Bump 1.5.2 for the preview tag, synchronized to just before the
[dragonfly.git] / sys / kern / kern_clock.c
CommitLineData
8c10bfcf
MD
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
984263bc
MD
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
2b71c8f1 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.50 2005/10/24 08:06:16 sephe Exp $
984263bc
MD
74 */
75
76#include "opt_ntp.h"
2b71c8f1 77#include "opt_polling.h"
984263bc
MD
78
79#include <sys/param.h>
80#include <sys/systm.h>
984263bc
MD
81#include <sys/callout.h>
82#include <sys/kernel.h>
f5d21610 83#include <sys/kinfo.h>
984263bc
MD
84#include <sys/proc.h>
85#include <sys/malloc.h>
86#include <sys/resourcevar.h>
87#include <sys/signalvar.h>
88#include <sys/timex.h>
89#include <sys/timepps.h>
90#include <vm/vm.h>
91#include <sys/lock.h>
92#include <vm/pmap.h>
93#include <vm/vm_map.h>
94#include <sys/sysctl.h>
2689779e 95#include <sys/thread2.h>
984263bc
MD
96
97#include <machine/cpu.h>
98#include <machine/limits.h>
99#include <machine/smp.h>
100
101#ifdef GPROF
102#include <sys/gmon.h>
103#endif
104
105#ifdef DEVICE_POLLING
106extern void init_device_poll(void);
3e61f60e 107#endif
984263bc 108
402ed7e1 109static void initclocks (void *dummy);
984263bc
MD
110SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
111
6ad39cae
MD
112/*
113 * Some of these don't belong here, but it's easiest to concentrate them.
9eea7f0c 114 * Note that cpu_time counts in microseconds, but most userland programs
6ad39cae
MD
115 * just compare relative times against the total by delta.
116 */
9eea7f0c
HP
117struct kinfo_cputime cputime_percpu[MAXCPU];
118#ifdef SMP
119static int
120sysctl_cputime(SYSCTL_HANDLER_ARGS)
121{
122 int cpu, error = 0;
123 size_t size = sizeof(struct kinfo_cputime);
124
125 for (cpu = 0; cpu < ncpus; ++cpu) {
126 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
127 break;
128 }
984263bc 129
9eea7f0c
HP
130 return (error);
131}
132SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
133 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
134#else
135SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
136 "CPU time statistics");
137#endif
984263bc 138
88c4d2f6
MD
139/*
140 * boottime is used to calculate the 'real' uptime. Do not confuse this with
141 * microuptime(). microtime() is not drift compensated. The real uptime
60b2809b
MD
142 * with compensation is nanotime() - bootime. boottime is recalculated
143 * whenever the real time is set based on the compensated elapsed time
144 * in seconds (gd->gd_time_seconds).
88c4d2f6 145 *
88c4d2f6
MD
146 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
147 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
148 * the real time.
149 */
150struct timespec boottime; /* boot time (realtime) for reference only */
88c4d2f6 151time_t time_second; /* read-only 'passive' uptime in seconds */
984263bc 152
5eb5a6bc
MD
153/*
154 * basetime is used to calculate the compensated real time of day. The
155 * basetime can be modified on a per-tick basis by the adjtime(),
156 * ntp_adjtime(), and sysctl-based time correction APIs.
157 *
158 * Note that frequency corrections can also be made by adjusting
159 * gd_cpuclock_base.
160 *
161 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
162 * used on both SMP and UP systems to avoid MP races between cpu's and
163 * interrupt races on UP systems.
164 */
165#define BASETIME_ARYSIZE 16
166#define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
167static struct timespec basetime[BASETIME_ARYSIZE];
168static volatile int basetime_index;
169
170static int
171sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
172{
173 struct timespec *bt;
174 int error;
35238fa5 175 int index;
5eb5a6bc 176
35238fa5
MD
177 /*
178 * Because basetime data and index may be updated by another cpu,
179 * a load fence is required to ensure that the data we read has
180 * not been speculatively read relative to a possibly updated index.
181 */
182 index = basetime_index;
183 cpu_lfence();
184 bt = &basetime[index];
08f95c49 185 error = SYSCTL_OUT(req, bt, sizeof(*bt));
5eb5a6bc
MD
186 return (error);
187}
188
984263bc 189SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
08f95c49 190 &boottime, timespec, "System boottime");
5eb5a6bc 191SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
08f95c49 192 sysctl_get_basetime, "S,timespec", "System basetime");
984263bc 193
88c4d2f6
MD
194static void hardclock(systimer_t info, struct intrframe *frame);
195static void statclock(systimer_t info, struct intrframe *frame);
196static void schedclock(systimer_t info, struct intrframe *frame);
5eb5a6bc 197static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
88c4d2f6
MD
198
199int ticks; /* system master ticks at hz */
da3639ef 200int clocks_running; /* tsleep/timeout clocks operational */
88c4d2f6
MD
201int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
202int64_t nsec_acc; /* accumulator */
984263bc 203
4026c000
JS
204/* NTPD time correction fields */
205int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
206int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
207int64_t ntp_delta; /* one-time correction in nsec */
208int64_t ntp_big_delta = 1000000000;
209int32_t ntp_tick_delta; /* current adjustment rate */
210int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
48590578
JS
211time_t ntp_leap_second; /* time of next leap second */
212int ntp_leap_insert; /* whether to insert or remove a second */
4026c000 213
984263bc 214/*
88c4d2f6 215 * Finish initializing clock frequencies and start all clocks running.
984263bc 216 */
88c4d2f6
MD
217/* ARGSUSED*/
218static void
219initclocks(void *dummy)
984263bc 220{
88c4d2f6
MD
221 cpu_initclocks();
222#ifdef DEVICE_POLLING
223 init_device_poll();
224#endif
225 /*psratio = profhz / stathz;*/
226 initclocks_pcpu();
da3639ef 227 clocks_running = 1;
984263bc
MD
228}
229
88c4d2f6
MD
230/*
231 * Called on a per-cpu basis
232 */
233void
234initclocks_pcpu(void)
235{
236 struct globaldata *gd = mycpu;
984263bc 237
88c4d2f6
MD
238 crit_enter();
239 if (gd->gd_cpuid == 0) {
240 gd->gd_time_seconds = 1;
044ee7c4 241 gd->gd_cpuclock_base = sys_cputimer->count();
88c4d2f6
MD
242 } else {
243 /* XXX */
244 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
245 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
246 }
0d1dffdf
MD
247
248 /*
249 * Use a non-queued periodic systimer to prevent multiple ticks from
250 * building up if the sysclock jumps forward (8254 gets reset). The
251 * sysclock will never jump backwards. Our time sync is based on
252 * the actual sysclock, not the ticks count.
253 */
254 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
255 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
88c4d2f6 256 /* XXX correct the frequency for scheduler / estcpu tests */
0d1dffdf 257 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
8478264a 258 NULL, ESTCPUFREQ);
88c4d2f6
MD
259 crit_exit();
260}
984263bc
MD
261
262/*
88c4d2f6
MD
263 * This sets the current real time of day. Timespecs are in seconds and
264 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
265 * instead we adjust basetime so basetime + gd_* results in the current
266 * time of day. This way the gd_* fields are guarenteed to represent
267 * a monotonically increasing 'uptime' value.
5eb5a6bc
MD
268 *
269 * When set_timeofday() is called from userland, the system call forces it
270 * onto cpu #0 since only cpu #0 can update basetime_index.
984263bc 271 */
88c4d2f6
MD
272void
273set_timeofday(struct timespec *ts)
274{
5eb5a6bc
MD
275 struct timespec *nbt;
276 int ni;
984263bc 277
88c4d2f6
MD
278 /*
279 * XXX SMP / non-atomic basetime updates
280 */
281 crit_enter();
5eb5a6bc
MD
282 ni = (basetime_index + 1) & BASETIME_ARYMASK;
283 nbt = &basetime[ni];
284 nanouptime(nbt);
285 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
286 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
287 if (nbt->tv_nsec < 0) {
288 nbt->tv_nsec += 1000000000;
289 --nbt->tv_sec;
88c4d2f6 290 }
a81931cc
MD
291
292 /*
293 * Note that basetime diverges from boottime as the clock drift is
294 * compensated for, so we cannot do away with boottime. When setting
295 * the absolute time of day the drift is 0 (for an instant) and we
296 * can simply assign boottime to basetime.
297 *
298 * Note that nanouptime() is based on gd_time_seconds which is drift
299 * compensated up to a point (it is guarenteed to remain monotonically
300 * increasing). gd_time_seconds is thus our best uptime guess and
301 * suitable for use in the boottime calculation. It is already taken
302 * into account in the basetime calculation above.
303 */
5eb5a6bc 304 boottime.tv_sec = nbt->tv_sec;
4026c000 305 ntp_delta = 0;
5eb5a6bc
MD
306
307 /*
35238fa5
MD
308 * We now have a new basetime, make sure all other cpus have it,
309 * then update the index.
5eb5a6bc 310 */
35238fa5 311 cpu_sfence();
5eb5a6bc
MD
312 basetime_index = ni;
313
88c4d2f6
MD
314 crit_exit();
315}
316
984263bc 317/*
88c4d2f6
MD
318 * Each cpu has its own hardclock, but we only increments ticks and softticks
319 * on cpu #0.
320 *
321 * NOTE! systimer! the MP lock might not be held here. We can only safely
322 * manipulate objects owned by the current cpu.
984263bc 323 */
984263bc 324static void
88c4d2f6 325hardclock(systimer_t info, struct intrframe *frame)
984263bc 326{
88c4d2f6
MD
327 sysclock_t cputicks;
328 struct proc *p;
329 struct pstats *pstats;
330 struct globaldata *gd = mycpu;
984263bc
MD
331
332 /*
88c4d2f6
MD
333 * Realtime updates are per-cpu. Note that timer corrections as
334 * returned by microtime() and friends make an additional adjustment
335 * using a system-wise 'basetime', but the running time is always
336 * taken from the per-cpu globaldata area. Since the same clock
337 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
338 * stay in synch.
339 *
340 * Note that we never allow info->time (aka gd->gd_hardclock.time)
fad57d0e
MD
341 * to reverse index gd_cpuclock_base, but that it is possible for
342 * it to temporarily get behind in the seconds if something in the
343 * system locks interrupts for a long period of time. Since periodic
344 * timers count events, though everything should resynch again
345 * immediately.
984263bc 346 */
88c4d2f6 347 cputicks = info->time - gd->gd_cpuclock_base;
044ee7c4 348 if (cputicks >= sys_cputimer->freq) {
88c4d2f6 349 ++gd->gd_time_seconds;
044ee7c4 350 gd->gd_cpuclock_base += sys_cputimer->freq;
88c4d2f6 351 }
984263bc
MD
352
353 /*
92b561b7
MD
354 * The system-wide ticks counter and NTP related timedelta/tickdelta
355 * adjustments only occur on cpu #0. NTP adjustments are accomplished
356 * by updating basetime.
984263bc 357 */
88c4d2f6 358 if (gd->gd_cpuid == 0) {
5eb5a6bc 359 struct timespec *nbt;
88c4d2f6
MD
360 struct timespec nts;
361 int leap;
5eb5a6bc 362 int ni;
984263bc 363
88c4d2f6 364 ++ticks;
984263bc 365
88c4d2f6
MD
366#if 0
367 if (tco->tc_poll_pps)
368 tco->tc_poll_pps(tco);
369#endif
5eb5a6bc 370
88c4d2f6 371 /*
5eb5a6bc
MD
372 * Calculate the new basetime index. We are in a critical section
373 * on cpu #0 and can safely play with basetime_index. Start
374 * with the current basetime and then make adjustments.
375 */
376 ni = (basetime_index + 1) & BASETIME_ARYMASK;
377 nbt = &basetime[ni];
378 *nbt = basetime[basetime_index];
379
380 /*
381 * Apply adjtime corrections. (adjtime() API)
382 *
383 * adjtime() only runs on cpu #0 so our critical section is
384 * sufficient to access these variables.
88c4d2f6 385 */
4026c000 386 if (ntp_delta != 0) {
5eb5a6bc 387 nbt->tv_nsec += ntp_tick_delta;
4026c000
JS
388 ntp_delta -= ntp_tick_delta;
389 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
390 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
5eb5a6bc 391 ntp_tick_delta = ntp_delta;
4026c000
JS
392 }
393 }
394
5eb5a6bc
MD
395 /*
396 * Apply permanent frequency corrections. (sysctl API)
397 */
4026c000
JS
398 if (ntp_tick_permanent != 0) {
399 ntp_tick_acc += ntp_tick_permanent;
400 if (ntp_tick_acc >= (1LL << 32)) {
5eb5a6bc 401 nbt->tv_nsec += ntp_tick_acc >> 32;
331bc6f8 402 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
4026c000 403 } else if (ntp_tick_acc <= -(1LL << 32)) {
331bc6f8 404 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
5eb5a6bc 405 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
331bc6f8 406 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
4026c000
JS
407 }
408 }
409
5eb5a6bc
MD
410 if (nbt->tv_nsec >= 1000000000) {
411 nbt->tv_sec++;
412 nbt->tv_nsec -= 1000000000;
413 } else if (nbt->tv_nsec < 0) {
414 nbt->tv_sec--;
415 nbt->tv_nsec += 1000000000;
88c4d2f6
MD
416 }
417
418 /*
5eb5a6bc 419 * Another per-tick compensation. (for ntp_adjtime() API)
88c4d2f6 420 */
5eb5a6bc 421 if (nsec_adj != 0) {
88c4d2f6
MD
422 nsec_acc += nsec_adj;
423 if (nsec_acc >= 0x100000000LL) {
5eb5a6bc 424 nbt->tv_nsec += nsec_acc >> 32;
88c4d2f6
MD
425 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
426 } else if (nsec_acc <= -0x100000000LL) {
5eb5a6bc 427 nbt->tv_nsec -= -nsec_acc >> 32;
88c4d2f6
MD
428 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
429 }
5eb5a6bc
MD
430 if (nbt->tv_nsec >= 1000000000) {
431 nbt->tv_nsec -= 1000000000;
432 ++nbt->tv_sec;
433 } else if (nbt->tv_nsec < 0) {
434 nbt->tv_nsec += 1000000000;
435 --nbt->tv_sec;
436 }
437 }
438
439 /************************************************************
440 * LEAP SECOND CORRECTION *
441 ************************************************************
442 *
443 * Taking into account all the corrections made above, figure
444 * out the new real time. If the seconds field has changed
445 * then apply any pending leap-second corrections.
446 */
447 getnanotime_nbt(nbt, &nts);
448
32040d57
MD
449 if (time_second != nts.tv_sec) {
450 /*
451 * Apply leap second (sysctl API). Adjust nts for changes
452 * so we do not have to call getnanotime_nbt again.
453 */
454 if (ntp_leap_second) {
455 if (ntp_leap_second == nts.tv_sec) {
456 if (ntp_leap_insert) {
457 nbt->tv_sec++;
458 nts.tv_sec++;
459 } else {
460 nbt->tv_sec--;
461 nts.tv_sec--;
462 }
5eb5a6bc 463 ntp_leap_second--;
32040d57 464 }
88c4d2f6 465 }
88c4d2f6 466
32040d57
MD
467 /*
468 * Apply leap second (ntp_adjtime() API), calculate a new
469 * nsec_adj field. ntp_update_second() returns nsec_adj
470 * as a per-second value but we need it as a per-tick value.
471 */
88c4d2f6 472 leap = ntp_update_second(time_second, &nsec_adj);
88c4d2f6 473 nsec_adj /= hz;
32040d57
MD
474 nbt->tv_sec += leap;
475 nts.tv_sec += leap;
476
477 /*
478 * Update the time_second 'approximate time' global.
479 */
480 time_second = nts.tv_sec;
88c4d2f6 481 }
5eb5a6bc
MD
482
483 /*
484 * Finally, our new basetime is ready to go live!
485 */
35238fa5 486 cpu_sfence();
5eb5a6bc 487 basetime_index = ni;
88c4d2f6
MD
488 }
489
92b561b7
MD
490 /*
491 * softticks are handled for all cpus
492 */
493 hardclock_softtick(gd);
494
88c4d2f6
MD
495 /*
496 * ITimer handling is per-tick, per-cpu. I don't think psignal()
497 * is mpsafe on curproc, so XXX get the mplock.
498 */
499 if ((p = curproc) != NULL && try_mplock()) {
984263bc 500 pstats = p->p_stats;
88c4d2f6 501 if (frame && CLKF_USERMODE(frame) &&
93328593
SS
502 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
503 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
984263bc 504 psignal(p, SIGVTALRM);
93328593
SS
505 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
506 itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
984263bc 507 psignal(p, SIGPROF);
88c4d2f6 508 rel_mplock();
984263bc 509 }
604e1e09 510 setdelayed();
88c4d2f6 511}
984263bc 512
88c4d2f6
MD
513/*
514 * The statistics clock typically runs at a 125Hz rate, and is intended
515 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
516 *
517 * NOTE! systimer! the MP lock might not be held here. We can only safely
518 * manipulate objects owned by the current cpu.
519 *
520 * The stats clock is responsible for grabbing a profiling sample.
521 * Most of the statistics are only used by user-level statistics programs.
522 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
523 * p->p_estcpu.
524 *
525 * Like the other clocks, the stat clock is called from what is effectively
526 * a fast interrupt, so the context should be the thread/process that got
527 * interrupted.
528 */
529static void
530statclock(systimer_t info, struct intrframe *frame)
531{
532#ifdef GPROF
533 struct gmonparam *g;
534 int i;
984263bc 535#endif
88c4d2f6
MD
536 thread_t td;
537 struct proc *p;
538 int bump;
539 struct timeval tv;
540 struct timeval *stv;
984263bc
MD
541
542 /*
88c4d2f6 543 * How big was our timeslice relative to the last time?
984263bc 544 */
88c4d2f6
MD
545 microuptime(&tv); /* mpsafe */
546 stv = &mycpu->gd_stattv;
547 if (stv->tv_sec == 0) {
548 bump = 1;
549 } else {
550 bump = tv.tv_usec - stv->tv_usec +
551 (tv.tv_sec - stv->tv_sec) * 1000000;
552 if (bump < 0)
553 bump = 0;
554 if (bump > 1000000)
555 bump = 1000000;
556 }
557 *stv = tv;
984263bc 558
88c4d2f6
MD
559 td = curthread;
560 p = td->td_proc;
984263bc 561
88c4d2f6
MD
562 if (frame && CLKF_USERMODE(frame)) {
563 /*
564 * Came from userland, handle user time and deal with
565 * possible process.
566 */
567 if (p && (p->p_flag & P_PROFIL))
568 addupc_intr(p, CLKF_PC(frame), 1);
569 td->td_uticks += bump;
984263bc 570
88c4d2f6
MD
571 /*
572 * Charge the time as appropriate
573 */
574 if (p && p->p_nice > NZERO)
9eea7f0c 575 cpu_time.cp_nice += bump;
88c4d2f6 576 else
9eea7f0c 577 cpu_time.cp_user += bump;
88c4d2f6
MD
578 } else {
579#ifdef GPROF
580 /*
581 * Kernel statistics are just like addupc_intr, only easier.
582 */
583 g = &_gmonparam;
584 if (g->state == GMON_PROF_ON && frame) {
585 i = CLKF_PC(frame) - g->lowpc;
586 if (i < g->textsize) {
587 i /= HISTFRACTION * sizeof(*g->kcount);
588 g->kcount[i]++;
589 }
590 }
591#endif
592 /*
593 * Came from kernel mode, so we were:
594 * - handling an interrupt,
595 * - doing syscall or trap work on behalf of the current
596 * user process, or
597 * - spinning in the idle loop.
598 * Whichever it is, charge the time as appropriate.
599 * Note that we charge interrupts to the current process,
600 * regardless of whether they are ``for'' that process,
601 * so that we know how much of its real time was spent
602 * in ``non-process'' (i.e., interrupt) work.
603 *
604 * XXX assume system if frame is NULL. A NULL frame
e43a034f 605 * can occur if ipi processing is done from a crit_exit().
88c4d2f6
MD
606 */
607 if (frame && CLKF_INTR(frame))
608 td->td_iticks += bump;
609 else
610 td->td_sticks += bump;
611
612 if (frame && CLKF_INTR(frame)) {
9eea7f0c 613 cpu_time.cp_intr += bump;
88c4d2f6
MD
614 } else {
615 if (td == &mycpu->gd_idlethread)
9eea7f0c 616 cpu_time.cp_idle += bump;
88c4d2f6 617 else
9eea7f0c 618 cpu_time.cp_sys += bump;
88c4d2f6
MD
619 }
620 }
621}
622
623/*
dcc99b62 624 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
88c4d2f6
MD
625 * the MP lock might not be held. We can safely manipulate parts of curproc
626 * but that's about it.
dcc99b62
MD
627 *
628 * Each cpu has its own scheduler clock.
88c4d2f6
MD
629 */
630static void
631schedclock(systimer_t info, struct intrframe *frame)
632{
553ea3c8 633 struct lwp *lp;
88c4d2f6
MD
634 struct pstats *pstats;
635 struct rusage *ru;
636 struct vmspace *vm;
637 long rss;
638
553ea3c8 639 if ((lp = lwkt_preempted_proc()) != NULL) {
dcc99b62
MD
640 /*
641 * Account for cpu time used and hit the scheduler. Note
642 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
643 * HERE.
644 */
553ea3c8
SS
645 ++lp->lwp_cpticks;
646 /*
647 * XXX I think accessing lwp_proc's p_usched is
648 * reasonably MP safe. This needs to be revisited
649 * when we have pluggable schedulers.
650 */
651 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, info->time);
dcc99b62 652 }
553ea3c8 653 if ((lp = curthread->td_lwp) != NULL) {
dcc99b62
MD
654 /*
655 * Update resource usage integrals and maximums.
656 */
553ea3c8 657 if ((pstats = lp->lwp_stats) != NULL &&
88c4d2f6 658 (ru = &pstats->p_ru) != NULL &&
553ea3c8 659 (vm = lp->lwp_proc->p_vmspace) != NULL) {
88c4d2f6
MD
660 ru->ru_ixrss += pgtok(vm->vm_tsize);
661 ru->ru_idrss += pgtok(vm->vm_dsize);
662 ru->ru_isrss += pgtok(vm->vm_ssize);
663 rss = pgtok(vmspace_resident_count(vm));
664 if (ru->ru_maxrss < rss)
665 ru->ru_maxrss = rss;
666 }
b68b7282 667 }
984263bc
MD
668}
669
670/*
a94976ad
MD
671 * Compute number of ticks for the specified amount of time. The
672 * return value is intended to be used in a clock interrupt timed
673 * operation and guarenteed to meet or exceed the requested time.
674 * If the representation overflows, return INT_MAX. The minimum return
675 * value is 1 ticks and the function will average the calculation up.
676 * If any value greater then 0 microseconds is supplied, a value
677 * of at least 2 will be returned to ensure that a near-term clock
678 * interrupt does not cause the timeout to occur (degenerately) early.
679 *
680 * Note that limit checks must take into account microseconds, which is
681 * done simply by using the smaller signed long maximum instead of
682 * the unsigned long maximum.
683 *
684 * If ints have 32 bits, then the maximum value for any timeout in
685 * 10ms ticks is 248 days.
984263bc
MD
686 */
687int
a94976ad 688tvtohz_high(struct timeval *tv)
984263bc 689{
a94976ad 690 int ticks;
1fd87d54 691 long sec, usec;
984263bc 692
984263bc
MD
693 sec = tv->tv_sec;
694 usec = tv->tv_usec;
695 if (usec < 0) {
696 sec--;
697 usec += 1000000;
698 }
699 if (sec < 0) {
700#ifdef DIAGNOSTIC
701 if (usec > 0) {
702 sec++;
703 usec -= 1000000;
704 }
705 printf("tvotohz: negative time difference %ld sec %ld usec\n",
706 sec, usec);
707#endif
708 ticks = 1;
a94976ad
MD
709 } else if (sec <= INT_MAX / hz) {
710 ticks = (int)(sec * hz +
711 ((u_long)usec + (tick - 1)) / tick) + 1;
712 } else {
713 ticks = INT_MAX;
714 }
715 return (ticks);
716}
717
718/*
719 * Compute number of ticks for the specified amount of time, erroring on
720 * the side of it being too low to ensure that sleeping the returned number
721 * of ticks will not result in a late return.
722 *
723 * The supplied timeval may not be negative and should be normalized. A
724 * return value of 0 is possible if the timeval converts to less then
725 * 1 tick.
726 *
727 * If ints have 32 bits, then the maximum value for any timeout in
728 * 10ms ticks is 248 days.
729 */
730int
731tvtohz_low(struct timeval *tv)
732{
733 int ticks;
734 long sec;
735
736 sec = tv->tv_sec;
737 if (sec <= INT_MAX / hz)
738 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
984263bc 739 else
984263bc 740 ticks = INT_MAX;
a94976ad 741 return (ticks);
984263bc
MD
742}
743
a94976ad 744
984263bc
MD
745/*
746 * Start profiling on a process.
747 *
748 * Kernel profiling passes proc0 which never exits and hence
749 * keeps the profile clock running constantly.
750 */
751void
88c4d2f6 752startprofclock(struct proc *p)
984263bc 753{
984263bc
MD
754 if ((p->p_flag & P_PROFIL) == 0) {
755 p->p_flag |= P_PROFIL;
88c4d2f6 756#if 0 /* XXX */
984263bc 757 if (++profprocs == 1 && stathz != 0) {
e43a034f 758 crit_enter();
6ad39cae 759 psdiv = psratio;
984263bc 760 setstatclockrate(profhz);
e43a034f 761 crit_exit();
984263bc 762 }
88c4d2f6 763#endif
984263bc
MD
764 }
765}
766
767/*
768 * Stop profiling on a process.
769 */
770void
88c4d2f6 771stopprofclock(struct proc *p)
984263bc 772{
984263bc
MD
773 if (p->p_flag & P_PROFIL) {
774 p->p_flag &= ~P_PROFIL;
88c4d2f6 775#if 0 /* XXX */
984263bc 776 if (--profprocs == 0 && stathz != 0) {
e43a034f 777 crit_enter();
6ad39cae 778 psdiv = 1;
984263bc 779 setstatclockrate(stathz);
e43a034f 780 crit_exit();
984263bc 781 }
984263bc 782#endif
984263bc
MD
783 }
784}
785
786/*
787 * Return information about system clocks.
788 */
789static int
790sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
791{
f5d21610 792 struct kinfo_clockinfo clkinfo;
984263bc
MD
793 /*
794 * Construct clockinfo structure.
795 */
f5d21610
JS
796 clkinfo.ci_hz = hz;
797 clkinfo.ci_tick = tick;
4026c000 798 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
f5d21610
JS
799 clkinfo.ci_profhz = profhz;
800 clkinfo.ci_stathz = stathz ? stathz : hz;
984263bc
MD
801 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
802}
803
804SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
805 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
806
984263bc
MD
807/*
808 * We have eight functions for looking at the clock, four for
809 * microseconds and four for nanoseconds. For each there is fast
810 * but less precise version "get{nano|micro}[up]time" which will
811 * return a time which is up to 1/HZ previous to the call, whereas
812 * the raw version "{nano|micro}[up]time" will return a timestamp
813 * which is as precise as possible. The "up" variants return the
814 * time relative to system boot, these are well suited for time
815 * interval measurements.
88c4d2f6
MD
816 *
817 * Each cpu independantly maintains the current time of day, so all
818 * we need to do to protect ourselves from changes is to do a loop
819 * check on the seconds field changing out from under us.
fad57d0e
MD
820 *
821 * The system timer maintains a 32 bit count and due to various issues
822 * it is possible for the calculated delta to occassionally exceed
044ee7c4
MD
823 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
824 * multiplication can easily overflow, so we deal with the case. For
825 * uniformity we deal with the case in the usec case too.
984263bc 826 */
984263bc
MD
827void
828getmicrouptime(struct timeval *tvp)
829{
88c4d2f6
MD
830 struct globaldata *gd = mycpu;
831 sysclock_t delta;
832
833 do {
834 tvp->tv_sec = gd->gd_time_seconds;
835 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
836 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 837
044ee7c4
MD
838 if (delta >= sys_cputimer->freq) {
839 tvp->tv_sec += delta / sys_cputimer->freq;
840 delta %= sys_cputimer->freq;
fad57d0e 841 }
044ee7c4 842 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
88c4d2f6
MD
843 if (tvp->tv_usec >= 1000000) {
844 tvp->tv_usec -= 1000000;
845 ++tvp->tv_sec;
984263bc
MD
846 }
847}
848
849void
850getnanouptime(struct timespec *tsp)
851{
88c4d2f6
MD
852 struct globaldata *gd = mycpu;
853 sysclock_t delta;
854
855 do {
856 tsp->tv_sec = gd->gd_time_seconds;
857 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
858 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 859
044ee7c4
MD
860 if (delta >= sys_cputimer->freq) {
861 tsp->tv_sec += delta / sys_cputimer->freq;
862 delta %= sys_cputimer->freq;
984263bc 863 }
044ee7c4 864 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc
MD
865}
866
867void
88c4d2f6 868microuptime(struct timeval *tvp)
984263bc 869{
88c4d2f6
MD
870 struct globaldata *gd = mycpu;
871 sysclock_t delta;
872
873 do {
874 tvp->tv_sec = gd->gd_time_seconds;
044ee7c4 875 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 876 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 877
044ee7c4
MD
878 if (delta >= sys_cputimer->freq) {
879 tvp->tv_sec += delta / sys_cputimer->freq;
880 delta %= sys_cputimer->freq;
984263bc 881 }
044ee7c4 882 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc
MD
883}
884
885void
88c4d2f6 886nanouptime(struct timespec *tsp)
984263bc 887{
88c4d2f6
MD
888 struct globaldata *gd = mycpu;
889 sysclock_t delta;
890
891 do {
892 tsp->tv_sec = gd->gd_time_seconds;
044ee7c4 893 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 894 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 895
044ee7c4
MD
896 if (delta >= sys_cputimer->freq) {
897 tsp->tv_sec += delta / sys_cputimer->freq;
898 delta %= sys_cputimer->freq;
984263bc 899 }
044ee7c4 900 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc
MD
901}
902
88c4d2f6
MD
903/*
904 * realtime routines
905 */
984263bc
MD
906
907void
88c4d2f6 908getmicrotime(struct timeval *tvp)
984263bc 909{
88c4d2f6 910 struct globaldata *gd = mycpu;
5eb5a6bc 911 struct timespec *bt;
88c4d2f6 912 sysclock_t delta;
984263bc 913
88c4d2f6
MD
914 do {
915 tvp->tv_sec = gd->gd_time_seconds;
916 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
917 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 918
044ee7c4
MD
919 if (delta >= sys_cputimer->freq) {
920 tvp->tv_sec += delta / sys_cputimer->freq;
921 delta %= sys_cputimer->freq;
fad57d0e 922 }
044ee7c4 923 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc 924
5eb5a6bc
MD
925 bt = &basetime[basetime_index];
926 tvp->tv_sec += bt->tv_sec;
927 tvp->tv_usec += bt->tv_nsec / 1000;
88c4d2f6
MD
928 while (tvp->tv_usec >= 1000000) {
929 tvp->tv_usec -= 1000000;
930 ++tvp->tv_sec;
984263bc 931 }
984263bc
MD
932}
933
934void
88c4d2f6 935getnanotime(struct timespec *tsp)
984263bc 936{
88c4d2f6 937 struct globaldata *gd = mycpu;
5eb5a6bc 938 struct timespec *bt;
88c4d2f6 939 sysclock_t delta;
984263bc 940
88c4d2f6
MD
941 do {
942 tsp->tv_sec = gd->gd_time_seconds;
943 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
944 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 945
044ee7c4
MD
946 if (delta >= sys_cputimer->freq) {
947 tsp->tv_sec += delta / sys_cputimer->freq;
948 delta %= sys_cputimer->freq;
fad57d0e 949 }
044ee7c4 950 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc 951
5eb5a6bc
MD
952 bt = &basetime[basetime_index];
953 tsp->tv_sec += bt->tv_sec;
954 tsp->tv_nsec += bt->tv_nsec;
88c4d2f6
MD
955 while (tsp->tv_nsec >= 1000000000) {
956 tsp->tv_nsec -= 1000000000;
957 ++tsp->tv_sec;
984263bc 958 }
984263bc
MD
959}
960
5eb5a6bc
MD
961static void
962getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
963{
964 struct globaldata *gd = mycpu;
965 sysclock_t delta;
966
967 do {
968 tsp->tv_sec = gd->gd_time_seconds;
969 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
970 } while (tsp->tv_sec != gd->gd_time_seconds);
971
044ee7c4
MD
972 if (delta >= sys_cputimer->freq) {
973 tsp->tv_sec += delta / sys_cputimer->freq;
974 delta %= sys_cputimer->freq;
5eb5a6bc 975 }
044ee7c4 976 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
5eb5a6bc
MD
977
978 tsp->tv_sec += nbt->tv_sec;
979 tsp->tv_nsec += nbt->tv_nsec;
980 while (tsp->tv_nsec >= 1000000000) {
981 tsp->tv_nsec -= 1000000000;
982 ++tsp->tv_sec;
983 }
984}
985
986
88c4d2f6
MD
987void
988microtime(struct timeval *tvp)
984263bc 989{
88c4d2f6 990 struct globaldata *gd = mycpu;
5eb5a6bc 991 struct timespec *bt;
88c4d2f6 992 sysclock_t delta;
984263bc 993
88c4d2f6
MD
994 do {
995 tvp->tv_sec = gd->gd_time_seconds;
044ee7c4 996 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 997 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 998
044ee7c4
MD
999 if (delta >= sys_cputimer->freq) {
1000 tvp->tv_sec += delta / sys_cputimer->freq;
1001 delta %= sys_cputimer->freq;
fad57d0e 1002 }
044ee7c4 1003 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc 1004
5eb5a6bc
MD
1005 bt = &basetime[basetime_index];
1006 tvp->tv_sec += bt->tv_sec;
1007 tvp->tv_usec += bt->tv_nsec / 1000;
88c4d2f6
MD
1008 while (tvp->tv_usec >= 1000000) {
1009 tvp->tv_usec -= 1000000;
1010 ++tvp->tv_sec;
984263bc 1011 }
984263bc
MD
1012}
1013
88c4d2f6
MD
1014void
1015nanotime(struct timespec *tsp)
1016{
1017 struct globaldata *gd = mycpu;
5eb5a6bc 1018 struct timespec *bt;
88c4d2f6 1019 sysclock_t delta;
984263bc 1020
88c4d2f6
MD
1021 do {
1022 tsp->tv_sec = gd->gd_time_seconds;
044ee7c4 1023 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1024 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1025
044ee7c4
MD
1026 if (delta >= sys_cputimer->freq) {
1027 tsp->tv_sec += delta / sys_cputimer->freq;
1028 delta %= sys_cputimer->freq;
fad57d0e 1029 }
044ee7c4 1030 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc 1031
5eb5a6bc
MD
1032 bt = &basetime[basetime_index];
1033 tsp->tv_sec += bt->tv_sec;
1034 tsp->tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1035 while (tsp->tv_nsec >= 1000000000) {
1036 tsp->tv_nsec -= 1000000000;
1037 ++tsp->tv_sec;
984263bc 1038 }
984263bc
MD
1039}
1040
25b804e7
MD
1041/*
1042 * note: this is not exactly synchronized with real time. To do that we
1043 * would have to do what microtime does and check for a nanoseconds overflow.
1044 */
1045time_t
1046get_approximate_time_t(void)
1047{
1048 struct globaldata *gd = mycpu;
5eb5a6bc
MD
1049 struct timespec *bt;
1050
1051 bt = &basetime[basetime_index];
1052 return(gd->gd_time_seconds + bt->tv_sec);
25b804e7
MD
1053}
1054
984263bc
MD
1055int
1056pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1057{
1058 pps_params_t *app;
1059 struct pps_fetch_args *fapi;
1060#ifdef PPS_SYNC
1061 struct pps_kcbind_args *kapi;
1062#endif
1063
1064 switch (cmd) {
1065 case PPS_IOC_CREATE:
1066 return (0);
1067 case PPS_IOC_DESTROY:
1068 return (0);
1069 case PPS_IOC_SETPARAMS:
1070 app = (pps_params_t *)data;
1071 if (app->mode & ~pps->ppscap)
1072 return (EINVAL);
1073 pps->ppsparam = *app;
1074 return (0);
1075 case PPS_IOC_GETPARAMS:
1076 app = (pps_params_t *)data;
1077 *app = pps->ppsparam;
1078 app->api_version = PPS_API_VERS_1;
1079 return (0);
1080 case PPS_IOC_GETCAP:
1081 *(int*)data = pps->ppscap;
1082 return (0);
1083 case PPS_IOC_FETCH:
1084 fapi = (struct pps_fetch_args *)data;
1085 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1086 return (EINVAL);
1087 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1088 return (EOPNOTSUPP);
1089 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1090 fapi->pps_info_buf = pps->ppsinfo;
1091 return (0);
1092 case PPS_IOC_KCBIND:
1093#ifdef PPS_SYNC
1094 kapi = (struct pps_kcbind_args *)data;
1095 /* XXX Only root should be able to do this */
1096 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1097 return (EINVAL);
1098 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1099 return (EINVAL);
1100 if (kapi->edge & ~pps->ppscap)
1101 return (EINVAL);
1102 pps->kcmode = kapi->edge;
1103 return (0);
1104#else
1105 return (EOPNOTSUPP);
1106#endif
1107 default:
1108 return (ENOTTY);
1109 }
1110}
1111
1112void
1113pps_init(struct pps_state *pps)
1114{
1115 pps->ppscap |= PPS_TSFMT_TSPEC;
1116 if (pps->ppscap & PPS_CAPTUREASSERT)
1117 pps->ppscap |= PPS_OFFSETASSERT;
1118 if (pps->ppscap & PPS_CAPTURECLEAR)
1119 pps->ppscap |= PPS_OFFSETCLEAR;
1120}
1121
1122void
88c4d2f6 1123pps_event(struct pps_state *pps, sysclock_t count, int event)
984263bc 1124{
88c4d2f6
MD
1125 struct globaldata *gd;
1126 struct timespec *tsp;
1127 struct timespec *osp;
5eb5a6bc 1128 struct timespec *bt;
88c4d2f6
MD
1129 struct timespec ts;
1130 sysclock_t *pcount;
1131#ifdef PPS_SYNC
1132 sysclock_t tcount;
1133#endif
1134 sysclock_t delta;
1135 pps_seq_t *pseq;
1136 int foff;
1137 int fhard;
1138
1139 gd = mycpu;
984263bc
MD
1140
1141 /* Things would be easier with arrays... */
1142 if (event == PPS_CAPTUREASSERT) {
1143 tsp = &pps->ppsinfo.assert_timestamp;
1144 osp = &pps->ppsparam.assert_offset;
1145 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1146 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1147 pcount = &pps->ppscount[0];
1148 pseq = &pps->ppsinfo.assert_sequence;
1149 } else {
1150 tsp = &pps->ppsinfo.clear_timestamp;
1151 osp = &pps->ppsparam.clear_offset;
1152 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1153 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1154 pcount = &pps->ppscount[1];
1155 pseq = &pps->ppsinfo.clear_sequence;
1156 }
1157
984263bc
MD
1158 /* Nothing really happened */
1159 if (*pcount == count)
1160 return;
1161
1162 *pcount = count;
1163
88c4d2f6
MD
1164 do {
1165 ts.tv_sec = gd->gd_time_seconds;
1166 delta = count - gd->gd_cpuclock_base;
1167 } while (ts.tv_sec != gd->gd_time_seconds);
fad57d0e 1168
044ee7c4
MD
1169 if (delta >= sys_cputimer->freq) {
1170 ts.tv_sec += delta / sys_cputimer->freq;
1171 delta %= sys_cputimer->freq;
88c4d2f6 1172 }
044ee7c4 1173 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
5eb5a6bc
MD
1174 bt = &basetime[basetime_index];
1175 ts.tv_sec += bt->tv_sec;
1176 ts.tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1177 while (ts.tv_nsec >= 1000000000) {
1178 ts.tv_nsec -= 1000000000;
1179 ++ts.tv_sec;
984263bc 1180 }
984263bc
MD
1181
1182 (*pseq)++;
1183 *tsp = ts;
1184
1185 if (foff) {
1186 timespecadd(tsp, osp);
1187 if (tsp->tv_nsec < 0) {
1188 tsp->tv_nsec += 1000000000;
1189 tsp->tv_sec -= 1;
1190 }
1191 }
1192#ifdef PPS_SYNC
1193 if (fhard) {
1194 /* magic, at its best... */
1195 tcount = count - pps->ppscount[2];
1196 pps->ppscount[2] = count;
044ee7c4
MD
1197 if (tcount >= sys_cputimer->freq) {
1198 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1199 sys_cputimer->freq64_nsec *
1200 (tcount % sys_cputimer->freq)) >> 32;
fad57d0e 1201 } else {
044ee7c4 1202 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
fad57d0e 1203 }
984263bc
MD
1204 hardpps(tsp, delta);
1205 }
1206#endif
1207}
88c4d2f6 1208