wlan - Rip out all wlan locks part 1/2
[dragonfly.git] / sys / netproto / 802_11 / wlan / ieee80211_output.c
CommitLineData
32176cfd 1/*-
f186073c 2 * Copyright (c) 2001 Atsushi Onoe
32176cfd 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
f186073c
JS
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
f186073c
JS
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
32176cfd
RP
26 * $FreeBSD: head/sys/net80211/ieee80211_output.c 198384 2009-10-23 11:13:08Z rpaulo $
27 * $DragonFly$
f186073c
JS
28 */
29
30#include "opt_inet.h"
32176cfd
RP
31#include "opt_inet6.h"
32#include "opt_wlan.h"
f186073c
JS
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
f186073c 37#include <sys/kernel.h>
f186073c 38#include <sys/endian.h>
f186073c 39
841ab66c 40#include <sys/socket.h>
f186073c 41
841ab66c
SZ
42#include <net/bpf.h>
43#include <net/ethernet.h>
32176cfd 44#include <net/route.h>
f186073c 45#include <net/if.h>
f186073c 46#include <net/if_llc.h>
841ab66c 47#include <net/if_media.h>
34a60cf6 48#include <net/ifq_var.h>
f186073c
JS
49
50#include <netproto/802_11/ieee80211_var.h>
32176cfd
RP
51#include <netproto/802_11/ieee80211_regdomain.h>
52#ifdef IEEE80211_SUPPORT_SUPERG
53#include <netproto/802_11/ieee80211_superg.h>
54#endif
55#ifdef IEEE80211_SUPPORT_TDMA
56#include <netproto/802_11/ieee80211_tdma.h>
57#endif
58#include <netproto/802_11/ieee80211_wds.h>
59#include <netproto/802_11/ieee80211_mesh.h>
f186073c 60
f186073c
JS
61#ifdef INET
62#include <netinet/in.h>
63#include <netinet/if_ether.h>
841ab66c
SZ
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#endif
32176cfd
RP
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70
71#define ETHER_HEADER_COPY(dst, src) \
72 memcpy(dst, src, sizeof(struct ether_header))
73
74/* unalligned little endian access */
75#define LE_WRITE_2(p, v) do { \
76 ((uint8_t *)(p))[0] = (v) & 0xff; \
77 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \
78} while (0)
79#define LE_WRITE_4(p, v) do { \
80 ((uint8_t *)(p))[0] = (v) & 0xff; \
81 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \
82 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \
83 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \
84} while (0)
85
86static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
87 u_int hdrsize, u_int ciphdrsize, u_int mtu);
88static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
841ab66c
SZ
89
90#ifdef IEEE80211_DEBUG
91/*
92 * Decide if an outbound management frame should be
93 * printed when debugging is enabled. This filters some
94 * of the less interesting frames that come frequently
95 * (e.g. beacons).
96 */
97static __inline int
32176cfd 98doprint(struct ieee80211vap *vap, int subtype)
841ab66c
SZ
99{
100 switch (subtype) {
101 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
32176cfd 102 return (vap->iv_opmode == IEEE80211_M_IBSS);
841ab66c
SZ
103 }
104 return 1;
105}
f186073c
JS
106#endif
107
108/*
32176cfd
RP
109 * Start method for vap's. All packets from the stack come
110 * through here. We handle common processing of the packets
111 * before dispatching them to the underlying device.
112 */
113void
114ieee80211_start(struct ifnet *ifp)
115{
116#define IS_DWDS(vap) \
117 (vap->iv_opmode == IEEE80211_M_WDS && \
118 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
119 struct ieee80211vap *vap = ifp->if_softc;
120 struct ieee80211com *ic = vap->iv_ic;
121 struct ifnet *parent = ic->ic_ifp;
122 struct ieee80211_node *ni;
ea86af0d 123 struct mbuf *m = NULL;
32176cfd
RP
124 struct ether_header *eh;
125 int error;
126
127 /* NB: parent must be up and running */
128 if (!IFNET_IS_UP_RUNNING(parent)) {
129 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
130 "%s: ignore queue, parent %s not up+running\n",
131 __func__, parent->if_xname);
132 /* XXX stat */
cc0d8938 133 ifq_purge(&ifp->if_snd);
32176cfd
RP
134 return;
135 }
136 if (vap->iv_state == IEEE80211_S_SLEEP) {
137 /*
138 * In power save, wakeup device for transmit.
139 */
140 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
cc0d8938 141 ifq_purge(&ifp->if_snd);
32176cfd
RP
142 return;
143 }
144 /*
145 * No data frames go out unless we're running.
146 * Note in particular this covers CAC and CSA
147 * states (though maybe we should check muting
148 * for CSA).
149 */
150 if (vap->iv_state != IEEE80211_S_RUN) {
32176cfd
RP
151 /* re-check under the com lock to avoid races */
152 if (vap->iv_state != IEEE80211_S_RUN) {
153 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
154 "%s: ignore queue, in %s state\n",
155 __func__, ieee80211_state_name[vap->iv_state]);
156 vap->iv_stats.is_tx_badstate++;
34a60cf6 157 ifp->if_flags |= IFF_OACTIVE;
32176cfd
RP
158 return;
159 }
32176cfd
RP
160 }
161 for (;;) {
cc0d8938 162 m = ifq_dequeue(&ifp->if_snd, NULL);
32176cfd
RP
163 if (m == NULL)
164 break;
165 /*
166 * Sanitize mbuf flags for net80211 use. We cannot
167 * clear M_PWR_SAV or M_MORE_DATA because these may
168 * be set for frames that are re-submitted from the
169 * power save queue.
170 *
171 * NB: This must be done before ieee80211_classify as
172 * it marks EAPOL in frames with M_EAPOL.
173 */
174 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
175 /*
176 * Cancel any background scan.
177 */
178 if (ic->ic_flags & IEEE80211_F_SCAN)
179 ieee80211_cancel_anyscan(vap);
180 /*
181 * Find the node for the destination so we can do
182 * things like power save and fast frames aggregation.
183 *
184 * NB: past this point various code assumes the first
185 * mbuf has the 802.3 header present (and contiguous).
186 */
187 ni = NULL;
188 if (m->m_len < sizeof(struct ether_header) &&
189 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
190 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
191 "discard frame, %s\n", "m_pullup failed");
192 vap->iv_stats.is_tx_nobuf++; /* XXX */
193 ifp->if_oerrors++;
194 continue;
195 }
196 eh = mtod(m, struct ether_header *);
197 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
198 if (IS_DWDS(vap)) {
199 /*
200 * Only unicast frames from the above go out
201 * DWDS vaps; multicast frames are handled by
202 * dispatching the frame as it comes through
203 * the AP vap (see below).
204 */
205 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
206 eh->ether_dhost, "mcast", "%s", "on DWDS");
207 vap->iv_stats.is_dwds_mcast++;
208 m_freem(m);
209 continue;
210 }
211 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
212 /*
213 * Spam DWDS vap's w/ multicast traffic.
214 */
215 /* XXX only if dwds in use? */
216 ieee80211_dwds_mcast(vap, m);
217 }
218 }
219#ifdef IEEE80211_SUPPORT_MESH
220 if (vap->iv_opmode != IEEE80211_M_MBSS) {
221#endif
222 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
223 if (ni == NULL) {
224 /* NB: ieee80211_find_txnode does stat+msg */
225 ifp->if_oerrors++;
226 m_freem(m);
227 continue;
228 }
229 if (ni->ni_associd == 0 &&
230 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
231 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
232 eh->ether_dhost, NULL,
233 "sta not associated (type 0x%04x)",
234 htons(eh->ether_type));
235 vap->iv_stats.is_tx_notassoc++;
236 ifp->if_oerrors++;
237 m_freem(m);
238 ieee80211_free_node(ni);
239 continue;
240 }
241#ifdef IEEE80211_SUPPORT_MESH
242 } else {
243 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
244 /*
245 * Proxy station only if configured.
246 */
247 if (!ieee80211_mesh_isproxyena(vap)) {
248 IEEE80211_DISCARD_MAC(vap,
249 IEEE80211_MSG_OUTPUT |
250 IEEE80211_MSG_MESH,
251 eh->ether_dhost, NULL,
252 "%s", "proxy not enabled");
253 vap->iv_stats.is_mesh_notproxy++;
254 ifp->if_oerrors++;
255 m_freem(m);
256 continue;
257 }
258 ieee80211_mesh_proxy_check(vap, eh->ether_shost);
259 }
260 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
261 if (ni == NULL) {
262 /*
263 * NB: ieee80211_mesh_discover holds/disposes
264 * frame (e.g. queueing on path discovery).
265 */
266 ifp->if_oerrors++;
267 continue;
268 }
269 }
270#endif
271 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
272 (m->m_flags & M_PWR_SAV) == 0) {
273 /*
274 * Station in power save mode; pass the frame
275 * to the 802.11 layer and continue. We'll get
276 * the frame back when the time is right.
277 * XXX lose WDS vap linkage?
278 */
279 (void) ieee80211_pwrsave(ni, m);
280 ieee80211_free_node(ni);
281 continue;
282 }
283 /* calculate priority so drivers can find the tx queue */
284 if (ieee80211_classify(ni, m)) {
285 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
286 eh->ether_dhost, NULL,
287 "%s", "classification failure");
288 vap->iv_stats.is_tx_classify++;
289 ifp->if_oerrors++;
290 m_freem(m);
291 ieee80211_free_node(ni);
292 continue;
293 }
294 /*
295 * Stash the node pointer. Note that we do this after
296 * any call to ieee80211_dwds_mcast because that code
297 * uses any existing value for rcvif to identify the
298 * interface it (might have been) received on.
299 */
300 m->m_pkthdr.rcvif = (void *)ni;
301
302 BPF_MTAP(ifp, m); /* 802.3 tx */
303
304 /*
305 * Check if A-MPDU tx aggregation is setup or if we
306 * should try to enable it. The sta must be associated
307 * with HT and A-MPDU enabled for use. When the policy
308 * routine decides we should enable A-MPDU we issue an
309 * ADDBA request and wait for a reply. The frame being
310 * encapsulated will go out w/o using A-MPDU, or possibly
311 * it might be collected by the driver and held/retransmit.
312 * The default ic_ampdu_enable routine handles staggering
313 * ADDBA requests in case the receiver NAK's us or we are
314 * otherwise unable to establish a BA stream.
315 */
316 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
317 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
318 (m->m_flags & M_EAPOL) == 0) {
319 const int ac = M_WME_GETAC(m);
320 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
321
322 ieee80211_txampdu_count_packet(tap);
323 if (IEEE80211_AMPDU_RUNNING(tap)) {
324 /*
325 * Operational, mark frame for aggregation.
326 *
327 * XXX do tx aggregation here
328 */
329 m->m_flags |= M_AMPDU_MPDU;
330 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
331 ic->ic_ampdu_enable(ni, tap)) {
332 /*
333 * Not negotiated yet, request service.
334 */
335 ieee80211_ampdu_request(ni, tap);
336 /* XXX hold frame for reply? */
337 }
338 }
339#ifdef IEEE80211_SUPPORT_SUPERG
340 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
341 m = ieee80211_ff_check(ni, m);
342 if (m == NULL) {
343 /* NB: any ni ref held on stageq */
344 continue;
345 }
346 }
347#endif /* IEEE80211_SUPPORT_SUPERG */
348 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
349 /*
350 * Encapsulate the packet in prep for transmission.
351 */
352 m = ieee80211_encap(vap, ni, m);
353 if (m == NULL) {
354 /* NB: stat+msg handled in ieee80211_encap */
355 ieee80211_free_node(ni);
356 continue;
357 }
358 }
359
cc0d8938 360 error = ieee80211_handoff(parent, m);
32176cfd
RP
361 if (error != 0) {
362 /* NB: IFQ_HANDOFF reclaims mbuf */
363 ieee80211_free_node(ni);
364 } else {
365 ifp->if_opackets++;
366 }
367 ic->ic_lastdata = ticks;
368 }
369#undef IS_DWDS
370}
371
cc0d8938 372
32176cfd
RP
373/*
374 * 802.11 output routine. This is (currently) used only to
375 * connect bpf write calls to the 802.11 layer for injecting
376 * raw 802.11 frames.
377 */
378int
379ieee80211_output(struct ifnet *ifp, struct mbuf *m,
34a60cf6 380 struct sockaddr *dst, struct rtentry *rt)
32176cfd
RP
381{
382#define senderr(e) do { error = (e); goto bad;} while (0)
383 struct ieee80211_node *ni = NULL;
384 struct ieee80211vap *vap;
385 struct ieee80211_frame *wh;
386 int error;
387
34a60cf6 388 if (ifp->if_flags & IFF_OACTIVE) {
32176cfd
RP
389 /*
390 * Short-circuit requests if the vap is marked OACTIVE
391 * as this can happen because a packet came down through
392 * ieee80211_start before the vap entered RUN state in
393 * which case it's ok to just drop the frame. This
394 * should not be necessary but callers of if_output don't
395 * check OACTIVE.
396 */
397 senderr(ENETDOWN);
398 }
399 vap = ifp->if_softc;
400 /*
401 * Hand to the 802.3 code if not tagged as
402 * a raw 802.11 frame.
403 */
404 if (dst->sa_family != AF_IEEE80211)
34a60cf6 405 return vap->iv_output(ifp, m, dst, rt);
32176cfd
RP
406#ifdef MAC
407 error = mac_ifnet_check_transmit(ifp, m);
408 if (error)
409 senderr(error);
410#endif
411 if (ifp->if_flags & IFF_MONITOR)
412 senderr(ENETDOWN);
413 if (!IFNET_IS_UP_RUNNING(ifp))
414 senderr(ENETDOWN);
415 if (vap->iv_state == IEEE80211_S_CAC) {
416 IEEE80211_DPRINTF(vap,
417 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
418 "block %s frame in CAC state\n", "raw data");
419 vap->iv_stats.is_tx_badstate++;
420 senderr(EIO); /* XXX */
421 }
422 /* XXX bypass bridge, pfil, carp, etc. */
423
424 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
425 senderr(EIO); /* XXX */
426 wh = mtod(m, struct ieee80211_frame *);
427 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
428 IEEE80211_FC0_VERSION_0)
429 senderr(EIO); /* XXX */
430
431 /* locate destination node */
432 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
433 case IEEE80211_FC1_DIR_NODS:
434 case IEEE80211_FC1_DIR_FROMDS:
435 ni = ieee80211_find_txnode(vap, wh->i_addr1);
436 break;
437 case IEEE80211_FC1_DIR_TODS:
438 case IEEE80211_FC1_DIR_DSTODS:
439 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
440 senderr(EIO); /* XXX */
441 ni = ieee80211_find_txnode(vap, wh->i_addr3);
442 break;
443 default:
444 senderr(EIO); /* XXX */
445 }
446 if (ni == NULL) {
447 /*
448 * Permit packets w/ bpf params through regardless
449 * (see below about sa_len).
450 */
451 if (dst->sa_len == 0)
452 senderr(EHOSTUNREACH);
453 ni = ieee80211_ref_node(vap->iv_bss);
454 }
455
456 /*
457 * Sanitize mbuf for net80211 flags leaked from above.
458 *
459 * NB: This must be done before ieee80211_classify as
460 * it marks EAPOL in frames with M_EAPOL.
461 */
462 m->m_flags &= ~M_80211_TX;
463
464 /* calculate priority so drivers can find the tx queue */
465 /* XXX assumes an 802.3 frame */
466 if (ieee80211_classify(ni, m))
467 senderr(EIO); /* XXX */
468
469 ifp->if_opackets++;
470 IEEE80211_NODE_STAT(ni, tx_data);
471 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
472 IEEE80211_NODE_STAT(ni, tx_mcast);
473 m->m_flags |= M_MCAST;
474 } else
475 IEEE80211_NODE_STAT(ni, tx_ucast);
476 /* NB: ieee80211_encap does not include 802.11 header */
477 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
478
479 /*
480 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
481 * present by setting the sa_len field of the sockaddr (yes,
482 * this is a hack).
483 * NB: we assume sa_data is suitably aligned to cast.
484 */
485 return vap->iv_ic->ic_raw_xmit(ni, m,
486 (const struct ieee80211_bpf_params *)(dst->sa_len ?
487 dst->sa_data : NULL));
488bad:
489 if (m != NULL)
490 m_freem(m);
491 if (ni != NULL)
492 ieee80211_free_node(ni);
493 ifp->if_oerrors++;
494 return error;
495#undef senderr
496}
497
498/*
841ab66c 499 * Set the direction field and address fields of an outgoing
32176cfd
RP
500 * frame. Note this should be called early on in constructing
501 * a frame as it sets i_fc[1]; other bits can then be or'd in.
841ab66c 502 */
32176cfd
RP
503void
504ieee80211_send_setup(
841ab66c 505 struct ieee80211_node *ni,
32176cfd
RP
506 struct mbuf *m,
507 int type, int tid,
841ab66c
SZ
508 const uint8_t sa[IEEE80211_ADDR_LEN],
509 const uint8_t da[IEEE80211_ADDR_LEN],
510 const uint8_t bssid[IEEE80211_ADDR_LEN])
511{
512#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
32176cfd
RP
513 struct ieee80211vap *vap = ni->ni_vap;
514 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
515 ieee80211_seq seqno;
841ab66c
SZ
516
517 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
518 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
32176cfd 519 switch (vap->iv_opmode) {
841ab66c
SZ
520 case IEEE80211_M_STA:
521 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
522 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
523 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
524 IEEE80211_ADDR_COPY(wh->i_addr3, da);
525 break;
526 case IEEE80211_M_IBSS:
527 case IEEE80211_M_AHDEMO:
528 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
529 IEEE80211_ADDR_COPY(wh->i_addr1, da);
530 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
531 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
532 break;
533 case IEEE80211_M_HOSTAP:
534 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
535 IEEE80211_ADDR_COPY(wh->i_addr1, da);
536 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
537 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
538 break;
32176cfd
RP
539 case IEEE80211_M_WDS:
540 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
541 IEEE80211_ADDR_COPY(wh->i_addr1, da);
542 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
543 IEEE80211_ADDR_COPY(wh->i_addr3, da);
544 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
545 break;
546 case IEEE80211_M_MBSS:
547#ifdef IEEE80211_SUPPORT_MESH
548 /* XXX add support for proxied addresses */
549 if (IEEE80211_IS_MULTICAST(da)) {
550 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
551 /* XXX next hop */
552 IEEE80211_ADDR_COPY(wh->i_addr1, da);
553 IEEE80211_ADDR_COPY(wh->i_addr2,
554 vap->iv_myaddr);
555 } else {
556 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
557 IEEE80211_ADDR_COPY(wh->i_addr1, da);
558 IEEE80211_ADDR_COPY(wh->i_addr2,
559 vap->iv_myaddr);
560 IEEE80211_ADDR_COPY(wh->i_addr3, da);
561 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
562 }
563#endif
564 break;
841ab66c
SZ
565 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
566 break;
567 }
568 } else {
569 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
570 IEEE80211_ADDR_COPY(wh->i_addr1, da);
571 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
32176cfd
RP
572#ifdef IEEE80211_SUPPORT_MESH
573 if (vap->iv_opmode == IEEE80211_M_MBSS)
574 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
575 else
576#endif
577 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
841ab66c
SZ
578 }
579 *(uint16_t *)&wh->i_dur[0] = 0;
32176cfd
RP
580
581 seqno = ni->ni_txseqs[tid]++;
582 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
583 M_SEQNO_SET(m, seqno);
584
585 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
586 m->m_flags |= M_MCAST;
841ab66c
SZ
587#undef WH4
588}
589
590/*
f186073c
JS
591 * Send a management frame to the specified node. The node pointer
592 * must have a reference as the pointer will be passed to the driver
593 * and potentially held for a long time. If the frame is successfully
594 * dispatched to the driver, then it is responsible for freeing the
32176cfd
RP
595 * reference (and potentially free'ing up any associated storage);
596 * otherwise deal with reclaiming any reference (on error).
f186073c 597 */
32176cfd
RP
598int
599ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
600 struct ieee80211_bpf_params *params)
f186073c 601{
32176cfd
RP
602 struct ieee80211vap *vap = ni->ni_vap;
603 struct ieee80211com *ic = ni->ni_ic;
f186073c
JS
604 struct ieee80211_frame *wh;
605
606 KASSERT(ni != NULL, ("null node"));
f186073c 607
32176cfd
RP
608 if (vap->iv_state == IEEE80211_S_CAC) {
609 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
610 ni, "block %s frame in CAC state",
611 ieee80211_mgt_subtype_name[
612 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
613 IEEE80211_FC0_SUBTYPE_SHIFT]);
614 vap->iv_stats.is_tx_badstate++;
615 ieee80211_free_node(ni);
616 m_freem(m);
617 return EIO; /* XXX */
618 }
619
f186073c 620 M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
32176cfd
RP
621 if (m == NULL) {
622 ieee80211_free_node(ni);
f186073c 623 return ENOMEM;
32176cfd 624 }
f186073c
JS
625
626 wh = mtod(m, struct ieee80211_frame *);
32176cfd
RP
627 ieee80211_send_setup(ni, m,
628 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
629 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
630 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
631 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
632 "encrypting frame (%s)", __func__);
841ab66c
SZ
633 wh->i_fc[1] |= IEEE80211_FC1_WEP;
634 }
32176cfd
RP
635 m->m_flags |= M_ENCAP; /* mark encapsulated */
636
637 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
638 M_WME_SETAC(m, params->ibp_pri);
639
f186073c 640#ifdef IEEE80211_DEBUG
841ab66c 641 /* avoid printing too many frames */
32176cfd
RP
642 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
643 ieee80211_msg_dumppkts(vap)) {
6168f72e
RP
644 kprintf("[%6D] send %s on channel %u\n",
645 wh->i_addr1, ":",
841ab66c
SZ
646 ieee80211_mgt_subtype_name[
647 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
648 IEEE80211_FC0_SUBTYPE_SHIFT],
649 ieee80211_chan2ieee(ic, ic->ic_curchan));
650 }
f186073c 651#endif
841ab66c 652 IEEE80211_NODE_STAT(ni, tx_mgmt);
32176cfd
RP
653
654 return ic->ic_raw_xmit(ni, m, params);
841ab66c 655}
f186073c 656
841ab66c 657/*
32176cfd
RP
658 * Send a null data frame to the specified node. If the station
659 * is setup for QoS then a QoS Null Data frame is constructed.
660 * If this is a WDS station then a 4-address frame is constructed.
841ab66c
SZ
661 *
662 * NB: the caller is assumed to have setup a node reference
663 * for use; this is necessary to deal with a race condition
32176cfd
RP
664 * when probing for inactive stations. Like ieee80211_mgmt_output
665 * we must cleanup any node reference on error; however we
666 * can safely just unref it as we know it will never be the
667 * last reference to the node.
841ab66c
SZ
668 */
669int
670ieee80211_send_nulldata(struct ieee80211_node *ni)
671{
32176cfd 672 struct ieee80211vap *vap = ni->ni_vap;
841ab66c 673 struct ieee80211com *ic = ni->ni_ic;
841ab66c
SZ
674 struct mbuf *m;
675 struct ieee80211_frame *wh;
32176cfd
RP
676 int hdrlen;
677 uint8_t *frm;
678
679 if (vap->iv_state == IEEE80211_S_CAC) {
680 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
681 ni, "block %s frame in CAC state", "null data");
682 ieee80211_unref_node(&ni);
683 vap->iv_stats.is_tx_badstate++;
684 return EIO; /* XXX */
685 }
686
687 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
688 hdrlen = sizeof(struct ieee80211_qosframe);
689 else
690 hdrlen = sizeof(struct ieee80211_frame);
691 /* NB: only WDS vap's get 4-address frames */
692 if (vap->iv_opmode == IEEE80211_M_WDS)
693 hdrlen += IEEE80211_ADDR_LEN;
694 if (ic->ic_flags & IEEE80211_F_DATAPAD)
695 hdrlen = roundup(hdrlen, sizeof(uint32_t));
841ab66c 696
32176cfd 697 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
841ab66c
SZ
698 if (m == NULL) {
699 /* XXX debug msg */
841ab66c 700 ieee80211_unref_node(&ni);
32176cfd
RP
701 vap->iv_stats.is_tx_nobuf++;
702 return ENOMEM;
703 }
704 KASSERT(M_LEADINGSPACE(m) >= hdrlen,
705 ("leading space %zd", M_LEADINGSPACE(m)));
706 M_PREPEND(m, hdrlen, MB_DONTWAIT);
707 if (m == NULL) {
708 /* NB: cannot happen */
709 ieee80211_free_node(ni);
841ab66c
SZ
710 return ENOMEM;
711 }
841ab66c 712
32176cfd
RP
713 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
714 if (ni->ni_flags & IEEE80211_NODE_QOS) {
715 const int tid = WME_AC_TO_TID(WME_AC_BE);
716 uint8_t *qos;
717
718 ieee80211_send_setup(ni, m,
719 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
720 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
721
722 if (vap->iv_opmode == IEEE80211_M_WDS)
723 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
724 else
725 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
726 qos[0] = tid & IEEE80211_QOS_TID;
727 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
728 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
729 qos[1] = 0;
730 } else {
731 ieee80211_send_setup(ni, m,
732 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
733 IEEE80211_NONQOS_TID,
734 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
735 }
736 if (vap->iv_opmode != IEEE80211_M_WDS) {
737 /* NB: power management bit is never sent by an AP */
738 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
739 vap->iv_opmode != IEEE80211_M_HOSTAP)
740 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
741 }
742 m->m_len = m->m_pkthdr.len = hdrlen;
743 m->m_flags |= M_ENCAP; /* mark encapsulated */
744
745 M_WME_SETAC(m, WME_AC_BE);
841ab66c
SZ
746
747 IEEE80211_NODE_STAT(ni, tx_data);
748
32176cfd
RP
749 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
750 "send %snull data frame on channel %u, pwr mgt %s",
751 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
841ab66c
SZ
752 ieee80211_chan2ieee(ic, ic->ic_curchan),
753 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
754
32176cfd 755 return ic->ic_raw_xmit(ni, m, NULL);
841ab66c
SZ
756}
757
758/*
759 * Assign priority to a frame based on any vlan tag assigned
760 * to the station and/or any Diffserv setting in an IP header.
761 * Finally, if an ACM policy is setup (in station mode) it's
762 * applied.
763 */
764int
32176cfd 765ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
841ab66c 766{
32176cfd
RP
767 const struct ether_header *eh = mtod(m, struct ether_header *);
768 int v_wme_ac, d_wme_ac, ac;
841ab66c 769
32176cfd
RP
770 /*
771 * Always promote PAE/EAPOL frames to high priority.
772 */
773 if (eh->ether_type == htons(ETHERTYPE_PAE)) {
774 /* NB: mark so others don't need to check header */
775 m->m_flags |= M_EAPOL;
776 ac = WME_AC_VO;
777 goto done;
778 }
779 /*
780 * Non-qos traffic goes to BE.
781 */
841ab66c
SZ
782 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
783 ac = WME_AC_BE;
784 goto done;
785 }
786
841ab66c
SZ
787 /*
788 * If node has a vlan tag then all traffic
789 * to it must have a matching tag.
790 */
791 v_wme_ac = 0;
792 if (ni->ni_vlan != 0) {
32176cfd 793 if ((m->m_flags & M_VLANTAG) == 0) {
841ab66c
SZ
794 IEEE80211_NODE_STAT(ni, tx_novlantag);
795 return 1;
796 }
22603758 797#ifdef __FreeBSD__
32176cfd 798 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vlantag) !=
841ab66c
SZ
799 EVL_VLANOFTAG(ni->ni_vlan)) {
800 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
801 return 1;
802 }
803 /* map vlan priority to AC */
32176cfd 804 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
22603758 805#endif
841ab66c 806 }
841ab66c 807
32176cfd 808 /* XXX m_copydata may be too slow for fast path */
841ab66c 809#ifdef INET
841ab66c 810 if (eh->ether_type == htons(ETHERTYPE_IP)) {
32176cfd 811 uint8_t tos;
841ab66c 812 /*
32176cfd 813 * IP frame, map the DSCP bits from the TOS field.
841ab66c 814 */
32176cfd
RP
815 /* NB: ip header may not be in first mbuf */
816 m_copydata(m, sizeof(struct ether_header) +
817 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
818 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
819 d_wme_ac = TID_TO_WME_AC(tos);
841ab66c
SZ
820 } else {
821#endif /* INET */
32176cfd
RP
822#ifdef INET6
823 if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
824 uint32_t flow;
825 uint8_t tos;
826 /*
827 * IPv6 frame, map the DSCP bits from the TOS field.
828 */
829 m_copydata(m, sizeof(struct ether_header) +
830 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
831 (caddr_t) &flow);
832 tos = (uint8_t)(ntohl(flow) >> 20);
833 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
834 d_wme_ac = TID_TO_WME_AC(tos);
835 } else {
836#endif /* INET6 */
841ab66c 837 d_wme_ac = WME_AC_BE;
32176cfd
RP
838#ifdef INET6
839 }
840#endif
841ab66c
SZ
841#ifdef INET
842 }
843#endif
844 /*
845 * Use highest priority AC.
846 */
847 if (v_wme_ac > d_wme_ac)
848 ac = v_wme_ac;
849 else
850 ac = d_wme_ac;
851
852 /*
853 * Apply ACM policy.
854 */
32176cfd 855 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
841ab66c
SZ
856 static const int acmap[4] = {
857 WME_AC_BK, /* WME_AC_BE */
858 WME_AC_BK, /* WME_AC_BK */
859 WME_AC_BE, /* WME_AC_VI */
860 WME_AC_VI, /* WME_AC_VO */
861 };
32176cfd
RP
862 struct ieee80211com *ic = ni->ni_ic;
863
841ab66c
SZ
864 while (ac != WME_AC_BK &&
865 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
866 ac = acmap[ac];
867 }
868done:
869 M_WME_SETAC(m, ac);
f186073c
JS
870 return 0;
871}
872
873/*
841ab66c
SZ
874 * Insure there is sufficient contiguous space to encapsulate the
875 * 802.11 data frame. If room isn't already there, arrange for it.
876 * Drivers and cipher modules assume we have done the necessary work
877 * and fail rudely if they don't find the space they need.
878 */
32176cfd
RP
879struct mbuf *
880ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
841ab66c
SZ
881 struct ieee80211_key *key, struct mbuf *m)
882{
883#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
005cdb6a 884 struct mbuf *mnew = NULL;
32176cfd 885 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
841ab66c
SZ
886
887 if (key != NULL) {
888 /* XXX belongs in crypto code? */
32176cfd 889 needed_space += key->wk_cipher->ic_header;
841ab66c
SZ
890 /* XXX frags */
891 /*
892 * When crypto is being done in the host we must insure
893 * the data are writable for the cipher routines; clone
894 * a writable mbuf chain.
895 * XXX handle SWMIC specially
896 */
32176cfd 897 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
005cdb6a 898 mnew = m_dup(m, MB_DONTWAIT);
841ab66c 899 if (m == NULL) {
32176cfd 900 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
841ab66c 901 "%s: cannot get writable mbuf\n", __func__);
32176cfd 902 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
841ab66c
SZ
903 return NULL;
904 }
005cdb6a
JT
905 m_freem(m);
906 m = mnew;
841ab66c
SZ
907 }
908 }
909 /*
910 * We know we are called just before stripping an Ethernet
911 * header and prepending an LLC header. This means we know
912 * there will be
913 * sizeof(struct ether_header) - sizeof(struct llc)
914 * bytes recovered to which we need additional space for the
915 * 802.11 header and any crypto header.
916 */
917 /* XXX check trailing space and copy instead? */
918 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
543d1dec 919 struct mbuf *n = m_gethdr(MB_DONTWAIT, m->m_type);
841ab66c 920 if (n == NULL) {
32176cfd 921 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
841ab66c 922 "%s: cannot expand storage\n", __func__);
32176cfd 923 vap->iv_stats.is_tx_nobuf++;
841ab66c
SZ
924 m_freem(m);
925 return NULL;
926 }
927 KASSERT(needed_space <= MHLEN,
928 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
929 /*
930 * Setup new mbuf to have leading space to prepend the
931 * 802.11 header and any crypto header bits that are
932 * required (the latter are added when the driver calls
933 * back to ieee80211_crypto_encap to do crypto encapsulation).
934 */
935 /* NB: must be first 'cuz it clobbers m_data */
936 m_move_pkthdr(n, m);
937 n->m_len = 0; /* NB: m_gethdr does not set */
938 n->m_data += needed_space;
939 /*
940 * Pull up Ethernet header to create the expected layout.
941 * We could use m_pullup but that's overkill (i.e. we don't
942 * need the actual data) and it cannot fail so do it inline
943 * for speed.
944 */
945 /* NB: struct ether_header is known to be contiguous */
946 n->m_len += sizeof(struct ether_header);
947 m->m_len -= sizeof(struct ether_header);
948 m->m_data += sizeof(struct ether_header);
949 /*
950 * Replace the head of the chain.
951 */
952 n->m_next = m;
953 m = n;
954 }
955 return m;
956#undef TO_BE_RECLAIMED
957}
958
841ab66c
SZ
959/*
960 * Return the transmit key to use in sending a unicast frame.
961 * If a unicast key is set we use that. When no unicast key is set
962 * we fall back to the default transmit key.
963 */
964static __inline struct ieee80211_key *
32176cfd
RP
965ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
966 struct ieee80211_node *ni)
841ab66c 967{
32176cfd
RP
968 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
969 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
970 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
841ab66c 971 return NULL;
32176cfd 972 return &vap->iv_nw_keys[vap->iv_def_txkey];
841ab66c
SZ
973 } else {
974 return &ni->ni_ucastkey;
975 }
976}
977
978/*
979 * Return the transmit key to use in sending a multicast frame.
980 * Multicast traffic always uses the group key which is installed as
981 * the default tx key.
982 */
983static __inline struct ieee80211_key *
32176cfd
RP
984ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
985 struct ieee80211_node *ni)
841ab66c 986{
32176cfd
RP
987 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
988 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
841ab66c 989 return NULL;
32176cfd 990 return &vap->iv_nw_keys[vap->iv_def_txkey];
841ab66c
SZ
991}
992
993/*
994 * Encapsulate an outbound data frame. The mbuf chain is updated.
995 * If an error is encountered NULL is returned. The caller is required
996 * to provide a node reference and pullup the ethernet header in the
997 * first mbuf.
32176cfd
RP
998 *
999 * NB: Packet is assumed to be processed by ieee80211_classify which
1000 * marked EAPOL frames w/ M_EAPOL.
f186073c
JS
1001 */
1002struct mbuf *
32176cfd
RP
1003ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1004 struct mbuf *m)
f186073c 1005{
32176cfd
RP
1006#define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
1007 struct ieee80211com *ic = ni->ni_ic;
1008#ifdef IEEE80211_SUPPORT_MESH
1009 struct ieee80211_mesh_state *ms = vap->iv_mesh;
1010 struct ieee80211_meshcntl_ae10 *mc;
1011#endif
f186073c
JS
1012 struct ether_header eh;
1013 struct ieee80211_frame *wh;
841ab66c 1014 struct ieee80211_key *key;
f186073c 1015 struct llc *llc;
32176cfd
RP
1016 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1017 ieee80211_seq seqno;
1018 int meshhdrsize, meshae;
1019 uint8_t *qos;
f186073c 1020
32176cfd
RP
1021 /*
1022 * Copy existing Ethernet header to a safe place. The
1023 * rest of the code assumes it's ok to strip it when
1024 * reorganizing state for the final encapsulation.
1025 */
841ab66c 1026 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
32176cfd 1027 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
f186073c 1028
841ab66c
SZ
1029 /*
1030 * Insure space for additional headers. First identify
1031 * transmit key to use in calculating any buffer adjustments
1032 * required. This is also used below to do privacy
1033 * encapsulation work. Then calculate the 802.11 header
1034 * size and any padding required by the driver.
1035 *
1036 * Note key may be NULL if we fall back to the default
1037 * transmit key and that is not set. In that case the
1038 * buffer may not be expanded as needed by the cipher
1039 * routines, but they will/should discard it.
1040 */
32176cfd
RP
1041 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1042 if (vap->iv_opmode == IEEE80211_M_STA ||
1043 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1044 (vap->iv_opmode == IEEE80211_M_WDS &&
1045 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1046 key = ieee80211_crypto_getucastkey(vap, ni);
841ab66c 1047 else
32176cfd
RP
1048 key = ieee80211_crypto_getmcastkey(vap, ni);
1049 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1050 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1051 eh.ether_dhost,
1052 "no default transmit key (%s) deftxkey %u",
1053 __func__, vap->iv_def_txkey);
1054 vap->iv_stats.is_tx_nodefkey++;
a92bce5e 1055 goto bad;
841ab66c
SZ
1056 }
1057 } else
1058 key = NULL;
841ab66c
SZ
1059 /*
1060 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1061 * frames so suppress use. This may be an issue if other
1062 * ap's require all data frames to be QoS-encapsulated
1063 * once negotiated in which case we'll need to make this
1064 * configurable.
1065 */
32176cfd
RP
1066 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
1067 (m->m_flags & M_EAPOL) == 0;
841ab66c
SZ
1068 if (addqos)
1069 hdrsize = sizeof(struct ieee80211_qosframe);
1070 else
1071 hdrsize = sizeof(struct ieee80211_frame);
32176cfd
RP
1072#ifdef IEEE80211_SUPPORT_MESH
1073 if (vap->iv_opmode == IEEE80211_M_MBSS) {
1074 /*
1075 * Mesh data frames are encapsulated according to the
1076 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1077 * o Group Addressed data (aka multicast) originating
1078 * at the local sta are sent w/ 3-address format and
1079 * address extension mode 00
1080 * o Individually Addressed data (aka unicast) originating
1081 * at the local sta are sent w/ 4-address format and
1082 * address extension mode 00
1083 * o Group Addressed data forwarded from a non-mesh sta are
1084 * sent w/ 3-address format and address extension mode 01
1085 * o Individually Address data from another sta are sent
1086 * w/ 4-address format and address extension mode 10
1087 */
1088 is4addr = 0; /* NB: don't use, disable */
1089 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1090 hdrsize += IEEE80211_ADDR_LEN; /* unicast are 4-addr */
1091 meshhdrsize = sizeof(struct ieee80211_meshcntl);
1092 /* XXX defines for AE modes */
1093 if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1094 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1095 meshae = 0;
1096 else
1097 meshae = 4; /* NB: pseudo */
1098 } else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1099 meshae = 1;
1100 meshhdrsize += 1*IEEE80211_ADDR_LEN;
1101 } else {
1102 meshae = 2;
1103 meshhdrsize += 2*IEEE80211_ADDR_LEN;
1104 }
1105 } else {
1106#endif
1107 /*
1108 * 4-address frames need to be generated for:
1109 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1110 * o packets sent through a vap marked for relaying
1111 * (e.g. a station operating with dynamic WDS)
1112 */
1113 is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1114 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1115 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1116 if (is4addr)
1117 hdrsize += IEEE80211_ADDR_LEN;
1118 meshhdrsize = meshae = 0;
1119#ifdef IEEE80211_SUPPORT_MESH
f186073c 1120 }
32176cfd
RP
1121#endif
1122 /*
1123 * Honor driver DATAPAD requirement.
1124 */
1125 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1126 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1127 else
1128 hdrspace = hdrsize;
f186073c 1129
32176cfd
RP
1130 if (__predict_true((m->m_flags & M_FF) == 0)) {
1131 /*
1132 * Normal frame.
1133 */
1134 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1135 if (m == NULL) {
1136 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1137 goto bad;
1138 }
1139 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1140 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1141 llc = mtod(m, struct llc *);
1142 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1143 llc->llc_control = LLC_UI;
1144 llc->llc_snap.org_code[0] = 0;
1145 llc->llc_snap.org_code[1] = 0;
1146 llc->llc_snap.org_code[2] = 0;
1147 llc->llc_snap.ether_type = eh.ether_type;
1148 } else {
1149#ifdef IEEE80211_SUPPORT_SUPERG
1150 /*
1151 * Aggregated frame.
1152 */
1153 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1154 if (m == NULL)
1155#endif
1156 goto bad;
1157 }
841ab66c
SZ
1158 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
1159
32176cfd 1160 M_PREPEND(m, hdrspace + meshhdrsize, MB_DONTWAIT);
f186073c 1161 if (m == NULL) {
32176cfd 1162 vap->iv_stats.is_tx_nobuf++;
f186073c
JS
1163 goto bad;
1164 }
1165 wh = mtod(m, struct ieee80211_frame *);
1166 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1167 *(uint16_t *)wh->i_dur = 0;
32176cfd
RP
1168 qos = NULL; /* NB: quiet compiler */
1169 if (is4addr) {
1170 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1171 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1172 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1173 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1174 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1175 } else switch (vap->iv_opmode) {
f186073c
JS
1176 case IEEE80211_M_STA:
1177 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1178 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1179 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1180 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1181 break;
1182 case IEEE80211_M_IBSS:
1183 case IEEE80211_M_AHDEMO:
1184 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1185 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1186 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
841ab66c 1187 /*
32176cfd 1188 * NB: always use the bssid from iv_bss as the
841ab66c
SZ
1189 * neighbor's may be stale after an ibss merge
1190 */
32176cfd 1191 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
f186073c
JS
1192 break;
1193 case IEEE80211_M_HOSTAP:
1194 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1195 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1196 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1197 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1198 break;
32176cfd
RP
1199#ifdef IEEE80211_SUPPORT_MESH
1200 case IEEE80211_M_MBSS:
1201 /* NB: offset by hdrspace to deal with DATAPAD */
1202 mc = (struct ieee80211_meshcntl_ae10 *)
1203 (mtod(m, uint8_t *) + hdrspace);
1204 switch (meshae) {
1205 case 0: /* ucast, no proxy */
1206 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1207 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1208 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1209 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1210 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1211 mc->mc_flags = 0;
1212 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1213 break;
1214 case 4: /* mcast, no proxy */
1215 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1216 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1217 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1218 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1219 mc->mc_flags = 0; /* NB: AE is really 0 */
1220 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1221 break;
1222 case 1: /* mcast, proxy */
1223 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1224 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1225 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1226 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1227 mc->mc_flags = 1;
1228 IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost);
1229 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1230 break;
1231 case 2: /* ucast, proxy */
1232 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1233 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1234 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1235 /* XXX not right, need MeshDA */
1236 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1237 /* XXX assume are MeshSA */
1238 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1239 mc->mc_flags = 2;
1240 IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost);
1241 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost);
1242 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1243 break;
1244 default:
1245 KASSERT(0, ("meshae %d", meshae));
1246 break;
1247 }
1248 mc->mc_ttl = ms->ms_ttl;
1249 ms->ms_seq++;
1250 LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1251 break;
1252#endif
1253 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1254 default:
f186073c
JS
1255 goto bad;
1256 }
841ab66c
SZ
1257 if (m->m_flags & M_MORE_DATA)
1258 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1259 if (addqos) {
841ab66c
SZ
1260 int ac, tid;
1261
32176cfd
RP
1262 if (is4addr) {
1263 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1264 /* NB: mesh case handled earlier */
1265 } else if (vap->iv_opmode != IEEE80211_M_MBSS)
1266 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
841ab66c
SZ
1267 ac = M_WME_GETAC(m);
1268 /* map from access class/queue to 11e header priorty value */
1269 tid = WME_AC_TO_TID(ac);
32176cfd 1270 qos[0] = tid & IEEE80211_QOS_TID;
841ab66c 1271 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
32176cfd
RP
1272 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1273 qos[1] = 0;
1274 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
841ab66c 1275
32176cfd
RP
1276 if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1277 /*
1278 * NB: don't assign a sequence # to potential
1279 * aggregates; we expect this happens at the
1280 * point the frame comes off any aggregation q
1281 * as otherwise we may introduce holes in the
1282 * BA sequence space and/or make window accouting
1283 * more difficult.
1284 *
1285 * XXX may want to control this with a driver
1286 * capability; this may also change when we pull
1287 * aggregation up into net80211
1288 */
1289 seqno = ni->ni_txseqs[tid]++;
1290 *(uint16_t *)wh->i_seq =
1291 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1292 M_SEQNO_SET(m, seqno);
1293 }
841ab66c 1294 } else {
32176cfd 1295 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
841ab66c 1296 *(uint16_t *)wh->i_seq =
32176cfd
RP
1297 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1298 M_SEQNO_SET(m, seqno);
841ab66c 1299 }
32176cfd
RP
1300
1301
1302 /* check if xmit fragmentation is required */
1303 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1304 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1305 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1306 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
841ab66c
SZ
1307 if (key != NULL) {
1308 /*
1309 * IEEE 802.1X: send EAPOL frames always in the clear.
1310 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1311 */
32176cfd
RP
1312 if ((m->m_flags & M_EAPOL) == 0 ||
1313 ((vap->iv_flags & IEEE80211_F_WPA) &&
1314 (vap->iv_opmode == IEEE80211_M_STA ?
1315 !IEEE80211_KEY_UNDEFINED(key) :
1316 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
841ab66c 1317 wh->i_fc[1] |= IEEE80211_FC1_WEP;
32176cfd
RP
1318 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1319 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1320 eh.ether_dhost,
1321 "%s", "enmic failed, discard frame");
1322 vap->iv_stats.is_crypto_enmicfail++;
841ab66c
SZ
1323 goto bad;
1324 }
1325 }
1326 }
32176cfd
RP
1327 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1328 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1329 goto bad;
1330
1331 m->m_flags |= M_ENCAP; /* mark encapsulated */
841ab66c
SZ
1332
1333 IEEE80211_NODE_STAT(ni, tx_data);
32176cfd 1334 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
fb134238 1335 IEEE80211_NODE_STAT(ni, tx_mcast);
32176cfd
RP
1336 m->m_flags |= M_MCAST;
1337 } else
fb134238 1338 IEEE80211_NODE_STAT(ni, tx_ucast);
841ab66c
SZ
1339 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1340
f186073c
JS
1341 return m;
1342bad:
1343 if (m != NULL)
1344 m_freem(m);
f186073c 1345 return NULL;
32176cfd
RP
1346#undef WH4
1347}
1348
1349/*
1350 * Fragment the frame according to the specified mtu.
1351 * The size of the 802.11 header (w/o padding) is provided
1352 * so we don't need to recalculate it. We create a new
1353 * mbuf for each fragment and chain it through m_nextpkt;
1354 * we might be able to optimize this by reusing the original
1355 * packet's mbufs but that is significantly more complicated.
1356 */
1357static int
1358ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1359 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1360{
1361 struct ieee80211_frame *wh, *whf;
1362 struct mbuf *m, *prev, *next;
1363 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1364
1365 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1366 KASSERT(m0->m_pkthdr.len > mtu,
1367 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1368
1369 wh = mtod(m0, struct ieee80211_frame *);
1370 /* NB: mark the first frag; it will be propagated below */
1371 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1372 totalhdrsize = hdrsize + ciphdrsize;
1373 fragno = 1;
1374 off = mtu - ciphdrsize;
1375 remainder = m0->m_pkthdr.len - off;
1376 prev = m0;
1377 do {
1378 fragsize = totalhdrsize + remainder;
1379 if (fragsize > mtu)
1380 fragsize = mtu;
1381 /* XXX fragsize can be >2048! */
1382 KASSERT(fragsize < MCLBYTES,
1383 ("fragment size %u too big!", fragsize));
1384 if (fragsize > MHLEN)
1385 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1386 else
1387 m = m_gethdr(MB_DONTWAIT, MT_DATA);
1388 if (m == NULL)
1389 goto bad;
1390 /* leave room to prepend any cipher header */
1391 m_align(m, fragsize - ciphdrsize);
1392
1393 /*
1394 * Form the header in the fragment. Note that since
1395 * we mark the first fragment with the MORE_FRAG bit
1396 * it automatically is propagated to each fragment; we
1397 * need only clear it on the last fragment (done below).
1398 */
1399 whf = mtod(m, struct ieee80211_frame *);
1400 memcpy(whf, wh, hdrsize);
1401 *(uint16_t *)&whf->i_seq[0] |= htole16(
1402 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
1403 IEEE80211_SEQ_FRAG_SHIFT);
1404 fragno++;
1405
1406 payload = fragsize - totalhdrsize;
1407 /* NB: destination is known to be contiguous */
1408 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1409 m->m_len = hdrsize + payload;
1410 m->m_pkthdr.len = hdrsize + payload;
1411 m->m_flags |= M_FRAG;
1412
1413 /* chain up the fragment */
1414 prev->m_nextpkt = m;
1415 prev = m;
1416
1417 /* deduct fragment just formed */
1418 remainder -= payload;
1419 off += payload;
1420 } while (remainder != 0);
1421
1422 /* set the last fragment */
1423 m->m_flags |= M_LASTFRAG;
1424 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1425
1426 /* strip first mbuf now that everything has been copied */
1427 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1428 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1429
1430 vap->iv_stats.is_tx_fragframes++;
1431 vap->iv_stats.is_tx_frags += fragno-1;
1432
1433 return 1;
1434bad:
1435 /* reclaim fragments but leave original frame for caller to free */
1436 for (m = m0->m_nextpkt; m != NULL; m = next) {
1437 next = m->m_nextpkt;
1438 m->m_nextpkt = NULL; /* XXX paranoid */
1439 m_freem(m);
1440 }
1441 m0->m_nextpkt = NULL;
1442 return 0;
f186073c
JS
1443}
1444
1445/*
1446 * Add a supported rates element id to a frame.
1447 */
1448uint8_t *
1449ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1450{
1451 int nrates;
1452
1453 *frm++ = IEEE80211_ELEMID_RATES;
1454 nrates = rs->rs_nrates;
1455 if (nrates > IEEE80211_RATE_SIZE)
1456 nrates = IEEE80211_RATE_SIZE;
1457 *frm++ = nrates;
1458 memcpy(frm, rs->rs_rates, nrates);
1459 return frm + nrates;
1460}
1461
1462/*
1463 * Add an extended supported rates element id to a frame.
1464 */
1465uint8_t *
1466ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1467{
1468 /*
1469 * Add an extended supported rates element if operating in 11g mode.
1470 */
1471 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1472 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1473 *frm++ = IEEE80211_ELEMID_XRATES;
1474 *frm++ = nrates;
1475 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1476 frm += nrates;
1477 }
1478 return frm;
1479}
1480
1481/*
32176cfd 1482 * Add an ssid element to a frame.
f186073c 1483 */
32176cfd 1484static uint8_t *
f186073c
JS
1485ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1486{
1487 *frm++ = IEEE80211_ELEMID_SSID;
1488 *frm++ = len;
1489 memcpy(frm, ssid, len);
1490 return frm + len;
1491}
1492
841ab66c
SZ
1493/*
1494 * Add an erp element to a frame.
1495 */
1496static uint8_t *
1497ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1498{
1499 uint8_t erp;
1500
1501 *frm++ = IEEE80211_ELEMID_ERP;
1502 *frm++ = 1;
1503 erp = 0;
1504 if (ic->ic_nonerpsta != 0)
1505 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1506 if (ic->ic_flags & IEEE80211_F_USEPROT)
1507 erp |= IEEE80211_ERP_USE_PROTECTION;
1508 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1509 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1510 *frm++ = erp;
1511 return frm;
1512}
1513
32176cfd
RP
1514/*
1515 * Add a CFParams element to a frame.
1516 */
841ab66c 1517static uint8_t *
32176cfd 1518ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
841ab66c 1519{
32176cfd
RP
1520#define ADDSHORT(frm, v) do { \
1521 LE_WRITE_2(frm, v); \
1522 frm += 2; \
841ab66c 1523} while (0)
32176cfd
RP
1524 *frm++ = IEEE80211_ELEMID_CFPARMS;
1525 *frm++ = 6;
1526 *frm++ = 0; /* CFP count */
1527 *frm++ = 2; /* CFP period */
1528 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
1529 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
841ab66c
SZ
1530 return frm;
1531#undef ADDSHORT
841ab66c
SZ
1532}
1533
32176cfd
RP
1534static __inline uint8_t *
1535add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
f186073c 1536{
32176cfd
RP
1537 memcpy(frm, ie->ie_data, ie->ie_len);
1538 return frm + ie->ie_len;
841ab66c
SZ
1539}
1540
32176cfd
RP
1541static __inline uint8_t *
1542add_ie(uint8_t *frm, const uint8_t *ie)
841ab66c 1543{
32176cfd
RP
1544 memcpy(frm, ie, 2 + ie[1]);
1545 return frm + 2 + ie[1];
841ab66c
SZ
1546}
1547
1548#define WME_OUI_BYTES 0x00, 0x50, 0xf2
1549/*
1550 * Add a WME information element to a frame.
1551 */
1552static uint8_t *
1553ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1554{
1555 static const struct ieee80211_wme_info info = {
1556 .wme_id = IEEE80211_ELEMID_VENDOR,
1557 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1558 .wme_oui = { WME_OUI_BYTES },
1559 .wme_type = WME_OUI_TYPE,
1560 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1561 .wme_version = WME_VERSION,
1562 .wme_info = 0,
1563 };
1564 memcpy(frm, &info, sizeof(info));
1565 return frm + sizeof(info);
1566}
1567
1568/*
1569 * Add a WME parameters element to a frame.
1570 */
1571static uint8_t *
1572ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1573{
1574#define SM(_v, _f) (((_v) << _f##_S) & _f)
32176cfd
RP
1575#define ADDSHORT(frm, v) do { \
1576 LE_WRITE_2(frm, v); \
1577 frm += 2; \
841ab66c
SZ
1578} while (0)
1579 /* NB: this works 'cuz a param has an info at the front */
1580 static const struct ieee80211_wme_info param = {
1581 .wme_id = IEEE80211_ELEMID_VENDOR,
1582 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1583 .wme_oui = { WME_OUI_BYTES },
1584 .wme_type = WME_OUI_TYPE,
1585 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1586 .wme_version = WME_VERSION,
1587 };
1588 int i;
1589
1590 memcpy(frm, &param, sizeof(param));
1591 frm += __offsetof(struct ieee80211_wme_info, wme_info);
1592 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1593 *frm++ = 0; /* reserved field */
1594 for (i = 0; i < WME_NUM_AC; i++) {
1595 const struct wmeParams *ac =
1596 &wme->wme_bssChanParams.cap_wmeParams[i];
1597 *frm++ = SM(i, WME_PARAM_ACI)
1598 | SM(ac->wmep_acm, WME_PARAM_ACM)
1599 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1600 ;
1601 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1602 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1603 ;
1604 ADDSHORT(frm, ac->wmep_txopLimit);
1605 }
1606 return frm;
1607#undef SM
1608#undef ADDSHORT
1609}
1610#undef WME_OUI_BYTES
1611
1612/*
32176cfd
RP
1613 * Add an 11h Power Constraint element to a frame.
1614 */
1615static uint8_t *
1616ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1617{
1618 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1619 /* XXX per-vap tx power limit? */
1620 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1621
1622 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1623 frm[1] = 1;
1624 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
1625 return frm + 3;
1626}
1627
1628/*
1629 * Add an 11h Power Capability element to a frame.
1630 */
1631static uint8_t *
1632ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1633{
1634 frm[0] = IEEE80211_ELEMID_PWRCAP;
1635 frm[1] = 2;
1636 frm[2] = c->ic_minpower;
1637 frm[3] = c->ic_maxpower;
1638 return frm + 4;
1639}
1640
1641/*
1642 * Add an 11h Supported Channels element to a frame.
1643 */
1644static uint8_t *
1645ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1646{
1647 static const int ielen = 26;
1648
1649 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1650 frm[1] = ielen;
1651 /* XXX not correct */
1652 memcpy(frm+2, ic->ic_chan_avail, ielen);
1653 return frm + 2 + ielen;
1654}
1655
1656/*
1657 * Add an 11h Channel Switch Announcement element to a frame.
1658 * Note that we use the per-vap CSA count to adjust the global
1659 * counter so we can use this routine to form probe response
1660 * frames and get the current count.
1661 */
1662static uint8_t *
1663ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1664{
1665 struct ieee80211com *ic = vap->iv_ic;
1666 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1667
1668 csa->csa_ie = IEEE80211_ELEMID_CSA;
1669 csa->csa_len = 3;
1670 csa->csa_mode = 1; /* XXX force quiet on channel */
1671 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1672 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1673 return frm + sizeof(*csa);
1674}
1675
1676/*
1677 * Add an 11h country information element to a frame.
1678 */
1679static uint8_t *
1680ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1681{
1682
1683 if (ic->ic_countryie == NULL ||
1684 ic->ic_countryie_chan != ic->ic_bsschan) {
1685 /*
1686 * Handle lazy construction of ie. This is done on
1687 * first use and after a channel change that requires
1688 * re-calculation.
1689 */
1690 if (ic->ic_countryie != NULL)
1691 kfree(ic->ic_countryie, M_80211_NODE_IE);
1692 ic->ic_countryie = ieee80211_alloc_countryie(ic);
1693 if (ic->ic_countryie == NULL)
1694 return frm;
1695 ic->ic_countryie_chan = ic->ic_bsschan;
1696 }
1697 return add_appie(frm, ic->ic_countryie);
1698}
1699
1700/*
841ab66c
SZ
1701 * Send a probe request frame with the specified ssid
1702 * and any optional information element data.
1703 */
1704int
1705ieee80211_send_probereq(struct ieee80211_node *ni,
1706 const uint8_t sa[IEEE80211_ADDR_LEN],
1707 const uint8_t da[IEEE80211_ADDR_LEN],
1708 const uint8_t bssid[IEEE80211_ADDR_LEN],
32176cfd 1709 const uint8_t *ssid, size_t ssidlen)
841ab66c 1710{
32176cfd 1711 struct ieee80211vap *vap = ni->ni_vap;
841ab66c 1712 struct ieee80211com *ic = ni->ni_ic;
32176cfd
RP
1713 const struct ieee80211_txparam *tp;
1714 struct ieee80211_bpf_params params;
841ab66c 1715 struct ieee80211_frame *wh;
32176cfd 1716 const struct ieee80211_rateset *rs;
f186073c 1717 struct mbuf *m;
841ab66c 1718 uint8_t *frm;
f186073c 1719
32176cfd
RP
1720 if (vap->iv_state == IEEE80211_S_CAC) {
1721 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1722 "block %s frame in CAC state", "probe request");
1723 vap->iv_stats.is_tx_badstate++;
1724 return EIO; /* XXX */
1725 }
1726
841ab66c
SZ
1727 /*
1728 * Hold a reference on the node so it doesn't go away until after
1729 * the xmit is complete all the way in the driver. On error we
1730 * will remove our reference.
1731 */
32176cfd 1732 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
6168f72e 1733 "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
841ab66c 1734 __func__, __LINE__,
6168f72e 1735 ni, ni->ni_macaddr, ":",
32176cfd 1736 ieee80211_node_refcnt(ni)+1);
841ab66c
SZ
1737 ieee80211_ref_node(ni);
1738
1739 /*
1740 * prreq frame format
1741 * [tlv] ssid
1742 * [tlv] supported rates
32176cfd 1743 * [tlv] RSN (optional)
841ab66c 1744 * [tlv] extended supported rates
32176cfd 1745 * [tlv] WPA (optional)
841ab66c
SZ
1746 * [tlv] user-specified ie's
1747 */
1748 m = ieee80211_getmgtframe(&frm,
4ac84526 1749 ic->ic_headroom + sizeof(struct ieee80211_frame),
32176cfd 1750 2 + IEEE80211_NWID_LEN
841ab66c 1751 + 2 + IEEE80211_RATE_SIZE
32176cfd 1752 + sizeof(struct ieee80211_ie_wpa)
841ab66c 1753 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
32176cfd
RP
1754 + sizeof(struct ieee80211_ie_wpa)
1755 + (vap->iv_appie_probereq != NULL ?
1756 vap->iv_appie_probereq->ie_len : 0)
841ab66c
SZ
1757 );
1758 if (m == NULL) {
32176cfd 1759 vap->iv_stats.is_tx_nobuf++;
841ab66c
SZ
1760 ieee80211_free_node(ni);
1761 return ENOMEM;
1762 }
1763
1764 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
32176cfd
RP
1765 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1766 frm = ieee80211_add_rates(frm, rs);
1767 if (vap->iv_flags & IEEE80211_F_WPA2) {
1768 if (vap->iv_rsn_ie != NULL)
1769 frm = add_ie(frm, vap->iv_rsn_ie);
1770 /* XXX else complain? */
1771 }
1772 frm = ieee80211_add_xrates(frm, rs);
1773 if (vap->iv_flags & IEEE80211_F_WPA1) {
1774 if (vap->iv_wpa_ie != NULL)
1775 frm = add_ie(frm, vap->iv_wpa_ie);
1776 /* XXX else complain? */
841ab66c 1777 }
32176cfd
RP
1778 if (vap->iv_appie_probereq != NULL)
1779 frm = add_appie(frm, vap->iv_appie_probereq);
841ab66c
SZ
1780 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1781
32176cfd
RP
1782 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1783 ("leading space %zd", M_LEADINGSPACE(m)));
841ab66c 1784 M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
32176cfd
RP
1785 if (m == NULL) {
1786 /* NB: cannot happen */
1787 ieee80211_free_node(ni);
841ab66c 1788 return ENOMEM;
32176cfd 1789 }
841ab66c
SZ
1790
1791 wh = mtod(m, struct ieee80211_frame *);
32176cfd
RP
1792 ieee80211_send_setup(ni, m,
1793 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1794 IEEE80211_NONQOS_TID, sa, da, bssid);
841ab66c 1795 /* XXX power management? */
32176cfd
RP
1796 m->m_flags |= M_ENCAP; /* mark encapsulated */
1797
1798 M_WME_SETAC(m, WME_AC_BE);
841ab66c
SZ
1799
1800 IEEE80211_NODE_STAT(ni, tx_probereq);
1801 IEEE80211_NODE_STAT(ni, tx_mgmt);
1802
32176cfd 1803 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
6168f72e
RP
1804 "send probe req on channel %u bssid %6D ssid \"%.*s\"\n",
1805 ieee80211_chan2ieee(ic, ic->ic_curchan), bssid, ":",
32176cfd
RP
1806 ssidlen, ssid);
1807
1808 memset(&params, 0, sizeof(params));
1809 params.ibp_pri = M_WME_GETAC(m);
1810 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1811 params.ibp_rate0 = tp->mgmtrate;
1812 if (IEEE80211_IS_MULTICAST(da)) {
1813 params.ibp_flags |= IEEE80211_BPF_NOACK;
1814 params.ibp_try0 = 1;
1815 } else
1816 params.ibp_try0 = tp->maxretry;
1817 params.ibp_power = ni->ni_txpower;
1818 return ic->ic_raw_xmit(ni, m, &params);
841ab66c
SZ
1819}
1820
1821/*
1822 * Calculate capability information for mgt frames.
1823 */
32176cfd
RP
1824uint16_t
1825ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
841ab66c 1826{
32176cfd 1827 struct ieee80211com *ic = vap->iv_ic;
841ab66c
SZ
1828 uint16_t capinfo;
1829
32176cfd 1830 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
841ab66c 1831
32176cfd 1832 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
841ab66c 1833 capinfo = IEEE80211_CAPINFO_ESS;
32176cfd 1834 else if (vap->iv_opmode == IEEE80211_M_IBSS)
841ab66c 1835 capinfo = IEEE80211_CAPINFO_IBSS;
f186073c 1836 else
841ab66c 1837 capinfo = 0;
32176cfd 1838 if (vap->iv_flags & IEEE80211_F_PRIVACY)
841ab66c 1839 capinfo |= IEEE80211_CAPINFO_PRIVACY;
32176cfd
RP
1840 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1841 IEEE80211_IS_CHAN_2GHZ(chan))
1842 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
841ab66c
SZ
1843 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1844 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
32176cfd
RP
1845 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1846 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
841ab66c 1847 return capinfo;
f186073c
JS
1848}
1849
1850/*
1851 * Send a management frame. The node is for the destination (or ic_bss
1852 * when in station mode). Nodes other than ic_bss have their reference
1853 * count bumped to reflect our use for an indeterminant time.
1854 */
1855int
32176cfd 1856ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
f186073c 1857{
32176cfd
RP
1858#define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1859#define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1860 struct ieee80211vap *vap = ni->ni_vap;
1861 struct ieee80211com *ic = ni->ni_ic;
1862 struct ieee80211_node *bss = vap->iv_bss;
1863 struct ieee80211_bpf_params params;
f186073c
JS
1864 struct mbuf *m;
1865 uint8_t *frm;
f186073c 1866 uint16_t capinfo;
32176cfd 1867 int has_challenge, is_shared_key, ret, status;
f186073c
JS
1868
1869 KASSERT(ni != NULL, ("null node"));
1870
1871 /*
1872 * Hold a reference on the node so it doesn't go away until after
1873 * the xmit is complete all the way in the driver. On error we
1874 * will remove our reference.
1875 */
32176cfd 1876 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
6168f72e 1877 "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
841ab66c 1878 __func__, __LINE__,
6168f72e 1879 ni, ni->ni_macaddr, ":",
32176cfd 1880 ieee80211_node_refcnt(ni)+1);
841ab66c
SZ
1881 ieee80211_ref_node(ni);
1882
32176cfd 1883 memset(&params, 0, sizeof(params));
f186073c 1884 switch (type) {
f186073c
JS
1885
1886 case IEEE80211_FC0_SUBTYPE_AUTH:
841ab66c
SZ
1887 status = arg >> 16;
1888 arg &= 0xffff;
1889 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1890 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1891 ni->ni_challenge != NULL);
1892
1893 /*
1894 * Deduce whether we're doing open authentication or
1895 * shared key authentication. We do the latter if
1896 * we're in the middle of a shared key authentication
1897 * handshake or if we're initiating an authentication
1898 * request and configured to use shared key.
1899 */
1900 is_shared_key = has_challenge ||
1901 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1902 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
32176cfd 1903 bss->ni_authmode == IEEE80211_AUTH_SHARED);
841ab66c
SZ
1904
1905 m = ieee80211_getmgtframe(&frm,
4ac84526 1906 ic->ic_headroom + sizeof(struct ieee80211_frame),
841ab66c
SZ
1907 3 * sizeof(uint16_t)
1908 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1909 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1910 );
f186073c 1911 if (m == NULL)
841ab66c
SZ
1912 senderr(ENOMEM, is_tx_nobuf);
1913
1914 ((uint16_t *)frm)[0] =
1915 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1916 : htole16(IEEE80211_AUTH_ALG_OPEN);
f186073c 1917 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
841ab66c
SZ
1918 ((uint16_t *)frm)[2] = htole16(status);/* status */
1919
1920 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1921 ((uint16_t *)frm)[3] =
1922 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1923 IEEE80211_ELEMID_CHALLENGE);
1924 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1925 IEEE80211_CHALLENGE_LEN);
1926 m->m_pkthdr.len = m->m_len =
1927 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1928 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
32176cfd
RP
1929 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1930 "request encrypt frame (%s)", __func__);
1931 /* mark frame for encryption */
1932 params.ibp_flags |= IEEE80211_BPF_CRYPTO;
841ab66c
SZ
1933 }
1934 } else
1935 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1936
1937 /* XXX not right for shared key */
1938 if (status == IEEE80211_STATUS_SUCCESS)
1939 IEEE80211_NODE_STAT(ni, tx_auth);
1940 else
1941 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1942
32176cfd
RP
1943 if (vap->iv_opmode == IEEE80211_M_STA)
1944 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1945 (void *) vap->iv_state);
f186073c
JS
1946 break;
1947
1948 case IEEE80211_FC0_SUBTYPE_DEAUTH:
32176cfd
RP
1949 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1950 "send station deauthenticate (reason %d)", arg);
4ac84526
SZ
1951 m = ieee80211_getmgtframe(&frm,
1952 ic->ic_headroom + sizeof(struct ieee80211_frame),
1953 sizeof(uint16_t));
f186073c 1954 if (m == NULL)
841ab66c
SZ
1955 senderr(ENOMEM, is_tx_nobuf);
1956 *(uint16_t *)frm = htole16(arg); /* reason */
1957 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1958
1959 IEEE80211_NODE_STAT(ni, tx_deauth);
1960 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1961
1962 ieee80211_node_unauthorize(ni); /* port closed */
f186073c
JS
1963 break;
1964
1965 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
208a1285 1966 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
f186073c
JS
1967 /*
1968 * asreq frame format
1969 * [2] capability information
1970 * [2] listen interval
1971 * [6*] current AP address (reassoc only)
1972 * [tlv] ssid
1973 * [tlv] supported rates
1974 * [tlv] extended supported rates
32176cfd
RP
1975 * [4] power capability (optional)
1976 * [28] supported channels (optional)
1977 * [tlv] HT capabilities
1978 * [tlv] WME (optional)
1979 * [tlv] Vendor OUI HT capabilities (optional)
1980 * [tlv] Atheros capabilities (if negotiated)
1981 * [tlv] AppIE's (optional)
f186073c 1982 */
841ab66c 1983 m = ieee80211_getmgtframe(&frm,
4ac84526 1984 ic->ic_headroom + sizeof(struct ieee80211_frame),
841ab66c 1985 sizeof(uint16_t)
f186073c
JS
1986 + sizeof(uint16_t)
1987 + IEEE80211_ADDR_LEN
841ab66c 1988 + 2 + IEEE80211_NWID_LEN
f186073c 1989 + 2 + IEEE80211_RATE_SIZE
841ab66c 1990 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
32176cfd
RP
1991 + 4
1992 + 2 + 26
841ab66c 1993 + sizeof(struct ieee80211_wme_info)
32176cfd
RP
1994 + sizeof(struct ieee80211_ie_htcap)
1995 + 4 + sizeof(struct ieee80211_ie_htcap)
1996#ifdef IEEE80211_SUPPORT_SUPERG
1997 + sizeof(struct ieee80211_ath_ie)
1998#endif
1999 + (vap->iv_appie_wpa != NULL ?
2000 vap->iv_appie_wpa->ie_len : 0)
2001 + (vap->iv_appie_assocreq != NULL ?
2002 vap->iv_appie_assocreq->ie_len : 0)
841ab66c 2003 );
f186073c 2004 if (m == NULL)
841ab66c 2005 senderr(ENOMEM, is_tx_nobuf);
f186073c 2006
32176cfd
RP
2007 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2008 ("wrong mode %u", vap->iv_opmode));
841ab66c 2009 capinfo = IEEE80211_CAPINFO_ESS;
32176cfd 2010 if (vap->iv_flags & IEEE80211_F_PRIVACY)
f186073c
JS
2011 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2012 /*
2013 * NB: Some 11a AP's reject the request when
32176cfd 2014 * short premable is set.
f186073c 2015 */
32176cfd
RP
2016 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2017 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2018 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2019 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
841ab66c 2020 (ic->ic_caps & IEEE80211_C_SHSLOT))
f186073c 2021 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
32176cfd
RP
2022 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2023 (vap->iv_flags & IEEE80211_F_DOTH))
2024 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
f186073c
JS
2025 *(uint16_t *)frm = htole16(capinfo);
2026 frm += 2;
2027
32176cfd 2028 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
22b21df8 2029 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
32176cfd 2030 bss->ni_intval));
f186073c
JS
2031 frm += 2;
2032
2033 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
32176cfd 2034 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
f186073c
JS
2035 frm += IEEE80211_ADDR_LEN;
2036 }
2037
2038 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
32176cfd
RP
2039 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2040 if (vap->iv_flags & IEEE80211_F_WPA2) {
2041 if (vap->iv_rsn_ie != NULL)
2042 frm = add_ie(frm, vap->iv_rsn_ie);
2043 /* XXX else complain? */
2044 }
2045 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2046 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2047 frm = ieee80211_add_powercapability(frm,
2048 ic->ic_curchan);
2049 frm = ieee80211_add_supportedchannels(frm, ic);
2050 }
2051 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2052 ni->ni_ies.htcap_ie != NULL &&
2053 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2054 frm = ieee80211_add_htcap(frm, ni);
2055 if (vap->iv_flags & IEEE80211_F_WPA1) {
2056 if (vap->iv_wpa_ie != NULL)
2057 frm = add_ie(frm, vap->iv_wpa_ie);
2058 /* XXX else complain */
2059 }
2060 if ((ic->ic_flags & IEEE80211_F_WME) &&
2061 ni->ni_ies.wme_ie != NULL)
841ab66c 2062 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
32176cfd
RP
2063 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2064 ni->ni_ies.htcap_ie != NULL &&
2065 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2066 frm = ieee80211_add_htcap_vendor(frm, ni);
2067#ifdef IEEE80211_SUPPORT_SUPERG
2068 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2069 frm = ieee80211_add_ath(frm,
2070 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2071 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2072 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2073 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
841ab66c 2074 }
32176cfd
RP
2075#endif /* IEEE80211_SUPPORT_SUPERG */
2076 if (vap->iv_appie_assocreq != NULL)
2077 frm = add_appie(frm, vap->iv_appie_assocreq);
f186073c
JS
2078 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2079
32176cfd
RP
2080 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2081 (void *) vap->iv_state);
f186073c
JS
2082 break;
2083
2084 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2085 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2086 /*
32176cfd 2087 * asresp frame format
f186073c
JS
2088 * [2] capability information
2089 * [2] status
2090 * [2] association ID
2091 * [tlv] supported rates
2092 * [tlv] extended supported rates
32176cfd
RP
2093 * [tlv] HT capabilities (standard, if STA enabled)
2094 * [tlv] HT information (standard, if STA enabled)
2095 * [tlv] WME (if configured and STA enabled)
2096 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2097 * [tlv] HT information (vendor OUI, if STA enabled)
2098 * [tlv] Atheros capabilities (if STA enabled)
2099 * [tlv] AppIE's (optional)
f186073c 2100 */
841ab66c 2101 m = ieee80211_getmgtframe(&frm,
4ac84526 2102 ic->ic_headroom + sizeof(struct ieee80211_frame),
841ab66c 2103 sizeof(uint16_t)
f186073c
JS
2104 + sizeof(uint16_t)
2105 + sizeof(uint16_t)
2106 + 2 + IEEE80211_RATE_SIZE
841ab66c 2107 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
32176cfd
RP
2108 + sizeof(struct ieee80211_ie_htcap) + 4
2109 + sizeof(struct ieee80211_ie_htinfo) + 4
841ab66c 2110 + sizeof(struct ieee80211_wme_param)
32176cfd
RP
2111#ifdef IEEE80211_SUPPORT_SUPERG
2112 + sizeof(struct ieee80211_ath_ie)
2113#endif
2114 + (vap->iv_appie_assocresp != NULL ?
2115 vap->iv_appie_assocresp->ie_len : 0)
841ab66c 2116 );
f186073c 2117 if (m == NULL)
841ab66c 2118 senderr(ENOMEM, is_tx_nobuf);
f186073c 2119
32176cfd 2120 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
f186073c
JS
2121 *(uint16_t *)frm = htole16(capinfo);
2122 frm += 2;
2123
2124 *(uint16_t *)frm = htole16(arg); /* status */
2125 frm += 2;
2126
841ab66c 2127 if (arg == IEEE80211_STATUS_SUCCESS) {
f186073c 2128 *(uint16_t *)frm = htole16(ni->ni_associd);
841ab66c
SZ
2129 IEEE80211_NODE_STAT(ni, tx_assoc);
2130 } else
2131 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
f186073c
JS
2132 frm += 2;
2133
32176cfd
RP
2134 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2135 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2136 /* NB: respond according to what we received */
2137 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2138 frm = ieee80211_add_htcap(frm, ni);
2139 frm = ieee80211_add_htinfo(frm, ni);
2140 }
2141 if ((vap->iv_flags & IEEE80211_F_WME) &&
2142 ni->ni_ies.wme_ie != NULL)
841ab66c 2143 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
32176cfd
RP
2144 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2145 frm = ieee80211_add_htcap_vendor(frm, ni);
2146 frm = ieee80211_add_htinfo_vendor(frm, ni);
2147 }
2148#ifdef IEEE80211_SUPPORT_SUPERG
2149 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2150 frm = ieee80211_add_ath(frm,
2151 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2152 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2153 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2154 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2155#endif /* IEEE80211_SUPPORT_SUPERG */
2156 if (vap->iv_appie_assocresp != NULL)
2157 frm = add_appie(frm, vap->iv_appie_assocresp);
f186073c
JS
2158 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2159 break;
2160
2161 case IEEE80211_FC0_SUBTYPE_DISASSOC:
32176cfd
RP
2162 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2163 "send station disassociate (reason %d)", arg);
4ac84526
SZ
2164 m = ieee80211_getmgtframe(&frm,
2165 ic->ic_headroom + sizeof(struct ieee80211_frame),
2166 sizeof(uint16_t));
f186073c 2167 if (m == NULL)
841ab66c
SZ
2168 senderr(ENOMEM, is_tx_nobuf);
2169 *(uint16_t *)frm = htole16(arg); /* reason */
2170 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2171
2172 IEEE80211_NODE_STAT(ni, tx_disassoc);
2173 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
f186073c
JS
2174 break;
2175
2176 default:
32176cfd
RP
2177 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2178 "invalid mgmt frame type %u", type);
f186073c
JS
2179 senderr(EINVAL, is_tx_unknownmgt);
2180 /* NOTREACHED */
2181 }
32176cfd
RP
2182
2183 /* NB: force non-ProbeResp frames to the highest queue */
2184 params.ibp_pri = WME_AC_VO;
2185 params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2186 /* NB: we know all frames are unicast */
2187 params.ibp_try0 = bss->ni_txparms->maxretry;
2188 params.ibp_power = bss->ni_txpower;
2189 return ieee80211_mgmt_output(ni, m, type, &params);
f186073c 2190bad:
32176cfd 2191 ieee80211_free_node(ni);
f186073c
JS
2192 return ret;
2193#undef senderr
32176cfd 2194#undef HTFLAGS
f186073c 2195}
841ab66c
SZ
2196
2197/*
32176cfd
RP
2198 * Return an mbuf with a probe response frame in it.
2199 * Space is left to prepend and 802.11 header at the
2200 * front but it's left to the caller to fill in.
3da93495
SZ
2201 */
2202struct mbuf *
32176cfd 2203ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3da93495 2204{
32176cfd
RP
2205 struct ieee80211vap *vap = bss->ni_vap;
2206 struct ieee80211com *ic = bss->ni_ic;
2207 const struct ieee80211_rateset *rs;
3da93495 2208 struct mbuf *m;
32176cfd
RP
2209 uint16_t capinfo;
2210 uint8_t *frm;
3da93495 2211
32176cfd
RP
2212 /*
2213 * probe response frame format
2214 * [8] time stamp
2215 * [2] beacon interval
2216 * [2] cabability information
2217 * [tlv] ssid
2218 * [tlv] supported rates
2219 * [tlv] parameter set (FH/DS)
2220 * [tlv] parameter set (IBSS)
2221 * [tlv] country (optional)
2222 * [3] power control (optional)
2223 * [5] channel switch announcement (CSA) (optional)
2224 * [tlv] extended rate phy (ERP)
2225 * [tlv] extended supported rates
2226 * [tlv] RSN (optional)
2227 * [tlv] HT capabilities
2228 * [tlv] HT information
2229 * [tlv] WPA (optional)
2230 * [tlv] WME (optional)
2231 * [tlv] Vendor OUI HT capabilities (optional)
2232 * [tlv] Vendor OUI HT information (optional)
2233 * [tlv] Atheros capabilities
2234 * [tlv] AppIE's (optional)
2235 * [tlv] Mesh ID (MBSS)
2236 * [tlv] Mesh Conf (MBSS)
2237 */
2238 m = ieee80211_getmgtframe(&frm,
2239 ic->ic_headroom + sizeof(struct ieee80211_frame),
2240 8
2241 + sizeof(uint16_t)
2242 + sizeof(uint16_t)
2243 + 2 + IEEE80211_NWID_LEN
2244 + 2 + IEEE80211_RATE_SIZE
2245 + 7 /* max(7,3) */
2246 + IEEE80211_COUNTRY_MAX_SIZE
2247 + 3
2248 + sizeof(struct ieee80211_csa_ie)
2249 + 3
2250 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2251 + sizeof(struct ieee80211_ie_wpa)
2252 + sizeof(struct ieee80211_ie_htcap)
2253 + sizeof(struct ieee80211_ie_htinfo)
2254 + sizeof(struct ieee80211_ie_wpa)
2255 + sizeof(struct ieee80211_wme_param)
2256 + 4 + sizeof(struct ieee80211_ie_htcap)
2257 + 4 + sizeof(struct ieee80211_ie_htinfo)
2258#ifdef IEEE80211_SUPPORT_SUPERG
2259 + sizeof(struct ieee80211_ath_ie)
2260#endif
2261#ifdef IEEE80211_SUPPORT_MESH
2262 + 2 + IEEE80211_MESHID_LEN
2263 + sizeof(struct ieee80211_meshconf_ie)
2264#endif
2265 + (vap->iv_appie_proberesp != NULL ?
2266 vap->iv_appie_proberesp->ie_len : 0)
2267 );
2268 if (m == NULL) {
2269 vap->iv_stats.is_tx_nobuf++;
3da93495 2270 return NULL;
32176cfd
RP
2271 }
2272
2273 memset(frm, 0, 8); /* timestamp should be filled later */
2274 frm += 8;
2275 *(uint16_t *)frm = htole16(bss->ni_intval);
2276 frm += 2;
2277 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2278 *(uint16_t *)frm = htole16(capinfo);
2279 frm += 2;
2280
2281 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2282 rs = ieee80211_get_suprates(ic, bss->ni_chan);
2283 frm = ieee80211_add_rates(frm, rs);
2284
2285 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2286 *frm++ = IEEE80211_ELEMID_FHPARMS;
2287 *frm++ = 5;
2288 *frm++ = bss->ni_fhdwell & 0x00ff;
2289 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2290 *frm++ = IEEE80211_FH_CHANSET(
2291 ieee80211_chan2ieee(ic, bss->ni_chan));
2292 *frm++ = IEEE80211_FH_CHANPAT(
2293 ieee80211_chan2ieee(ic, bss->ni_chan));
2294 *frm++ = bss->ni_fhindex;
2295 } else {
2296 *frm++ = IEEE80211_ELEMID_DSPARMS;
2297 *frm++ = 1;
2298 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2299 }
2300
2301 if (vap->iv_opmode == IEEE80211_M_IBSS) {
2302 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2303 *frm++ = 2;
2304 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2305 }
2306 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2307 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2308 frm = ieee80211_add_countryie(frm, ic);
2309 if (vap->iv_flags & IEEE80211_F_DOTH) {
2310 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2311 frm = ieee80211_add_powerconstraint(frm, vap);
2312 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2313 frm = ieee80211_add_csa(frm, vap);
2314 }
2315 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2316 frm = ieee80211_add_erp(frm, ic);
2317 frm = ieee80211_add_xrates(frm, rs);
2318 if (vap->iv_flags & IEEE80211_F_WPA2) {
2319 if (vap->iv_rsn_ie != NULL)
2320 frm = add_ie(frm, vap->iv_rsn_ie);
2321 /* XXX else complain? */
2322 }
2323 /*
2324 * NB: legacy 11b clients do not get certain ie's.
2325 * The caller identifies such clients by passing
2326 * a token in legacy to us. Could expand this to be
2327 * any legacy client for stuff like HT ie's.
2328 */
2329 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2330 legacy != IEEE80211_SEND_LEGACY_11B) {
2331 frm = ieee80211_add_htcap(frm, bss);
2332 frm = ieee80211_add_htinfo(frm, bss);
2333 }
2334 if (vap->iv_flags & IEEE80211_F_WPA1) {
2335 if (vap->iv_wpa_ie != NULL)
2336 frm = add_ie(frm, vap->iv_wpa_ie);
2337 /* XXX else complain? */
2338 }
2339 if (vap->iv_flags & IEEE80211_F_WME)
2340 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2341 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2342 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2343 legacy != IEEE80211_SEND_LEGACY_11B) {
2344 frm = ieee80211_add_htcap_vendor(frm, bss);
2345 frm = ieee80211_add_htinfo_vendor(frm, bss);
2346 }
2347#ifdef IEEE80211_SUPPORT_SUPERG
2348 if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2349 legacy != IEEE80211_SEND_LEGACY_11B)
2350 frm = ieee80211_add_athcaps(frm, bss);
2351#endif
2352 if (vap->iv_appie_proberesp != NULL)
2353 frm = add_appie(frm, vap->iv_appie_proberesp);
2354#ifdef IEEE80211_SUPPORT_MESH
2355 if (vap->iv_opmode == IEEE80211_M_MBSS) {
2356 frm = ieee80211_add_meshid(frm, vap);
2357 frm = ieee80211_add_meshconf(frm, vap);
2358 }
2359#endif
2360 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2361
2362 return m;
2363}
2364
2365/*
2366 * Send a probe response frame to the specified mac address.
2367 * This does not go through the normal mgt frame api so we
2368 * can specify the destination address and re-use the bss node
2369 * for the sta reference.
2370 */
2371int
2372ieee80211_send_proberesp(struct ieee80211vap *vap,
2373 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2374{
2375 struct ieee80211_node *bss = vap->iv_bss;
2376 struct ieee80211com *ic = vap->iv_ic;
2377 struct ieee80211_frame *wh;
2378 struct mbuf *m;
2379
2380 if (vap->iv_state == IEEE80211_S_CAC) {
2381 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2382 "block %s frame in CAC state", "probe response");
2383 vap->iv_stats.is_tx_badstate++;
2384 return EIO; /* XXX */
2385 }
2386
2387 /*
2388 * Hold a reference on the node so it doesn't go away until after
2389 * the xmit is complete all the way in the driver. On error we
2390 * will remove our reference.
2391 */
2392 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
6168f72e
RP
2393 "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
2394 __func__, __LINE__, bss, bss->ni_macaddr, ":",
32176cfd
RP
2395 ieee80211_node_refcnt(bss)+1);
2396 ieee80211_ref_node(bss);
2397
2398 m = ieee80211_alloc_proberesp(bss, legacy);
2399 if (m == NULL) {
2400 ieee80211_free_node(bss);
2401 return ENOMEM;
2402 }
3da93495
SZ
2403
2404 M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
32176cfd 2405 KASSERT(m != NULL, ("no room for header"));
3da93495
SZ
2406
2407 wh = mtod(m, struct ieee80211_frame *);
32176cfd
RP
2408 ieee80211_send_setup(bss, m,
2409 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2410 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2411 /* XXX power management? */
2412 m->m_flags |= M_ENCAP; /* mark encapsulated */
2413
2414 M_WME_SETAC(m, WME_AC_BE);
2415
2416 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
6168f72e
RP
2417 "send probe resp on channel %u to %6D%s\n",
2418 ieee80211_chan2ieee(ic, ic->ic_curchan), da, ":",
32176cfd
RP
2419 legacy ? " <legacy>" : "");
2420 IEEE80211_NODE_STAT(bss, tx_mgmt);
2421
2422 return ic->ic_raw_xmit(bss, m, NULL);
2423}
3da93495 2424
32176cfd
RP
2425/*
2426 * Allocate and build a RTS (Request To Send) control frame.
2427 */
2428struct mbuf *
2429ieee80211_alloc_rts(struct ieee80211com *ic,
2430 const uint8_t ra[IEEE80211_ADDR_LEN],
2431 const uint8_t ta[IEEE80211_ADDR_LEN],
2432 uint16_t dur)
2433{
2434 struct ieee80211_frame_rts *rts;
2435 struct mbuf *m;
2436
2437 /* XXX honor ic_headroom */
2438 m = m_gethdr(MB_DONTWAIT, MT_DATA);
2439 if (m != NULL) {
2440 rts = mtod(m, struct ieee80211_frame_rts *);
2441 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2442 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2443 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2444 *(u_int16_t *)rts->i_dur = htole16(dur);
2445 IEEE80211_ADDR_COPY(rts->i_ra, ra);
2446 IEEE80211_ADDR_COPY(rts->i_ta, ta);
2447
2448 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2449 }
3da93495
SZ
2450 return m;
2451}
2452
2453/*
32176cfd 2454 * Allocate and build a CTS (Clear To Send) control frame.
841ab66c
SZ
2455 */
2456struct mbuf *
32176cfd
RP
2457ieee80211_alloc_cts(struct ieee80211com *ic,
2458 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
841ab66c 2459{
32176cfd 2460 struct ieee80211_frame_cts *cts;
841ab66c 2461 struct mbuf *m;
32176cfd
RP
2462
2463 /* XXX honor ic_headroom */
2464 m = m_gethdr(MB_DONTWAIT, MT_DATA);
2465 if (m != NULL) {
2466 cts = mtod(m, struct ieee80211_frame_cts *);
2467 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2468 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2469 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2470 *(u_int16_t *)cts->i_dur = htole16(dur);
2471 IEEE80211_ADDR_COPY(cts->i_ra, ra);
2472
2473 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2474 }
2475 return m;
2476}
2477
2478static void
2479ieee80211_tx_mgt_timeout(void *arg)
2480{
2481 struct ieee80211_node *ni = arg;
2482 struct ieee80211vap *vap = ni->ni_vap;
2483
2484 if (vap->iv_state != IEEE80211_S_INIT &&
2485 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2486 /*
2487 * NB: it's safe to specify a timeout as the reason here;
2488 * it'll only be used in the right state.
2489 */
2490 ieee80211_new_state(vap, IEEE80211_S_SCAN,
2491 IEEE80211_SCAN_FAIL_TIMEOUT);
2492 }
2493}
2494
2495static void
2496ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2497{
2498 struct ieee80211vap *vap = ni->ni_vap;
2499 enum ieee80211_state ostate = (enum ieee80211_state) arg;
2500
2501 /*
2502 * Frame transmit completed; arrange timer callback. If
2503 * transmit was successfuly we wait for response. Otherwise
2504 * we arrange an immediate callback instead of doing the
2505 * callback directly since we don't know what state the driver
2506 * is in (e.g. what locks it is holding). This work should
2507 * not be too time-critical and not happen too often so the
2508 * added overhead is acceptable.
2509 *
2510 * XXX what happens if !acked but response shows up before callback?
2511 */
2512 if (vap->iv_state == ostate)
2513 callout_reset(&vap->iv_mgtsend,
2514 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2515 ieee80211_tx_mgt_timeout, ni);
2516}
2517
2518static void
2519ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2520 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2521{
2522 struct ieee80211vap *vap = ni->ni_vap;
2523 struct ieee80211com *ic = ni->ni_ic;
2524 struct ieee80211_rateset *rs = &ni->ni_rates;
841ab66c 2525 uint16_t capinfo;
841ab66c
SZ
2526
2527 /*
2528 * beacon frame format
2529 * [8] time stamp
2530 * [2] beacon interval
2531 * [2] cabability information
2532 * [tlv] ssid
2533 * [tlv] supported rates
2534 * [3] parameter set (DS)
32176cfd 2535 * [8] CF parameter set (optional)
841ab66c 2536 * [tlv] parameter set (IBSS/TIM)
32176cfd
RP
2537 * [tlv] country (optional)
2538 * [3] power control (optional)
2539 * [5] channel switch announcement (CSA) (optional)
841ab66c
SZ
2540 * [tlv] extended rate phy (ERP)
2541 * [tlv] extended supported rates
32176cfd
RP
2542 * [tlv] RSN parameters
2543 * [tlv] HT capabilities
2544 * [tlv] HT information
841ab66c 2545 * XXX Vendor-specific OIDs (e.g. Atheros)
32176cfd
RP
2546 * [tlv] WPA parameters
2547 * [tlv] WME parameters
2548 * [tlv] Vendor OUI HT capabilities (optional)
2549 * [tlv] Vendor OUI HT information (optional)
2550 * [tlv] Atheros capabilities (optional)
2551 * [tlv] TDMA parameters (optional)
2552 * [tlv] Mesh ID (MBSS)
2553 * [tlv] Mesh Conf (MBSS)
2554 * [tlv] application data (optional)
841ab66c 2555 */
32176cfd
RP
2556
2557 memset(bo, 0, sizeof(*bo));
841ab66c
SZ
2558
2559 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
2560 frm += 8;
2561 *(uint16_t *)frm = htole16(ni->ni_intval);
2562 frm += 2;
32176cfd 2563 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
841ab66c
SZ
2564 bo->bo_caps = (uint16_t *)frm;
2565 *(uint16_t *)frm = htole16(capinfo);
2566 frm += 2;
2567 *frm++ = IEEE80211_ELEMID_SSID;
32176cfd 2568 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
841ab66c
SZ
2569 *frm++ = ni->ni_esslen;
2570 memcpy(frm, ni->ni_essid, ni->ni_esslen);
2571 frm += ni->ni_esslen;
2572 } else
2573 *frm++ = 0;
2574 frm = ieee80211_add_rates(frm, rs);
32176cfd 2575 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
841ab66c
SZ
2576 *frm++ = IEEE80211_ELEMID_DSPARMS;
2577 *frm++ = 1;
2578 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2579 }
32176cfd
RP
2580 if (ic->ic_flags & IEEE80211_F_PCF) {
2581 bo->bo_cfp = frm;
2582 frm = ieee80211_add_cfparms(frm, ic);
2583 }
841ab66c 2584 bo->bo_tim = frm;
32176cfd 2585 if (vap->iv_opmode == IEEE80211_M_IBSS) {
841ab66c
SZ
2586 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
2587 *frm++ = 2;
2588 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
2589 bo->bo_tim_len = 0;
32176cfd
RP
2590 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2591 vap->iv_opmode == IEEE80211_M_MBSS) {
2592 /* TIM IE is the same for Mesh and Hostap */
841ab66c
SZ
2593 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2594
2595 tie->tim_ie = IEEE80211_ELEMID_TIM;
2596 tie->tim_len = 4; /* length */
2597 tie->tim_count = 0; /* DTIM count */
32176cfd 2598 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
841ab66c
SZ
2599 tie->tim_bitctl = 0; /* bitmap control */
2600 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
2601 frm += sizeof(struct ieee80211_tim_ie);
2602 bo->bo_tim_len = 1;
2603 }
32176cfd
RP
2604 bo->bo_tim_trailer = frm;
2605 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2606 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2607 frm = ieee80211_add_countryie(frm, ic);
2608 if (vap->iv_flags & IEEE80211_F_DOTH) {
2609 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2610 frm = ieee80211_add_powerconstraint(frm, vap);
2611 bo->bo_csa = frm;
2612 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2613 frm = ieee80211_add_csa(frm, vap);
2614 } else
2615 bo->bo_csa = frm;
2616 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2617 bo->bo_erp = frm;
2618 frm = ieee80211_add_erp(frm, ic);
2619 }
2620 frm = ieee80211_add_xrates(frm, rs);
2621 if (vap->iv_flags & IEEE80211_F_WPA2) {
2622 if (vap->iv_rsn_ie != NULL)
2623 frm = add_ie(frm, vap->iv_rsn_ie);
2624 /* XXX else complain */
2625 }
2626 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2627 frm = ieee80211_add_htcap(frm, ni);
2628 bo->bo_htinfo = frm;
2629 frm = ieee80211_add_htinfo(frm, ni);
2630 }
2631 if (vap->iv_flags & IEEE80211_F_WPA1) {
2632 if (vap->iv_wpa_ie != NULL)
2633 frm = add_ie(frm, vap->iv_wpa_ie);
2634 /* XXX else complain */
2635 }
2636 if (vap->iv_flags & IEEE80211_F_WME) {
841ab66c
SZ
2637 bo->bo_wme = frm;
2638 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
841ab66c 2639 }
32176cfd
RP
2640 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2641 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2642 frm = ieee80211_add_htcap_vendor(frm, ni);
2643 frm = ieee80211_add_htinfo_vendor(frm, ni);
2644 }
2645#ifdef IEEE80211_SUPPORT_SUPERG
2646 if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2647 bo->bo_ath = frm;
2648 frm = ieee80211_add_athcaps(frm, ni);
2649 }
2650#endif
2651#ifdef IEEE80211_SUPPORT_TDMA
2652 if (vap->iv_caps & IEEE80211_C_TDMA) {
2653 bo->bo_tdma = frm;
2654 frm = ieee80211_add_tdma(frm, vap);
2655 }
2656#endif
2657 if (vap->iv_appie_beacon != NULL) {
2658 bo->bo_appie = frm;
2659 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2660 frm = add_appie(frm, vap->iv_appie_beacon);
2661 }
2662#ifdef IEEE80211_SUPPORT_MESH
2663 if (vap->iv_opmode == IEEE80211_M_MBSS) {
2664 frm = ieee80211_add_meshid(frm, vap);
2665 bo->bo_meshconf = frm;
2666 frm = ieee80211_add_meshconf(frm, vap);
2667 }
2668#endif
2669 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2670 bo->bo_csa_trailer_len = frm - bo->bo_csa;
2671 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2672}
2673
2674/*
2675 * Allocate a beacon frame and fillin the appropriate bits.
2676 */
2677struct mbuf *
2678ieee80211_beacon_alloc(struct ieee80211_node *ni,
2679 struct ieee80211_beacon_offsets *bo)
2680{
2681 struct ieee80211vap *vap = ni->ni_vap;
2682 struct ieee80211com *ic = ni->ni_ic;
2683 struct ifnet *ifp = vap->iv_ifp;
2684 struct ieee80211_frame *wh;
2685 struct mbuf *m;
2686 int pktlen;
2687 uint8_t *frm;
2688
2689 /*
2690 * beacon frame format
2691 * [8] time stamp
2692 * [2] beacon interval
2693 * [2] cabability information
2694 * [tlv] ssid
2695 * [tlv] supported rates
2696 * [3] parameter set (DS)
2697 * [8] CF parameter set (optional)
2698 * [tlv] parameter set (IBSS/TIM)
2699 * [tlv] country (optional)
2700 * [3] power control (optional)
2701 * [5] channel switch announcement (CSA) (optional)
2702 * [tlv] extended rate phy (ERP)
2703 * [tlv] extended supported rates
2704 * [tlv] RSN parameters
2705 * [tlv] HT capabilities
2706 * [tlv] HT information
2707 * [tlv] Vendor OUI HT capabilities (optional)
2708 * [tlv] Vendor OUI HT information (optional)
2709 * XXX Vendor-specific OIDs (e.g. Atheros)
2710 * [tlv] WPA parameters
2711 * [tlv] WME parameters
2712 * [tlv] TDMA parameters (optional)
2713 * [tlv] Mesh ID (MBSS)
2714 * [tlv] Mesh Conf (MBSS)
2715 * [tlv] application data (optional)
2716 * NB: we allocate the max space required for the TIM bitmap.
2717 * XXX how big is this?
2718 */
2719 pktlen = 8 /* time stamp */
2720 + sizeof(uint16_t) /* beacon interval */
2721 + sizeof(uint16_t) /* capabilities */
2722 + 2 + ni->ni_esslen /* ssid */
2723 + 2 + IEEE80211_RATE_SIZE /* supported rates */
2724 + 2 + 1 /* DS parameters */
2725 + 2 + 6 /* CF parameters */
2726 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
2727 + IEEE80211_COUNTRY_MAX_SIZE /* country */
2728 + 2 + 1 /* power control */
2729 + sizeof(struct ieee80211_csa_ie) /* CSA */
2730 + 2 + 1 /* ERP */
2731 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2732 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
2733 2*sizeof(struct ieee80211_ie_wpa) : 0)
2734 /* XXX conditional? */
2735 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2736 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2737 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
2738 sizeof(struct ieee80211_wme_param) : 0)
2739#ifdef IEEE80211_SUPPORT_SUPERG
2740 + sizeof(struct ieee80211_ath_ie) /* ATH */
2741#endif
2742#ifdef IEEE80211_SUPPORT_TDMA
2743 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
2744 sizeof(struct ieee80211_tdma_param) : 0)
2745#endif
2746#ifdef IEEE80211_SUPPORT_MESH
2747 + 2 + ni->ni_meshidlen
2748 + sizeof(struct ieee80211_meshconf_ie)
2749#endif
2750 + IEEE80211_MAX_APPIE
2751 ;
2752 m = ieee80211_getmgtframe(&frm,
2753 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2754 if (m == NULL) {
2755 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2756 "%s: cannot get buf; size %u\n", __func__, pktlen);
2757 vap->iv_stats.is_tx_nobuf++;
2758 return NULL;
841ab66c 2759 }
32176cfd 2760 ieee80211_beacon_construct(m, frm, bo, ni);
841ab66c
SZ
2761
2762 M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
2763 KASSERT(m != NULL, ("no space for 802.11 header?"));
2764 wh = mtod(m, struct ieee80211_frame *);
2765 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2766 IEEE80211_FC0_SUBTYPE_BEACON;
2767 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2768 *(uint16_t *)wh->i_dur = 0;
2769 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
32176cfd 2770 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
841ab66c
SZ
2771 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2772 *(uint16_t *)wh->i_seq = 0;
2773
2774 return m;
2775}
2776
2777/*
2778 * Update the dynamic parts of a beacon frame based on the current state.
2779 */
2780int
32176cfd 2781ieee80211_beacon_update(struct ieee80211_node *ni,
841ab66c
SZ
2782 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2783{
32176cfd
RP
2784 struct ieee80211vap *vap = ni->ni_vap;
2785 struct ieee80211com *ic = ni->ni_ic;
841ab66c
SZ
2786 int len_changed = 0;
2787 uint16_t capinfo;
2788
32176cfd
RP
2789 /*
2790 * Handle 11h channel change when we've reached the count.
2791 * We must recalculate the beacon frame contents to account
2792 * for the new channel. Note we do this only for the first
2793 * vap that reaches this point; subsequent vaps just update
2794 * their beacon state to reflect the recalculated channel.
2795 */
2796 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2797 vap->iv_csa_count == ic->ic_csa_count) {
2798 vap->iv_csa_count = 0;
2799 /*
2800 * Effect channel change before reconstructing the beacon
2801 * frame contents as many places reference ni_chan.
2802 */
2803 if (ic->ic_csa_newchan != NULL)
2804 ieee80211_csa_completeswitch(ic);
2805 /*
2806 * NB: ieee80211_beacon_construct clears all pending
2807 * updates in bo_flags so we don't need to explicitly
2808 * clear IEEE80211_BEACON_CSA.
2809 */
2810 ieee80211_beacon_construct(m,
2811 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2812
2813 /* XXX do WME aggressive mode processing? */
32176cfd
RP
2814 return 1; /* just assume length changed */
2815 }
841ab66c
SZ
2816
2817 /* XXX faster to recalculate entirely or just changes? */
32176cfd 2818 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
841ab66c
SZ
2819 *bo->bo_caps = htole16(capinfo);
2820
32176cfd 2821 if (vap->iv_flags & IEEE80211_F_WME) {
841ab66c
SZ
2822 struct ieee80211_wme_state *wme = &ic->ic_wme;
2823
2824 /*
2825 * Check for agressive mode change. When there is
2826 * significant high priority traffic in the BSS
2827 * throttle back BE traffic by using conservative
2828 * parameters. Otherwise BE uses agressive params
2829 * to optimize performance of legacy/non-QoS traffic.
2830 */
2831 if (wme->wme_flags & WME_F_AGGRMODE) {
2832 if (wme->wme_hipri_traffic >
2833 wme->wme_hipri_switch_thresh) {
32176cfd 2834 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
841ab66c
SZ
2835 "%s: traffic %u, disable aggressive mode\n",
2836 __func__, wme->wme_hipri_traffic);
2837 wme->wme_flags &= ~WME_F_AGGRMODE;
32176cfd 2838 ieee80211_wme_updateparams_locked(vap);
841ab66c
SZ
2839 wme->wme_hipri_traffic =
2840 wme->wme_hipri_switch_hysteresis;
2841 } else
2842 wme->wme_hipri_traffic = 0;
2843 } else {
2844 if (wme->wme_hipri_traffic <=
2845 wme->wme_hipri_switch_thresh) {
32176cfd 2846 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
841ab66c
SZ
2847 "%s: traffic %u, enable aggressive mode\n",
2848 __func__, wme->wme_hipri_traffic);
2849 wme->wme_flags |= WME_F_AGGRMODE;
32176cfd 2850 ieee80211_wme_updateparams_locked(vap);
841ab66c
SZ
2851 wme->wme_hipri_traffic = 0;
2852 } else
2853 wme->wme_hipri_traffic =
2854 wme->wme_hipri_switch_hysteresis;
2855 }
32176cfd 2856 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
841ab66c 2857 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
32176cfd 2858 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
841ab66c
SZ
2859 }
2860 }
2861
32176cfd
RP
2862 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
2863 ieee80211_ht_update_beacon(vap, bo);
2864 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2865 }
2866#ifdef IEEE80211_SUPPORT_TDMA
2867 if (vap->iv_caps & IEEE80211_C_TDMA) {
2868 /*
2869 * NB: the beacon is potentially updated every TBTT.
2870 */
2871 ieee80211_tdma_update_beacon(vap, bo);
2872 }
2873#endif
2874#ifdef IEEE80211_SUPPORT_MESH
2875 if (vap->iv_opmode == IEEE80211_M_MBSS)
2876 ieee80211_mesh_update_beacon(vap, bo);
2877#endif
2878
2879 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2880 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
841ab66c
SZ
2881 struct ieee80211_tim_ie *tie =
2882 (struct ieee80211_tim_ie *) bo->bo_tim;
32176cfd 2883 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
841ab66c
SZ
2884 u_int timlen, timoff, i;
2885 /*
2886 * ATIM/DTIM needs updating. If it fits in the
2887 * current space allocated then just copy in the
2888 * new bits. Otherwise we need to move any trailing
2889 * data to make room. Note that we know there is
2890 * contiguous space because ieee80211_beacon_allocate
2891 * insures there is space in the mbuf to write a
32176cfd 2892 * maximal-size virtual bitmap (based on iv_max_aid).
841ab66c
SZ
2893 */
2894 /*
2895 * Calculate the bitmap size and offset, copy any
2896 * trailer out of the way, and then copy in the
2897 * new bitmap and update the information element.
2898 * Note that the tim bitmap must contain at least
2899 * one byte and any offset must be even.
2900 */
32176cfd 2901 if (vap->iv_ps_pending != 0) {
841ab66c 2902 timoff = 128; /* impossibly large */
32176cfd
RP
2903 for (i = 0; i < vap->iv_tim_len; i++)
2904 if (vap->iv_tim_bitmap[i]) {
841ab66c
SZ
2905 timoff = i &~ 1;
2906 break;
2907 }
2908 KASSERT(timoff != 128, ("tim bitmap empty!"));
32176cfd
RP
2909 for (i = vap->iv_tim_len-1; i >= timoff; i--)
2910 if (vap->iv_tim_bitmap[i])
841ab66c
SZ
2911 break;
2912 timlen = 1 + (i - timoff);
2913 } else {
2914 timoff = 0;
2915 timlen = 1;
2916 }
2917 if (timlen != bo->bo_tim_len) {
2918 /* copy up/down trailer */
2919 int adjust = tie->tim_bitmap+timlen
32176cfd
RP
2920 - bo->bo_tim_trailer;
2921 ovbcopy(bo->bo_tim_trailer,
2922 bo->bo_tim_trailer+adjust,
2923 bo->bo_tim_trailer_len);
2924 bo->bo_tim_trailer += adjust;
841ab66c 2925 bo->bo_erp += adjust;
32176cfd
RP
2926 bo->bo_htinfo += adjust;
2927#ifdef IEEE80211_SUPERG_SUPPORT
2928 bo->bo_ath += adjust;
2929#endif
2930#ifdef IEEE80211_TDMA_SUPPORT
2931 bo->bo_tdma += adjust;
2932#endif
2933#ifdef IEEE80211_MESH_SUPPORT
2934 bo->bo_meshconf += adjust;
2935#endif
2936 bo->bo_appie += adjust;
2937 bo->bo_wme += adjust;
2938 bo->bo_csa += adjust;
841ab66c
SZ
2939 bo->bo_tim_len = timlen;
2940
2941 /* update information element */
2942 tie->tim_len = 3 + timlen;
2943 tie->tim_bitctl = timoff;
2944 len_changed = 1;
2945 }
32176cfd 2946 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
841ab66c
SZ
2947 bo->bo_tim_len);
2948
32176cfd 2949 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
841ab66c 2950
32176cfd 2951 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
841ab66c 2952 "%s: TIM updated, pending %u, off %u, len %u\n",
32176cfd 2953 __func__, vap->iv_ps_pending, timoff, timlen);
841ab66c
SZ
2954 }
2955 /* count down DTIM period */
2956 if (tie->tim_count == 0)
2957 tie->tim_count = tie->tim_period - 1;
2958 else
2959 tie->tim_count--;
2960 /* update state for buffered multicast frames on DTIM */
2961 if (mcast && tie->tim_count == 0)
2962 tie->tim_bitctl |= 1;
2963 else
2964 tie->tim_bitctl &= ~1;
32176cfd
RP
2965 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2966 struct ieee80211_csa_ie *csa =
2967 (struct ieee80211_csa_ie *) bo->bo_csa;
2968
2969 /*
2970 * Insert or update CSA ie. If we're just starting
2971 * to count down to the channel switch then we need
2972 * to insert the CSA ie. Otherwise we just need to
2973 * drop the count. The actual change happens above
2974 * when the vap's count reaches the target count.
2975 */
2976 if (vap->iv_csa_count == 0) {
2977 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2978 bo->bo_erp += sizeof(*csa);
2979 bo->bo_htinfo += sizeof(*csa);
2980 bo->bo_wme += sizeof(*csa);
2981#ifdef IEEE80211_SUPERG_SUPPORT
2982 bo->bo_ath += sizeof(*csa);
2983#endif
2984#ifdef IEEE80211_TDMA_SUPPORT
2985 bo->bo_tdma += sizeof(*csa);
2986#endif
2987#ifdef IEEE80211_MESH_SUPPORT
2988 bo->bo_meshconf += sizeof(*csa);
2989#endif
2990 bo->bo_appie += sizeof(*csa);
2991 bo->bo_csa_trailer_len += sizeof(*csa);
2992 bo->bo_tim_trailer_len += sizeof(*csa);
2993 m->m_len += sizeof(*csa);
2994 m->m_pkthdr.len += sizeof(*csa);
2995
2996 ieee80211_add_csa(bo->bo_csa, vap);
2997 } else
2998 csa->csa_count--;
2999 vap->iv_csa_count++;
3000 /* NB: don't clear IEEE80211_BEACON_CSA */
3001 }
3002 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
841ab66c
SZ
3003 /*
3004 * ERP element needs updating.
3005 */
3006 (void) ieee80211_add_erp(bo->bo_erp, ic);
32176cfd 3007 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
841ab66c 3008 }
32176cfd
RP
3009#ifdef IEEE80211_SUPPORT_SUPERG
3010 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
3011 ieee80211_add_athcaps(bo->bo_ath, ni);
3012 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
6dd1c373 3013 }
841ab66c 3014#endif
841ab66c 3015 }
32176cfd
RP
3016 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3017 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3018 int aielen;
3019 uint8_t *frm;
3020
3021 aielen = 0;
3022 if (aie != NULL)
3023 aielen += aie->ie_len;
3024 if (aielen != bo->bo_appie_len) {
3025 /* copy up/down trailer */
3026 int adjust = aielen - bo->bo_appie_len;
3027 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3028 bo->bo_tim_trailer_len);
3029 bo->bo_tim_trailer += adjust;
3030 bo->bo_appie += adjust;
3031 bo->bo_appie_len = aielen;
3032
3033 len_changed = 1;
2d7dda79 3034 }
32176cfd
RP
3035 frm = bo->bo_appie;
3036 if (aie != NULL)
3037 frm = add_appie(frm, aie);
3038 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2d7dda79
SZ
3039 }
3040
32176cfd 3041 return len_changed;
322b19a8 3042}