kernel - MPSAFE the protocol drain routines
[dragonfly.git] / sys / netinet / tcp_subr.c
CommitLineData
984263bc 1/*
66d6c637
JH
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
f23061d4 4 *
66d6c637
JH
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
f23061d4 7 *
66d6c637
JH
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
f23061d4 19 *
66d6c637
JH
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
66d6c637 34/*
984263bc
MD
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
67 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
14572273 68 * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
984263bc
MD
69 */
70
71#include "opt_compat.h"
b1992928 72#include "opt_inet.h"
984263bc
MD
73#include "opt_inet6.h"
74#include "opt_ipsec.h"
75#include "opt_tcpdebug.h"
76
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/callout.h>
80#include <sys/kernel.h>
81#include <sys/sysctl.h>
82#include <sys/malloc.h>
dd2b0fb4 83#include <sys/mpipe.h>
984263bc
MD
84#include <sys/mbuf.h>
85#ifdef INET6
86#include <sys/domain.h>
87#endif
88#include <sys/proc.h>
895c1f85 89#include <sys/priv.h>
984263bc
MD
90#include <sys/socket.h>
91#include <sys/socketvar.h>
92#include <sys/protosw.h>
93#include <sys/random.h>
3f9db7f8 94#include <sys/in_cksum.h>
c7afbe76 95#include <sys/ktr.h>
984263bc 96
984263bc
MD
97#include <net/route.h>
98#include <net/if.h>
0ddb6032 99#include <net/netisr.h>
984263bc 100
707ad4ed 101#define _IP_VHL
984263bc
MD
102#include <netinet/in.h>
103#include <netinet/in_systm.h>
104#include <netinet/ip.h>
984263bc 105#include <netinet/ip6.h>
984263bc 106#include <netinet/in_pcb.h>
984263bc 107#include <netinet6/in6_pcb.h>
984263bc
MD
108#include <netinet/in_var.h>
109#include <netinet/ip_var.h>
984263bc 110#include <netinet6/ip6_var.h>
7d448528
JH
111#include <netinet/ip_icmp.h>
112#ifdef INET6
113#include <netinet/icmp6.h>
114#endif
984263bc
MD
115#include <netinet/tcp.h>
116#include <netinet/tcp_fsm.h>
117#include <netinet/tcp_seq.h>
118#include <netinet/tcp_timer.h>
a48c5dd5 119#include <netinet/tcp_timer2.h>
984263bc 120#include <netinet/tcp_var.h>
984263bc 121#include <netinet6/tcp6_var.h>
984263bc
MD
122#include <netinet/tcpip.h>
123#ifdef TCPDEBUG
124#include <netinet/tcp_debug.h>
125#endif
126#include <netinet6/ip6protosw.h>
127
128#ifdef IPSEC
129#include <netinet6/ipsec.h>
b1992928 130#include <netproto/key/key.h>
984263bc
MD
131#ifdef INET6
132#include <netinet6/ipsec6.h>
133#endif
707ad4ed 134#endif
984263bc
MD
135
136#ifdef FAST_IPSEC
bf844ffa 137#include <netproto/ipsec/ipsec.h>
984263bc 138#ifdef INET6
bf844ffa 139#include <netproto/ipsec/ipsec6.h>
984263bc
MD
140#endif
141#define IPSEC
707ad4ed 142#endif
984263bc 143
984263bc 144#include <sys/md5.h>
d2e9e54c
MD
145#include <machine/smp.h>
146
684a93c4
MD
147#include <sys/msgport2.h>
148#include <sys/mplock2.h>
4599cf19
MD
149#include <net/netmsg2.h>
150
c7afbe76
MD
151#if !defined(KTR_TCP)
152#define KTR_TCP KTR_ALL
153#endif
154KTR_INFO_MASTER(tcp);
155KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
156KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
157KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
158#define logtcp(name) KTR_LOG(tcp_ ## name)
159
2b1ce38a
MD
160struct inpcbinfo tcbinfo[MAXCPU];
161struct tcpcbackqhead tcpcbackq[MAXCPU];
162
92db3805
SZ
163int tcp_mpsafe_proto = 0;
164TUNABLE_INT("net.inet.tcp.mpsafe_proto", &tcp_mpsafe_proto);
165
730902da 166static int tcp_mpsafe_thread = NETMSG_SERVICE_ADAPTIVE;
92db3805
SZ
167TUNABLE_INT("net.inet.tcp.mpsafe_thread", &tcp_mpsafe_thread);
168SYSCTL_INT(_net_inet_tcp, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
169 &tcp_mpsafe_thread, 0,
170 "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
171
707ad4ed 172int tcp_mssdflt = TCP_MSS;
f23061d4 173SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
707ad4ed 174 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
984263bc
MD
175
176#ifdef INET6
707ad4ed
JH
177int tcp_v6mssdflt = TCP6_MSS;
178SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
179 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
984263bc
MD
180#endif
181
5b0b9fa5
PA
182/*
183 * Minimum MSS we accept and use. This prevents DoS attacks where
184 * we are forced to a ridiculous low MSS like 20 and send hundreds
185 * of packets instead of one. The effect scales with the available
186 * bandwidth and quickly saturates the CPU and network interface
187 * with packet generation and sending. Set to zero to disable MINMSS
188 * checking. This setting prevents us from sending too small packets.
189 */
190int tcp_minmss = TCP_MINMSS;
191SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
192 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
5b0b9fa5 193
984263bc 194#if 0
707ad4ed 195static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
f23061d4 196SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
707ad4ed 197 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
984263bc
MD
198#endif
199
707ad4ed 200int tcp_do_rfc1323 = 1;
f23061d4 201SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
707ad4ed 202 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
984263bc 203
707ad4ed 204static int tcp_tcbhashsize = 0;
984263bc 205SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
707ad4ed 206 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
984263bc 207
707ad4ed 208static int do_tcpdrain = 1;
984263bc
MD
209SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
210 "Enable tcp_drain routine for extra help when low on mbufs");
211
707ad4ed 212static int icmp_may_rst = 1;
f23061d4 213SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
984263bc
MD
214 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
215
707ad4ed 216static int tcp_isn_reseed_interval = 0;
984263bc
MD
217SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
218 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
219
220/*
d66b98eb
MD
221 * TCP bandwidth limiting sysctls. The inflight limiter is now turned on
222 * by default, but with generous values which should allow maximal
223 * bandwidth. In particular, the slop defaults to 50 (5 packets).
224 *
225 * The reason for doing this is that the limiter is the only mechanism we
226 * have which seems to do a really good job preventing receiver RX rings
227 * on network interfaces from getting blown out. Even though GigE/10GigE
228 * is supposed to flow control it looks like either it doesn't actually
229 * do it or Open Source drivers do not properly enable it.
230 *
231 * People using the limiter to reduce bottlenecks on slower WAN connections
232 * should set the slop to 20 (2 packets).
984263bc 233 */
d66b98eb 234static int tcp_inflight_enable = 1;
984263bc
MD
235SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
236 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
237
707ad4ed 238static int tcp_inflight_debug = 0;
984263bc
MD
239SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
240 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
241
707ad4ed 242static int tcp_inflight_min = 6144;
984263bc 243SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
707ad4ed 244 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
984263bc 245
707ad4ed 246static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
984263bc 247SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
707ad4ed 248 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
984263bc 249
d66b98eb 250static int tcp_inflight_stab = 50;
984263bc 251SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
d66b98eb 252 &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
984263bc 253
dd2b0fb4
MD
254static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
255static struct malloc_pipe tcptemp_mpipe;
256
92db3805 257static void tcp_willblock(int);
707ad4ed 258static void tcp_notify (struct inpcb *, int);
984263bc 259
5f7ab76b 260struct tcp_stats tcpstats_percpu[MAXCPU];
2b57d013
MD
261#ifdef SMP
262static int
263sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
264{
707ad4ed 265 int cpu, error = 0;
2b57d013 266
707ad4ed 267 for (cpu = 0; cpu < ncpus; ++cpu) {
5f7ab76b 268 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
707ad4ed 269 sizeof(struct tcp_stats))))
2b57d013 270 break;
5f7ab76b 271 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
707ad4ed 272 sizeof(struct tcp_stats))))
2b57d013
MD
273 break;
274 }
275
276 return (error);
277}
707ad4ed
JH
278SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
279 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
280#else
2b57d013 281SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
707ad4ed 282 &tcpstat, tcp_stats, "TCP statistics");
2b57d013
MD
283#endif
284
984263bc
MD
285/*
286 * Target size of TCP PCB hash tables. Must be a power of two.
287 *
288 * Note that this can be overridden by the kernel environment
289 * variable net.inet.tcp.tcbhashsize
290 */
291#ifndef TCBHASHSIZE
707ad4ed 292#define TCBHASHSIZE 512
984263bc
MD
293#endif
294
295/*
296 * This is the actual shape of what we allocate using the zone
297 * allocator. Doing it this way allows us to protect both structures
298 * using the same generation count, and also eliminates the overhead
299 * of allocating tcpcbs separately. By hiding the structure here,
300 * we avoid changing most of the rest of the code (although it needs
301 * to be changed, eventually, for greater efficiency).
302 */
303#define ALIGNMENT 32
304#define ALIGNM1 (ALIGNMENT - 1)
305struct inp_tp {
306 union {
307 struct inpcb inp;
308 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
309 } inp_tp_u;
310 struct tcpcb tcb;
a48c5dd5
SZ
311 struct tcp_callout inp_tp_rexmt;
312 struct tcp_callout inp_tp_persist;
313 struct tcp_callout inp_tp_keep;
314 struct tcp_callout inp_tp_2msl;
315 struct tcp_callout inp_tp_delack;
0f758523 316 struct netmsg_tcp_timer inp_tp_timermsg;
984263bc
MD
317};
318#undef ALIGNMENT
319#undef ALIGNM1
320
321/*
322 * Tcp initialization
323 */
324void
f3f70f0d 325tcp_init(void)
984263bc 326{
d371a63a
JH
327 struct inpcbporthead *porthashbase;
328 u_long porthashmask;
984263bc 329 int hashsize = TCBHASHSIZE;
d371a63a 330 int cpu;
bf82f9b7 331
d2e9e54c
MD
332 /*
333 * note: tcptemp is used for keepalives, and it is ok for an
334 * allocation to fail so do not specify MPF_INT.
335 */
dd2b0fb4
MD
336 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
337 25, -1, 0, NULL);
338
984263bc
MD
339 tcp_delacktime = TCPTV_DELACK;
340 tcp_keepinit = TCPTV_KEEP_INIT;
341 tcp_keepidle = TCPTV_KEEP_IDLE;
342 tcp_keepintvl = TCPTV_KEEPINTVL;
343 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
344 tcp_msl = TCPTV_MSL;
345 tcp_rexmit_min = TCPTV_MIN;
346 tcp_rexmit_slop = TCPTV_CPU_VAR;
347
984263bc
MD
348 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
349 if (!powerof2(hashsize)) {
a6ec04bc 350 kprintf("WARNING: TCB hash size not a power of 2\n");
984263bc
MD
351 hashsize = 512; /* safe default */
352 }
353 tcp_tcbhashsize = hashsize;
d371a63a 354 porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
d371a63a
JH
355
356 for (cpu = 0; cpu < ncpus2; cpu++) {
d2e9e54c 357 in_pcbinfo_init(&tcbinfo[cpu]);
eb594563 358 tcbinfo[cpu].cpu = cpu;
d371a63a
JH
359 tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
360 &tcbinfo[cpu].hashmask);
361 tcbinfo[cpu].porthashbase = porthashbase;
362 tcbinfo[cpu].porthashmask = porthashmask;
8affadf8
JH
363 tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
364 &tcbinfo[cpu].wildcardhashmask);
9f42c129 365 tcbinfo[cpu].ipi_size = sizeof(struct inp_tp);
2b1ce38a 366 TAILQ_INIT(&tcpcbackq[cpu]);
d371a63a 367 }
3edf7c37
RG
368
369 tcp_reass_maxseg = nmbclusters / 16;
707ad4ed 370 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
3edf7c37 371
984263bc 372#ifdef INET6
707ad4ed
JH
373#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
374#else
375#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
376#endif
984263bc
MD
377 if (max_protohdr < TCP_MINPROTOHDR)
378 max_protohdr = TCP_MINPROTOHDR;
379 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
380 panic("tcp_init");
381#undef TCP_MINPROTOHDR
382
2b57d013 383 /*
5f7ab76b 384 * Initialize TCP statistics counters for each CPU.
2b57d013
MD
385 */
386#ifdef SMP
387 for (cpu = 0; cpu < ncpus; ++cpu) {
5f7ab76b 388 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
2b57d013
MD
389 }
390#else
391 bzero(&tcpstat, sizeof(struct tcp_stats));
392#endif
393
984263bc 394 syncache_init();
bf82f9b7 395 tcp_thread_init();
984263bc
MD
396}
397
2b1ce38a
MD
398void
399tcpmsg_service_loop(void *dummy)
f23061d4 400{
2b1ce38a 401 struct netmsg *msg;
92db3805
SZ
402 int mplocked;
403
404 /*
fdce8919 405 * Threads always start mpsafe.
92db3805
SZ
406 */
407 mplocked = 0;
2b1ce38a 408
1e3f8217 409 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2b1ce38a 410 do {
c7afbe76 411 logtcp(rxmsg);
92db3805
SZ
412 mplocked = netmsg_service(msg, tcp_mpsafe_thread,
413 mplocked);
2b1ce38a 414 } while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
92db3805 415
c7afbe76 416 logtcp(delayed);
92db3805 417 tcp_willblock(mplocked);
c7afbe76 418 logtcp(wait);
2b1ce38a
MD
419 }
420}
421
422static void
92db3805 423tcp_willblock(int mplocked)
2b1ce38a
MD
424{
425 struct tcpcb *tp;
426 int cpu = mycpu->gd_cpuid;
92db3805
SZ
427 int unlock = 0;
428
429 if (!mplocked && !tcp_mpsafe_proto) {
430 if (TAILQ_EMPTY(&tcpcbackq[cpu]))
431 return;
432
433 get_mplock();
434 mplocked = 1;
435 unlock = 1;
436 }
2b1ce38a
MD
437
438 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
439 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
440 tp->t_flags &= ~TF_ONOUTPUTQ;
441 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
442 tcp_output(tp);
443 }
92db3805
SZ
444
445 if (unlock)
446 rel_mplock();
2b1ce38a
MD
447}
448
449
984263bc
MD
450/*
451 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
452 * tcp_template used to store this data in mbufs, but we now recopy it out
453 * of the tcpcb each time to conserve mbufs.
454 */
455void
707ad4ed 456tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
984263bc
MD
457{
458 struct inpcb *inp = tp->t_inpcb;
459 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
460
461#ifdef INET6
707ad4ed 462 if (inp->inp_vflag & INP_IPV6) {
984263bc
MD
463 struct ip6_hdr *ip6;
464
465 ip6 = (struct ip6_hdr *)ip_ptr;
466 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
467 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
468 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
469 (IPV6_VERSION & IPV6_VERSION_MASK);
470 ip6->ip6_nxt = IPPROTO_TCP;
471 ip6->ip6_plen = sizeof(struct tcphdr);
472 ip6->ip6_src = inp->in6p_laddr;
473 ip6->ip6_dst = inp->in6p_faddr;
474 tcp_hdr->th_sum = 0;
475 } else
476#endif
477 {
707ad4ed
JH
478 struct ip *ip = (struct ip *) ip_ptr;
479
480 ip->ip_vhl = IP_VHL_BORING;
481 ip->ip_tos = 0;
482 ip->ip_len = 0;
483 ip->ip_id = 0;
484 ip->ip_off = 0;
485 ip->ip_ttl = 0;
486 ip->ip_sum = 0;
487 ip->ip_p = IPPROTO_TCP;
488 ip->ip_src = inp->inp_laddr;
489 ip->ip_dst = inp->inp_faddr;
490 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
491 ip->ip_dst.s_addr,
492 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
984263bc
MD
493 }
494
495 tcp_hdr->th_sport = inp->inp_lport;
496 tcp_hdr->th_dport = inp->inp_fport;
497 tcp_hdr->th_seq = 0;
498 tcp_hdr->th_ack = 0;
499 tcp_hdr->th_x2 = 0;
500 tcp_hdr->th_off = 5;
501 tcp_hdr->th_flags = 0;
502 tcp_hdr->th_win = 0;
503 tcp_hdr->th_urp = 0;
504}
505
506/*
507 * Create template to be used to send tcp packets on a connection.
508 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
509 * use for this function is in keepalives, which use tcp_respond.
510 */
511struct tcptemp *
707ad4ed 512tcp_maketemplate(struct tcpcb *tp)
984263bc 513{
dd2b0fb4 514 struct tcptemp *tmp;
984263bc 515
dd2b0fb4 516 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
707ad4ed 517 return (NULL);
f23061d4 518 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
dd2b0fb4
MD
519 return (tmp);
520}
984263bc 521
dd2b0fb4
MD
522void
523tcp_freetemplate(struct tcptemp *tmp)
524{
525 mpipe_free(&tcptemp_mpipe, tmp);
984263bc
MD
526}
527
528/*
529 * Send a single message to the TCP at address specified by
707ad4ed 530 * the given TCP/IP header. If m == NULL, then we make a copy
984263bc
MD
531 * of the tcpiphdr at ti and send directly to the addressed host.
532 * This is used to force keep alive messages out using the TCP
533 * template for a connection. If flags are given then we send
534 * a message back to the TCP which originated the * segment ti,
535 * and discard the mbuf containing it and any other attached mbufs.
536 *
537 * In any case the ack and sequence number of the transmitted
538 * segment are as specified by the parameters.
539 *
540 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
541 */
542void
707ad4ed
JH
543tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
544 tcp_seq ack, tcp_seq seq, int flags)
984263bc 545{
2256ba69 546 int tlen;
984263bc 547 int win = 0;
707ad4ed 548 struct route *ro = NULL;
984263bc 549 struct route sro;
707ad4ed 550 struct ip *ip = ipgen;
984263bc 551 struct tcphdr *nth;
984263bc 552 int ipflags = 0;
707ad4ed
JH
553 struct route_in6 *ro6 = NULL;
554 struct route_in6 sro6;
555 struct ip6_hdr *ip6 = ipgen;
5a0e5b43 556 boolean_t use_tmpro = TRUE;
984263bc 557#ifdef INET6
707ad4ed
JH
558 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
559#else
560 const boolean_t isipv6 = FALSE;
561#endif
984263bc 562
707ad4ed 563 if (tp != NULL) {
984263bc 564 if (!(flags & TH_RST)) {
6d49aa6f 565 win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
46e92930
MD
566 if (win < 0)
567 win = 0;
984263bc
MD
568 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
569 win = (long)TCP_MAXWIN << tp->rcv_scale;
570 }
5a0e5b43
SZ
571 /*
572 * Don't use the route cache of a listen socket,
573 * it is not MPSAFE; use temporary route cache.
574 */
575 if (tp->t_state != TCPS_LISTEN) {
576 if (isipv6)
577 ro6 = &tp->t_inpcb->in6p_route;
578 else
579 ro = &tp->t_inpcb->inp_route;
580 use_tmpro = FALSE;
581 }
582 }
583 if (use_tmpro) {
984263bc
MD
584 if (isipv6) {
585 ro6 = &sro6;
586 bzero(ro6, sizeof *ro6);
707ad4ed
JH
587 } else {
588 ro = &sro;
589 bzero(ro, sizeof *ro);
590 }
984263bc 591 }
707ad4ed 592 if (m == NULL) {
74f1caca 593 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
984263bc
MD
594 if (m == NULL)
595 return;
596 tlen = 0;
597 m->m_data += max_linkhdr;
984263bc 598 if (isipv6) {
707ad4ed 599 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
984263bc
MD
600 ip6 = mtod(m, struct ip6_hdr *);
601 nth = (struct tcphdr *)(ip6 + 1);
707ad4ed
JH
602 } else {
603 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
604 ip = mtod(m, struct ip *);
605 nth = (struct tcphdr *)(ip + 1);
606 }
607 bcopy(th, nth, sizeof(struct tcphdr));
984263bc
MD
608 flags = TH_ACK;
609 } else {
610 m_freem(m->m_next);
707ad4ed 611 m->m_next = NULL;
984263bc
MD
612 m->m_data = (caddr_t)ipgen;
613 /* m_len is set later */
614 tlen = 0;
707ad4ed 615#define xchg(a, b, type) { type t; t = a; a = b; b = t; }
984263bc
MD
616 if (isipv6) {
617 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
618 nth = (struct tcphdr *)(ip6 + 1);
707ad4ed
JH
619 } else {
620 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
621 nth = (struct tcphdr *)(ip + 1);
622 }
984263bc
MD
623 if (th != nth) {
624 /*
625 * this is usually a case when an extension header
626 * exists between the IPv6 header and the
627 * TCP header.
628 */
629 nth->th_sport = th->th_sport;
630 nth->th_dport = th->th_dport;
631 }
632 xchg(nth->th_dport, nth->th_sport, n_short);
633#undef xchg
634 }
984263bc
MD
635 if (isipv6) {
636 ip6->ip6_flow = 0;
637 ip6->ip6_vfc = IPV6_VERSION;
638 ip6->ip6_nxt = IPPROTO_TCP;
707ad4ed
JH
639 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
640 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
641 } else {
642 tlen += sizeof(struct tcpiphdr);
643 ip->ip_len = tlen;
644 ip->ip_ttl = ip_defttl;
645 }
984263bc
MD
646 m->m_len = tlen;
647 m->m_pkthdr.len = tlen;
2038fb68 648 m->m_pkthdr.rcvif = NULL;
984263bc
MD
649 nth->th_seq = htonl(seq);
650 nth->th_ack = htonl(ack);
651 nth->th_x2 = 0;
707ad4ed 652 nth->th_off = sizeof(struct tcphdr) >> 2;
984263bc 653 nth->th_flags = flags;
707ad4ed 654 if (tp != NULL)
984263bc
MD
655 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
656 else
657 nth->th_win = htons((u_short)win);
658 nth->th_urp = 0;
984263bc
MD
659 if (isipv6) {
660 nth->th_sum = 0;
661 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
662 sizeof(struct ip6_hdr),
663 tlen - sizeof(struct ip6_hdr));
664 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
707ad4ed 665 (ro6 && ro6->ro_rt) ?
f23061d4 666 ro6->ro_rt->rt_ifp : NULL);
707ad4ed
JH
667 } else {
668 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
669 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
670 m->m_pkthdr.csum_flags = CSUM_TCP;
671 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
672 }
984263bc
MD
673#ifdef TCPDEBUG
674 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
675 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
676#endif
984263bc 677 if (isipv6) {
f23061d4
JH
678 ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
679 tp ? tp->t_inpcb : NULL);
707ad4ed 680 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
984263bc
MD
681 RTFREE(ro6->ro_rt);
682 ro6->ro_rt = NULL;
683 }
707ad4ed 684 } else {
1dbb3516 685 ipflags |= IP_DEBUGROUTE;
f23061d4 686 ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
707ad4ed
JH
687 if ((ro == &sro) && (ro->ro_rt != NULL)) {
688 RTFREE(ro->ro_rt);
689 ro->ro_rt = NULL;
690 }
984263bc 691 }
984263bc
MD
692}
693
694/*
695 * Create a new TCP control block, making an
696 * empty reassembly queue and hooking it to the argument
697 * protocol control block. The `inp' parameter must have
698 * come from the zone allocator set up in tcp_init().
699 */
700struct tcpcb *
707ad4ed 701tcp_newtcpcb(struct inpcb *inp)
984263bc
MD
702{
703 struct inp_tp *it;
2256ba69 704 struct tcpcb *tp;
984263bc 705#ifdef INET6
707ad4ed
JH
706 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
707#else
708 const boolean_t isipv6 = FALSE;
709#endif
984263bc
MD
710
711 it = (struct inp_tp *)inp;
712 tp = &it->tcb;
707ad4ed 713 bzero(tp, sizeof(struct tcpcb));
984263bc 714 LIST_INIT(&tp->t_segq);
707ad4ed 715 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
984263bc
MD
716
717 /* Set up our timeouts. */
a48c5dd5
SZ
718 tp->tt_rexmt = &it->inp_tp_rexmt;
719 tp->tt_persist = &it->inp_tp_persist;
720 tp->tt_keep = &it->inp_tp_keep;
721 tp->tt_2msl = &it->inp_tp_2msl;
722 tp->tt_delack = &it->inp_tp_delack;
723 tcp_inittimers(tp);
984263bc 724
3db1c8a3
SZ
725 /*
726 * Zero out timer message. We don't create it here,
727 * since the current CPU may not be the owner of this
728 * inpcb.
729 */
0f758523 730 tp->tt_msg = &it->inp_tp_timermsg;
3db1c8a3 731 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
0f758523 732
984263bc 733 if (tcp_do_rfc1323)
707ad4ed 734 tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
984263bc 735 tp->t_inpcb = inp; /* XXX */
eb594563 736 tp->t_state = TCPS_CLOSED;
984263bc
MD
737 /*
738 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
739 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
740 * reasonable initial retransmit time.
741 */
742 tp->t_srtt = TCPTV_SRTTBASE;
707ad4ed
JH
743 tp->t_rttvar =
744 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
984263bc
MD
745 tp->t_rttmin = tcp_rexmit_min;
746 tp->t_rxtcur = TCPTV_RTOBASE;
747 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
749 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
750 tp->t_rcvtime = ticks;
707ad4ed 751 /*
984263bc
MD
752 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
753 * because the socket may be bound to an IPv6 wildcard address,
754 * which may match an IPv4-mapped IPv6 address.
755 */
756 inp->inp_ip_ttl = ip_defttl;
f23061d4 757 inp->inp_ppcb = tp;
91489f6b 758 tcp_sack_tcpcb_init(tp);
984263bc
MD
759 return (tp); /* XXX */
760}
761
762/*
707ad4ed
JH
763 * Drop a TCP connection, reporting the specified error.
764 * If connection is synchronized, then send a RST to peer.
984263bc
MD
765 */
766struct tcpcb *
71f385dc 767tcp_drop(struct tcpcb *tp, int error)
984263bc
MD
768{
769 struct socket *so = tp->t_inpcb->inp_socket;
770
771 if (TCPS_HAVERCVDSYN(tp->t_state)) {
772 tp->t_state = TCPS_CLOSED;
f23061d4 773 tcp_output(tp);
984263bc
MD
774 tcpstat.tcps_drops++;
775 } else
776 tcpstat.tcps_conndrops++;
71f385dc
MD
777 if (error == ETIMEDOUT && tp->t_softerror)
778 error = tp->t_softerror;
779 so->so_error = error;
984263bc
MD
780 return (tcp_close(tp));
781}
782
8affadf8 783#ifdef SMP
eb594563 784
8affadf8 785struct netmsg_remwildcard {
4599cf19 786 struct netmsg nm_netmsg;
8affadf8
JH
787 struct inpcb *nm_inp;
788 struct inpcbinfo *nm_pcbinfo;
eb594563
MD
789#if defined(INET6)
790 int nm_isinet6;
791#else
792 int nm_unused01;
793#endif
8affadf8
JH
794};
795
eb594563
MD
796/*
797 * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
798 * inp can be detached. We do this by cycling through the cpus, ending up
799 * on the cpu controlling the inp last and then doing the disconnect.
800 */
4599cf19
MD
801static void
802in_pcbremwildcardhash_handler(struct netmsg *msg0)
8affadf8
JH
803{
804 struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
eb594563 805 int cpu;
8affadf8 806
eb594563
MD
807 cpu = msg->nm_pcbinfo->cpu;
808
809 if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
810 /* note: detach removes any wildcard hash entry */
811#ifdef INET6
812 if (msg->nm_isinet6)
813 in6_pcbdetach(msg->nm_inp);
814 else
815#endif
816 in_pcbdetach(msg->nm_inp);
4599cf19 817 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
eb594563
MD
818 } else {
819 in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
820 cpu = (cpu + 1) % ncpus2;
821 msg->nm_pcbinfo = &tcbinfo[cpu];
4599cf19 822 lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
eb594563 823 }
8affadf8 824}
eb594563 825
8affadf8
JH
826#endif
827
984263bc
MD
828/*
829 * Close a TCP control block:
830 * discard all space held by the tcp
831 * discard internet protocol block
832 * wake up any sleepers
833 */
834struct tcpcb *
707ad4ed 835tcp_close(struct tcpcb *tp)
984263bc 836{
2256ba69 837 struct tseg_qent *q;
984263bc
MD
838 struct inpcb *inp = tp->t_inpcb;
839 struct socket *so = inp->inp_socket;
2256ba69 840 struct rtentry *rt;
707ad4ed 841 boolean_t dosavessthresh;
8affadf8
JH
842#ifdef SMP
843 int cpu;
844#endif
707ad4ed
JH
845#ifdef INET6
846 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
eb594563 847 boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
707ad4ed
JH
848#else
849 const boolean_t isipv6 = FALSE;
850#endif
984263bc 851
eb594563
MD
852 /*
853 * The tp is not instantly destroyed in the wildcard case. Setting
854 * the state to TCPS_TERMINATING will prevent the TCP stack from
855 * messing with it, though it should be noted that this change may
856 * not take effect on other cpus until we have chained the wildcard
857 * hash removal.
858 *
859 * XXX we currently depend on the BGL to synchronize the tp->t_state
860 * update and prevent other tcp protocol threads from accepting new
861 * connections on the listen socket we might be trying to close down.
862 */
863 KKASSERT(tp->t_state != TCPS_TERMINATING);
864 tp->t_state = TCPS_TERMINATING;
865
984263bc
MD
866 /*
867 * Make sure that all of our timers are stopped before we
2d42d2b0 868 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
697aadcd
SZ
869 * timers are never used. If timer message is never created
870 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
984263bc 871 */
697aadcd 872 if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
2d42d2b0
SZ
873 tcp_callout_stop(tp, tp->tt_rexmt);
874 tcp_callout_stop(tp, tp->tt_persist);
875 tcp_callout_stop(tp, tp->tt_keep);
876 tcp_callout_stop(tp, tp->tt_2msl);
877 tcp_callout_stop(tp, tp->tt_delack);
878 }
984263bc 879
2b1ce38a
MD
880 if (tp->t_flags & TF_ONOUTPUTQ) {
881 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
882 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
883 tp->t_flags &= ~TF_ONOUTPUTQ;
884 }
885
984263bc
MD
886 /*
887 * If we got enough samples through the srtt filter,
888 * save the rtt and rttvar in the routing entry.
889 * 'Enough' is arbitrarily defined as the 16 samples.
890 * 16 samples is enough for the srtt filter to converge
891 * to within 5% of the correct value; fewer samples and
892 * we could save a very bogus rtt.
893 *
894 * Don't update the default route's characteristics and don't
895 * update anything that the user "locked".
896 */
897 if (tp->t_rttupdated >= 16) {
2256ba69 898 u_long i = 0;
707ad4ed 899
984263bc
MD
900 if (isipv6) {
901 struct sockaddr_in6 *sin6;
902
903 if ((rt = inp->in6p_route.ro_rt) == NULL)
904 goto no_valid_rt;
905 sin6 = (struct sockaddr_in6 *)rt_key(rt);
906 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
907 goto no_valid_rt;
707ad4ed
JH
908 } else
909 if ((rt = inp->inp_route.ro_rt) == NULL ||
910 ((struct sockaddr_in *)rt_key(rt))->
911 sin_addr.s_addr == INADDR_ANY)
912 goto no_valid_rt;
913
914 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
915 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
984263bc
MD
916 if (rt->rt_rmx.rmx_rtt && i)
917 /*
918 * filter this update to half the old & half
919 * the new values, converting scale.
920 * See route.h and tcp_var.h for a
921 * description of the scaling constants.
922 */
923 rt->rt_rmx.rmx_rtt =
924 (rt->rt_rmx.rmx_rtt + i) / 2;
925 else
926 rt->rt_rmx.rmx_rtt = i;
927 tcpstat.tcps_cachedrtt++;
928 }
707ad4ed 929 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
984263bc
MD
930 i = tp->t_rttvar *
931 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
932 if (rt->rt_rmx.rmx_rttvar && i)
933 rt->rt_rmx.rmx_rttvar =
934 (rt->rt_rmx.rmx_rttvar + i) / 2;
935 else
936 rt->rt_rmx.rmx_rttvar = i;
937 tcpstat.tcps_cachedrttvar++;
938 }
939 /*
940 * The old comment here said:
941 * update the pipelimit (ssthresh) if it has been updated
942 * already or if a pipesize was specified & the threshhold
943 * got below half the pipesize. I.e., wait for bad news
944 * before we start updating, then update on both good
945 * and bad news.
946 *
947 * But we want to save the ssthresh even if no pipesize is
948 * specified explicitly in the route, because such
949 * connections still have an implicit pipesize specified
950 * by the global tcp_sendspace. In the absence of a reliable
951 * way to calculate the pipesize, it will have to do.
952 */
953 i = tp->snd_ssthresh;
954 if (rt->rt_rmx.rmx_sendpipe != 0)
707ad4ed 955 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
984263bc 956 else
6d49aa6f 957 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
707ad4ed
JH
958 if (dosavessthresh ||
959 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
960 (rt->rt_rmx.rmx_ssthresh != 0))) {
984263bc
MD
961 /*
962 * convert the limit from user data bytes to
963 * packets then to packet data bytes.
964 */
965 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
966 if (i < 2)
967 i = 2;
707ad4ed
JH
968 i *= tp->t_maxseg +
969 (isipv6 ?
970 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
971 sizeof(struct tcpiphdr));
984263bc
MD
972 if (rt->rt_rmx.rmx_ssthresh)
973 rt->rt_rmx.rmx_ssthresh =
974 (rt->rt_rmx.rmx_ssthresh + i) / 2;
975 else
976 rt->rt_rmx.rmx_ssthresh = i;
977 tcpstat.tcps_cachedssthresh++;
978 }
979 }
707ad4ed
JH
980
981no_valid_rt:
984263bc
MD
982 /* free the reassembly queue, if any */
983 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
984 LIST_REMOVE(q, tqe_q);
985 m_freem(q->tqe_m);
986 FREE(q, M_TSEGQ);
2d23a8be 987 atomic_add_int(&tcp_reass_qsize, -1);
984263bc 988 }
91489f6b
JH
989 /* throw away SACK blocks in scoreboard*/
990 if (TCP_DO_SACK(tp))
991 tcp_sack_cleanup(&tp->scb);
eb594563 992
984263bc
MD
993 inp->inp_ppcb = NULL;
994 soisdisconnected(so);
0f758523
SZ
995
996 tcp_destroy_timermsg(tp);
e5fe3477
MD
997 if (tp->t_flags & TF_SYNCACHE)
998 syncache_destroy(tp);
0f758523 999
eb594563
MD
1000 /*
1001 * Discard the inp. In the SMP case a wildcard inp's hash (created
1002 * by a listen socket or an INADDR_ANY udp socket) is replicated
1003 * for each protocol thread and must be removed in the context of
1004 * that thread. This is accomplished by chaining the message
1005 * through the cpus.
1006 *
1007 * If the inp is not wildcarded we simply detach, which will remove
1008 * the any hashes still present for this inp.
1009 */
8affadf8 1010#ifdef SMP
1e019813 1011 if (inp->inp_flags & INP_WILDCARD_MP) {
eb594563 1012 struct netmsg_remwildcard *msg;
1e019813 1013
eb594563 1014 cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
77652cad 1015 msg = kmalloc(sizeof(struct netmsg_remwildcard),
4599cf19 1016 M_LWKTMSG, M_INTWAIT);
48e7b118
MD
1017 netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport,
1018 0, in_pcbremwildcardhash_handler);
eb594563
MD
1019#ifdef INET6
1020 msg->nm_isinet6 = isafinet6;
8affadf8 1021#endif
eb594563
MD
1022 msg->nm_inp = inp;
1023 msg->nm_pcbinfo = &tcbinfo[cpu];
4599cf19 1024 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
f23061d4 1025 } else
eb594563
MD
1026#endif
1027 {
1028 /* note: detach removes any wildcard hash entry */
984263bc 1029#ifdef INET6
eb594563
MD
1030 if (isafinet6)
1031 in6_pcbdetach(inp);
1032 else
707ad4ed 1033#endif
eb594563
MD
1034 in_pcbdetach(inp);
1035 }
984263bc 1036 tcpstat.tcps_closed++;
707ad4ed 1037 return (NULL);
984263bc
MD
1038}
1039
3f48f9c5
JH
1040static __inline void
1041tcp_drain_oncpu(struct inpcbhead *head)
984263bc 1042{
2d23a8be 1043 struct inpcb *marker;
d371a63a
JH
1044 struct inpcb *inpb;
1045 struct tcpcb *tcpb;
1046 struct tseg_qent *te;
3f48f9c5 1047
2d23a8be
MD
1048 /*
1049 * Allows us to block while running the list
1050 */
1051 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1052 marker->inp_flags |= INP_PLACEMARKER;
1053 LIST_INSERT_HEAD(head, marker, inp_list);
1054
1055 while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1056 if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1057 (tcpb = intotcpcb(inpb)) != NULL &&
1058 (te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1059 LIST_REMOVE(te, tqe_q);
1060 m_freem(te->tqe_m);
1061 FREE(te, M_TSEGQ);
1062 atomic_add_int(&tcp_reass_qsize, -1);
1063 /* retry */
1064 } else {
1065 LIST_REMOVE(marker, inp_list);
1066 LIST_INSERT_AFTER(inpb, marker, inp_list);
3f48f9c5
JH
1067 }
1068 }
2d23a8be
MD
1069 LIST_REMOVE(marker, inp_list);
1070 kfree(marker, M_TEMP);
3f48f9c5
JH
1071}
1072
0ddb6032
JH
1073#ifdef SMP
1074struct netmsg_tcp_drain {
4599cf19 1075 struct netmsg nm_netmsg;
0ddb6032
JH
1076 struct inpcbhead *nm_head;
1077};
1078
4599cf19
MD
1079static void
1080tcp_drain_handler(netmsg_t netmsg)
0ddb6032 1081{
4599cf19 1082 struct netmsg_tcp_drain *nm = (void *)netmsg;
0ddb6032
JH
1083
1084 tcp_drain_oncpu(nm->nm_head);
4599cf19 1085 lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
0ddb6032
JH
1086}
1087#endif
1088
3f48f9c5 1089void
f3f70f0d 1090tcp_drain(void)
3f48f9c5 1091{
93c8e032 1092#ifdef SMP
d371a63a 1093 int cpu;
93c8e032 1094#endif
d371a63a
JH
1095
1096 if (!do_tcpdrain)
1097 return;
984263bc
MD
1098
1099 /*
1100 * Walk the tcpbs, if existing, and flush the reassembly queue,
1101 * if there is one...
1102 * XXX: The "Net/3" implementation doesn't imply that the TCP
707ad4ed
JH
1103 * reassembly queue should be flushed, but in a situation
1104 * where we're really low on mbufs, this is potentially
1105 * useful.
984263bc 1106 */
3f48f9c5 1107#ifdef SMP
d371a63a 1108 for (cpu = 0; cpu < ncpus2; cpu++) {
3f48f9c5
JH
1109 struct netmsg_tcp_drain *msg;
1110
0ddb6032 1111 if (cpu == mycpu->gd_cpuid) {
d2e9e54c 1112 tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
3f48f9c5 1113 } else {
77652cad 1114 msg = kmalloc(sizeof(struct netmsg_tcp_drain),
b76bed62
MD
1115 M_LWKTMSG, M_NOWAIT);
1116 if (msg == NULL)
3f48f9c5 1117 continue;
48e7b118
MD
1118 netmsg_init(&msg->nm_netmsg, NULL, &netisr_afree_rport,
1119 0, tcp_drain_handler);
d2e9e54c 1120 msg->nm_head = &tcbinfo[cpu].pcblisthead;
4599cf19 1121 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
984263bc 1122 }
984263bc 1123 }
3f48f9c5 1124#else
d2e9e54c 1125 tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
3f48f9c5 1126#endif
984263bc
MD
1127}
1128
1129/*
1130 * Notify a tcp user of an asynchronous error;
1131 * store error as soft error, but wake up user
1132 * (for now, won't do anything until can select for soft error).
1133 *
1134 * Do not wake up user since there currently is no mechanism for
1135 * reporting soft errors (yet - a kqueue filter may be added).
1136 */
1137static void
707ad4ed 1138tcp_notify(struct inpcb *inp, int error)
984263bc 1139{
707ad4ed 1140 struct tcpcb *tp = intotcpcb(inp);
984263bc
MD
1141
1142 /*
1143 * Ignore some errors if we are hooked up.
1144 * If connection hasn't completed, has retransmitted several times,
1145 * and receives a second error, give up now. This is better
1146 * than waiting a long time to establish a connection that
1147 * can never complete.
1148 */
1149 if (tp->t_state == TCPS_ESTABLISHED &&
1150 (error == EHOSTUNREACH || error == ENETUNREACH ||
1151 error == EHOSTDOWN)) {
1152 return;
1153 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1154 tp->t_softerror)
1155 tcp_drop(tp, error);
1156 else
1157 tp->t_softerror = error;
1158#if 0
f23061d4 1159 wakeup(&so->so_timeo);
984263bc
MD
1160 sorwakeup(so);
1161 sowwakeup(so);
1162#endif
1163}
1164
1165static int
1166tcp_pcblist(SYSCTL_HANDLER_ARGS)
1167{
d2e9e54c
MD
1168 int error, i, n;
1169 struct inpcb *marker;
1170 struct inpcb *inp;
984263bc 1171 inp_gen_t gencnt;
d2e9e54c
MD
1172 globaldata_t gd;
1173 int origcpu, ccpu;
1174
1175 error = 0;
1176 n = 0;
984263bc
MD
1177
1178 /*
1179 * The process of preparing the TCB list is too time-consuming and
1180 * resource-intensive to repeat twice on every request.
1181 */
707ad4ed 1182 if (req->oldptr == NULL) {
d2e9e54c
MD
1183 for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1184 gd = globaldata_find(ccpu);
1185 n += tcbinfo[gd->gd_cpuid].ipi_count;
1186 }
8d7c364e 1187 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
707ad4ed 1188 return (0);
984263bc
MD
1189 }
1190
707ad4ed
JH
1191 if (req->newptr != NULL)
1192 return (EPERM);
984263bc 1193
efda3bd0 1194 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
d2e9e54c
MD
1195 marker->inp_flags |= INP_PLACEMARKER;
1196
984263bc 1197 /*
d2e9e54c 1198 * OK, now we're committed to doing something. Run the inpcb list
f23061d4 1199 * for each cpu in the system and construct the output. Use a
d2e9e54c
MD
1200 * list placemarker to deal with list changes occuring during
1201 * copyout blockages (but otherwise depend on being on the correct
1202 * cpu to avoid races).
984263bc 1203 */
d2e9e54c
MD
1204 origcpu = mycpu->gd_cpuid;
1205 for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1206 globaldata_t rgd;
1207 caddr_t inp_ppcb;
1208 struct xtcpcb xt;
1209 int cpu_id;
1210
1211 cpu_id = (origcpu + ccpu) % ncpus;
1212 if ((smp_active_mask & (1 << cpu_id)) == 0)
1213 continue;
1214 rgd = globaldata_find(cpu_id);
1215 lwkt_setcpu_self(rgd);
1216
d2e9e54c
MD
1217 gencnt = tcbinfo[cpu_id].ipi_gencnt;
1218 n = tcbinfo[cpu_id].ipi_count;
1219
d2e9e54c
MD
1220 LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1221 i = 0;
1222 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1223 /*
1224 * process a snapshot of pcbs, ignoring placemarkers
1225 * and using our own to allow SYSCTL_OUT to block.
1226 */
1227 LIST_REMOVE(marker, inp_list);
1228 LIST_INSERT_AFTER(inp, marker, inp_list);
707ad4ed 1229
d2e9e54c
MD
1230 if (inp->inp_flags & INP_PLACEMARKER)
1231 continue;
1232 if (inp->inp_gencnt > gencnt)
1233 continue;
1234 if (prison_xinpcb(req->td, inp))
1235 continue;
984263bc 1236
984263bc 1237 xt.xt_len = sizeof xt;
984263bc
MD
1238 bcopy(inp, &xt.xt_inp, sizeof *inp);
1239 inp_ppcb = inp->inp_ppcb;
1240 if (inp_ppcb != NULL)
1241 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1242 else
707ad4ed 1243 bzero(&xt.xt_tp, sizeof xt.xt_tp);
984263bc
MD
1244 if (inp->inp_socket)
1245 sotoxsocket(inp->inp_socket, &xt.xt_socket);
d2e9e54c
MD
1246 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1247 break;
1248 ++i;
1249 }
1250 LIST_REMOVE(marker, inp_list);
1251 if (error == 0 && i < n) {
0c3c561c
JH
1252 bzero(&xt, sizeof xt);
1253 xt.xt_len = sizeof xt;
d2e9e54c 1254 while (i < n) {
f23061d4 1255 error = SYSCTL_OUT(req, &xt, sizeof xt);
d2e9e54c
MD
1256 if (error)
1257 break;
1258 ++i;
1259 }
1260 }
984263bc 1261 }
d2e9e54c
MD
1262
1263 /*
1264 * Make sure we are on the same cpu we were on originally, since
1265 * higher level callers expect this. Also don't pollute caches with
1266 * migrated userland data by (eventually) returning to userland
1267 * on a different cpu.
1268 */
1269 lwkt_setcpu_self(globaldata_find(origcpu));
efda3bd0 1270 kfree(marker, M_TEMP);
707ad4ed 1271 return (error);
984263bc
MD
1272}
1273
1274SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1275 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1276
1277static int
1278tcp_getcred(SYSCTL_HANDLER_ARGS)
1279{
1280 struct sockaddr_in addrs[2];
1281 struct inpcb *inp;
d371a63a 1282 int cpu;
1cae611f 1283 int error;
984263bc 1284
895c1f85 1285 error = priv_check(req->td, PRIV_ROOT);
707ad4ed 1286 if (error != 0)
984263bc 1287 return (error);
707ad4ed
JH
1288 error = SYSCTL_IN(req, addrs, sizeof addrs);
1289 if (error != 0)
984263bc 1290 return (error);
1cae611f 1291 crit_enter();
d371a63a
JH
1292 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1293 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1294 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1295 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
984263bc
MD
1296 if (inp == NULL || inp->inp_socket == NULL) {
1297 error = ENOENT;
1298 goto out;
1299 }
1300 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1301out:
1cae611f 1302 crit_exit();
984263bc
MD
1303 return (error);
1304}
1305
707ad4ed 1306SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
984263bc
MD
1307 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1308
1309#ifdef INET6
1310static int
1311tcp6_getcred(SYSCTL_HANDLER_ARGS)
1312{
1313 struct sockaddr_in6 addrs[2];
1314 struct inpcb *inp;
1cae611f 1315 int error;
707ad4ed 1316 boolean_t mapped = FALSE;
984263bc 1317
895c1f85 1318 error = priv_check(req->td, PRIV_ROOT);
707ad4ed 1319 if (error != 0)
984263bc 1320 return (error);
707ad4ed
JH
1321 error = SYSCTL_IN(req, addrs, sizeof addrs);
1322 if (error != 0)
984263bc
MD
1323 return (error);
1324 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1325 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
707ad4ed 1326 mapped = TRUE;
984263bc
MD
1327 else
1328 return (EINVAL);
1329 }
1cae611f 1330 crit_enter();
707ad4ed 1331 if (mapped) {
d371a63a
JH
1332 inp = in_pcblookup_hash(&tcbinfo[0],
1333 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1334 addrs[1].sin6_port,
1335 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1336 addrs[0].sin6_port,
1337 0, NULL);
1338 } else {
1339 inp = in6_pcblookup_hash(&tcbinfo[0],
1340 &addrs[1].sin6_addr, addrs[1].sin6_port,
1341 &addrs[0].sin6_addr, addrs[0].sin6_port,
1342 0, NULL);
1343 }
984263bc
MD
1344 if (inp == NULL || inp->inp_socket == NULL) {
1345 error = ENOENT;
1346 goto out;
1347 }
707ad4ed 1348 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
984263bc 1349out:
1cae611f 1350 crit_exit();
984263bc
MD
1351 return (error);
1352}
1353
707ad4ed 1354SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
984263bc
MD
1355 0, 0,
1356 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1357#endif
1358
14572273
SZ
1359struct netmsg_tcp_notify {
1360 struct netmsg nm_nmsg;
1361 void (*nm_notify)(struct inpcb *, int);
1362 struct in_addr nm_faddr;
1363 int nm_arg;
1364};
1365
1366static void
1367tcp_notifyall_oncpu(struct netmsg *netmsg)
1368{
1369 struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1370 int nextcpu;
1371
1372 in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1373 nmsg->nm_arg, nmsg->nm_notify);
1374
1375 nextcpu = mycpuid + 1;
1376 if (nextcpu < ncpus2)
1377 lwkt_forwardmsg(tcp_cport(nextcpu), &netmsg->nm_lmsg);
1378 else
1379 lwkt_replymsg(&netmsg->nm_lmsg, 0);
1380}
1381
984263bc 1382void
707ad4ed 1383tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
984263bc
MD
1384{
1385 struct ip *ip = vip;
1386 struct tcphdr *th;
1387 struct in_addr faddr;
1388 struct inpcb *inp;
1389 struct tcpcb *tp;
707ad4ed 1390 void (*notify)(struct inpcb *, int) = tcp_notify;
7d448528 1391 tcp_seq icmpseq;
1cae611f 1392 int arg, cpu;
7d448528
JH
1393
1394 if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1395 return;
1396 }
984263bc
MD
1397
1398 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1399 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1400 return;
1401
7d448528
JH
1402 arg = inetctlerrmap[cmd];
1403 if (cmd == PRC_QUENCH) {
984263bc 1404 notify = tcp_quench;
7d448528
JH
1405 } else if (icmp_may_rst &&
1406 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1407 cmd == PRC_UNREACH_PORT ||
1408 cmd == PRC_TIMXCEED_INTRANS) &&
1409 ip != NULL) {
984263bc 1410 notify = tcp_drop_syn_sent;
7d448528
JH
1411 } else if (cmd == PRC_MSGSIZE) {
1412 struct icmp *icmp = (struct icmp *)
1413 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1414
1415 arg = ntohs(icmp->icmp_nextmtu);
984263bc 1416 notify = tcp_mtudisc;
7d448528 1417 } else if (PRC_IS_REDIRECT(cmd)) {
707ad4ed 1418 ip = NULL;
984263bc 1419 notify = in_rtchange;
7d448528 1420 } else if (cmd == PRC_HOSTDEAD) {
707ad4ed 1421 ip = NULL;
7d448528
JH
1422 }
1423
707ad4ed 1424 if (ip != NULL) {
1cae611f 1425 crit_enter();
707ad4ed
JH
1426 th = (struct tcphdr *)((caddr_t)ip +
1427 (IP_VHL_HL(ip->ip_vhl) << 2));
d371a63a 1428 cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
707ad4ed 1429 ip->ip_src.s_addr, th->th_sport);
d371a63a 1430 inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
707ad4ed
JH
1431 ip->ip_src, th->th_sport, 0, NULL);
1432 if ((inp != NULL) && (inp->inp_socket != NULL)) {
7d448528 1433 icmpseq = htonl(th->th_seq);
984263bc 1434 tp = intotcpcb(inp);
7d448528
JH
1435 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1436 SEQ_LT(icmpseq, tp->snd_max))
1437 (*notify)(inp, arg);
984263bc
MD
1438 } else {
1439 struct in_conninfo inc;
1440
1441 inc.inc_fport = th->th_dport;
1442 inc.inc_lport = th->th_sport;
1443 inc.inc_faddr = faddr;
1444 inc.inc_laddr = ip->ip_src;
1445#ifdef INET6
1446 inc.inc_isipv6 = 0;
1447#endif
1448 syncache_unreach(&inc, th);
1449 }
1cae611f 1450 crit_exit();
d371a63a 1451 } else {
14572273
SZ
1452 struct netmsg_tcp_notify nmsg;
1453
1454 KKASSERT(&curthread->td_msgport == cpu_portfn(0));
48e7b118
MD
1455 netmsg_init(&nmsg.nm_nmsg, NULL, &curthread->td_msgport,
1456 0, tcp_notifyall_oncpu);
14572273
SZ
1457 nmsg.nm_faddr = faddr;
1458 nmsg.nm_arg = arg;
1459 nmsg.nm_notify = notify;
1460
1461 lwkt_domsg(tcp_cport(0), &nmsg.nm_nmsg.nm_lmsg, 0);
d371a63a 1462 }
984263bc
MD
1463}
1464
1465#ifdef INET6
1466void
707ad4ed 1467tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
984263bc
MD
1468{
1469 struct tcphdr th;
42a7fc75 1470 void (*notify) (struct inpcb *, int) = tcp_notify;
984263bc
MD
1471 struct ip6_hdr *ip6;
1472 struct mbuf *m;
1473 struct ip6ctlparam *ip6cp = NULL;
1474 const struct sockaddr_in6 *sa6_src = NULL;
1475 int off;
1476 struct tcp_portonly {
1477 u_int16_t th_sport;
1478 u_int16_t th_dport;
1479 } *thp;
7d448528 1480 int arg;
984263bc
MD
1481
1482 if (sa->sa_family != AF_INET6 ||
1483 sa->sa_len != sizeof(struct sockaddr_in6))
1484 return;
1485
7d448528 1486 arg = 0;
984263bc
MD
1487 if (cmd == PRC_QUENCH)
1488 notify = tcp_quench;
7d448528
JH
1489 else if (cmd == PRC_MSGSIZE) {
1490 struct ip6ctlparam *ip6cp = d;
1491 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1492
1493 arg = ntohl(icmp6->icmp6_mtu);
984263bc 1494 notify = tcp_mtudisc;
7d448528
JH
1495 } else if (!PRC_IS_REDIRECT(cmd) &&
1496 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
984263bc 1497 return;
7d448528 1498 }
984263bc
MD
1499
1500 /* if the parameter is from icmp6, decode it. */
1501 if (d != NULL) {
1502 ip6cp = (struct ip6ctlparam *)d;
1503 m = ip6cp->ip6c_m;
1504 ip6 = ip6cp->ip6c_ip6;
1505 off = ip6cp->ip6c_off;
1506 sa6_src = ip6cp->ip6c_src;
1507 } else {
1508 m = NULL;
1509 ip6 = NULL;
1510 off = 0; /* fool gcc */
1511 sa6_src = &sa6_any;
1512 }
1513
707ad4ed 1514 if (ip6 != NULL) {
984263bc
MD
1515 struct in_conninfo inc;
1516 /*
1517 * XXX: We assume that when IPV6 is non NULL,
1518 * M and OFF are valid.
1519 */
1520
1521 /* check if we can safely examine src and dst ports */
707ad4ed 1522 if (m->m_pkthdr.len < off + sizeof *thp)
984263bc
MD
1523 return;
1524
707ad4ed
JH
1525 bzero(&th, sizeof th);
1526 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
984263bc 1527
d2e9e54c 1528 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
984263bc 1529 (struct sockaddr *)ip6cp->ip6c_src,
7d448528 1530 th.th_sport, cmd, arg, notify);
984263bc
MD
1531
1532 inc.inc_fport = th.th_dport;
1533 inc.inc_lport = th.th_sport;
1534 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1535 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1536 inc.inc_isipv6 = 1;
1537 syncache_unreach(&inc, &th);
1538 } else
d2e9e54c 1539 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
7d448528 1540 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
984263bc 1541}
707ad4ed 1542#endif
984263bc
MD
1543
1544/*
1545 * Following is where TCP initial sequence number generation occurs.
1546 *
1547 * There are two places where we must use initial sequence numbers:
1548 * 1. In SYN-ACK packets.
1549 * 2. In SYN packets.
1550 *
1551 * All ISNs for SYN-ACK packets are generated by the syncache. See
1552 * tcp_syncache.c for details.
1553 *
1554 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1555 * depends on this property. In addition, these ISNs should be
1556 * unguessable so as to prevent connection hijacking. To satisfy
1557 * the requirements of this situation, the algorithm outlined in
1558 * RFC 1948 is used to generate sequence numbers.
1559 *
1560 * Implementation details:
1561 *
1562 * Time is based off the system timer, and is corrected so that it
1563 * increases by one megabyte per second. This allows for proper
1564 * recycling on high speed LANs while still leaving over an hour
1565 * before rollover.
1566 *
1567 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1568 * between seeding of isn_secret. This is normally set to zero,
1569 * as reseeding should not be necessary.
1570 *
1571 */
1572
707ad4ed 1573#define ISN_BYTES_PER_SECOND 1048576
984263bc
MD
1574
1575u_char isn_secret[32];
1576int isn_last_reseed;
1577MD5_CTX isn_ctx;
1578
1579tcp_seq
707ad4ed 1580tcp_new_isn(struct tcpcb *tp)
984263bc
MD
1581{
1582 u_int32_t md5_buffer[4];
1583 tcp_seq new_isn;
1584
1585 /* Seed if this is the first use, reseed if requested. */
1586 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1587 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1588 < (u_int)ticks))) {
707ad4ed 1589 read_random_unlimited(&isn_secret, sizeof isn_secret);
984263bc
MD
1590 isn_last_reseed = ticks;
1591 }
707ad4ed 1592
984263bc
MD
1593 /* Compute the md5 hash and return the ISN. */
1594 MD5Init(&isn_ctx);
707ad4ed
JH
1595 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1596 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
984263bc 1597#ifdef INET6
707ad4ed 1598 if (tp->t_inpcb->inp_vflag & INP_IPV6) {
984263bc
MD
1599 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1600 sizeof(struct in6_addr));
1601 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1602 sizeof(struct in6_addr));
1603 } else
1604#endif
1605 {
1606 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1607 sizeof(struct in_addr));
1608 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1609 sizeof(struct in_addr));
1610 }
1611 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1612 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1613 new_isn = (tcp_seq) md5_buffer[0];
1614 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
707ad4ed 1615 return (new_isn);
984263bc
MD
1616}
1617
1618/*
1619 * When a source quench is received, close congestion window
1620 * to one segment. We will gradually open it again as we proceed.
1621 */
1622void
71f385dc 1623tcp_quench(struct inpcb *inp, int error)
984263bc
MD
1624{
1625 struct tcpcb *tp = intotcpcb(inp);
1626
8acdb67c 1627 if (tp != NULL) {
984263bc 1628 tp->snd_cwnd = tp->t_maxseg;
8acdb67c
JH
1629 tp->snd_wacked = 0;
1630 }
984263bc
MD
1631}
1632
1633/*
1634 * When a specific ICMP unreachable message is received and the
1635 * connection state is SYN-SENT, drop the connection. This behavior
1636 * is controlled by the icmp_may_rst sysctl.
1637 */
1638void
71f385dc 1639tcp_drop_syn_sent(struct inpcb *inp, int error)
984263bc
MD
1640{
1641 struct tcpcb *tp = intotcpcb(inp);
1642
707ad4ed 1643 if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
71f385dc 1644 tcp_drop(tp, error);
984263bc
MD
1645}
1646
1647/*
7d448528 1648 * When a `need fragmentation' ICMP is received, update our idea of the MSS
984263bc
MD
1649 * based on the new value in the route. Also nudge TCP to send something,
1650 * since we know the packet we just sent was dropped.
1651 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1652 */
1653void
7d448528 1654tcp_mtudisc(struct inpcb *inp, int mtu)
984263bc
MD
1655{
1656 struct tcpcb *tp = intotcpcb(inp);
1657 struct rtentry *rt;
984263bc 1658 struct socket *so = inp->inp_socket;
7d448528 1659 int maxopd, mss;
984263bc 1660#ifdef INET6
707ad4ed
JH
1661 boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1662#else
1663 const boolean_t isipv6 = FALSE;
1664#endif
984263bc 1665
7d448528
JH
1666 if (tp == NULL)
1667 return;
1668
1669 /*
1670 * If no MTU is provided in the ICMP message, use the
1671 * next lower likely value, as specified in RFC 1191.
1672 */
1673 if (mtu == 0) {
1674 int oldmtu;
1675
1676 oldmtu = tp->t_maxopd +
1677 (isipv6 ?
1678 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1679 sizeof(struct tcpiphdr));
1680 mtu = ip_next_mtu(oldmtu, 0);
1681 }
1682
1683 if (isipv6)
1684 rt = tcp_rtlookup6(&inp->inp_inc);
1685 else
1686 rt = tcp_rtlookup(&inp->inp_inc);
1687 if (rt != NULL) {
7d448528
JH
1688 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1689 mtu = rt->rt_rmx.rmx_mtu;
1690
1691 maxopd = mtu -
1692 (isipv6 ?
1693 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1694 sizeof(struct tcpiphdr));
1695
984263bc 1696 /*
7d448528 1697 * XXX - The following conditional probably violates the TCP
984263bc
MD
1698 * spec. The problem is that, since we don't know the
1699 * other end's MSS, we are supposed to use a conservative
1700 * default. But, if we do that, then MTU discovery will
1701 * never actually take place, because the conservative
1702 * default is much less than the MTUs typically seen
1703 * on the Internet today. For the moment, we'll sweep
1704 * this under the carpet.
1705 *
1706 * The conservative default might not actually be a problem
1707 * if the only case this occurs is when sending an initial
1708 * SYN with options and data to a host we've never talked
1709 * to before. Then, they will reply with an MSS value which
1710 * will get recorded and the new parameters should get
1711 * recomputed. For Further Study.
1712 */
27b8aee3
AE
1713 if (rt->rt_rmx.rmx_mssopt && rt->rt_rmx.rmx_mssopt < maxopd)
1714 maxopd = rt->rt_rmx.rmx_mssopt;
7d448528
JH
1715 } else
1716 maxopd = mtu -
1717 (isipv6 ?
1718 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1719 sizeof(struct tcpiphdr));
1720
1721 if (tp->t_maxopd <= maxopd)
1722 return;
1723 tp->t_maxopd = maxopd;
1724
1725 mss = maxopd;
1726 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1727 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1728 mss -= TCPOLEN_TSTAMP_APPA;
1729
7d448528
JH
1730 /* round down to multiple of MCLBYTES */
1731#if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1732 if (mss > MCLBYTES)
1733 mss &= ~(MCLBYTES - 1);
984263bc 1734#else
7d448528
JH
1735 if (mss > MCLBYTES)
1736 mss = (mss / MCLBYTES) * MCLBYTES;
984263bc 1737#endif
984263bc 1738
6d49aa6f
MD
1739 if (so->so_snd.ssb_hiwat < mss)
1740 mss = so->so_snd.ssb_hiwat;
984263bc 1741
7d448528
JH
1742 tp->t_maxseg = mss;
1743 tp->t_rtttime = 0;
1744 tp->snd_nxt = tp->snd_una;
1745 tcp_output(tp);
1746 tcpstat.tcps_mturesent++;
984263bc
MD
1747}
1748
1749/*
1750 * Look-up the routing entry to the peer of this inpcb. If no route
1751 * is found and it cannot be allocated the return NULL. This routine
1752 * is called by TCP routines that access the rmx structure and by tcp_mss
1753 * to get the interface MTU.
1754 */
1755struct rtentry *
707ad4ed 1756tcp_rtlookup(struct in_conninfo *inc)
984263bc 1757{
f23061d4 1758 struct route *ro = &inc->inc_route;
984263bc 1759
f23061d4 1760 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
984263bc
MD
1761 /* No route yet, so try to acquire one */
1762 if (inc->inc_faddr.s_addr != INADDR_ANY) {
88fcebeb
MD
1763 /*
1764 * unused portions of the structure MUST be zero'd
1765 * out because rtalloc() treats it as opaque data
1766 */
1767 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
984263bc
MD
1768 ro->ro_dst.sa_family = AF_INET;
1769 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1770 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1771 inc->inc_faddr;
1772 rtalloc(ro);
984263bc
MD
1773 }
1774 }
f23061d4 1775 return (ro->ro_rt);
984263bc
MD
1776}
1777
1778#ifdef INET6
1779struct rtentry *
707ad4ed 1780tcp_rtlookup6(struct in_conninfo *inc)
984263bc 1781{
f23061d4 1782 struct route_in6 *ro6 = &inc->inc6_route;
984263bc 1783
f23061d4 1784 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
984263bc
MD
1785 /* No route yet, so try to acquire one */
1786 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
88fcebeb
MD
1787 /*
1788 * unused portions of the structure MUST be zero'd
1789 * out because rtalloc() treats it as opaque data
1790 */
1791 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
984263bc
MD
1792 ro6->ro_dst.sin6_family = AF_INET6;
1793 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1794 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1795 rtalloc((struct route *)ro6);
984263bc
MD
1796 }
1797 }
f23061d4 1798 return (ro6->ro_rt);
984263bc 1799}
707ad4ed 1800#endif
984263bc
MD
1801
1802#ifdef IPSEC
1803/* compute ESP/AH header size for TCP, including outer IP header. */
1804size_t
707ad4ed 1805ipsec_hdrsiz_tcp(struct tcpcb *tp)
984263bc
MD
1806{
1807 struct inpcb *inp;
1808 struct mbuf *m;
1809 size_t hdrsiz;
1810 struct ip *ip;
984263bc
MD
1811 struct tcphdr *th;
1812
1813 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
707ad4ed 1814 return (0);
74f1caca 1815 MGETHDR(m, MB_DONTWAIT, MT_DATA);
984263bc 1816 if (!m)
707ad4ed 1817 return (0);
984263bc
MD
1818
1819#ifdef INET6
707ad4ed
JH
1820 if (inp->inp_vflag & INP_IPV6) {
1821 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1822
984263bc
MD
1823 th = (struct tcphdr *)(ip6 + 1);
1824 m->m_pkthdr.len = m->m_len =
707ad4ed 1825 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
984263bc
MD
1826 tcp_fillheaders(tp, ip6, th);
1827 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1828 } else
707ad4ed
JH
1829#endif
1830 {
1831 ip = mtod(m, struct ip *);
1832 th = (struct tcphdr *)(ip + 1);
1833 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1834 tcp_fillheaders(tp, ip, th);
1835 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1836 }
984263bc
MD
1837
1838 m_free(m);
707ad4ed 1839 return (hdrsiz);
984263bc 1840}
707ad4ed 1841#endif
984263bc 1842
984263bc
MD
1843/*
1844 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1845 *
1846 * This code attempts to calculate the bandwidth-delay product as a
1847 * means of determining the optimal window size to maximize bandwidth,
1848 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1849 * routers. This code also does a fairly good job keeping RTTs in check
1850 * across slow links like modems. We implement an algorithm which is very
1851 * similar (but not meant to be) TCP/Vegas. The code operates on the
1852 * transmitter side of a TCP connection and so only effects the transmit
1853 * side of the connection.
1854 *
1855 * BACKGROUND: TCP makes no provision for the management of buffer space
f23061d4 1856 * at the end points or at the intermediate routers and switches. A TCP
984263bc
MD
1857 * stream, whether using NewReno or not, will eventually buffer as
1858 * many packets as it is able and the only reason this typically works is
1859 * due to the fairly small default buffers made available for a connection
1860 * (typicaly 16K or 32K). As machines use larger windows and/or window
1861 * scaling it is now fairly easy for even a single TCP connection to blow-out
f23061d4 1862 * all available buffer space not only on the local interface, but on
984263bc
MD
1863 * intermediate routers and switches as well. NewReno makes a misguided
1864 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1865 * then backing off, then steadily increasing the window again until another
1866 * failure occurs, ad-infinitum. This results in terrible oscillation that
1867 * is only made worse as network loads increase and the idea of intentionally
1868 * blowing out network buffers is, frankly, a terrible way to manage network
1869 * resources.
1870 *
1871 * It is far better to limit the transmit window prior to the failure
1872 * condition being achieved. There are two general ways to do this: First
1873 * you can 'scan' through different transmit window sizes and locate the
1874 * point where the RTT stops increasing, indicating that you have filled the
1875 * pipe, then scan backwards until you note that RTT stops decreasing, then
1876 * repeat ad-infinitum. This method works in principle but has severe
1877 * implementation issues due to RTT variances, timer granularity, and
1878 * instability in the algorithm which can lead to many false positives and
1879 * create oscillations as well as interact badly with other TCP streams
1880 * implementing the same algorithm.
1881 *
1882 * The second method is to limit the window to the bandwidth delay product
1883 * of the link. This is the method we implement. RTT variances and our
f23061d4 1884 * own manipulation of the congestion window, bwnd, can potentially
984263bc
MD
1885 * destabilize the algorithm. For this reason we have to stabilize the
1886 * elements used to calculate the window. We do this by using the minimum
1887 * observed RTT, the long term average of the observed bandwidth, and
1888 * by adding two segments worth of slop. It isn't perfect but it is able
1889 * to react to changing conditions and gives us a very stable basis on
1890 * which to extend the algorithm.
1891 */
1892void
1893tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1894{
1895 u_long bw;
1896 u_long bwnd;
1897 int save_ticks;
421de19e 1898 int delta_ticks;
984263bc
MD
1899
1900 /*
1901 * If inflight_enable is disabled in the middle of a tcp connection,
1902 * make sure snd_bwnd is effectively disabled.
1903 */
707ad4ed 1904 if (!tcp_inflight_enable) {
984263bc
MD
1905 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1906 tp->snd_bandwidth = 0;
1907 return;
1908 }
1909
421de19e
MD
1910 /*
1911 * Validate the delta time. If a connection is new or has been idle
1912 * a long time we have to reset the bandwidth calculator.
1913 */
1914 save_ticks = ticks;
1915 delta_ticks = save_ticks - tp->t_bw_rtttime;
1916 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1917 tp->t_bw_rtttime = ticks;
1918 tp->t_bw_rtseq = ack_seq;
1919 if (tp->snd_bandwidth == 0)
1920 tp->snd_bandwidth = tcp_inflight_min;
1921 return;
1922 }
1923 if (delta_ticks == 0)
1924 return;
1925
1926 /*
1927 * Sanity check, plus ignore pure window update acks.
1928 */
1929 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1930 return;
1931
984263bc
MD
1932 /*
1933 * Figure out the bandwidth. Due to the tick granularity this
1934 * is a very rough number and it MUST be averaged over a fairly
1935 * long period of time. XXX we need to take into account a link
1936 * that is not using all available bandwidth, but for now our
1937 * slop will ramp us up if this case occurs and the bandwidth later
1938 * increases.
984263bc 1939 */
421de19e 1940 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
984263bc
MD
1941 tp->t_bw_rtttime = save_ticks;
1942 tp->t_bw_rtseq = ack_seq;
984263bc
MD
1943 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1944
1945 tp->snd_bandwidth = bw;
1946
1947 /*
1948 * Calculate the semi-static bandwidth delay product, plus two maximal
1949 * segments. The additional slop puts us squarely in the sweet
1950 * spot and also handles the bandwidth run-up case. Without the
1951 * slop we could be locking ourselves into a lower bandwidth.
1952 *
1953 * Situations Handled:
1954 * (1) Prevents over-queueing of packets on LANs, especially on
1955 * high speed LANs, allowing larger TCP buffers to be
f23061d4 1956 * specified, and also does a good job preventing
984263bc
MD
1957 * over-queueing of packets over choke points like modems
1958 * (at least for the transmit side).
1959 *
1960 * (2) Is able to handle changing network loads (bandwidth
1961 * drops so bwnd drops, bandwidth increases so bwnd
1962 * increases).
1963 *
1964 * (3) Theoretically should stabilize in the face of multiple
1965 * connections implementing the same algorithm (this may need
1966 * a little work).
1967 *
f23061d4 1968 * (4) Stability value (defaults to 20 = 2 maximal packets) can
984263bc
MD
1969 * be adjusted with a sysctl but typically only needs to be on
1970 * very slow connections. A value no smaller then 5 should
1971 * be used, but only reduce this default if you have no other
1972 * choice.
1973 */
707ad4ed
JH
1974
1975#define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
1976 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1977 tcp_inflight_stab * (int)tp->t_maxseg / 10;
984263bc
MD
1978#undef USERTT
1979
1980 if (tcp_inflight_debug > 0) {
1981 static int ltime;
1982 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1983 ltime = ticks;
a6ec04bc 1984 kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
707ad4ed 1985 tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
984263bc
MD
1986 }
1987 }
1988 if ((long)bwnd < tcp_inflight_min)
1989 bwnd = tcp_inflight_min;
1990 if (bwnd > tcp_inflight_max)
1991 bwnd = tcp_inflight_max;
1992 if ((long)bwnd < tp->t_maxseg * 2)
1993 bwnd = tp->t_maxseg * 2;
1994 tp->snd_bwnd = bwnd;
1995}
b1992928
MD
1996
1997#ifdef TCP_SIGNATURE
1998/*
1999 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2000 *
2001 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2002 * When called from tcp_input(), we can be sure that th_sum has been
2003 * zeroed out and verified already.
2004 *
2005 * Return 0 if successful, otherwise return -1.
2006 *
2007 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2008 * search with the destination IP address, and a 'magic SPI' to be
2009 * determined by the application. This is hardcoded elsewhere to 1179
2010 * right now. Another branch of this code exists which uses the SPD to
2011 * specify per-application flows but it is unstable.
2012 */
2013int
2014tcpsignature_compute(
2015 struct mbuf *m, /* mbuf chain */
2016 int len, /* length of TCP data */
2017 int optlen, /* length of TCP options */
2018 u_char *buf, /* storage for MD5 digest */
2019 u_int direction) /* direction of flow */
2020{
2021 struct ippseudo ippseudo;
2022 MD5_CTX ctx;
2023 int doff;
2024 struct ip *ip;
2025 struct ipovly *ipovly;
2026 struct secasvar *sav;
2027 struct tcphdr *th;
2028#ifdef INET6
2029 struct ip6_hdr *ip6;
2030 struct in6_addr in6;
2031 uint32_t plen;
2032 uint16_t nhdr;
2033#endif /* INET6 */
2034 u_short savecsum;
2035
2036 KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2037 KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2038 /*
2039 * Extract the destination from the IP header in the mbuf.
2040 */
2041 ip = mtod(m, struct ip *);
2042#ifdef INET6
2043 ip6 = NULL; /* Make the compiler happy. */
2044#endif /* INET6 */
2045 /*
2046 * Look up an SADB entry which matches the address found in
2047 * the segment.
2048 */
2049 switch (IP_VHL_V(ip->ip_vhl)) {
2050 case IPVERSION:
2051 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2052 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2053 break;
2054#ifdef INET6
2055 case (IPV6_VERSION >> 4):
2056 ip6 = mtod(m, struct ip6_hdr *);
2057 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2058 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2059 break;
2060#endif /* INET6 */
2061 default:
2062 return (EINVAL);
2063 /* NOTREACHED */
2064 break;
2065 }
2066 if (sav == NULL) {
2067 kprintf("%s: SADB lookup failed\n", __func__);
2068 return (EINVAL);
2069 }
2070 MD5Init(&ctx);
2071
2072 /*
2073 * Step 1: Update MD5 hash with IP pseudo-header.
2074 *
2075 * XXX The ippseudo header MUST be digested in network byte order,
2076 * or else we'll fail the regression test. Assume all fields we've
2077 * been doing arithmetic on have been in host byte order.
2078 * XXX One cannot depend on ipovly->ih_len here. When called from
2079 * tcp_output(), the underlying ip_len member has not yet been set.
2080 */
2081 switch (IP_VHL_V(ip->ip_vhl)) {
2082 case IPVERSION:
2083 ipovly = (struct ipovly *)ip;
2084 ippseudo.ippseudo_src = ipovly->ih_src;
2085 ippseudo.ippseudo_dst = ipovly->ih_dst;
2086 ippseudo.ippseudo_pad = 0;
2087 ippseudo.ippseudo_p = IPPROTO_TCP;
2088 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2089 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2090 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2091 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2092 break;
2093#ifdef INET6
2094 /*
2095 * RFC 2385, 2.0 Proposal
2096 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2097 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2098 * extended next header value (to form 32 bits), and 32-bit segment
2099 * length.
2100 * Note: Upper-Layer Packet Length comes before Next Header.
2101 */
2102 case (IPV6_VERSION >> 4):
2103 in6 = ip6->ip6_src;
2104 in6_clearscope(&in6);
2105 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2106 in6 = ip6->ip6_dst;
2107 in6_clearscope(&in6);
2108 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2109 plen = htonl(len + sizeof(struct tcphdr) + optlen);
2110 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2111 nhdr = 0;
2112 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2113 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2114 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2115 nhdr = IPPROTO_TCP;
2116 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2117 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2118 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2119 break;
2120#endif /* INET6 */
2121 default:
2122 return (EINVAL);
2123 /* NOTREACHED */
2124 break;
2125 }
2126 /*
2127 * Step 2: Update MD5 hash with TCP header, excluding options.
2128 * The TCP checksum must be set to zero.
2129 */
2130 savecsum = th->th_sum;
2131 th->th_sum = 0;
2132 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2133 th->th_sum = savecsum;
2134 /*
2135 * Step 3: Update MD5 hash with TCP segment data.
2136 * Use m_apply() to avoid an early m_pullup().
2137 */
2138 if (len > 0)
2139 m_apply(m, doff, len, tcpsignature_apply, &ctx);
2140 /*
2141 * Step 4: Update MD5 hash with shared secret.
2142 */
2143 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2144 MD5Final(buf, &ctx);
2145 key_sa_recordxfer(sav, m);
2146 key_freesav(sav);
2147 return (0);
2148}
2149
2150int
2151tcpsignature_apply(void *fstate, void *data, unsigned int len)
2152{
2153
2154 MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2155 return (0);
2156}
2157#endif /* TCP_SIGNATURE */