Add skeleton procedures for the vmspace_*() series of system calls which
[dragonfly.git] / sys / kern / kern_proc.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $
51e64ff2 35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.25 2006/05/24 18:59:48 dillon Exp $
984263bc
MD
36 */
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/sysctl.h>
42#include <sys/malloc.h>
43#include <sys/proc.h>
56c703bd 44#include <sys/jail.h>
984263bc
MD
45#include <sys/filedesc.h>
46#include <sys/tty.h>
47#include <sys/signalvar.h>
5bf0d9b5 48#include <sys/spinlock.h>
984263bc
MD
49#include <vm/vm.h>
50#include <sys/lock.h>
51#include <vm/pmap.h>
52#include <vm/vm_map.h>
53#include <sys/user.h>
54#include <vm/vm_zone.h>
630ccdeb 55#include <machine/smp.h>
984263bc 56
5bf0d9b5
MD
57#include <sys/spinlock2.h>
58
984263bc
MD
59static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
60MALLOC_DEFINE(M_SESSION, "session", "session header");
61static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
62MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
63
28c57d20 64int ps_showallprocs = 1;
73e4f7b9 65static int ps_showallthreads = 1;
984263bc
MD
66SYSCTL_INT(_kern, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
67 &ps_showallprocs, 0, "");
73e4f7b9
MD
68SYSCTL_INT(_kern, OID_AUTO, ps_showallthreads, CTLFLAG_RW,
69 &ps_showallthreads, 0, "");
984263bc 70
51e64ff2
MD
71static void pgdelete(struct pgrp *);
72static void orphanpg(struct pgrp *pg);
73static pid_t proc_getnewpid_locked(int random_offset);
984263bc
MD
74
75/*
76 * Other process lists
77 */
78struct pidhashhead *pidhashtbl;
79u_long pidhash;
80struct pgrphashhead *pgrphashtbl;
81u_long pgrphash;
82struct proclist allproc;
83struct proclist zombproc;
5bf0d9b5 84struct spinlock allproc_spin;
984263bc 85vm_zone_t proc_zone;
263e4574 86vm_zone_t thread_zone;
984263bc 87
51e64ff2
MD
88/*
89 * Random component to nextpid generation. We mix in a random factor to make
90 * it a little harder to predict. We sanity check the modulus value to avoid
91 * doing it in critical paths. Don't let it be too small or we pointlessly
92 * waste randomness entropy, and don't let it be impossibly large. Using a
93 * modulus that is too big causes a LOT more process table scans and slows
94 * down fork processing as the pidchecked caching is defeated.
95 */
96static int randompid = 0;
97
98static int
99sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
100{
101 int error, pid;
102
103 pid = randompid;
104 error = sysctl_handle_int(oidp, &pid, 0, req);
105 if (error || !req->newptr)
106 return (error);
107 if (pid < 0 || pid > PID_MAX - 100) /* out of range */
108 pid = PID_MAX - 100;
109 else if (pid < 2) /* NOP */
110 pid = 0;
111 else if (pid < 100) /* Make it reasonable */
112 pid = 100;
113 randompid = pid;
114 return (error);
115}
116
117SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
118 0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
119
984263bc
MD
120/*
121 * Initialize global process hashing structures.
122 */
123void
77153250 124procinit(void)
984263bc 125{
984263bc
MD
126 LIST_INIT(&allproc);
127 LIST_INIT(&zombproc);
5bf0d9b5 128 spin_init(&allproc_spin);
984263bc
MD
129 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
130 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
131 proc_zone = zinit("PROC", sizeof (struct proc), 0, 0, 5);
263e4574 132 thread_zone = zinit("THREAD", sizeof (struct thread), 0, 0, 5);
984263bc
MD
133 uihashinit();
134}
135
136/*
137 * Is p an inferior of the current process?
138 */
139int
77153250 140inferior(struct proc *p)
984263bc 141{
984263bc
MD
142 for (; p != curproc; p = p->p_pptr)
143 if (p->p_pid == 0)
144 return (0);
145 return (1);
146}
147
148/*
149 * Locate a process by number
150 */
151struct proc *
77153250 152pfind(pid_t pid)
984263bc 153{
1fd87d54 154 struct proc *p;
984263bc 155
5bf0d9b5 156 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
984263bc
MD
157 if (p->p_pid == pid)
158 return (p);
5bf0d9b5 159 }
984263bc
MD
160 return (NULL);
161}
162
163/*
164 * Locate a process group by number
165 */
166struct pgrp *
77153250 167pgfind(pid_t pgid)
984263bc 168{
1fd87d54 169 struct pgrp *pgrp;
984263bc 170
5bf0d9b5 171 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
984263bc
MD
172 if (pgrp->pg_id == pgid)
173 return (pgrp);
5bf0d9b5 174 }
984263bc
MD
175 return (NULL);
176}
177
178/*
179 * Move p to a new or existing process group (and session)
180 */
181int
77153250 182enterpgrp(struct proc *p, pid_t pgid, int mksess)
984263bc 183{
1fd87d54 184 struct pgrp *pgrp = pgfind(pgid);
984263bc
MD
185
186 KASSERT(pgrp == NULL || !mksess,
187 ("enterpgrp: setsid into non-empty pgrp"));
188 KASSERT(!SESS_LEADER(p),
189 ("enterpgrp: session leader attempted setpgrp"));
190
191 if (pgrp == NULL) {
192 pid_t savepid = p->p_pid;
193 struct proc *np;
194 /*
195 * new process group
196 */
197 KASSERT(p->p_pid == pgid,
198 ("enterpgrp: new pgrp and pid != pgid"));
199 if ((np = pfind(savepid)) == NULL || np != p)
200 return (ESRCH);
201 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP,
202 M_WAITOK);
203 if (mksess) {
1fd87d54 204 struct session *sess;
984263bc
MD
205
206 /*
207 * new session
208 */
209 MALLOC(sess, struct session *, sizeof(struct session),
210 M_SESSION, M_WAITOK);
211 sess->s_leader = p;
212 sess->s_sid = p->p_pid;
213 sess->s_count = 1;
214 sess->s_ttyvp = NULL;
215 sess->s_ttyp = NULL;
216 bcopy(p->p_session->s_login, sess->s_login,
217 sizeof(sess->s_login));
218 p->p_flag &= ~P_CONTROLT;
219 pgrp->pg_session = sess;
220 KASSERT(p == curproc,
221 ("enterpgrp: mksession and p != curproc"));
222 } else {
223 pgrp->pg_session = p->p_session;
8b90699b 224 sess_hold(pgrp->pg_session);
984263bc
MD
225 }
226 pgrp->pg_id = pgid;
227 LIST_INIT(&pgrp->pg_members);
228 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
229 pgrp->pg_jobc = 0;
230 SLIST_INIT(&pgrp->pg_sigiolst);
231 } else if (pgrp == p->p_pgrp)
232 return (0);
233
234 /*
235 * Adjust eligibility of affected pgrps to participate in job control.
236 * Increment eligibility counts before decrementing, otherwise we
237 * could reach 0 spuriously during the first call.
238 */
239 fixjobc(p, pgrp, 1);
240 fixjobc(p, p->p_pgrp, 0);
241
242 LIST_REMOVE(p, p_pglist);
243 if (LIST_EMPTY(&p->p_pgrp->pg_members))
244 pgdelete(p->p_pgrp);
245 p->p_pgrp = pgrp;
246 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
247 return (0);
248}
249
250/*
251 * remove process from process group
252 */
253int
77153250 254leavepgrp(struct proc *p)
984263bc
MD
255{
256
257 LIST_REMOVE(p, p_pglist);
258 if (LIST_EMPTY(&p->p_pgrp->pg_members))
259 pgdelete(p->p_pgrp);
260 p->p_pgrp = 0;
261 return (0);
262}
263
264/*
265 * delete a process group
266 */
267static void
77153250 268pgdelete(struct pgrp *pgrp)
984263bc
MD
269{
270
271 /*
272 * Reset any sigio structures pointing to us as a result of
273 * F_SETOWN with our pgid.
274 */
275 funsetownlst(&pgrp->pg_sigiolst);
276
277 if (pgrp->pg_session->s_ttyp != NULL &&
278 pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
279 pgrp->pg_session->s_ttyp->t_pgrp = NULL;
280 LIST_REMOVE(pgrp, pg_hash);
8b90699b
MD
281 sess_rele(pgrp->pg_session);
282 free(pgrp, M_PGRP);
283}
284
285/*
286 * Adjust the ref count on a session structure. When the ref count falls to
287 * zero the tty is disassociated from the session and the session structure
288 * is freed. Note that tty assocation is not itself ref-counted.
289 */
290void
291sess_hold(struct session *sp)
292{
293 ++sp->s_count;
294}
295
296void
297sess_rele(struct session *sp)
298{
299 KKASSERT(sp->s_count > 0);
300 if (--sp->s_count == 0) {
301 if (sp->s_ttyp && sp->s_ttyp->t_session) {
302#ifdef TTY_DO_FULL_CLOSE
303 /* FULL CLOSE, see ttyclearsession() */
304 KKASSERT(sp->s_ttyp->t_session == sp);
305 sp->s_ttyp->t_session = NULL;
306#else
307 /* HALF CLOSE, see ttyclearsession() */
308 if (sp->s_ttyp->t_session == sp)
309 sp->s_ttyp->t_session = NULL;
310#endif
311 }
312 free(sp, M_SESSION);
313 }
984263bc
MD
314}
315
316/*
317 * Adjust pgrp jobc counters when specified process changes process group.
318 * We count the number of processes in each process group that "qualify"
319 * the group for terminal job control (those with a parent in a different
320 * process group of the same session). If that count reaches zero, the
321 * process group becomes orphaned. Check both the specified process'
322 * process group and that of its children.
323 * entering == 0 => p is leaving specified group.
324 * entering == 1 => p is entering specified group.
325 */
326void
77153250 327fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
984263bc 328{
1fd87d54
RG
329 struct pgrp *hispgrp;
330 struct session *mysession = pgrp->pg_session;
984263bc
MD
331
332 /*
333 * Check p's parent to see whether p qualifies its own process
334 * group; if so, adjust count for p's process group.
335 */
336 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
337 hispgrp->pg_session == mysession) {
338 if (entering)
339 pgrp->pg_jobc++;
340 else if (--pgrp->pg_jobc == 0)
341 orphanpg(pgrp);
342 }
343
344 /*
345 * Check this process' children to see whether they qualify
346 * their process groups; if so, adjust counts for children's
347 * process groups.
348 */
349 LIST_FOREACH(p, &p->p_children, p_sibling)
350 if ((hispgrp = p->p_pgrp) != pgrp &&
351 hispgrp->pg_session == mysession &&
f026f3b0 352 (p->p_flag & P_ZOMBIE) == 0) {
984263bc
MD
353 if (entering)
354 hispgrp->pg_jobc++;
355 else if (--hispgrp->pg_jobc == 0)
356 orphanpg(hispgrp);
357 }
358}
359
360/*
361 * A process group has become orphaned;
362 * if there are any stopped processes in the group,
363 * hang-up all process in that group.
364 */
365static void
77153250 366orphanpg(struct pgrp *pg)
984263bc 367{
1fd87d54 368 struct proc *p;
984263bc
MD
369
370 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
344ad853 371 if (p->p_flag & P_STOPPED) {
984263bc
MD
372 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
373 psignal(p, SIGHUP);
374 psignal(p, SIGCONT);
375 }
376 return;
377 }
378 }
379}
380
51e64ff2
MD
381/*
382 * Add a new process to the allproc list and the PID hash. This
383 * also assigns a pid to the new process.
384 *
385 * MPALMOSTSAFE - acquires mplock for arc4random() call
386 */
387void
388proc_add_allproc(struct proc *p)
389{
390 int random_offset;
391
392 if ((random_offset = randompid) != 0) {
393 get_mplock();
394 random_offset = arc4random() % random_offset;
395 rel_mplock();
396 }
397
398 spin_lock_wr(&allproc_spin);
399 p->p_pid = proc_getnewpid_locked(random_offset);
400 LIST_INSERT_HEAD(&allproc, p, p_list);
401 LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash);
402 spin_unlock_wr(&allproc_spin);
403}
404
405/*
406 * Calculate a new process pid. This function is integrated into
407 * proc_add_allproc() to guarentee that the new pid is not reused before
408 * the new process can be added to the allproc list.
409 *
410 * MPSAFE - must be called with allproc_spin held.
411 */
412static
413pid_t
414proc_getnewpid_locked(int random_offset)
415{
416 static pid_t nextpid;
417 static pid_t pidchecked;
418 struct proc *p;
419
420 /*
421 * Find an unused process ID. We remember a range of unused IDs
422 * ready to use (from nextpid+1 through pidchecked-1).
423 */
424 nextpid = nextpid + 1 + random_offset;
425retry:
426 /*
427 * If the process ID prototype has wrapped around,
428 * restart somewhat above 0, as the low-numbered procs
429 * tend to include daemons that don't exit.
430 */
431 if (nextpid >= PID_MAX) {
432 nextpid = nextpid % PID_MAX;
433 if (nextpid < 100)
434 nextpid += 100;
435 pidchecked = 0;
436 }
437 if (nextpid >= pidchecked) {
438 int doingzomb = 0;
439
440 pidchecked = PID_MAX;
441 /*
442 * Scan the active and zombie procs to check whether this pid
443 * is in use. Remember the lowest pid that's greater
444 * than nextpid, so we can avoid checking for a while.
445 */
446 p = LIST_FIRST(&allproc);
447again:
448 for (; p != 0; p = LIST_NEXT(p, p_list)) {
449 while (p->p_pid == nextpid ||
450 p->p_pgrp->pg_id == nextpid ||
451 p->p_session->s_sid == nextpid) {
452 nextpid++;
453 if (nextpid >= pidchecked)
454 goto retry;
455 }
456 if (p->p_pid > nextpid && pidchecked > p->p_pid)
457 pidchecked = p->p_pid;
458 if (p->p_pgrp->pg_id > nextpid &&
459 pidchecked > p->p_pgrp->pg_id)
460 pidchecked = p->p_pgrp->pg_id;
461 if (p->p_session->s_sid > nextpid &&
462 pidchecked > p->p_session->s_sid)
463 pidchecked = p->p_session->s_sid;
464 }
465 if (!doingzomb) {
466 doingzomb = 1;
467 p = LIST_FIRST(&zombproc);
468 goto again;
469 }
470 }
471 return(nextpid);
472}
473
5bf0d9b5
MD
474/*
475 * Called from exit1 to remove a process from the allproc
476 * list and move it to the zombie list.
477 *
478 * MPSAFE
479 */
480void
481proc_move_allproc_zombie(struct proc *p)
482{
483 spin_lock_wr(&allproc_spin);
484 while (p->p_lock) {
485 spin_unlock_wr(&allproc_spin);
486 tsleep(p, 0, "reap1", hz / 10);
487 spin_lock_wr(&allproc_spin);
488 }
489 LIST_REMOVE(p, p_list);
490 LIST_INSERT_HEAD(&zombproc, p, p_list);
491 LIST_REMOVE(p, p_hash);
492 p->p_flag |= P_ZOMBIE;
493 spin_unlock_wr(&allproc_spin);
494}
495
496/*
497 * This routine is called from kern_wait() and will remove the process
498 * from the zombie list and the sibling list. This routine will block
499 * if someone has a lock on the proces (p_lock).
500 *
501 * MPSAFE
502 */
503void
504proc_remove_zombie(struct proc *p)
505{
506 spin_lock_wr(&allproc_spin);
507 while (p->p_lock) {
508 spin_unlock_wr(&allproc_spin);
509 tsleep(p, 0, "reap1", hz / 10);
510 spin_lock_wr(&allproc_spin);
511 }
512 LIST_REMOVE(p, p_list); /* off zombproc */
513 LIST_REMOVE(p, p_sibling);
514 spin_unlock_wr(&allproc_spin);
515}
516
517/*
518 * Scan all processes on the allproc list. The process is automatically
519 * held for the callback. A return value of -1 terminates the loop.
520 *
521 * MPSAFE
522 */
523void
524allproc_scan(int (*callback)(struct proc *, void *), void *data)
525{
526 struct proc *p;
527 int r;
528
529 spin_lock_rd(&allproc_spin);
530 LIST_FOREACH(p, &allproc, p_list) {
531 PHOLD(p);
532 spin_unlock_rd(&allproc_spin);
533 r = callback(p, data);
534 spin_lock_rd(&allproc_spin);
535 PRELE(p);
536 if (r < 0)
537 break;
538 }
539 spin_unlock_rd(&allproc_spin);
540}
541
542/*
543 * Scan all processes on the zombproc list. The process is automatically
544 * held for the callback. A return value of -1 terminates the loop.
545 *
546 * MPSAFE
547 */
548void
549zombproc_scan(int (*callback)(struct proc *, void *), void *data)
550{
551 struct proc *p;
552 int r;
553
554 spin_lock_rd(&allproc_spin);
555 LIST_FOREACH(p, &zombproc, p_list) {
556 PHOLD(p);
557 spin_unlock_rd(&allproc_spin);
558 r = callback(p, data);
559 spin_lock_rd(&allproc_spin);
560 PRELE(p);
561 if (r < 0)
562 break;
563 }
564 spin_unlock_rd(&allproc_spin);
565}
566
984263bc
MD
567#include "opt_ddb.h"
568#ifdef DDB
569#include <ddb/ddb.h>
570
571DB_SHOW_COMMAND(pgrpdump, pgrpdump)
572{
1fd87d54
RG
573 struct pgrp *pgrp;
574 struct proc *p;
575 int i;
984263bc
MD
576
577 for (i = 0; i <= pgrphash; i++) {
578 if (!LIST_EMPTY(&pgrphashtbl[i])) {
579 printf("\tindx %d\n", i);
580 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
581 printf(
582 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
583 (void *)pgrp, (long)pgrp->pg_id,
584 (void *)pgrp->pg_session,
585 pgrp->pg_session->s_count,
586 (void *)LIST_FIRST(&pgrp->pg_members));
587 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
588 printf("\t\tpid %ld addr %p pgrp %p\n",
589 (long)p->p_pid, (void *)p,
590 (void *)p->p_pgrp);
591 }
592 }
593 }
594 }
595}
596#endif /* DDB */
597
73e4f7b9
MD
598/*
599 * Fill in an eproc structure for the specified thread.
600 */
601void
602fill_eproc_td(thread_t td, struct eproc *ep, struct proc *xp)
603{
604 bzero(ep, sizeof(*ep));
605
606 ep->e_uticks = td->td_uticks;
607 ep->e_sticks = td->td_sticks;
608 ep->e_iticks = td->td_iticks;
609 ep->e_tdev = NOUDEV;
a72187e9 610 ep->e_cpuid = td->td_gd->gd_cpuid;
73e4f7b9
MD
611 if (td->td_wmesg) {
612 strncpy(ep->e_wmesg, td->td_wmesg, WMESGLEN);
613 ep->e_wmesg[WMESGLEN] = 0;
614 }
615
616 /*
617 * Fake up portions of the proc structure copied out by the sysctl
618 * to return useful information. Note that using td_pri directly
619 * is messy because it includes critial section data so we fake
620 * up an rtprio.prio for threads.
621 */
622 if (xp) {
623 *xp = *initproc;
624 xp->p_rtprio.type = RTP_PRIO_THREAD;
625 xp->p_rtprio.prio = td->td_pri & TDPRI_MASK;
626 xp->p_pid = -1;
627 }
628}
629
984263bc
MD
630/*
631 * Fill in an eproc structure for the specified process.
632 */
633void
73e4f7b9 634fill_eproc(struct proc *p, struct eproc *ep)
984263bc 635{
73e4f7b9 636 struct tty *tp;
984263bc 637
73e4f7b9 638 fill_eproc_td(p->p_thread, ep, NULL);
984263bc
MD
639
640 ep->e_paddr = p;
41c20dac
MD
641 if (p->p_ucred) {
642 ep->e_ucred = *p->p_ucred;
984263bc
MD
643 }
644 if (p->p_procsig) {
645 ep->e_procsig = *p->p_procsig;
646 }
f026f3b0
MD
647 if (p->p_stat != SIDL && (p->p_flag & P_ZOMBIE) == 0 &&
648 p->p_vmspace != NULL) {
1fd87d54 649 struct vmspace *vm = p->p_vmspace;
984263bc
MD
650 ep->e_vm = *vm;
651 ep->e_vm.vm_rssize = vmspace_resident_count(vm); /*XXX*/
652 }
344ad853 653 if ((p->p_flag & P_SWAPPEDOUT) == 0 && p->p_stats)
984263bc
MD
654 ep->e_stats = *p->p_stats;
655 if (p->p_pptr)
656 ep->e_ppid = p->p_pptr->p_pid;
657 if (p->p_pgrp) {
658 ep->e_pgid = p->p_pgrp->pg_id;
659 ep->e_jobc = p->p_pgrp->pg_jobc;
660 ep->e_sess = p->p_pgrp->pg_session;
661
662 if (ep->e_sess) {
663 bcopy(ep->e_sess->s_login, ep->e_login, sizeof(ep->e_login));
664 if (ep->e_sess->s_ttyvp)
665 ep->e_flag = EPROC_CTTY;
666 if (p->p_session && SESS_LEADER(p))
667 ep->e_flag |= EPROC_SLEADER;
668 }
669 }
670 if ((p->p_flag & P_CONTROLT) &&
671 (ep->e_sess != NULL) &&
672 ((tp = ep->e_sess->s_ttyp) != NULL)) {
673 ep->e_tdev = dev2udev(tp->t_dev);
674 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
675 ep->e_tsess = tp->t_session;
73e4f7b9 676 } else {
984263bc 677 ep->e_tdev = NOUDEV;
984263bc 678 }
35048f4d
JS
679 if (p->p_ucred->cr_prison)
680 ep->e_jailid = p->p_ucred->cr_prison->pr_id;
984263bc
MD
681}
682
5bf0d9b5
MD
683/*
684 * Locate a process on the zombie list. Return a held process or NULL.
685 */
984263bc
MD
686struct proc *
687zpfind(pid_t pid)
688{
689 struct proc *p;
690
691 LIST_FOREACH(p, &zombproc, p_list)
692 if (p->p_pid == pid)
693 return (p);
694 return (NULL);
695}
696
984263bc 697static int
73e4f7b9 698sysctl_out_proc(struct proc *p, struct thread *td, struct sysctl_req *req, int doingzomb)
984263bc
MD
699{
700 struct eproc eproc;
73e4f7b9 701 struct proc xproc;
984263bc 702 int error;
73e4f7b9 703#if 0
984263bc 704 pid_t pid = p->p_pid;
73e4f7b9
MD
705#endif
706
707 if (p) {
708 td = p->p_thread;
709 fill_eproc(p, &eproc);
710 xproc = *p;
d9d6cb99
MD
711
712 /*
344ad853
MD
713 * p_stat fixup. If we are in a thread sleep mark p_stat
714 * as sleeping if the thread is blocked.
d9d6cb99 715 */
8ec60c3f 716 if (p->p_stat == SRUN && td && (td->td_flags & TDF_BLOCKED)) {
d9d6cb99
MD
717 xproc.p_stat = SSLEEP;
718 }
344ad853
MD
719 /*
720 * If the process is being stopped but is in a normal tsleep,
721 * mark it as being SSTOP.
722 */
723 if (p->p_stat == SSLEEP && (p->p_flag & P_STOPPED))
724 xproc.p_stat = SSTOP;
f026f3b0
MD
725 if (p->p_flag & P_ZOMBIE)
726 xproc.p_stat = SZOMB;
73e4f7b9
MD
727 } else if (td) {
728 fill_eproc_td(td, &eproc, &xproc);
729 }
730 error = SYSCTL_OUT(req,(caddr_t)&xproc, sizeof(struct proc));
984263bc
MD
731 if (error)
732 return (error);
733 error = SYSCTL_OUT(req,(caddr_t)&eproc, sizeof(eproc));
b8acf5a9
MD
734 if (error)
735 return (error);
73e4f7b9 736 error = SYSCTL_OUT(req,(caddr_t)td, sizeof(struct thread));
984263bc
MD
737 if (error)
738 return (error);
73e4f7b9 739#if 0
984263bc
MD
740 if (!doingzomb && pid && (pfind(pid) != p))
741 return EAGAIN;
742 if (doingzomb && zpfind(pid) != p)
743 return EAGAIN;
73e4f7b9 744#endif
984263bc
MD
745 return (0);
746}
747
748static int
749sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
750{
751 int *name = (int*) arg1;
752 u_int namelen = arg2;
753 struct proc *p;
73e4f7b9 754 struct thread *td;
984263bc
MD
755 int doingzomb;
756 int error = 0;
630ccdeb
MD
757 int n;
758 int origcpu;
41c20dac 759 struct ucred *cr1 = curproc->p_ucred;
984263bc
MD
760
761 if (oidp->oid_number == KERN_PROC_PID) {
762 if (namelen != 1)
763 return (EINVAL);
764 p = pfind((pid_t)name[0]);
765 if (!p)
766 return (0);
41c20dac 767 if (!PRISON_CHECK(cr1, p->p_ucred))
984263bc 768 return (0);
73e4f7b9 769 error = sysctl_out_proc(p, NULL, req, 0);
984263bc
MD
770 return (error);
771 }
772 if (oidp->oid_number == KERN_PROC_ALL && !namelen)
773 ;
774 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1)
775 ;
776 else
777 return (EINVAL);
778
779 if (!req->oldptr) {
780 /* overestimate by 5 procs */
781 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
782 if (error)
783 return (error);
784 }
785 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
786 if (!doingzomb)
787 p = LIST_FIRST(&allproc);
788 else
789 p = LIST_FIRST(&zombproc);
790 for (; p != 0; p = LIST_NEXT(p, p_list)) {
791 /*
792 * Show a user only their processes.
793 */
41c20dac 794 if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred))
984263bc
MD
795 continue;
796 /*
797 * Skip embryonic processes.
798 */
799 if (p->p_stat == SIDL)
800 continue;
801 /*
802 * TODO - make more efficient (see notes below).
803 * do by session.
804 */
805 switch (oidp->oid_number) {
984263bc
MD
806 case KERN_PROC_PGRP:
807 /* could do this by traversing pgrp */
808 if (p->p_pgrp == NULL ||
809 p->p_pgrp->pg_id != (pid_t)name[0])
810 continue;
811 break;
812
813 case KERN_PROC_TTY:
814 if ((p->p_flag & P_CONTROLT) == 0 ||
815 p->p_session == NULL ||
816 p->p_session->s_ttyp == NULL ||
817 dev2udev(p->p_session->s_ttyp->t_dev) !=
818 (udev_t)name[0])
819 continue;
820 break;
821
822 case KERN_PROC_UID:
823 if (p->p_ucred == NULL ||
824 p->p_ucred->cr_uid != (uid_t)name[0])
825 continue;
826 break;
827
828 case KERN_PROC_RUID:
829 if (p->p_ucred == NULL ||
41c20dac 830 p->p_ucred->cr_ruid != (uid_t)name[0])
984263bc
MD
831 continue;
832 break;
833 }
834
41c20dac 835 if (!PRISON_CHECK(cr1, p->p_ucred))
984263bc 836 continue;
c008d3ad 837 PHOLD(p);
73e4f7b9 838 error = sysctl_out_proc(p, NULL, req, doingzomb);
c008d3ad 839 PRELE(p);
984263bc
MD
840 if (error)
841 return (error);
842 }
843 }
630ccdeb
MD
844
845 /*
846 * Iterate over all active cpus and scan their thread list. Start
847 * with the next logical cpu and end with our original cpu. We
848 * migrate our own thread to each target cpu in order to safely scan
849 * its thread list. In the last loop we migrate back to our original
850 * cpu.
851 */
852 origcpu = mycpu->gd_cpuid;
56c703bd
JS
853 if (!ps_showallthreads || jailed(cr1))
854 goto post_threads;
855 for (n = 1; n <= ncpus; ++n) {
630ccdeb
MD
856 globaldata_t rgd;
857 int nid;
858
859 nid = (origcpu + n) % ncpus;
860 if ((smp_active_mask & (1 << nid)) == 0)
861 continue;
862 rgd = globaldata_find(nid);
863 lwkt_setcpu_self(rgd);
630ccdeb 864
73e4f7b9
MD
865 TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) {
866 if (td->td_proc)
867 continue;
868 switch (oidp->oid_number) {
869 case KERN_PROC_PGRP:
870 case KERN_PROC_TTY:
871 case KERN_PROC_UID:
872 case KERN_PROC_RUID:
873 continue;
874 default:
875 break;
876 }
877 lwkt_hold(td);
878 error = sysctl_out_proc(NULL, td, req, doingzomb);
879 lwkt_rele(td);
880 if (error)
881 return (error);
882 }
883 }
56c703bd 884post_threads:
984263bc
MD
885 return (0);
886}
887
888/*
889 * This sysctl allows a process to retrieve the argument list or process
890 * title for another process without groping around in the address space
891 * of the other process. It also allow a process to set its own "process
892 * title to a string of its own choice.
893 */
894static int
895sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
896{
897 int *name = (int*) arg1;
898 u_int namelen = arg2;
899 struct proc *p;
900 struct pargs *pa;
901 int error = 0;
41c20dac 902 struct ucred *cr1 = curproc->p_ucred;
984263bc
MD
903
904 if (namelen != 1)
905 return (EINVAL);
906
907 p = pfind((pid_t)name[0]);
908 if (!p)
909 return (0);
910
41c20dac 911 if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred))
984263bc
MD
912 return (0);
913
914 if (req->newptr && curproc != p)
915 return (EPERM);
916
917 if (req->oldptr && p->p_args != NULL)
918 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length);
919 if (req->newptr == NULL)
920 return (error);
921
922 if (p->p_args && --p->p_args->ar_ref == 0)
923 FREE(p->p_args, M_PARGS);
924 p->p_args = NULL;
925
926 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
927 return (error);
928
929 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen,
930 M_PARGS, M_WAITOK);
931 pa->ar_ref = 1;
932 pa->ar_length = req->newlen;
933 error = SYSCTL_IN(req, pa->ar_args, req->newlen);
934 if (!error)
935 p->p_args = pa;
936 else
937 FREE(pa, M_PARGS);
938 return (error);
939}
940
941SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
942
943SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
944 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
945
946SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
947 sysctl_kern_proc, "Process table");
948
949SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
950 sysctl_kern_proc, "Process table");
951
952SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
953 sysctl_kern_proc, "Process table");
954
955SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
956 sysctl_kern_proc, "Process table");
957
958SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
959 sysctl_kern_proc, "Process table");
960
961SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
962 sysctl_kern_proc_args, "Process argument list");