET 0
141#endif
142
143struct wpi_ident {
144 uint16_t vendor;
145 uint16_t device;
146 uint16_t subdevice;
147 const char *name;
148};
149
150static const struct wpi_ident wpi_ident_table[] = {
151 /* The below entries support ABG regardless of the subid */
152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 /* The below entries only support BG */
155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" },
156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" },
157 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" },
158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" },
159 { 0, 0, 0, NULL }
160};
161
162static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 const char name[IFNAMSIZ], int unit, int opmode,
164 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165 const uint8_t mac[IEEE80211_ADDR_LEN]);
166static void wpi_vap_delete(struct ieee80211vap *);
167static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 void **, bus_size_t, bus_size_t, int);
169static void wpi_dma_contig_free(struct wpi_dma_info *);
170static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171static int wpi_alloc_shared(struct wpi_softc *);
172static void wpi_free_shared(struct wpi_softc *);
173static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 int, int);
178static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 const uint8_t mac[IEEE80211_ADDR_LEN]);
182static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183static void wpi_mem_lock(struct wpi_softc *);
184static void wpi_mem_unlock(struct wpi_softc *);
185static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
186static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188 const uint32_t *, int);
189static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190static int wpi_alloc_fwmem(struct wpi_softc *);
191static void wpi_free_fwmem(struct wpi_softc *);
192static int wpi_load_firmware(struct wpi_softc *);
193static void wpi_unload_firmware(struct wpi_softc *);
194static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196 struct wpi_rx_data *);
197static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199static void wpi_notif_intr(struct wpi_softc *);
200static void wpi_intr(void *);
201static uint8_t wpi_plcp_signal(int);
202static void wpi_watchdog(void *);
203static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 struct ieee80211_node *, int);
205static void wpi_start(struct ifnet *);
206static void wpi_start_locked(struct ifnet *);
207static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 const struct ieee80211_bpf_params *);
209static void wpi_scan_start(struct ieee80211com *);
210static void wpi_scan_end(struct ieee80211com *);
211static void wpi_set_channel(struct ieee80211com *);
212static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213static void wpi_scan_mindwell(struct ieee80211_scan_state *);
214static int wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215static void wpi_read_eeprom(struct wpi_softc *,
216 uint8_t macaddr[IEEE80211_ADDR_LEN]);
217static void wpi_read_eeprom_channels(struct wpi_softc *, int);
218static void wpi_read_eeprom_group(struct wpi_softc *, int);
219static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220static int wpi_wme_update(struct ieee80211com *);
221static int wpi_mrr_setup(struct wpi_softc *);
222static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224#if 0
225static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226#endif
227static int wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228static int wpi_run(struct wpi_softc *, struct ieee80211vap *);
229static int wpi_scan(struct wpi_softc *);
230static int wpi_config(struct wpi_softc *);
231static void wpi_stop_master(struct wpi_softc *);
232static int wpi_power_up(struct wpi_softc *);
233static int wpi_reset(struct wpi_softc *);
234static void wpi_hwreset(void *, int);
235static void wpi_rfreset(void *, int);
236static void wpi_hw_config(struct wpi_softc *);
237static void wpi_init(void *);
238static void wpi_init_locked(struct wpi_softc *, int);
239static void wpi_stop(struct wpi_softc *);
240static void wpi_stop_locked(struct wpi_softc *);
241
242static void wpi_newassoc(struct ieee80211_node *, int);
243static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244 int);
245static void wpi_calib_timeout(void *);
246static void wpi_power_calibration(struct wpi_softc *, int);
247static int wpi_get_power_index(struct wpi_softc *,
248 struct wpi_power_group *, struct ieee80211_channel *, int);
249#ifdef WPI_DEBUG
250static const char *wpi_cmd_str(int);
251#endif
252static int wpi_probe(device_t);
253static int wpi_attach(device_t);
254static int wpi_detach(device_t);
255static int wpi_shutdown(device_t);
256static int wpi_suspend(device_t);
257static int wpi_resume(device_t);
258
259
260static device_method_t wpi_methods[] = {
261 /* Device interface */
262 DEVMETHOD(device_probe, wpi_probe),
263 DEVMETHOD(device_attach, wpi_attach),
264 DEVMETHOD(device_detach, wpi_detach),
265 DEVMETHOD(device_shutdown, wpi_shutdown),
266 DEVMETHOD(device_suspend, wpi_suspend),
267 DEVMETHOD(device_resume, wpi_resume),
268
269 { 0, 0 }
270};
271
272static driver_t wpi_driver = {
273 "wpi",
274 wpi_methods,
275 sizeof (struct wpi_softc)
276};
277
278static devclass_t wpi_devclass;
279
280DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
281
282static const uint8_t wpi_ridx_to_plcp[] = {
283 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284 /* R1-R4 (ral/ural is R4-R1) */
285 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286 /* CCK: device-dependent */
287 10, 20, 55, 110
288};
289static const uint8_t wpi_ridx_to_rate[] = {
290 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291 2, 4, 11, 22 /*CCK */
292};
293
294
295static int
296wpi_probe(device_t dev)
297{
298 const struct wpi_ident *ident;
299
300 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
301 if (pci_get_vendor(dev) == ident->vendor &&
302 pci_get_device(dev) == ident->device) {
303 device_set_desc(dev, ident->name);
304 return 0;
305 }
306 }
307 return ENXIO;
308}
309
310/**
311 * Load the firmare image from disk to the allocated dma buffer.
312 * we also maintain the reference to the firmware pointer as there
313 * is times where we may need to reload the firmware but we are not
314 * in a context that can access the filesystem (ie taskq cause by restart)
315 *
316 * @return 0 on success, an errno on failure
317 */
318static int
319wpi_load_firmware(struct wpi_softc *sc)
320{
321 const struct firmware *fp;
322 struct wpi_dma_info *dma = &sc->fw_dma;
323 const struct wpi_firmware_hdr *hdr;
4db7dd1b
JT
324 const uint8_t *itext, *idata, *rtext, *rdata, *btext;
325 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
326 int error;
327
4db7dd1b
JT
328 DPRINTFN(WPI_DEBUG_FIRMWARE,
329 ("Attempting Loading Firmware from wpi_fw module\n"));
330
331 WPI_UNLOCK(sc);
332
4db7dd1b
JT
333 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
334 device_printf(sc->sc_dev,
335 "could not load firmware image 'wpifw_fw'\n");
336 error = ENOENT;
337 WPI_LOCK(sc);
4db7dd1b
JT
338 goto fail;
339 }
340
341 fp = sc->fw_fp;
342
4db7dd1b
JT
343 WPI_LOCK(sc);
344
345
346 /* Validate the firmware is minimum a particular version */
347 if (fp->version < WPI_FW_MINVERSION) {
348 device_printf(sc->sc_dev,
349 "firmware version is too old. Need %d, got %d\n",
350 WPI_FW_MINVERSION,
351 fp->version);
352 error = ENXIO;
353 goto fail;
354 }
4db7dd1b
JT
355
356 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
357 device_printf(sc->sc_dev,
358 "firmware file too short: %zu bytes\n", fp->datasize);
359 error = ENXIO;
360 goto fail;
361 }
362
363 hdr = (const struct wpi_firmware_hdr *)fp->data;
364
365 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW |
366 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
367
368 rtextsz = le32toh(hdr->rtextsz);
369 rdatasz = le32toh(hdr->rdatasz);
370 itextsz = le32toh(hdr->itextsz);
371 idatasz = le32toh(hdr->idatasz);
372 btextsz = le32toh(hdr->btextsz);
373
374 /* check that all firmware segments are present */
375 if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
376 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
377 device_printf(sc->sc_dev,
378 "firmware file too short: %zu bytes\n", fp->datasize);
379 error = ENXIO; /* XXX appropriate error code? */
380 goto fail;
381 }
382
383 /* get pointers to firmware segments */
384 rtext = (const uint8_t *)(hdr + 1);
385 rdata = rtext + rtextsz;
386 itext = rdata + rdatasz;
387 idata = itext + itextsz;
388 btext = idata + idatasz;
389
390 DPRINTFN(WPI_DEBUG_FIRMWARE,
391 ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
392 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
393 (le32toh(hdr->version) & 0xff000000) >> 24,
394 (le32toh(hdr->version) & 0x00ff0000) >> 16,
395 (le32toh(hdr->version) & 0x0000ffff),
396 rtextsz, rdatasz,
397 itextsz, idatasz, btextsz));
398
399 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
400 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
401 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
402 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
403 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
404
405 /* sanity checks */
406 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
407 rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
408 itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
409 idatasz > WPI_FW_INIT_DATA_MAXSZ ||
410 btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
411 (btextsz & 3) != 0) {
412 device_printf(sc->sc_dev, "firmware invalid\n");
413 error = EINVAL;
414 goto fail;
415 }
416
417 /* copy initialization images into pre-allocated DMA-safe memory */
418 memcpy(dma->vaddr, idata, idatasz);
419 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
420
421 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
422
423 /* tell adapter where to find initialization images */
424 wpi_mem_lock(sc);
425 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
426 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
427 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
428 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
429 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
430 wpi_mem_unlock(sc);
431
432 /* load firmware boot code */
433 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
434 device_printf(sc->sc_dev, "Failed to load microcode\n");
435 goto fail;
436 }
437
438 /* now press "execute" */
439 WPI_WRITE(sc, WPI_RESET, 0);
440
441 /* wait at most one second for the first alive notification */
442 if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) {
443 device_printf(sc->sc_dev,
444 "timeout waiting for adapter to initialize\n");
445 goto fail;
446 }
447
448 /* copy runtime images into pre-allocated DMA-sage memory */
449 memcpy(dma->vaddr, rdata, rdatasz);
450 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
451 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
452
453 /* tell adapter where to find runtime images */
454 wpi_mem_lock(sc);
455 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
456 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
457 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
458 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
459 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
460 wpi_mem_unlock(sc);
461
462 /* wait at most one second for the first alive notification */
463 if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) {
464 device_printf(sc->sc_dev,
465 "timeout waiting for adapter to initialize2\n");
466 goto fail;
467 }
468
469 DPRINTFN(WPI_DEBUG_FIRMWARE,
470 ("Firmware loaded to driver successfully\n"));
4db7dd1b
JT
471 return error;
472fail:
473 wpi_unload_firmware(sc);
474 return error;
475}
476
477/**
478 * Free the referenced firmware image
479 */
480static void
481wpi_unload_firmware(struct wpi_softc *sc)
482{
483 struct ifnet *ifp;
484 ifp = sc->sc_ifp;
485
486 if (sc->fw_fp) {
487 WPI_UNLOCK(sc);
4db7dd1b 488 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4db7dd1b
JT
489 WPI_LOCK(sc);
490 sc->fw_fp = NULL;
491 }
492}
493
494static int
495wpi_attach(device_t dev)
496{
497 struct wpi_softc *sc = device_get_softc(dev);
498 struct ifnet *ifp;
499 struct ieee80211com *ic;
500 int ac, error, supportsa = 1;
501 uint32_t tmp;
502 const struct wpi_ident *ident;
503 uint8_t macaddr[IEEE80211_ADDR_LEN];
504
505 sc->sc_dev = dev;
506
507 if (bootverbose || WPI_DEBUG_SET)
508 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
509
510 /*
511 * Some card's only support 802.11b/g not a, check to see if
512 * this is one such card. A 0x0 in the subdevice table indicates
513 * the entire subdevice range is to be ignored.
514 */
515 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
516 if (ident->subdevice &&
517 pci_get_subdevice(dev) == ident->subdevice) {
518 supportsa = 0;
519 break;
520 }
521 }
522
523 /* Create the tasks that can be queued */
524 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
525 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
526
527 WPI_LOCK_INIT(sc);
528
529 callout_init(&sc->calib_to);
530 callout_init(&sc->watchdog_to);
531
532 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
533 device_printf(dev, "chip is in D%d power mode "
534 "-- setting to D0\n", pci_get_powerstate(dev));
535 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
536 }
537
538 /* disable the retry timeout register */
539 pci_write_config(dev, 0x41, 0, 1);
540
541 /* enable bus-mastering */
542 pci_enable_busmaster(dev);
543
544 sc->mem_rid = PCIR_BAR(0);
545 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
546 RF_ACTIVE);
547 if (sc->mem == NULL) {
548 device_printf(dev, "could not allocate memory resource\n");
549 error = ENOMEM;
550 goto fail;
551 }
552
553 sc->sc_st = rman_get_bustag(sc->mem);
554 sc->sc_sh = rman_get_bushandle(sc->mem);
555
556 sc->irq_rid = 0;
557 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
558 RF_ACTIVE | RF_SHAREABLE);
559 if (sc->irq == NULL) {
560 device_printf(dev, "could not allocate interrupt resource\n");
561 error = ENOMEM;
562 goto fail;
563 }
564
565 /*
566 * Allocate DMA memory for firmware transfers.
567 */
568 if ((error = wpi_alloc_fwmem(sc)) != 0) {
569 kprintf(": could not allocate firmware memory\n");
570 error = ENOMEM;
571 goto fail;
572 }
573
574 /*
575 * Put adapter into a known state.
576 */
577 if ((error = wpi_reset(sc)) != 0) {
578 device_printf(dev, "could not reset adapter\n");
579 goto fail;
580 }
581
582 wpi_mem_lock(sc);
583 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
584 if (bootverbose || WPI_DEBUG_SET)
585 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
586
587 wpi_mem_unlock(sc);
588
589 /* Allocate shared page */
590 if ((error = wpi_alloc_shared(sc)) != 0) {
591 device_printf(dev, "could not allocate shared page\n");
592 goto fail;
593 }
594
595 /* tx data queues - 4 for QoS purposes */
596 for (ac = 0; ac < WME_NUM_AC; ac++) {
597 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
598 if (error != 0) {
599 device_printf(dev, "could not allocate Tx ring %d\n",ac);
600 goto fail;
601 }
602 }
603
604 /* command queue to talk to the card's firmware */
605 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
606 if (error != 0) {
607 device_printf(dev, "could not allocate command ring\n");
608 goto fail;
609 }
610
611 /* receive data queue */
612 error = wpi_alloc_rx_ring(sc, &sc->rxq);
613 if (error != 0) {
614 device_printf(dev, "could not allocate Rx ring\n");
615 goto fail;
616 }
617
618 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
619 if (ifp == NULL) {
620 device_printf(dev, "can not if_alloc()\n");
621 error = ENOMEM;
622 goto fail;
623 }
624 ic = ifp->if_l2com;
625
626 ic->ic_ifp = ifp;
627 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
628 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
629
630 /* set device capabilities */
631 ic->ic_caps =
632 IEEE80211_C_STA /* station mode supported */
633 | IEEE80211_C_MONITOR /* monitor mode supported */
634 | IEEE80211_C_TXPMGT /* tx power management */
635 | IEEE80211_C_SHSLOT /* short slot time supported */
636 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
637 | IEEE80211_C_WPA /* 802.11i */
638/* XXX looks like WME is partly supported? */
639#if 0
640 | IEEE80211_C_IBSS /* IBSS mode support */
641 | IEEE80211_C_BGSCAN /* capable of bg scanning */
642 | IEEE80211_C_WME /* 802.11e */
643 | IEEE80211_C_HOSTAP /* Host access point mode */
644#endif
645 ;
646
647 /*
648 * Read in the eeprom and also setup the channels for
649 * net80211. We don't set the rates as net80211 does this for us
650 */
651 wpi_read_eeprom(sc, macaddr);
652
653 if (bootverbose || WPI_DEBUG_SET) {
654 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
655 device_printf(sc->sc_dev, "Hardware Type: %c\n",
656 sc->type > 1 ? 'B': '?');
657 device_printf(sc->sc_dev, "Hardware Revision: %c\n",
658 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
659 device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
660 supportsa ? "does" : "does not");
661
662 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
663 what sc->rev really represents - benjsc 20070615 */
664 }
665
666 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
667 ifp->if_softc = sc;
668 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
669 ifp->if_init = wpi_init;
670 ifp->if_ioctl = wpi_ioctl;
671 ifp->if_start = wpi_start;
672 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
4db7dd1b
JT
673 ifq_set_ready(&ifp->if_snd);
674
675 ieee80211_ifattach(ic, macaddr);
676 /* override default methods */
677 ic->ic_node_alloc = wpi_node_alloc;
678 ic->ic_newassoc = wpi_newassoc;
679 ic->ic_raw_xmit = wpi_raw_xmit;
680 ic->ic_wme.wme_update = wpi_wme_update;
681 ic->ic_scan_start = wpi_scan_start;
682 ic->ic_scan_end = wpi_scan_end;
683 ic->ic_set_channel = wpi_set_channel;
684 ic->ic_scan_curchan = wpi_scan_curchan;
685 ic->ic_scan_mindwell = wpi_scan_mindwell;
686
687 ic->ic_vap_create = wpi_vap_create;
688 ic->ic_vap_delete = wpi_vap_delete;
689
690 ieee80211_radiotap_attach(ic,
691 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
692 WPI_TX_RADIOTAP_PRESENT,
693 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
694 WPI_RX_RADIOTAP_PRESENT);
695
696 /*
697 * Hook our interrupt after all initialization is complete.
698 */
699 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
c62f9293 700 wpi_intr, sc, &sc->sc_ih, ifp->if_serializer);
4db7dd1b
JT
701 if (error != 0) {
702 device_printf(dev, "could not set up interrupt\n");
703 goto fail;
704 }
705
706 if (bootverbose)
707 ieee80211_announce(ic);
708#ifdef XXX_DEBUG
709 ieee80211_announce_channels(ic);
710#endif
711 return 0;
712
713fail: wpi_detach(dev);
714 return ENXIO;
715}
716
717static int
718wpi_detach(device_t dev)
719{
720 struct wpi_softc *sc = device_get_softc(dev);
721 struct ifnet *ifp = sc->sc_ifp;
722 struct ieee80211com *ic;
723 int ac;
724
725 if (ifp != NULL) {
726 ic = ifp->if_l2com;
727
728 ieee80211_draintask(ic, &sc->sc_restarttask);
729 ieee80211_draintask(ic, &sc->sc_radiotask);
730 wpi_stop(sc);
731 callout_stop(&sc->watchdog_to);
732 callout_stop(&sc->calib_to);
733 ieee80211_ifdetach(ic);
734 }
735
736 WPI_LOCK(sc);
737 if (sc->txq[0].data_dmat) {
738 for (ac = 0; ac < WME_NUM_AC; ac++)
739 wpi_free_tx_ring(sc, &sc->txq[ac]);
740
741 wpi_free_tx_ring(sc, &sc->cmdq);
742 wpi_free_rx_ring(sc, &sc->rxq);
743 wpi_free_shared(sc);
744 }
745
746 if (sc->fw_fp != NULL) {
747 wpi_unload_firmware(sc);
748 }
749
750 if (sc->fw_dma.tag)
751 wpi_free_fwmem(sc);
752 WPI_UNLOCK(sc);
753
754 if (sc->irq != NULL) {
755 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
756 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
757 }
758
759 if (sc->mem != NULL)
760 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
761
762 if (ifp != NULL)
763 if_free(ifp);
764
765 WPI_LOCK_DESTROY(sc);
766
767 return 0;
768}
769
770static struct ieee80211vap *
771wpi_vap_create(struct ieee80211com *ic,
772 const char name[IFNAMSIZ], int unit, int opmode, int flags,
773 const uint8_t bssid[IEEE80211_ADDR_LEN],
774 const uint8_t mac[IEEE80211_ADDR_LEN])
775{
776 struct wpi_vap *wvp;
777 struct ieee80211vap *vap;
778
779 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
780 return NULL;
781 wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
f688ab3e 782 M_80211_VAP, M_INTWAIT | M_ZERO);
4db7dd1b
JT
783 if (wvp == NULL)
784 return NULL;
785 vap = &wvp->vap;
786 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
787 /* override with driver methods */
788 wvp->newstate = vap->iv_newstate;
789 vap->iv_newstate = wpi_newstate;
790
791 ieee80211_ratectl_init(vap);
792
793 /* complete setup */
794 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
795 ic->ic_opmode = opmode;
796 return vap;
797}
798
799static void
800wpi_vap_delete(struct ieee80211vap *vap)
801{
802 struct wpi_vap *wvp = WPI_VAP(vap);
803
804 ieee80211_ratectl_deinit(vap);
805 ieee80211_vap_detach(vap);
806 kfree(wvp, M_80211_VAP);
807}
808
809static void
810wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
811{
812 if (error != 0)
813 return;
814
815 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
816
817 *(bus_addr_t *)arg = segs[0].ds_addr;
818}
819
820/*
821 * Allocates a contiguous block of dma memory of the requested size and
822 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
823 * allocations greater than 4096 may fail. Hence if the requested alignment is
824 * greater we allocate 'alignment' size extra memory and shift the vaddr and
825 * paddr after the dma load. This bypasses the problem at the cost of a little
826 * more memory.
827 */
828static int
829wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
830 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
831{
832 int error;
833 bus_size_t align;
834 bus_size_t reqsize;
835
836 DPRINTFN(WPI_DEBUG_DMA,
837 ("Size: %zd - alignment %zd\n", size, alignment));
838
839 dma->size = size;
840 dma->tag = NULL;
841
842 if (alignment > 4096) {
843 align = PAGE_SIZE;
844 reqsize = size + alignment;
845 } else {
846 align = alignment;
847 reqsize = size;
848 }
849 error = bus_dma_tag_create(dma->tag, align,
850 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
851 NULL, NULL, reqsize,
852 1, reqsize, flags,
853 &dma->tag);
854 if (error != 0) {
855 device_printf(sc->sc_dev,
856 "could not create shared page DMA tag\n");
857 goto fail;
858 }
859 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
860 flags | BUS_DMA_ZERO, &dma->map);
861 if (error != 0) {
862 device_printf(sc->sc_dev,
863 "could not allocate shared page DMA memory\n");
864 goto fail;
865 }
866
867 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
868 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags);
869
870 /* Save the original pointers so we can free all the memory */
871 dma->paddr = dma->paddr_start;
872 dma->vaddr = dma->vaddr_start;
873
874 /*
875 * Check the alignment and increment by 4096 until we get the
876 * requested alignment. Fail if can't obtain the alignment
877 * we requested.
878 */
879 if ((dma->paddr & (alignment -1 )) != 0) {
880 int i;
881
882 for (i = 0; i < alignment / 4096; i++) {
883 if ((dma->paddr & (alignment - 1 )) == 0)
884 break;
885 dma->paddr += 4096;
886 dma->vaddr += 4096;
887 }
888 if (i == alignment / 4096) {
889 device_printf(sc->sc_dev,
890 "alignment requirement was not satisfied\n");
891 goto fail;
892 }
893 }
894
895 if (error != 0) {
896 device_printf(sc->sc_dev,
897 "could not load shared page DMA map\n");
898 goto fail;
899 }
900
901 if (kvap != NULL)
902 *kvap = dma->vaddr;
903
904 return 0;
905
906fail:
907 wpi_dma_contig_free(dma);
908 return error;
909}
910
911static void
912wpi_dma_contig_free(struct wpi_dma_info *dma)
913{
914 if (dma->tag) {
915 if (dma->map != NULL) {
916 if (dma->paddr_start != 0) {
917 bus_dmamap_sync(dma->tag, dma->map,
918 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
919 bus_dmamap_unload(dma->tag, dma->map);
920 }
921 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
922 }
923 bus_dma_tag_destroy(dma->tag);
924 }
925}
926
927/*
928 * Allocate a shared page between host and NIC.
929 */
930static int
931wpi_alloc_shared(struct wpi_softc *sc)
932{
933 int error;
934
935 error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
936 (void **)&sc->shared, sizeof (struct wpi_shared),
937 PAGE_SIZE,
938 BUS_DMA_NOWAIT);
939
940 if (error != 0) {
941 device_printf(sc->sc_dev,
942 "could not allocate shared area DMA memory\n");
943 }
944
945 return error;
946}
947
948static void
949wpi_free_shared(struct wpi_softc *sc)
950{
951 wpi_dma_contig_free(&sc->shared_dma);
952}
953
954static int
955wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
956{
957
958 int i, error;
959
960 ring->cur = 0;
961
962 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
963 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
964 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
965
966 if (error != 0) {
967 device_printf(sc->sc_dev,
968 "%s: could not allocate rx ring DMA memory, error %d\n",
969 __func__, error);
970 goto fail;
971 }
972
973 error = bus_dma_tag_create(ring->data_dmat, 1, 0,
974 BUS_SPACE_MAXADDR_32BIT,
c62f9293 975 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
4db7dd1b
JT
976 MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
977 if (error != 0) {
978 device_printf(sc->sc_dev,
979 "%s: bus_dma_tag_create_failed, error %d\n",
980 __func__, error);
981 goto fail;
982 }
983
984 /*
985 * Setup Rx buffers.
986 */
987 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
988 struct wpi_rx_data *data = &ring->data[i];
989 struct mbuf *m;
990 bus_addr_t paddr;
991
992 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
993 if (error != 0) {
994 device_printf(sc->sc_dev,
995 "%s: bus_dmamap_create failed, error %d\n",
996 __func__, error);
997 goto fail;
998 }
f688ab3e 999 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
4db7dd1b
JT
1000 if (m == NULL) {
1001 device_printf(sc->sc_dev,
1002 "%s: could not allocate rx mbuf\n", __func__);
1003 error = ENOMEM;
1004 goto fail;
1005 }
1006 /* map page */
1007 error = bus_dmamap_load(ring->data_dmat, data->map,
1008 mtod(m, caddr_t), MCLBYTES,
1009 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1010 if (error != 0 && error != EFBIG) {
1011 device_printf(sc->sc_dev,
1012 "%s: bus_dmamap_load failed, error %d\n",
1013 __func__, error);
1014 m_freem(m);
1015 error = ENOMEM; /* XXX unique code */
1016 goto fail;
1017 }
1018 bus_dmamap_sync(ring->data_dmat, data->map,
1019 BUS_DMASYNC_PREWRITE);
1020
1021 data->m = m;
1022 ring->desc[i] = htole32(paddr);
1023 }
1024 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1025 BUS_DMASYNC_PREWRITE);
1026 return 0;
1027fail:
1028 wpi_free_rx_ring(sc, ring);
1029 return error;
1030}
1031
1032static void
1033wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1034{
1035 int ntries;
1036
1037 wpi_mem_lock(sc);
1038
1039 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1040
1041 for (ntries = 0; ntries < 100; ntries++) {
1042 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1043 break;
1044 DELAY(10);
1045 }
1046
1047 wpi_mem_unlock(sc);
1048
1049#ifdef WPI_DEBUG
1050 if (ntries == 100 && wpi_debug > 0)
1051 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1052#endif
1053
1054 ring->cur = 0;
1055}
1056
1057static void
1058wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1059{
1060 int i;
1061
1062 wpi_dma_contig_free(&ring->desc_dma);
1063
1064 for (i = 0; i < WPI_RX_RING_COUNT; i++)
1065 if (ring->data[i].m != NULL)
1066 m_freem(ring->data[i].m);
1067}
1068
1069static int
1070wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1071 int qid)
1072{
1073 struct wpi_tx_data *data;
1074 int i, error;
1075
1076 ring->qid = qid;
1077 ring->count = count;
1078 ring->queued = 0;
1079 ring->cur = 0;
1080 ring->data = NULL;
1081
1082 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1083 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1084 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1085
1086 if (error != 0) {
1087 device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1088 goto fail;
1089 }
1090
1091 /* update shared page with ring's base address */
1092 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1093
1094 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1095 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1096 BUS_DMA_NOWAIT);
1097
1098 if (error != 0) {
1099 device_printf(sc->sc_dev,
1100 "could not allocate tx command DMA memory\n");
1101 goto fail;
1102 }
1103
1104 ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
f688ab3e 1105 M_INTWAIT | M_ZERO);
4db7dd1b
JT
1106 if (ring->data == NULL) {
1107 device_printf(sc->sc_dev,
1108 "could not allocate tx data slots\n");
1109 goto fail;
1110 }
1111
1112 error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1113 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1114 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1115 &ring->data_dmat);
1116 if (error != 0) {
1117 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1118 goto fail;
1119 }
1120
1121 for (i = 0; i < count; i++) {
1122 data = &ring->data[i];
1123
1124 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1125 if (error != 0) {
1126 device_printf(sc->sc_dev,
1127 "could not create tx buf DMA map\n");
1128 goto fail;
1129 }
1130 bus_dmamap_sync(ring->data_dmat, data->map,
1131 BUS_DMASYNC_PREWRITE);
1132 }
1133
1134 return 0;
1135
1136fail:
1137 wpi_free_tx_ring(sc, ring);
1138 return error;
1139}
1140
1141static void
1142wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1143{
1144 struct wpi_tx_data *data;
1145 int i, ntries;
1146
1147 wpi_mem_lock(sc);
1148
1149 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1150 for (ntries = 0; ntries < 100; ntries++) {
1151 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1152 break;
1153 DELAY(10);
1154 }
1155#ifdef WPI_DEBUG
1156 if (ntries == 100 && wpi_debug > 0)
1157 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1158 ring->qid);
1159#endif
1160 wpi_mem_unlock(sc);
1161
1162 for (i = 0; i < ring->count; i++) {
1163 data = &ring->data[i];
1164
1165 if (data->m != NULL) {
1166 bus_dmamap_unload(ring->data_dmat, data->map);
1167 m_freem(data->m);
1168 data->m = NULL;
1169 }
1170 }
1171
1172 ring->queued = 0;
1173 ring->cur = 0;
1174}
1175
1176static void
1177wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1178{
1179 struct wpi_tx_data *data;
1180 int i;
1181
1182 wpi_dma_contig_free(&ring->desc_dma);
1183 wpi_dma_contig_free(&ring->cmd_dma);
1184
1185 if (ring->data != NULL) {
1186 for (i = 0; i < ring->count; i++) {
1187 data = &ring->data[i];
1188
1189 if (data->m != NULL) {
1190 bus_dmamap_sync(ring->data_dmat, data->map,
1191 BUS_DMASYNC_POSTWRITE);
1192 bus_dmamap_unload(ring->data_dmat, data->map);
1193 m_freem(data->m);
1194 data->m = NULL;
1195 }
1196 }
1197 kfree(ring->data, M_DEVBUF);
1198 }
1199
1200 if (ring->data_dmat != NULL)
1201 bus_dma_tag_destroy(ring->data_dmat);
1202}
1203
1204static int
1205wpi_shutdown(device_t dev)
1206{
1207 struct wpi_softc *sc = device_get_softc(dev);
1208
1209 WPI_LOCK(sc);
1210 wpi_stop_locked(sc);
1211 wpi_unload_firmware(sc);
1212 WPI_UNLOCK(sc);
1213
1214 return 0;
1215}
1216
1217static int
1218wpi_suspend(device_t dev)
1219{
1220 struct wpi_softc *sc = device_get_softc(dev);
1221
1222 wpi_stop(sc);
1223 return 0;
1224}
1225
1226static int
1227wpi_resume(device_t dev)
1228{
1229 struct wpi_softc *sc = device_get_softc(dev);
1230 struct ifnet *ifp = sc->sc_ifp;
1231
1232 pci_write_config(dev, 0x41, 0, 1);
1233
1234 if (ifp->if_flags & IFF_UP) {
1235 wpi_init(ifp->if_softc);
1236 if (ifp->if_flags & IFF_RUNNING)
1237 wpi_start(ifp);
1238 }
1239 return 0;
1240}
1241
1242/* ARGSUSED */
1243static struct ieee80211_node *
1244wpi_node_alloc(struct ieee80211vap *vap __unused,
1245 const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1246{
1247 struct wpi_node *wn;
1248
f688ab3e 1249 wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
4db7dd1b
JT
1250
1251 return &wn->ni;
1252}
1253
1254/**
1255 * Called by net80211 when ever there is a change to 80211 state machine
1256 */
1257static int
1258wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1259{
1260 struct wpi_vap *wvp = WPI_VAP(vap);
1261 struct ieee80211com *ic = vap->iv_ic;
1262 struct ifnet *ifp = ic->ic_ifp;
1263 struct wpi_softc *sc = ifp->if_softc;
1264 int error;
1265
1266 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1267 ieee80211_state_name[vap->iv_state],
1268 ieee80211_state_name[nstate], sc->flags));
1269
1270 IEEE80211_UNLOCK(ic);
1271 WPI_LOCK(sc);
1272 if (nstate == IEEE80211_S_AUTH) {
1273 /* The node must be registered in the firmware before auth */
1274 error = wpi_auth(sc, vap);
1275 if (error != 0) {
1276 device_printf(sc->sc_dev,
1277 "%s: could not move to auth state, error %d\n",
1278 __func__, error);
1279 }
1280 }
1281 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1282 error = wpi_run(sc, vap);
1283 if (error != 0) {
1284 device_printf(sc->sc_dev,
1285 "%s: could not move to run state, error %d\n",
1286 __func__, error);
1287 }
1288 }
1289 if (nstate == IEEE80211_S_RUN) {
1290 /* RUN -> RUN transition; just restart the timers */
1291 wpi_calib_timeout(sc);
1292 /* XXX split out rate control timer */
1293 }
1294 WPI_UNLOCK(sc);
1295 IEEE80211_LOCK(ic);
1296 return wvp->newstate(vap, nstate, arg);
1297}
1298
1299/*
1300 * Grab exclusive access to NIC memory.
1301 */
1302static void
1303wpi_mem_lock(struct wpi_softc *sc)
1304{
1305 int ntries;
1306 uint32_t tmp;
1307
1308 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1309 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1310
1311 /* spin until we actually get the lock */
1312 for (ntries = 0; ntries < 100; ntries++) {
1313 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1314 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1315 break;
1316 DELAY(10);
1317 }
1318 if (ntries == 100)
1319 device_printf(sc->sc_dev, "could not lock memory\n");
1320}
1321
1322/*
1323 * Release lock on NIC memory.
1324 */
1325static void
1326wpi_mem_unlock(struct wpi_softc *sc)
1327{
1328 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1329 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1330}
1331
1332static uint32_t
1333wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1334{
1335 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1336 return WPI_READ(sc, WPI_READ_MEM_DATA);
1337}
1338
1339static void
1340wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1341{
1342 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1343 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1344}
1345
1346static void
1347wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1348 const uint32_t *data, int wlen)
1349{
1350 for (; wlen > 0; wlen--, data++, addr+=4)
1351 wpi_mem_write(sc, addr, *data);
1352}
1353
1354/*
1355 * Read data from the EEPROM. We access EEPROM through the MAC instead of
1356 * using the traditional bit-bang method. Data is read up until len bytes have
1357 * been obtained.
1358 */
1359static uint16_t
1360wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1361{
1362 int ntries;
1363 uint32_t val;
1364 uint8_t *out = data;
1365
1366 wpi_mem_lock(sc);
1367
1368 for (; len > 0; len -= 2, addr++) {
1369 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1370
1371 for (ntries = 0; ntries < 10; ntries++) {
1372 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1373 break;
1374 DELAY(5);
1375 }
1376
1377 if (ntries == 10) {
1378 device_printf(sc->sc_dev, "could not read EEPROM\n");
1379 return ETIMEDOUT;
1380 }
1381
1382 *out++= val >> 16;
1383 if (len > 1)
1384 *out ++= val >> 24;
1385 }
1386
1387 wpi_mem_unlock(sc);
1388
1389 return 0;
1390}
1391
1392/*
1393 * The firmware text and data segments are transferred to the NIC using DMA.
1394 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1395 * where to find it. Once the NIC has copied the firmware into its internal
1396 * memory, we can free our local copy in the driver.
1397 */
1398static int
1399wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1400{
1401 int error, ntries;
1402
1403 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size));
1404
1405 size /= sizeof(uint32_t);
1406
1407 wpi_mem_lock(sc);
1408
1409 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1410 (const uint32_t *)fw, size);
1411
1412 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1413 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1414 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1415
1416 /* run microcode */
1417 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1418
1419 /* wait while the adapter is busy copying the firmware */
1420 for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1421 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1422 DPRINTFN(WPI_DEBUG_HW,
1423 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1424 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1425 if (status & WPI_TX_IDLE(6)) {
1426 DPRINTFN(WPI_DEBUG_HW,
1427 ("Status Match! - ntries = %d\n", ntries));
1428 break;
1429 }
1430 DELAY(10);
1431 }
1432 if (ntries == 1000) {
1433 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1434 error = ETIMEDOUT;
1435 }
1436
1437 /* start the microcode executing */
1438 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1439
1440 wpi_mem_unlock(sc);
1441
1442 return (error);
1443}
1444
1445static void
1446wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447 struct wpi_rx_data *data)
1448{
1449 struct ifnet *ifp = sc->sc_ifp;
1450 struct ieee80211com *ic = ifp->if_l2com;
1451 struct wpi_rx_ring *ring = &sc->rxq;
1452 struct wpi_rx_stat *stat;
1453 struct wpi_rx_head *head;
1454 struct wpi_rx_tail *tail;
1455 struct ieee80211_node *ni;
1456 struct mbuf *m, *mnew;
1457 bus_addr_t paddr;
1458 int error;
1459
1460 stat = (struct wpi_rx_stat *)(desc + 1);
1461
1462 if (stat->len > WPI_STAT_MAXLEN) {
1463 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1464 ifp->if_ierrors++;
1465 return;
1466 }
1467
1468 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1469 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1470
1471 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1472 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1473 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1474 (uintmax_t)le64toh(tail->tstamp)));
1475
1476 /* discard Rx frames with bad CRC early */
1477 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1478 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1479 le32toh(tail->flags)));
1480 ifp->if_ierrors++;
1481 return;
1482 }
1483 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1484 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1485 le16toh(head->len)));
1486 ifp->if_ierrors++;
1487 return;
1488 }
1489
1490 /* XXX don't need mbuf, just dma buffer */
f688ab3e 1491 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
4db7dd1b
JT
1492 if (mnew == NULL) {
1493 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1494 __func__));
1495 ifp->if_ierrors++;
1496 return;
1497 }
1498 error = bus_dmamap_load(ring->data_dmat, data->map,
1499 mtod(mnew, caddr_t), MCLBYTES,
1500 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1501 if (error != 0 && error != EFBIG) {
1502 device_printf(sc->sc_dev,
1503 "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1504 m_freem(mnew);
1505 ifp->if_ierrors++;
1506 return;
1507 }
1508 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1509
1510 /* finalize mbuf and swap in new one */
1511 m = data->m;
1512 m->m_pkthdr.rcvif = ifp;
1513 m->m_data = (caddr_t)(head + 1);
1514 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1515
1516 data->m = mnew;
1517 /* update Rx descriptor */
1518 ring->desc[ring->cur] = htole32(paddr);
1519
1520 if (ieee80211_radiotap_active(ic)) {
1521 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1522
1523 tap->wr_flags = 0;
1524 tap->wr_chan_freq =
1525 htole16(ic->ic_channels[head->chan].ic_freq);
1526 tap->wr_chan_flags =
1527 htole16(ic->ic_channels[head->chan].ic_flags);
1528 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1529 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1530 tap->wr_tsft = tail->tstamp;
1531 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1532 switch (head->rate) {
1533 /* CCK rates */
1534 case 10: tap->wr_rate = 2; break;
1535 case 20: tap->wr_rate = 4; break;
1536 case 55: tap->wr_rate = 11; break;
1537 case 110: tap->wr_rate = 22; break;
1538 /* OFDM rates */
1539 case 0xd: tap->wr_rate = 12; break;
1540 case 0xf: tap->wr_rate = 18; break;
1541 case 0x5: tap->wr_rate = 24; break;
1542 case 0x7: tap->wr_rate = 36; break;
1543 case 0x9: tap->wr_rate = 48; break;
1544 case 0xb: tap->wr_rate = 72; break;
1545 case 0x1: tap->wr_rate = 96; break;
1546 case 0x3: tap->wr_rate = 108; break;
1547 /* unknown rate: should not happen */
1548 default: tap->wr_rate = 0;
1549 }
1550 if (le16toh(head->flags) & 0x4)
1551 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1552 }
1553
1554 WPI_UNLOCK(sc);
1555
1556 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1557 if (ni != NULL) {
1558 (void) ieee80211_input(ni, m, stat->rssi, 0);
1559 ieee80211_free_node(ni);
1560 } else
1561 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1562
1563 WPI_LOCK(sc);
1564}
1565
1566static void
1567wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1568{
1569 struct ifnet *ifp = sc->sc_ifp;
1570 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1571 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1572 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1573 struct ieee80211_node *ni = txdata->ni;
1574 struct ieee80211vap *vap = ni->ni_vap;
1575 int retrycnt = 0;
1576
1577 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1578 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1579 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1580 le32toh(stat->status)));
1581
1582 /*
1583 * Update rate control statistics for the node.
1584 * XXX we should not count mgmt frames since they're always sent at
1585 * the lowest available bit-rate.
1586 * XXX frames w/o ACK shouldn't be used either
1587 */
1588 if (stat->ntries > 0) {
1589 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1590 retrycnt = 1;
1591 }
1592 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1593 &retrycnt, NULL);
1594
1595 /* XXX oerrors should only count errors !maxtries */
1596 if ((le32toh(stat->status) & 0xff) != 1)
1597 ifp->if_oerrors++;
1598 else
1599 ifp->if_opackets++;
1600
1601 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1602 bus_dmamap_unload(ring->data_dmat, txdata->map);
1603 /* XXX handle M_TXCB? */
1604 m_freem(txdata->m);
1605 txdata->m = NULL;
1606 ieee80211_free_node(txdata->ni);
1607 txdata->ni = NULL;
1608
1609 ring->queued--;
1610
1611 sc->sc_tx_timer = 0;
1612 ifp->if_flags &= ~IFF_OACTIVE;
1613 wpi_start_locked(ifp);
1614}
1615
1616static void
1617wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1618{
1619 struct wpi_tx_ring *ring = &sc->cmdq;
1620 struct wpi_tx_data *data;
1621
1622 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1623 "type=%s len=%d\n", desc->qid, desc->idx,
1624 desc->flags, wpi_cmd_str(desc->type),
1625 le32toh(desc->len)));
1626
1627 if ((desc->qid & 7) != 4)
1628 return; /* not a command ack */
1629
1630 data = &ring->data[desc->idx];
1631
1632 /* if the command was mapped in a mbuf, free it */
1633 if (data->m != NULL) {
1634 bus_dmamap_unload(ring->data_dmat, data->map);
1635 m_freem(data->m);
1636 data->m = NULL;
1637 }
1638
1639 sc->flags &= ~WPI_FLAG_BUSY;
1640 wakeup(&ring->cmd[desc->idx]);
1641}
1642
1643static void
1644wpi_notif_intr(struct wpi_softc *sc)
1645{
1646 struct ifnet *ifp = sc->sc_ifp;
1647 struct ieee80211com *ic = ifp->if_l2com;
1648 struct wpi_rx_desc *desc;
1649 struct wpi_rx_data *data;
1650 uint32_t hw;
1651
1652 hw = le32toh(sc->shared->next);
1653 while (sc->rxq.cur != hw) {
1654 data = &sc->rxq.data[sc->rxq.cur];
1655 desc = (void *)data->m->m_ext.ext_buf;
1656
1657 DPRINTFN(WPI_DEBUG_NOTIFY,
1658 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1659 desc->qid,
1660 desc->idx,
1661 desc->flags,
1662 desc->type,
1663 le32toh(desc->len)));
1664
1665 if (!(desc->qid & 0x80)) /* reply to a command */
1666 wpi_cmd_intr(sc, desc);
1667
1668 switch (desc->type) {
1669 case WPI_RX_DONE:
1670 /* a 802.11 frame was received */
1671 wpi_rx_intr(sc, desc, data);
1672 break;
1673
1674 case WPI_TX_DONE:
1675 /* a 802.11 frame has been transmitted */
1676 wpi_tx_intr(sc, desc);
1677 break;
1678
1679 case WPI_UC_READY:
1680 {
1681 struct wpi_ucode_info *uc =
1682 (struct wpi_ucode_info *)(desc + 1);
1683
1684 /* the microcontroller is ready */
1685 DPRINTF(("microcode alive notification version %x "
1686 "alive %x\n", le32toh(uc->version),
1687 le32toh(uc->valid)));
1688
1689 if (le32toh(uc->valid) != 1) {
1690 device_printf(sc->sc_dev,
1691 "microcontroller initialization failed\n");
1692 wpi_stop_locked(sc);
1693 }
1694 break;
1695 }
1696 case WPI_STATE_CHANGED:
1697 {
1698 uint32_t *status = (uint32_t *)(desc + 1);
1699
1700 /* enabled/disabled notification */
1701 DPRINTF(("state changed to %x\n", le32toh(*status)));
1702
1703 if (le32toh(*status) & 1) {
1704 device_printf(sc->sc_dev,
1705 "Radio transmitter is switched off\n");
1706 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1707 ifp->if_flags &= ~IFF_RUNNING;
1708 /* Disable firmware commands */
1709 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1710 }
1711 break;
1712 }
1713 case WPI_START_SCAN:
1714 {
1715#ifdef WPI_DEBUG
1716 struct wpi_start_scan *scan =
1717 (struct wpi_start_scan *)(desc + 1);
1718#endif
1719
1720 DPRINTFN(WPI_DEBUG_SCANNING,
1721 ("scanning channel %d status %x\n",
1722 scan->chan, le32toh(scan->status)));
1723 break;
1724 }
1725 case WPI_STOP_SCAN:
1726 {
1727#ifdef WPI_DEBUG
1728 struct wpi_stop_scan *scan =
1729 (struct wpi_stop_scan *)(desc + 1);
1730#endif
1731 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1732
1733 DPRINTFN(WPI_DEBUG_SCANNING,
1734 ("scan finished nchan=%d status=%d chan=%d\n",
1735 scan->nchan, scan->status, scan->chan));
1736
1737 sc->sc_scan_timer = 0;
1738 ieee80211_scan_next(vap);
1739 break;
1740 }
1741 case WPI_MISSED_BEACON:
1742 {
1743 struct wpi_missed_beacon *beacon =
1744 (struct wpi_missed_beacon *)(desc + 1);
1745 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1746
1747 if (le32toh(beacon->consecutive) >=
1748 vap->iv_bmissthreshold) {
1749 DPRINTF(("Beacon miss: %u >= %u\n",
1750 le32toh(beacon->consecutive),
1751 vap->iv_bmissthreshold));
1752 ieee80211_beacon_miss(ic);
1753 }
1754 break;
1755 }
1756 }
1757
1758 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1759 }
1760
1761 /* tell the firmware what we have processed */
1762 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1763 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1764}
1765
1766static void
1767wpi_intr(void *arg)
1768{
1769 struct wpi_softc *sc = arg;
1770 uint32_t r;
1771
1772 WPI_LOCK(sc);
1773
1774 r = WPI_READ(sc, WPI_INTR);
1775 if (r == 0 || r == 0xffffffff) {
1776 WPI_UNLOCK(sc);
1777 return;
1778 }
1779
1780 /* disable interrupts */
1781 WPI_WRITE(sc, WPI_MASK, 0);
1782 /* ack interrupts */
1783 WPI_WRITE(sc, WPI_INTR, r);
1784
1785 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1786 struct ifnet *ifp = sc->sc_ifp;
1787 struct ieee80211com *ic = ifp->if_l2com;
1788 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1789
1790 device_printf(sc->sc_dev, "fatal firmware error\n");
1791 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1792 "(Hardware Error)"));
1793 if (vap != NULL)
1794 ieee80211_cancel_scan(vap);
1795 ieee80211_runtask(ic, &sc->sc_restarttask);
1796 sc->flags &= ~WPI_FLAG_BUSY;
1797 WPI_UNLOCK(sc);
1798 return;
1799 }
1800
1801 if (r & WPI_RX_INTR)
1802 wpi_notif_intr(sc);
1803
1804 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1805 wakeup(sc);
1806
1807 /* re-enable interrupts */
1808 if (sc->sc_ifp->if_flags & IFF_UP)
1809 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1810
1811 WPI_UNLOCK(sc);
1812}
1813
1814static uint8_t
1815wpi_plcp_signal(int rate)
1816{
1817 switch (rate) {
1818 /* CCK rates (returned values are device-dependent) */
1819 case 2: return 10;
1820 case 4: return 20;
1821 case 11: return 55;
1822 case 22: return 110;
1823
1824 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1825 /* R1-R4 (ral/ural is R4-R1) */
1826 case 12: return 0xd;
1827 case 18: return 0xf;
1828 case 24: return 0x5;
1829 case 36: return 0x7;
1830 case 48: return 0x9;
1831 case 72: return 0xb;
1832 case 96: return 0x1;
1833 case 108: return 0x3;
1834
1835 /* unsupported rates (should not get there) */
1836 default: return 0;
1837 }
1838}
1839
1840/* quickly determine if a given rate is CCK or OFDM */
1841#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1842
1843/*
1844 * Construct the data packet for a transmit buffer and acutally put
1845 * the buffer onto the transmit ring, kicking the card to process the
1846 * the buffer.
1847 */
1848static int
1849wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1850 int ac)
1851{
1852 struct ieee80211vap *vap = ni->ni_vap;
1853 struct ifnet *ifp = sc->sc_ifp;
1854 struct ieee80211com *ic = ifp->if_l2com;
1855 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1856 struct wpi_tx_ring *ring = &sc->txq[ac];
1857 struct wpi_tx_desc *desc;
1858 struct wpi_tx_data *data;
1859 struct wpi_tx_cmd *cmd;
1860 struct wpi_cmd_data *tx;
1861 struct ieee80211_frame *wh;
1862 const struct ieee80211_txparam *tp;
1863 struct ieee80211_key *k;
1864 struct mbuf *mnew;
1865 int i, error, nsegs, rate, hdrlen, ismcast;
1866 bus_dma_segment_t segs[WPI_MAX_SCATTER];
1867
1868 desc = &ring->desc[ring->cur];
1869 data = &ring->data[ring->cur];
1870
1871 wh = mtod(m0, struct ieee80211_frame *);
1872
1873 hdrlen = ieee80211_hdrsize(wh);
1874 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1875
1876 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1877 k = ieee80211_crypto_encap(ni, m0);
1878 if (k == NULL) {
1879 m_freem(m0);
1880 return ENOBUFS;
1881 }
1882 /* packet header may have moved, reset our local pointer */
1883 wh = mtod(m0, struct ieee80211_frame *);
1884 }
1885
1886 cmd = &ring->cmd[ring->cur];
1887 cmd->code = WPI_CMD_TX_DATA;
1888 cmd->flags = 0;
1889 cmd->qid = ring->qid;
1890 cmd->idx = ring->cur;
1891
1892 tx = (struct wpi_cmd_data *)cmd->data;
1893 tx->flags = htole32(WPI_TX_AUTO_SEQ);
1894 tx->timeout = htole16(0);
1895 tx->ofdm_mask = 0xff;
1896 tx->cck_mask = 0x0f;
1897 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1898 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1899 tx->len = htole16(m0->m_pkthdr.len);
1900
1901 if (!ismcast) {
1902 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1903 !cap->cap_wmeParams[ac].wmep_noackPolicy)
1904 tx->flags |= htole32(WPI_TX_NEED_ACK);
1905 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1906 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1907 tx->rts_ntries = 7;
1908 }
1909 }
1910 /* pick a rate */
1911 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1912 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1913 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1914 /* tell h/w to set timestamp in probe responses */
1915 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1916 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1917 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1918 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1919 tx->timeout = htole16(3);
1920 else
1921 tx->timeout = htole16(2);
1922 rate = tp->mgmtrate;
1923 } else if (ismcast) {
1924 rate = tp->mcastrate;
1925 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1926 rate = tp->ucastrate;
1927 } else {
1928 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1929 rate = ni->ni_txrate;
1930 }
1931 tx->rate = wpi_plcp_signal(rate);
1932
1933 /* be very persistant at sending frames out */
1934#if 0
1935 tx->data_ntries = tp->maxretry;
1936#else
1937 tx->data_ntries = 30; /* XXX way too high */
1938#endif
1939
1940 if (ieee80211_radiotap_active_vap(vap)) {
1941 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1942 tap->wt_flags = 0;
1943 tap->wt_rate = rate;
1944 tap->wt_hwqueue = ac;
1945 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1946 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1947
1948 ieee80211_radiotap_tx(vap, m0);
1949 }
1950
1951 /* save and trim IEEE802.11 header */
1952 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1953 m_adj(m0, hdrlen);
1954
1955 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1956 1, &nsegs, BUS_DMA_NOWAIT);
1957 if (error != 0 && error != EFBIG) {
1958 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1959 error);
1960 m_freem(m0);
1961 return error;
1962 }
1963 if (error != 0) {
1964 /* XXX use m_collapse */
d776df92 1965 mnew = m_defrag(m0, MB_DONTWAIT);
4db7dd1b
JT
1966 if (mnew == NULL) {
1967 device_printf(sc->sc_dev,
1968 "could not defragment mbuf\n");
1969 m_freem(m0);
1970 return ENOBUFS;
1971 }
1972 m0 = mnew;
1973
1974 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1975 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1976 if (error != 0) {
1977 device_printf(sc->sc_dev,
1978 "could not map mbuf (error %d)\n", error);
1979 m_freem(m0);
1980 return error;
1981 }
1982 }
1983
1984 data->m = m0;
1985 data->ni = ni;
1986
1987 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1988 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1989
1990 /* first scatter/gather segment is used by the tx data command */
1991 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1992 (1 + nsegs) << 24);
1993 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1994 ring->cur * sizeof (struct wpi_tx_cmd));
1995 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
1996 for (i = 1; i <= nsegs; i++) {
1997 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1998 desc->segs[i].len = htole32(segs[i - 1].ds_len);
1999 }
2000
2001 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2002 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2003 BUS_DMASYNC_PREWRITE);
2004
2005 ring->queued++;
2006
2007 /* kick ring */
2008 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2009 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2010
2011 return 0;
2012}
2013
2014/**
2015 * Process data waiting to be sent on the IFNET output queue
2016 */
2017static void
2018wpi_start(struct ifnet *ifp)
2019{
2020 struct wpi_softc *sc = ifp->if_softc;
2021
2022 WPI_LOCK(sc);
2023 wpi_start_locked(ifp);
2024 WPI_UNLOCK(sc);
2025}
2026
2027static void
2028wpi_start_locked(struct ifnet *ifp)
2029{
2030 struct wpi_softc *sc = ifp->if_softc;
2031 struct ieee80211_node *ni;
2032 struct mbuf *m;
2033 int ac;
2034
2035 WPI_LOCK_ASSERT(sc);
2036
2037 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2038 ifq_purge(&ifp->if_snd);
2039 return;
2040 }
2041
2042 for (;;) {
2043 IF_DEQUEUE(&ifp->if_snd, m);
2044 if (m == NULL)
2045 break;
2046 ac = M_WME_GETAC(m);
2047 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2048 /* there is no place left in this ring */
2049 ifq_prepend(&ifp->if_snd, m);
2050 ifp->if_flags |= IFF_OACTIVE;
2051 break;
2052 }
637936eb 2053 ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif);
4db7dd1b
JT
2054 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2055 ieee80211_free_node(ni);
2056 ifp->if_oerrors++;
2057 break;
2058 }
2059 sc->sc_tx_timer = 5;
2060 }
2061}
2062
2063static int
2064wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2065 const struct ieee80211_bpf_params *params)
2066{
2067 struct ieee80211com *ic = ni->ni_ic;
2068 struct ifnet *ifp = ic->ic_ifp;
2069 struct wpi_softc *sc = ifp->if_softc;
2070
2071 /* prevent management frames from being sent if we're not ready */
2072 if (!(ifp->if_flags & IFF_RUNNING)) {
2073 m_freem(m);
2074 ieee80211_free_node(ni);
2075 return ENETDOWN;
2076 }
2077 WPI_LOCK(sc);
2078
2079 /* management frames go into ring 0 */
2080 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2081 ifp->if_flags |= IFF_OACTIVE;
2082 m_freem(m);
2083 WPI_UNLOCK(sc);
2084 ieee80211_free_node(ni);
2085 return ENOBUFS; /* XXX */
2086 }
2087
2088 ifp->if_opackets++;
2089 if (wpi_tx_data(sc, m, ni, 0) != 0)
2090 goto bad;
2091 sc->sc_tx_timer = 5;
2092 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2093
2094 WPI_UNLOCK(sc);
2095 return 0;
2096bad:
2097 ifp->if_oerrors++;
2098 WPI_UNLOCK(sc);
2099 ieee80211_free_node(ni);
2100 return EIO; /* XXX */
2101}
2102
2103static int
2104wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2105{
2106 struct wpi_softc *sc = ifp->if_softc;
2107 struct ieee80211com *ic = ifp->if_l2com;
2108 struct ifreq *ifr = (struct ifreq *) data;
2109 int error = 0, startall = 0;
2110
2111 switch (cmd) {
2112 case SIOCSIFFLAGS:
2113 WPI_LOCK(sc);
2114 if ((ifp->if_flags & IFF_UP)) {
2115 if (!(ifp->if_flags & IFF_RUNNING)) {
2116 wpi_init_locked(sc, 0);
2117 startall = 1;
2118 }
2119 } else if ((ifp->if_flags & IFF_RUNNING) ||
2120 (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2121 wpi_stop_locked(sc);
2122 WPI_UNLOCK(sc);
2123 if (startall)
2124 ieee80211_start_all(ic);
2125 break;
2126 case SIOCGIFMEDIA:
2127 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2128 break;
2129 case SIOCGIFADDR:
2130 error = ether_ioctl(ifp, cmd, data);
2131 break;
2132 default:
2133 error = EINVAL;
2134 break;
2135 }
2136 return error;
2137}
2138
2139/*
2140 * Extract various information from EEPROM.
2141 */
2142static void
2143wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2144{
2145 int i;
2146
2147 /* read the hardware capabilities, revision and SKU type */
2148 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2149 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2150 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2151
2152 /* read the regulatory domain */
2153 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2154
2155 /* read in the hw MAC address */
2156 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2157
2158 /* read the list of authorized channels */
2159 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2160 wpi_read_eeprom_channels(sc,i);
2161
2162 /* read the power level calibration info for each group */
2163 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2164 wpi_read_eeprom_group(sc,i);
2165}
2166
2167/*
2168 * Send a command to the firmware.
2169 */
2170static int
2171wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2172{
2173 struct wpi_tx_ring *ring = &sc->cmdq;
2174 struct wpi_tx_desc *desc;
2175 struct wpi_tx_cmd *cmd;
2176
2177#ifdef WPI_DEBUG
2178 if (!async) {
2179 WPI_LOCK_ASSERT(sc);
2180 }
2181#endif
2182
2183 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2184 async));
2185
2186 if (sc->flags & WPI_FLAG_BUSY) {
2187 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2188 __func__, code);
2189 return EAGAIN;
2190 }
2191 sc->flags|= WPI_FLAG_BUSY;
2192
2193 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2194 code, size));
2195
2196 desc = &ring->desc[ring->cur];
2197 cmd = &ring->cmd[ring->cur];
2198
2199 cmd->code = code;
2200 cmd->flags = 0;
2201 cmd->qid = ring->qid;
2202 cmd->idx = ring->cur;
2203 memcpy(cmd->data, buf, size);
2204
2205 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2206 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2207 ring->cur * sizeof (struct wpi_tx_cmd));
2208 desc->segs[0].len = htole32(4 + size);
2209
2210 /* kick cmd ring */
2211 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2212 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2213
2214 if (async) {
2215 sc->flags &= ~ WPI_FLAG_BUSY;
2216 return 0;
2217 }
2218
2219 return lksleep(cmd, &sc->sc_lock, 0, "wpicmd", hz);
2220}
2221
2222static int
2223wpi_wme_update(struct ieee80211com *ic)
2224{
2225#define WPI_EXP2(v) htole16((1 << (v)) - 1)
2226#define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2227 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2228 const struct wmeParams *wmep;
2229 struct wpi_wme_setup wme;
2230 int ac;
2231
2232 /* don't override default WME values if WME is not actually enabled */
2233 if (!(ic->ic_flags & IEEE80211_F_WME))
2234 return 0;
2235
2236 wme.flags = 0;
2237 for (ac = 0; ac < WME_NUM_AC; ac++) {
2238 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2239 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2240 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2241 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2242 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2243
2244 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2245 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2246 wme.ac[ac].cwmax, wme.ac[ac].txop));
2247 }
2248 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2249#undef WPI_USEC
2250#undef WPI_EXP2
2251}
2252
2253/*
2254 * Configure h/w multi-rate retries.
2255 */
2256static int
2257wpi_mrr_setup(struct wpi_softc *sc)
2258{
2259 struct ifnet *ifp = sc->sc_ifp;
2260 struct ieee80211com *ic = ifp->if_l2com;
2261 struct wpi_mrr_setup mrr;
2262 int i, error;
2263
2264 memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2265
2266 /* CCK rates (not used with 802.11a) */
2267 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2268 mrr.rates[i].flags = 0;
2269 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2270 /* fallback to the immediate lower CCK rate (if any) */
2271 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2272 /* try one time at this rate before falling back to "next" */
2273 mrr.rates[i].ntries = 1;
2274 }
2275
2276 /* OFDM rates (not used with 802.11b) */
2277 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2278 mrr.rates[i].flags = 0;
2279 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280 /* fallback to the immediate lower OFDM rate (if any) */
2281 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2282 mrr.rates[i].next = (i == WPI_OFDM6) ?
2283 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2284 WPI_OFDM6 : WPI_CCK2) :
2285 i - 1;
2286 /* try one time at this rate before falling back to "next" */
2287 mrr.rates[i].ntries = 1;
2288 }
2289
2290 /* setup MRR for control frames */
2291 mrr.which = htole32(WPI_MRR_CTL);
2292 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293 if (error != 0) {
2294 device_printf(sc->sc_dev,
2295 "could not setup MRR for control frames\n");
2296 return error;
2297 }
2298
2299 /* setup MRR for data frames */
2300 mrr.which = htole32(WPI_MRR_DATA);
2301 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2302 if (error != 0) {
2303 device_printf(sc->sc_dev,
2304 "could not setup MRR for data frames\n");
2305 return error;
2306 }
2307
2308 return 0;
2309}
2310
2311static void
2312wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2313{
2314 struct wpi_cmd_led led;
2315
2316 led.which = which;
2317 led.unit = htole32(100000); /* on/off in unit of 100ms */
2318 led.off = off;
2319 led.on = on;
2320
2321 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2322}
2323
2324static void
2325wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2326{
2327 struct wpi_cmd_tsf tsf;
2328 uint64_t val, mod;
2329
2330 memset(&tsf, 0, sizeof tsf);
2331 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2332 tsf.bintval = htole16(ni->ni_intval);
2333 tsf.lintval = htole16(10);
2334
2335 /* compute remaining time until next beacon */
2336 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */
2337 mod = le64toh(tsf.tstamp) % val;
2338 tsf.binitval = htole32((uint32_t)(val - mod));
2339
2340 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2341 device_printf(sc->sc_dev, "could not enable TSF\n");
2342}
2343
2344#if 0
2345/*
2346 * Build a beacon frame that the firmware will broadcast periodically in
2347 * IBSS or HostAP modes.
2348 */
2349static int
2350wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2351{
2352 struct ifnet *ifp = sc->sc_ifp;
2353 struct ieee80211com *ic = ifp->if_l2com;
2354 struct wpi_tx_ring *ring = &sc->cmdq;
2355 struct wpi_tx_desc *desc;
2356 struct wpi_tx_data *data;
2357 struct wpi_tx_cmd *cmd;
2358 struct wpi_cmd_beacon *bcn;
2359 struct ieee80211_beacon_offsets bo;
2360 struct mbuf *m0;
2361 bus_addr_t physaddr;
2362 int error;
2363
2364 desc = &ring->desc[ring->cur];
2365 data = &ring->data[ring->cur];
2366
2367 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2368 if (m0 == NULL) {
2369 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2370 return ENOMEM;
2371 }
2372
2373 cmd = &ring->cmd[ring->cur];
2374 cmd->code = WPI_CMD_SET_BEACON;
2375 cmd->flags = 0;
2376 cmd->qid = ring->qid;
2377 cmd->idx = ring->cur;
2378
2379 bcn = (struct wpi_cmd_beacon *)cmd->data;
2380 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2381 bcn->id = WPI_ID_BROADCAST;
2382 bcn->ofdm_mask = 0xff;
2383 bcn->cck_mask = 0x0f;
2384 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2385 bcn->len = htole16(m0->m_pkthdr.len);
2386 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2387 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2388 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2389
2390 /* save and trim IEEE802.11 header */
2391 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2392 m_adj(m0, sizeof (struct ieee80211_frame));
2393
2394 /* assume beacon frame is contiguous */
2395 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2396 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2397 if (error != 0) {
2398 device_printf(sc->sc_dev, "could not map beacon\n");
2399 m_freem(m0);
2400 return error;
2401 }
2402
2403 data->m = m0;
2404
2405 /* first scatter/gather segment is used by the beacon command */
2406 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2407 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2408 ring->cur * sizeof (struct wpi_tx_cmd));
2409 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2410 desc->segs[1].addr = htole32(physaddr);
2411 desc->segs[1].len = htole32(m0->m_pkthdr.len);
2412
2413 /* kick cmd ring */
2414 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2415 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2416
2417 return 0;
2418}
2419#endif
2420
2421static int
2422wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2423{
2424 struct ieee80211com *ic = vap->iv_ic;
f688ab3e 2425 struct ieee80211_node *ni;
4db7dd1b
JT
2426 struct wpi_node_info node;
2427 int error;
2428
2429
2430 /* update adapter's configuration */
2431 sc->config.associd = 0;
2432 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
f688ab3e 2433 ni = ieee80211_ref_node(vap->iv_bss);
4db7dd1b
JT
2434 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2435 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2436 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2437 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2438 WPI_CONFIG_24GHZ);
2439 }
2440 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2441 sc->config.cck_mask = 0;
2442 sc->config.ofdm_mask = 0x15;
2443 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2444 sc->config.cck_mask = 0x03;
2445 sc->config.ofdm_mask = 0;
2446 } else {
2447 /* XXX assume 802.11b/g */
2448 sc->config.cck_mask = 0x0f;
2449 sc->config.ofdm_mask = 0x15;
2450 }
2451
2452 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2453 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2454 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2455 sizeof (struct wpi_config), 1);
2456 if (error != 0) {
2457 device_printf(sc->sc_dev, "could not configure\n");
f688ab3e 2458 ieee80211_free_node(ni);
4db7dd1b
JT
2459 return error;
2460 }
2461
2462 /* configuration has changed, set Tx power accordingly */
2463 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2464 device_printf(sc->sc_dev, "could not set Tx power\n");
f688ab3e 2465 ieee80211_free_node(ni);
4db7dd1b
JT
2466 return error;
2467 }
2468
2469 /* add default node */
2470 memset(&node, 0, sizeof node);
2471 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
f688ab3e 2472 ieee80211_free_node(ni);
4db7dd1b
JT
2473 node.id = WPI_ID_BSS;
2474 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2475 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2476 node.action = htole32(WPI_ACTION_SET_RATE);
2477 node.antenna = WPI_ANTENNA_BOTH;
2478 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2479 if (error != 0)
2480 device_printf(sc->sc_dev, "could not add BSS node\n");
2481
2482 return (error);
2483}
2484
2485static int
2486wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2487{
2488 struct ieee80211com *ic = vap->iv_ic;
f688ab3e 2489 struct ieee80211_node *ni;
4db7dd1b
JT
2490 int error;
2491
2492 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2493 /* link LED blinks while monitoring */
2494 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2495 return 0;
2496 }
2497
f688ab3e 2498 ni = ieee80211_ref_node(vap->iv_bss);
4db7dd1b
JT
2499 wpi_enable_tsf(sc, ni);
2500
2501 /* update adapter's configuration */
2502 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2503 /* short preamble/slot time are negotiated when associating */
2504 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2505 WPI_CONFIG_SHSLOT);
2506 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2507 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2508 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2509 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2510 sc->config.filter |= htole32(WPI_FILTER_BSS);
2511
2512 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2513
2514 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2515 sc->config.flags));
2516 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2517 wpi_config), 1);
2518 if (error != 0) {
2519 device_printf(sc->sc_dev, "could not update configuration\n");
f688ab3e 2520 ieee80211_free_node(ni);
4db7dd1b
JT
2521 return error;
2522 }
2523
2524 error = wpi_set_txpower(sc, ni->ni_chan, 1);
f688ab3e 2525 ieee80211_free_node(ni);
4db7dd1b
JT
2526 if (error != 0) {
2527 device_printf(sc->sc_dev, "could set txpower\n");
2528 return error;
2529 }
2530
2531 /* link LED always on while associated */
2532 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2533
2534 /* start automatic rate control timer */
2535 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2536
2537 return (error);
2538}
2539
2540/*
2541 * Send a scan request to the firmware. Since this command is huge, we map it
2542 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2543 * much of this code is similar to that in wpi_cmd but because we must manually
2544 * construct the probe & channels, we duplicate what's needed here. XXX In the
2545 * future, this function should be modified to use wpi_cmd to help cleanup the
2546 * code base.
2547 */
2548static int
2549wpi_scan(struct wpi_softc *sc)
2550{
2551 struct ifnet *ifp = sc->sc_ifp;
2552 struct ieee80211com *ic = ifp->if_l2com;
2553 struct ieee80211_scan_state *ss = ic->ic_scan;
2554 struct wpi_tx_ring *ring = &sc->cmdq;
2555 struct wpi_tx_desc *desc;
2556 struct wpi_tx_data *data;
2557 struct wpi_tx_cmd *cmd;
2558 struct wpi_scan_hdr *hdr;
2559 struct wpi_scan_chan *chan;
2560 struct ieee80211_frame *wh;
2561 struct ieee80211_rateset *rs;
2562 struct ieee80211_channel *c;
2563 enum ieee80211_phymode mode;
2564 uint8_t *frm;
2565 int nrates, pktlen, error, i, nssid;
2566 bus_addr_t physaddr;
2567
2568 desc = &ring->desc[ring->cur];
2569 data = &ring->data[ring->cur];
2570
f688ab3e 2571 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
4db7dd1b
JT
2572 if (data->m == NULL) {
2573 device_printf(sc->sc_dev,
2574 "could not allocate mbuf for scan command\n");
2575 return ENOMEM;
2576 }
2577
2578 cmd = mtod(data->m, struct wpi_tx_cmd *);
2579 cmd->code = WPI_CMD_SCAN;
2580 cmd->flags = 0;
2581 cmd->qid = ring->qid;
2582 cmd->idx = ring->cur;
2583
2584 hdr = (struct wpi_scan_hdr *)cmd->data;
2585 memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2586
2587 /*
2588 * Move to the next channel if no packets are received within 5 msecs
2589 * after sending the probe request (this helps to reduce the duration
2590 * of active scans).
2591 */
2592 hdr->quiet = htole16(5);
2593 hdr->threshold = htole16(1);
2594
2595 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2596 /* send probe requests at 6Mbps */
2597 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2598
2599 /* Enable crc checking */
2600 hdr->promotion = htole16(1);
2601 } else {
2602 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2603 /* send probe requests at 1Mbps */
2604 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2605 }
2606 hdr->tx.id = WPI_ID_BROADCAST;
2607 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2608 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2609
2610 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2611 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2612 for (i = 0; i < nssid; i++) {
2613 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2614 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2615 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2616 hdr->scan_essids[i].esslen);
2617#ifdef WPI_DEBUG
2618 if (wpi_debug & WPI_DEBUG_SCANNING) {
2619 kprintf("Scanning Essid: ");
2620 ieee80211_print_essid(hdr->scan_essids[i].essid,
2621 hdr->scan_essids[i].esslen);
2622 kprintf("\n");
2623 }
2624#endif
2625 }
2626
2627 /*
2628 * Build a probe request frame. Most of the following code is a
2629 * copy & paste of what is done in net80211.
2630 */
2631 wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2632 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2633 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2634 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2635 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2636 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2637 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2638 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2639 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2640
2641 frm = (uint8_t *)(wh + 1);
2642
2643 /* add essid IE, the hardware will fill this in for us */
2644 *frm++ = IEEE80211_ELEMID_SSID;
2645 *frm++ = 0;
2646
2647 mode = ieee80211_chan2mode(ic->ic_curchan);
2648 rs = &ic->ic_sup_rates[mode];
2649
2650 /* add supported rates IE */
2651 *frm++ = IEEE80211_ELEMID_RATES;
2652 nrates = rs->rs_nrates;
2653 if (nrates > IEEE80211_RATE_SIZE)
2654 nrates = IEEE80211_RATE_SIZE;
2655 *frm++ = nrates;
2656 memcpy(frm, rs->rs_rates, nrates);
2657 frm += nrates;
2658
2659 /* add supported xrates IE */
2660 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2661 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2662 *frm++ = IEEE80211_ELEMID_XRATES;
2663 *frm++ = nrates;
2664 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2665 frm += nrates;
2666 }
2667
2668 /* setup length of probe request */
2669 hdr->tx.len = htole16(frm - (uint8_t *)wh);
2670
2671 /*
2672 * Construct information about the channel that we
2673 * want to scan. The firmware expects this to be directly
2674 * after the scan probe request
2675 */
2676 c = ic->ic_curchan;
2677 chan = (struct wpi_scan_chan *)frm;
2678 chan->chan = ieee80211_chan2ieee(ic, c);
2679 chan->flags = 0;
2680 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2681 chan->flags |= WPI_CHAN_ACTIVE;
2682 if (nssid != 0)
2683 chan->flags |= WPI_CHAN_DIRECT;
2684 }
2685 chan->gain_dsp = 0x6e; /* Default level */
2686 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2687 chan->active = htole16(10);
2688 chan->passive = htole16(ss->ss_maxdwell);
2689 chan->gain_radio = 0x3b;
2690 } else {
2691 chan->active = htole16(20);
2692 chan->passive = htole16(ss->ss_maxdwell);
2693 chan->gain_radio = 0x28;
2694 }
2695
2696 DPRINTFN(WPI_DEBUG_SCANNING,
2697 ("Scanning %u Passive: %d\n",
2698 chan->chan,
2699 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2700
2701 hdr->nchan++;
2702 chan++;
2703
2704 frm += sizeof (struct wpi_scan_chan);
2705#if 0
2706 // XXX All Channels....
2707 for (c = &ic->ic_channels[1];
2708 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2709 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2710 continue;
2711
2712 chan->chan = ieee80211_chan2ieee(ic, c);
2713 chan->flags = 0;
2714 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2715 chan->flags |= WPI_CHAN_ACTIVE;
2716 if (ic->ic_des_ssid[0].len != 0)
2717 chan->flags |= WPI_CHAN_DIRECT;
2718 }
2719 chan->gain_dsp = 0x6e; /* Default level */
2720 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2721 chan->active = htole16(10);
2722 chan->passive = htole16(110);
2723 chan->gain_radio = 0x3b;
2724 } else {
2725 chan->active = htole16(20);
2726 chan->passive = htole16(120);
2727 chan->gain_radio = 0x28;
2728 }
2729
2730 DPRINTFN(WPI_DEBUG_SCANNING,
2731 ("Scanning %u Passive: %d\n",
2732 chan->chan,
2733 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2734
2735 hdr->nchan++;
2736 chan++;
2737
2738 frm += sizeof (struct wpi_scan_chan);
2739 }
2740#endif
2741
2742 hdr->len = htole16(frm - (uint8_t *)hdr);
2743 pktlen = frm - (uint8_t *)cmd;
2744
2745 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2746 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2747 if (error != 0) {
2748 device_printf(sc->sc_dev, "could not map scan command\n");
2749 m_freem(data->m);
2750 data->m = NULL;
2751 return error;
2752 }
2753
2754 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2755 desc->segs[0].addr = htole32(physaddr);
2756 desc->segs[0].len = htole32(pktlen);
2757
2758 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2759 BUS_DMASYNC_PREWRITE);
2760 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2761
2762 /* kick cmd ring */
2763 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2764 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2765
2766 sc->sc_scan_timer = 5;
2767 return 0; /* will be notified async. of failure/success */
2768}
2769
2770/**
2771 * Configure the card to listen to a particular channel, this transisions the
2772 * card in to being able to receive frames from remote devices.
2773 */
2774static int
2775wpi_config(struct wpi_softc *sc)
2776{
2777 struct ifnet *ifp = sc->sc_ifp;
2778 struct ieee80211com *ic = ifp->if_l2com;
2779 struct wpi_power power;
2780 struct wpi_bluetooth bluetooth;
2781 struct wpi_node_info node;
2782 int error;
2783
2784 /* set power mode */
2785 memset(&power, 0, sizeof power);
2786 power.flags = htole32(WPI_POWER_CAM|0x8);
2787 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2788 if (error != 0) {
2789 device_printf(sc->sc_dev, "could not set power mode\n");
2790 return error;
2791 }
2792
2793 /* configure bluetooth coexistence */
2794 memset(&bluetooth, 0, sizeof bluetooth);
2795 bluetooth.flags = 3;
2796 bluetooth.lead = 0xaa;
2797 bluetooth.kill = 1;
2798 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2799 0);
2800 if (error != 0) {
2801 device_printf(sc->sc_dev,
2802 "could not configure bluetooth coexistence\n");
2803 return error;
2804 }
2805
2806 /* configure adapter */
2807 memset(&sc->config, 0, sizeof (struct wpi_config));
2808 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2809 /*set default channel*/
2810 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2811 sc->config.flags = htole32(WPI_CONFIG_TSF);
2812 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2813 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2814 WPI_CONFIG_24GHZ);
2815 }
2816 sc->config.filter = 0;
2817 switch (ic->ic_opmode) {
2818 case IEEE80211_M_STA:
2819 case IEEE80211_M_WDS: /* No know setup, use STA for now */
2820 sc->config.mode = WPI_MODE_STA;
2821 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2822 break;
2823 case IEEE80211_M_IBSS:
2824 case IEEE80211_M_AHDEMO:
2825 sc->config.mode = WPI_MODE_IBSS;
2826 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2827 WPI_FILTER_MULTICAST);
2828 break;
2829 case IEEE80211_M_HOSTAP:
2830 sc->config.mode = WPI_MODE_HOSTAP;
2831 break;
2832 case IEEE80211_M_MONITOR:
2833 sc->config.mode = WPI_MODE_MONITOR;
2834 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2835 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2836 break;
2837 default:
2838 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2839 return EINVAL;
2840 }
2841 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2842 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2843 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2844 sizeof (struct wpi_config), 0);
2845 if (error != 0) {
2846 device_printf(sc->sc_dev, "configure command failed\n");
2847 return error;
2848 }
2849
2850 /* configuration has changed, set Tx power accordingly */
2851 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2852 device_printf(sc->sc_dev, "could not set Tx power\n");
2853 return error;
2854 }
2855
2856 /* add broadcast node */
2857 memset(&node, 0, sizeof node);
2858 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2859 node.id = WPI_ID_BROADCAST;
2860 node.rate = wpi_plcp_signal(2);
2861 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2862 if (error != 0) {
2863 device_printf(sc->sc_dev, "could not add broadcast node\n");
2864 return error;
2865 }
2866
2867 /* Setup rate scalling */
2868 error = wpi_mrr_setup(sc);
2869 if (error != 0) {
2870 device_printf(sc->sc_dev, "could not setup MRR\n");
2871 return error;
2872 }
2873
2874 return 0;
2875}
2876
2877static void
2878wpi_stop_master(struct wpi_softc *sc)
2879{
2880 uint32_t tmp;
2881 int ntries;
2882
2883 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2884
2885 tmp = WPI_READ(sc, WPI_RESET);
2886 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2887
2888 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2889 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2890 return; /* already asleep */
2891
2892 for (ntries = 0; ntries < 100; ntries++) {
2893 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2894 break;
2895 DELAY(10);
2896 }
2897 if (ntries == 100) {
2898 device_printf(sc->sc_dev, "timeout waiting for master\n");
2899 }
2900}
2901
2902static int
2903wpi_power_up(struct wpi_softc *sc)
2904{
2905 uint32_t tmp;
2906 int ntries;
2907
2908 wpi_mem_lock(sc);
2909 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2910 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2911 wpi_mem_unlock(sc);
2912
2913 for (ntries = 0; ntries < 5000; ntries++) {
2914 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2915 break;
2916 DELAY(10);
2917 }
2918 if (ntries == 5000) {
2919 device_printf(sc->sc_dev,
2920 "timeout waiting for NIC to power up\n");
2921 return ETIMEDOUT;
2922 }
2923 return 0;
2924}
2925
2926static int
2927wpi_reset(struct wpi_softc *sc)
2928{
2929 uint32_t tmp;
2930 int ntries;
2931
2932 DPRINTFN(WPI_DEBUG_HW,
2933 ("Resetting the card - clearing any uploaded firmware\n"));
2934
2935 /* clear any pending interrupts */
2936 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2937
2938 tmp = WPI_READ(sc, WPI_PLL_CTL);
2939 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2940
2941 tmp = WPI_READ(sc, WPI_CHICKEN);
2942 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2943
2944 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2945 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2946
2947 /* wait for clock stabilization */
2948 for (ntries = 0; ntries < 25000; ntries++) {
2949 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2950 break;
2951 DELAY(10);
2952 }
2953 if (ntries == 25000) {
2954 device_printf(sc->sc_dev,
2955 "timeout waiting for clock stabilization\n");
2956 return ETIMEDOUT;
2957 }
2958
2959 /* initialize EEPROM */
2960 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2961
2962 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2963 device_printf(sc->sc_dev, "EEPROM not found\n");
2964 return EIO;
2965 }
2966 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2967
2968 return 0;
2969}
2970
2971static void
2972wpi_hw_config(struct wpi_softc *sc)
2973{
2974 uint32_t rev, hw;
2975
2976 /* voodoo from the Linux "driver".. */
2977 hw = WPI_READ(sc, WPI_HWCONFIG);
2978
2979 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2980 if ((rev & 0xc0) == 0x40)
2981 hw |= WPI_HW_ALM_MB;
2982 else if (!(rev & 0x80))
2983 hw |= WPI_HW_ALM_MM;
2984
2985 if (sc->cap == 0x80)
2986 hw |= WPI_HW_SKU_MRC;
2987
2988 hw &= ~WPI_HW_REV_D;
2989 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2990 hw |= WPI_HW_REV_D;
2991
2992 if (sc->type > 1)
2993 hw |= WPI_HW_TYPE_B;
2994
2995 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2996}
2997
2998static void
2999wpi_rfkill_resume(struct wpi_softc *sc)
3000{
3001 struct ifnet *ifp = sc->sc_ifp;
3002 struct ieee80211com *ic = ifp->if_l2com;
3003 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3004 int ntries;
3005
3006 /* enable firmware again */
3007 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3008 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3009
3010 /* wait for thermal sensors to calibrate */
3011 for (ntries = 0; ntries < 1000; ntries++) {
3012 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3013 break;
3014 DELAY(10);
3015 }
3016
3017 if (ntries == 1000) {
3018 device_printf(sc->sc_dev,
3019 "timeout waiting for thermal calibration\n");
4db7dd1b
JT
3020 return;
3021 }
3022 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3023
3024 if (wpi_config(sc) != 0) {
3025 device_printf(sc->sc_dev, "device config failed\n");
4db7dd1b
JT
3026 return;
3027 }
3028
3029 ifp->if_flags &= ~IFF_OACTIVE;
3030 ifp->if_flags |= IFF_RUNNING;
3031 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3032
3033 if (vap != NULL) {
3034 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3035 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3036 ieee80211_beacon_miss(ic);
3037 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3038 } else
3039 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3040 } else {
3041 ieee80211_scan_next(vap);
3042 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3043 }
3044 }
3045
3046 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3047}
3048
3049static void
3050wpi_init_locked(struct wpi_softc *sc, int force)
3051{
3052 struct ifnet *ifp = sc->sc_ifp;
3053 uint32_t tmp;
3054 int ntries, qid;
3055
3056 wpi_stop_locked(sc);
3057 (void)wpi_reset(sc);
3058
3059 wpi_mem_lock(sc);
3060 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3061 DELAY(20);
3062 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3063 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3064 wpi_mem_unlock(sc);
3065
3066 (void)wpi_power_up(sc);
3067 wpi_hw_config(sc);
3068
3069 /* init Rx ring */
3070 wpi_mem_lock(sc);
3071 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3072 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3073 offsetof(struct wpi_shared, next));
3074 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3075 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3076 wpi_mem_unlock(sc);
3077
3078 /* init Tx rings */
3079 wpi_mem_lock(sc);
3080 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3081 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3082 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3083 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3084 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3085 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3086 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3087
3088 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3089 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3090
3091 for (qid = 0; qid < 6; qid++) {
3092 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3093 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3094 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3095 }
3096 wpi_mem_unlock(sc);
3097
3098 /* clear "radio off" and "disable command" bits (reversed logic) */
3099 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3101 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3102
3103 /* clear any pending interrupts */
3104 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3105
3106 /* enable interrupts */
3107 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3108
3109 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3110 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3111
3112 if ((wpi_load_firmware(sc)) != 0) {
3113 device_printf(sc->sc_dev,
3114 "A problem occurred loading the firmware to the driver\n");
3115 return;
3116 }
3117
3118 /* At this point the firmware is up and running. If the hardware
3119 * RF switch is turned off thermal calibration will fail, though
3120 * the card is still happy to continue to accept commands, catch
3121 * this case and schedule a task to watch for it to be turned on.
3122 */
3123 wpi_mem_lock(sc);
3124 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3125 wpi_mem_unlock(sc);
3126
3127 if (!(tmp & 0x1)) {
3128 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3129 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3130 goto out;
3131 }
3132
3133 /* wait for thermal sensors to calibrate */
3134 for (ntries = 0; ntries < 1000; ntries++) {
3135 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3136 break;
3137 DELAY(10);
3138 }
3139
3140 if (ntries == 1000) {
3141 device_printf(sc->sc_dev,
3142 "timeout waiting for thermal sensors calibration\n");
3143 return;
3144 }
3145 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3146
3147 if (wpi_config(sc) != 0) {
3148 device_printf(sc->sc_dev, "device config failed\n");
3149 return;
3150 }
3151
3152 ifp->if_flags &= ~IFF_OACTIVE;
3153 ifp->if_flags |= IFF_RUNNING;
3154out:
3155 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3156}
3157
3158static void
3159wpi_init(void *arg)
3160{
3161 struct wpi_softc *sc = arg;
3162 struct ifnet *ifp = sc->sc_ifp;
3163 struct ieee80211com *ic = ifp->if_l2com;
3164
3165 WPI_LOCK(sc);
3166 wpi_init_locked(sc, 0);
3167 WPI_UNLOCK(sc);
3168
3169 if (ifp->if_flags & IFF_RUNNING)
3170 ieee80211_start_all(ic); /* start all vaps */
3171}
3172
3173static void
3174wpi_stop_locked(struct wpi_softc *sc)
3175{
3176 struct ifnet *ifp = sc->sc_ifp;
3177 uint32_t tmp;
3178 int ac;
3179
3180 sc->sc_tx_timer = 0;
3181 sc->sc_scan_timer = 0;
3182 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3183 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3184 callout_stop(&sc->watchdog_to);
3185 callout_stop(&sc->calib_to);
3186
3187
3188 /* disable interrupts */
3189 WPI_WRITE(sc, WPI_MASK, 0);
3190 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3191 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3192 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3193
3194 wpi_mem_lock(sc);
3195 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3196 wpi_mem_unlock(sc);
3197
3198 /* reset all Tx rings */
3199 for (ac = 0; ac < 4; ac++)
3200 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3201 wpi_reset_tx_ring(sc, &sc->cmdq);
3202
3203 /* reset Rx ring */
3204 wpi_reset_rx_ring(sc, &sc->rxq);
3205
3206 wpi_mem_lock(sc);
3207 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3208 wpi_mem_unlock(sc);
3209
3210 DELAY(5);
3211
3212 wpi_stop_master(sc);
3213
3214 tmp = WPI_READ(sc, WPI_RESET);
3215 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3216 sc->flags &= ~WPI_FLAG_BUSY;
3217}
3218
3219static void
3220wpi_stop(struct wpi_softc *sc)
3221{
3222 WPI_LOCK(sc);
3223 wpi_stop_locked(sc);
3224 WPI_UNLOCK(sc);
3225}
3226
3227static void
3228wpi_newassoc(struct ieee80211_node *ni, int isnew)
3229{
3230 /* XXX move */
3231 ieee80211_ratectl_node_init(ni);
3232}
3233
3234static void
3235wpi_calib_timeout(void *arg)
3236{
3237 struct wpi_softc *sc = arg;
3238 struct ifnet *ifp = sc->sc_ifp;
3239 struct ieee80211com *ic = ifp->if_l2com;
3240 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3241 int temp;
3242
3243 if (vap->iv_state != IEEE80211_S_RUN)
3244 return;
3245
3246 /* update sensor data */
3247 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3248 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3249
3250 wpi_power_calibration(sc, temp);
3251
3252 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3253}
3254
3255/*
3256 * This function is called periodically (every 60 seconds) to adjust output
3257 * power to temperature changes.
3258 */
3259static void
3260wpi_power_calibration(struct wpi_softc *sc, int temp)
3261{
3262 struct ifnet *ifp = sc->sc_ifp;
3263 struct ieee80211com *ic = ifp->if_l2com;
3264 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265
3266 /* sanity-check read value */
3267 if (temp < -260 || temp > 25) {
3268 /* this can't be correct, ignore */
3269 DPRINTFN(WPI_DEBUG_TEMP,
3270 ("out-of-range temperature reported: %d\n", temp));
3271 return;
3272 }
3273
3274 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3275
3276 /* adjust Tx power if need be */
3277 if (abs(temp - sc->temp) <= 6)
3278 return;
3279
3280 sc->temp = temp;
3281
3282 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3283 /* just warn, too bad for the automatic calibration... */
3284 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3285 }
3286}
3287
3288/**
3289 * Read the eeprom to find out what channels are valid for the given
3290 * band and update net80211 with what we find.
3291 */
3292static void
3293wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3294{
3295 struct ifnet *ifp = sc->sc_ifp;
3296 struct ieee80211com *ic = ifp->if_l2com;
3297 const struct wpi_chan_band *band = &wpi_bands[n];
3298 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3299 struct ieee80211_channel *c;
3300 int chan, i, passive;
3301
3302 wpi_read_prom_data(sc, band->addr, channels,
3303 band->nchan * sizeof (struct wpi_eeprom_chan));
3304
3305 for (i = 0; i < band->nchan; i++) {
3306 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3307 DPRINTFN(WPI_DEBUG_HW,
3308 ("Channel Not Valid: %d, band %d\n",
3309 band->chan[i],n));
3310 continue;
3311 }
3312
3313 passive = 0;
3314 chan = band->chan[i];
3315 c = &ic->ic_channels[ic->ic_nchans++];
3316
3317 /* is active scan allowed on this channel? */
3318 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3319 passive = IEEE80211_CHAN_PASSIVE;
3320 }
3321
3322 if (n == 0) { /* 2GHz band */
3323 c->ic_ieee = chan;
3324 c->ic_freq = ieee80211_ieee2mhz(chan,
3325 IEEE80211_CHAN_2GHZ);
3326 c->ic_flags = IEEE80211_CHAN_B | passive;
3327
3328 c = &ic->ic_channels[ic->ic_nchans++];
3329 c->ic_ieee = chan;
3330 c->ic_freq = ieee80211_ieee2mhz(chan,
3331 IEEE80211_CHAN_2GHZ);
3332 c->ic_flags = IEEE80211_CHAN_G | passive;
3333
3334 } else { /* 5GHz band */
3335 /*
3336 * Some 3945ABG adapters support channels 7, 8, 11
3337 * and 12 in the 2GHz *and* 5GHz bands.
3338 * Because of limitations in our net80211(9) stack,
3339 * we can't support these channels in 5GHz band.
3340 * XXX not true; just need to map to proper frequency
3341 */
3342 if (chan <= 14)
3343 continue;
3344
3345 c->ic_ieee = chan;
3346 c->ic_freq = ieee80211_ieee2mhz(chan,
3347 IEEE80211_CHAN_5GHZ);
3348 c->ic_flags = IEEE80211_CHAN_A | passive;
3349 }
3350
3351 /* save maximum allowed power for this channel */
3352 sc->maxpwr[chan] = channels[i].maxpwr;
3353
3354#if 0
3355 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3356 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3357 //ic->ic_channels[chan].ic_minpower...
3358 //ic->ic_channels[chan].ic_maxregtxpower...
3359#endif
3360
3361 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3362 " passive=%d, offset %d\n", chan, c->ic_freq,
3363 channels[i].flags, sc->maxpwr[chan],
3364 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3365 ic->ic_nchans));
3366 }
3367}
3368
3369static void
3370wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3371{
3372 struct wpi_power_group *group = &sc->groups[n];
3373 struct wpi_eeprom_group rgroup;
3374 int i;
3375
3376 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3377 sizeof rgroup);
3378
3379 /* save power group information */
3380 group->chan = rgroup.chan;
3381 group->maxpwr = rgroup.maxpwr;
3382 /* temperature at which the samples were taken */
3383 group->temp = (int16_t)le16toh(rgroup.temp);
3384
3385 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3386 group->chan, group->maxpwr, group->temp));
3387
3388 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3389 group->samples[i].index = rgroup.samples[i].index;
3390 group->samples[i].power = rgroup.samples[i].power;
3391
3392 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3393 group->samples[i].index, group->samples[i].power));
3394 }
3395}
3396
3397/*
3398 * Update Tx power to match what is defined for channel `c'.
3399 */
3400static int
3401wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3402{
3403 struct ifnet *ifp = sc->sc_ifp;
3404 struct ieee80211com *ic = ifp->if_l2com;
3405 struct wpi_power_group *group;
3406 struct wpi_cmd_txpower txpower;
3407 u_int chan;
3408 int i;
3409
3410 /* get channel number */
3411 chan = ieee80211_chan2ieee(ic, c);
3412
3413 /* find the power group to which this channel belongs */
3414 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3416 if (chan <= group->chan)
3417 break;
3418 } else
3419 group = &sc->groups[0];
3420
3421 memset(&txpower, 0, sizeof txpower);
3422 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3423 txpower.channel = htole16(chan);
3424
3425 /* set Tx power for all OFDM and CCK rates */
3426 for (i = 0; i <= 11 ; i++) {
3427 /* retrieve Tx power for this channel/rate combination */
3428 int idx = wpi_get_power_index(sc, group, c,
3429 wpi_ridx_to_rate[i]);
3430
3431 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3432
3433 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3434 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3435 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3436 } else {
3437 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3438 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3439 }
3440 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3441 chan, wpi_ridx_to_rate[i], idx));
3442 }
3443
3444 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3445}
3446
3447/*
3448 * Determine Tx power index for a given channel/rate combination.
3449 * This takes into account the regulatory information from EEPROM and the
3450 * current temperature.
3451 */
3452static int
3453wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3454 struct ieee80211_channel *c, int rate)
3455{
3456/* fixed-point arithmetic division using a n-bit fractional part */
3457#define fdivround(a, b, n) \
3458 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3459
3460/* linear interpolation */
3461#define interpolate(x, x1, y1, x2, y2, n) \
3462 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3463
3464 struct ifnet *ifp = sc->sc_ifp;
3465 struct ieee80211com *ic = ifp->if_l2com;
3466 struct wpi_power_sample *sample;
3467 int pwr, idx;
3468 u_int chan;
3469
3470 /* get channel number */
3471 chan = ieee80211_chan2ieee(ic, c);
3472
3473 /* default power is group's maximum power - 3dB */
3474 pwr = group->maxpwr / 2;
3475
3476 /* decrease power for highest OFDM rates to reduce distortion */
3477 switch (rate) {
3478 case 72: /* 36Mb/s */
3479 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
3480 break;
3481 case 96: /* 48Mb/s */
3482 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3483 break;
3484 case 108: /* 54Mb/s */
3485 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3486 break;
3487 }
3488
3489 /* never exceed channel's maximum allowed Tx power */
3490 pwr = min(pwr, sc->maxpwr[chan]);
3491
3492 /* retrieve power index into gain tables from samples */
3493 for (sample = group->samples; sample < &group->samples[3]; sample++)
3494 if (pwr > sample[1].power)
3495 break;
3496 /* fixed-point linear interpolation using a 19-bit fractional part */
3497 idx = interpolate(pwr, sample[0].power, sample[0].index,
3498 sample[1].power, sample[1].index, 19);
3499
3500 /*
3501 * Adjust power index based on current temperature
3502 * - if colder than factory-calibrated: decreate output power
3503 * - if warmer than factory-calibrated: increase output power
3504 */
3505 idx -= (sc->temp - group->temp) * 11 / 100;
3506
3507 /* decrease power for CCK rates (-5dB) */
3508 if (!WPI_RATE_IS_OFDM(rate))
3509 idx += 10;
3510
3511 /* keep power index in a valid range */
3512 if (idx < 0)
3513 return 0;
3514 if (idx > WPI_MAX_PWR_INDEX)
3515 return WPI_MAX_PWR_INDEX;
3516 return idx;
3517
3518#undef interpolate
3519#undef fdivround
3520}
3521
3522/**
3523 * Called by net80211 framework to indicate that a scan
3524 * is starting. This function doesn't actually do the scan,
3525 * wpi_scan_curchan starts things off. This function is more
3526 * of an early warning from the framework we should get ready
3527 * for the scan.
3528 */
3529static void
3530wpi_scan_start(struct ieee80211com *ic)
3531{
3532 struct ifnet *ifp = ic->ic_ifp;
3533 struct wpi_softc *sc = ifp->if_softc;
3534
3535 WPI_LOCK(sc);
3536 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3537 WPI_UNLOCK(sc);
3538}
3539
3540/**
3541 * Called by the net80211 framework, indicates that the
3542 * scan has ended. If there is a scan in progress on the card
3543 * then it should be aborted.
3544 */
3545static void
3546wpi_scan_end(struct ieee80211com *ic)
3547{
3548 /* XXX ignore */
3549}
3550
3551/**
3552 * Called by the net80211 framework to indicate to the driver
3553 * that the channel should be changed
3554 */
3555static void
3556wpi_set_channel(struct ieee80211com *ic)
3557{
3558 struct ifnet *ifp = ic->ic_ifp;
3559 struct wpi_softc *sc = ifp->if_softc;
3560 int error;
3561
3562 /*
3563 * Only need to set the channel in Monitor mode. AP scanning and auth
3564 * are already taken care of by their respective firmware commands.
3565 */
3566 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3567 error = wpi_config(sc);
3568 if (error != 0)
3569 device_printf(sc->sc_dev,
3570 "error %d settting channel\n", error);
3571 }
3572}
3573
3574/**
3575 * Called by net80211 to indicate that we need to scan the current
3576 * channel. The channel is previously be set via the wpi_set_channel
3577 * callback.
3578 */
3579static void
3580wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3581{
3582 struct ieee80211vap *vap = ss->ss_vap;
3583 struct ifnet *ifp = vap->iv_ic->ic_ifp;
3584 struct wpi_softc *sc = ifp->if_softc;
3585
3586 WPI_LOCK(sc);
3587 if (wpi_scan(sc))
3588 ieee80211_cancel_scan(vap);
3589 WPI_UNLOCK(sc);
3590}
3591
3592/**
3593 * Called by the net80211 framework to indicate
3594 * the minimum dwell time has been met, terminate the scan.
3595 * We don't actually terminate the scan as the firmware will notify
3596 * us when it's finished and we have no way to interrupt it.
3597 */
3598static void
3599wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3600{
3601 /* NB: don't try to abort scan; wait for firmware to finish */
3602}
3603
3604static void
3605wpi_hwreset(void *arg, int pending)
3606{
3607 struct wpi_softc *sc = arg;
3608
3609 WPI_LOCK(sc);
3610 wpi_init_locked(sc, 0);
3611 WPI_UNLOCK(sc);
3612}
3613
3614static void
3615wpi_rfreset(void *arg, int pending)
3616{
3617 struct wpi_softc *sc = arg;
3618
3619 WPI_LOCK(sc);
3620 wpi_rfkill_resume(sc);
3621 WPI_UNLOCK(sc);
3622}
3623
3624/*
3625 * Allocate DMA-safe memory for firmware transfer.
3626 */
3627static int
3628wpi_alloc_fwmem(struct wpi_softc *sc)
3629{
3630 /* allocate enough contiguous space to store text and data */
3631 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3632 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3633 BUS_DMA_NOWAIT);
3634}
3635
3636static void
3637wpi_free_fwmem(struct wpi_softc *sc)
3638{
3639 wpi_dma_contig_free(&sc->fw_dma);
3640}
3641
3642/**
3643 * Called every second, wpi_watchdog used by the watch dog timer
3644 * to check that the card is still alive
3645 */
3646static void
3647wpi_watchdog(void *arg)
3648{
3649 struct wpi_softc *sc = arg;
3650 struct ifnet *ifp = sc->sc_ifp;
3651 struct ieee80211com *ic = ifp->if_l2com;
3652 uint32_t tmp;
3653
3654 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3655
3656 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3657 /* No need to lock firmware memory */
3658 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3659
3660 if ((tmp & 0x1) == 0) {
3661 /* Radio kill switch is still off */
3662 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3663 return;
3664 }
3665
3666 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3667 ieee80211_runtask(ic, &sc->sc_radiotask);
3668 return;
3669 }
3670
3671 if (sc->sc_tx_timer > 0) {
3672 if (--sc->sc_tx_timer == 0) {
3673 device_printf(sc->sc_dev,"device timeout\n");
3674 ifp->if_oerrors++;
3675 ieee80211_runtask(ic, &sc->sc_restarttask);
3676 }
3677 }
3678 if (sc->sc_scan_timer > 0) {
3679 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3680 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3681 device_printf(sc->sc_dev,"scan timeout\n");
3682 ieee80211_cancel_scan(vap);
3683 ieee80211_runtask(ic, &sc->sc_restarttask);
3684 }
3685 }
3686
3687 if (ifp->if_flags & IFF_RUNNING)
3688 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3689}
3690
3691#ifdef WPI_DEBUG
3692static const char *wpi_cmd_str(int cmd)
3693{
3694 switch (cmd) {
3695 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD";
3696 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3697 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3698 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME";
3699 case WPI_CMD_TSF: return "WPI_CMD_TSF";
3700 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE";
3701 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA";
3702 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3703 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED";
3704 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3705 case WPI_CMD_SCAN: return "WPI_CMD_SCAN";
3706 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3707 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER";
3708 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3709
3710 default:
3711 KASSERT(1, ("Unknown Command: %d\n", cmd));
3712 return "UNKNOWN CMD"; /* Make the compiler happy */
3713 }
3714}
3715#endif
3716
3717MODULE_DEPEND(wpi, pci, 1, 1, 1);
3718MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3719MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3720MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3721/*
3722MODULE_DEPEND(wpi, wpifw_fw_fw, 1, 1, 1);
3723MODULE_DEPEND(wpi, ath_rate, 1, 1, 1);
3724*/