Add an installer-fetchpkgs target and other related stuff to reduce the
[dragonfly.git] / sys / kern / vfs_subr.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
2d3e977e 40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.36 2004/08/13 17:51:09 dillon Exp $
984263bc
MD
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
984263bc 61#include <sys/proc.h>
dadab5e9 62#include <sys/namei.h>
984263bc
MD
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72
73#include <vm/vm.h>
74#include <vm/vm_object.h>
75#include <vm/vm_extern.h>
6ef943a3 76#include <vm/vm_kern.h>
984263bc
MD
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
3020e3be 84#include <sys/buf2.h>
f5865223 85#include <sys/thread2.h>
3020e3be 86
984263bc
MD
87static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88
402ed7e1 89static void insmntque (struct vnode *vp, struct mount *mp);
dd98570a
MD
90static void vclean (struct vnode *vp, lwkt_tokref_t vlock,
91 int flags, struct thread *td);
92
93static unsigned long numvnodes;
984263bc
MD
94SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
95
96enum vtype iftovt_tab[16] = {
97 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99};
100int vttoif_tab[9] = {
101 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102 S_IFSOCK, S_IFIFO, S_IFMT,
103};
104
105static TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
106
107static u_long wantfreevnodes = 25;
dd98570a
MD
108SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
109 &wantfreevnodes, 0, "");
984263bc 110static u_long freevnodes = 0;
dd98570a
MD
111SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD,
112 &freevnodes, 0, "");
984263bc
MD
113
114static int reassignbufcalls;
dd98570a
MD
115SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
116 &reassignbufcalls, 0, "");
984263bc 117static int reassignbufloops;
dd98570a
MD
118SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
119 &reassignbufloops, 0, "");
984263bc 120static int reassignbufsortgood;
dd98570a
MD
121SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
122 &reassignbufsortgood, 0, "");
984263bc 123static int reassignbufsortbad;
dd98570a
MD
124SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
125 &reassignbufsortbad, 0, "");
984263bc 126static int reassignbufmethod = 1;
dd98570a
MD
127SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
128 &reassignbufmethod, 0, "");
984263bc
MD
129
130#ifdef ENABLE_VFS_IOOPT
131int vfs_ioopt = 0;
132SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
133#endif
134
135struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
8a8d5d85
MD
136struct lwkt_token mountlist_token;
137struct lwkt_token mntvnode_token;
984263bc 138int nfs_mount_type = -1;
8a8d5d85
MD
139static struct lwkt_token mntid_token;
140static struct lwkt_token vnode_free_list_token;
141static struct lwkt_token spechash_token;
984263bc
MD
142struct nfs_public nfs_pub; /* publicly exported FS */
143static vm_zone_t vnode_zone;
144
145/*
146 * The workitem queue.
147 */
148#define SYNCER_MAXDELAY 32
149static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
150time_t syncdelay = 30; /* max time to delay syncing data */
dd98570a
MD
151SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW,
152 &syncdelay, 0, "VFS data synchronization delay");
984263bc 153time_t filedelay = 30; /* time to delay syncing files */
dd98570a
MD
154SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
155 &filedelay, 0, "File synchronization delay");
984263bc 156time_t dirdelay = 29; /* time to delay syncing directories */
dd98570a
MD
157SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
158 &dirdelay, 0, "Directory synchronization delay");
984263bc 159time_t metadelay = 28; /* time to delay syncing metadata */
dd98570a
MD
160SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
161 &metadelay, 0, "VFS metadata synchronization delay");
984263bc
MD
162static int rushjob; /* number of slots to run ASAP */
163static int stat_rush_requests; /* number of times I/O speeded up */
dd98570a
MD
164SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
165 &stat_rush_requests, 0, "");
984263bc
MD
166
167static int syncer_delayno = 0;
168static long syncer_mask;
169LIST_HEAD(synclist, vnode);
170static struct synclist *syncer_workitem_pending;
171
172int desiredvnodes;
173SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
dd98570a 174 &desiredvnodes, 0, "Maximum number of vnodes");
984263bc
MD
175static int minvnodes;
176SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
dd98570a 177 &minvnodes, 0, "Minimum number of vnodes");
984263bc 178static int vnlru_nowhere = 0;
dd98570a
MD
179SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
180 &vnlru_nowhere, 0,
181 "Number of times the vnlru process ran without success");
984263bc 182
402ed7e1
RG
183static void vfs_free_addrlist (struct netexport *nep);
184static int vfs_free_netcred (struct radix_node *rn, void *w);
185static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
186 struct export_args *argp);
984263bc 187
41a01a4d
MD
188#define VSHOULDFREE(vp) \
189 (!((vp)->v_flag & (VFREE|VDOOMED)) && \
190 !(vp)->v_holdcnt && !(vp)->v_usecount && \
191 (!(vp)->v_object || \
192 !((vp)->v_object->ref_count || (vp)->v_object->resident_page_count)))
193
194#define VMIGHTFREE(vp) \
195 (((vp)->v_flag & (VFREE|VDOOMED|VXLOCK)) == 0 && \
196 cache_leaf_test(vp) == 0 && (vp)->v_usecount == 0)
197
198#define VSHOULDBUSY(vp) \
199 (((vp)->v_flag & VFREE) && \
200 ((vp)->v_holdcnt || (vp)->v_usecount))
201
202static void vbusy(struct vnode *vp);
203static void vfree(struct vnode *vp);
204static void vmaybefree(struct vnode *vp);
205
e4c9c0c8
MD
206extern int dev_ref_debug;
207
41a01a4d
MD
208/*
209 * NOTE: the vnode interlock must be held on call.
210 */
211static __inline void
212vmaybefree(struct vnode *vp)
213{
214 if (VSHOULDFREE(vp))
215 vfree(vp);
216}
217
984263bc
MD
218/*
219 * Initialize the vnode management data structures.
220 */
221void
dd98570a 222vntblinit(void)
984263bc
MD
223{
224
6ef943a3
MD
225 /*
226 * Desired vnodes is a result of the physical page count
227 * and the size of kernel's heap. It scales in proportion
228 * to the amount of available physical memory. This can
229 * cause trouble on 64-bit and large memory platforms.
230 */
231 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
232 desiredvnodes =
233 min(maxproc + vmstats.v_page_count /4,
234 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
235 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
236
984263bc 237 minvnodes = desiredvnodes / 4;
41a01a4d
MD
238 lwkt_token_init(&mountlist_token);
239 lwkt_token_init(&mntvnode_token);
240 lwkt_token_init(&mntid_token);
241 lwkt_token_init(&spechash_token);
984263bc 242 TAILQ_INIT(&vnode_free_list);
41a01a4d 243 lwkt_token_init(&vnode_free_list_token);
984263bc
MD
244 vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
245 /*
246 * Initialize the filesystem syncer.
247 */
248 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
249 &syncer_mask);
250 syncer_maxdelay = syncer_mask + 1;
251}
252
253/*
254 * Mark a mount point as busy. Used to synchronize access and to delay
255 * unmounting. Interlock is not released on failure.
256 */
257int
dd98570a
MD
258vfs_busy(struct mount *mp, int flags,
259 lwkt_tokref_t interlkp, struct thread *td)
984263bc
MD
260{
261 int lkflags;
262
263 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
264 if (flags & LK_NOWAIT)
265 return (ENOENT);
266 mp->mnt_kern_flag |= MNTK_MWAIT;
984263bc
MD
267 /*
268 * Since all busy locks are shared except the exclusive
269 * lock granted when unmounting, the only place that a
270 * wakeup needs to be done is at the release of the
271 * exclusive lock at the end of dounmount.
41a01a4d
MD
272 *
273 * note: interlkp is a serializer and thus can be safely
274 * held through any sleep
984263bc 275 */
377d4740 276 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
984263bc
MD
277 return (ENOENT);
278 }
279 lkflags = LK_SHARED | LK_NOPAUSE;
280 if (interlkp)
281 lkflags |= LK_INTERLOCK;
dadab5e9 282 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
984263bc
MD
283 panic("vfs_busy: unexpected lock failure");
284 return (0);
285}
286
287/*
288 * Free a busy filesystem.
289 */
290void
dadab5e9 291vfs_unbusy(struct mount *mp, struct thread *td)
984263bc 292{
dadab5e9 293 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
984263bc
MD
294}
295
296/*
297 * Lookup a filesystem type, and if found allocate and initialize
298 * a mount structure for it.
299 *
300 * Devname is usually updated by mount(8) after booting.
301 */
302int
dadab5e9 303vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
984263bc 304{
dadab5e9 305 struct thread *td = curthread; /* XXX */
984263bc
MD
306 struct vfsconf *vfsp;
307 struct mount *mp;
308
309 if (fstypename == NULL)
310 return (ENODEV);
6b98993e 311 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
984263bc
MD
312 if (!strcmp(vfsp->vfc_name, fstypename))
313 break;
6b98993e 314 }
984263bc
MD
315 if (vfsp == NULL)
316 return (ENODEV);
317 mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
318 bzero((char *)mp, (u_long)sizeof(struct mount));
377d4740 319 lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
41a01a4d 320 vfs_busy(mp, LK_NOWAIT, NULL, td);
984263bc
MD
321 TAILQ_INIT(&mp->mnt_nvnodelist);
322 TAILQ_INIT(&mp->mnt_reservedvnlist);
323 mp->mnt_nvnodelistsize = 0;
324 mp->mnt_vfc = vfsp;
325 mp->mnt_op = vfsp->vfc_vfsops;
326 mp->mnt_flag = MNT_RDONLY;
327 mp->mnt_vnodecovered = NULLVP;
328 vfsp->vfc_refcount++;
329 mp->mnt_iosize_max = DFLTPHYS;
330 mp->mnt_stat.f_type = vfsp->vfc_typenum;
331 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
332 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
333 mp->mnt_stat.f_mntonname[0] = '/';
334 mp->mnt_stat.f_mntonname[1] = 0;
335 (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
336 *mpp = mp;
337 return (0);
338}
339
984263bc
MD
340/*
341 * Lookup a mount point by filesystem identifier.
342 */
343struct mount *
dd98570a 344vfs_getvfs(fsid_t *fsid)
984263bc 345{
1fd87d54 346 struct mount *mp;
41a01a4d 347 lwkt_tokref ilock;
984263bc 348
41a01a4d 349 lwkt_gettoken(&ilock, &mountlist_token);
984263bc
MD
350 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
351 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
352 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
41a01a4d 353 break;
984263bc
MD
354 }
355 }
41a01a4d
MD
356 lwkt_reltoken(&ilock);
357 return (mp);
984263bc
MD
358}
359
360/*
361 * Get a new unique fsid. Try to make its val[0] unique, since this value
362 * will be used to create fake device numbers for stat(). Also try (but
363 * not so hard) make its val[0] unique mod 2^16, since some emulators only
364 * support 16-bit device numbers. We end up with unique val[0]'s for the
365 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
366 *
367 * Keep in mind that several mounts may be running in parallel. Starting
368 * the search one past where the previous search terminated is both a
369 * micro-optimization and a defense against returning the same fsid to
370 * different mounts.
371 */
372void
dd98570a 373vfs_getnewfsid(struct mount *mp)
984263bc
MD
374{
375 static u_int16_t mntid_base;
41a01a4d 376 lwkt_tokref ilock;
984263bc
MD
377 fsid_t tfsid;
378 int mtype;
379
41a01a4d 380 lwkt_gettoken(&ilock, &mntid_token);
984263bc
MD
381 mtype = mp->mnt_vfc->vfc_typenum;
382 tfsid.val[1] = mtype;
383 mtype = (mtype & 0xFF) << 24;
384 for (;;) {
385 tfsid.val[0] = makeudev(255,
386 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
387 mntid_base++;
388 if (vfs_getvfs(&tfsid) == NULL)
389 break;
390 }
391 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
392 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
41a01a4d 393 lwkt_reltoken(&ilock);
984263bc
MD
394}
395
396/*
397 * Knob to control the precision of file timestamps:
398 *
399 * 0 = seconds only; nanoseconds zeroed.
400 * 1 = seconds and nanoseconds, accurate within 1/HZ.
401 * 2 = seconds and nanoseconds, truncated to microseconds.
402 * >=3 = seconds and nanoseconds, maximum precision.
403 */
404enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
405
406static int timestamp_precision = TSP_SEC;
407SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
dd98570a 408 &timestamp_precision, 0, "");
984263bc
MD
409
410/*
411 * Get a current timestamp.
412 */
413void
dd98570a 414vfs_timestamp(struct timespec *tsp)
984263bc
MD
415{
416 struct timeval tv;
417
418 switch (timestamp_precision) {
419 case TSP_SEC:
420 tsp->tv_sec = time_second;
421 tsp->tv_nsec = 0;
422 break;
423 case TSP_HZ:
424 getnanotime(tsp);
425 break;
426 case TSP_USEC:
427 microtime(&tv);
428 TIMEVAL_TO_TIMESPEC(&tv, tsp);
429 break;
430 case TSP_NSEC:
431 default:
432 nanotime(tsp);
433 break;
434 }
435}
436
437/*
438 * Set vnode attributes to VNOVAL
439 */
440void
dd98570a 441vattr_null(struct vattr *vap)
984263bc 442{
984263bc
MD
443 vap->va_type = VNON;
444 vap->va_size = VNOVAL;
445 vap->va_bytes = VNOVAL;
446 vap->va_mode = VNOVAL;
447 vap->va_nlink = VNOVAL;
448 vap->va_uid = VNOVAL;
449 vap->va_gid = VNOVAL;
450 vap->va_fsid = VNOVAL;
451 vap->va_fileid = VNOVAL;
452 vap->va_blocksize = VNOVAL;
453 vap->va_rdev = VNOVAL;
454 vap->va_atime.tv_sec = VNOVAL;
455 vap->va_atime.tv_nsec = VNOVAL;
456 vap->va_mtime.tv_sec = VNOVAL;
457 vap->va_mtime.tv_nsec = VNOVAL;
458 vap->va_ctime.tv_sec = VNOVAL;
459 vap->va_ctime.tv_nsec = VNOVAL;
460 vap->va_flags = VNOVAL;
461 vap->va_gen = VNOVAL;
462 vap->va_vaflags = 0;
463}
464
465/*
466 * This routine is called when we have too many vnodes. It attempts
467 * to free <count> vnodes and will potentially free vnodes that still
468 * have VM backing store (VM backing store is typically the cause
469 * of a vnode blowout so we want to do this). Therefore, this operation
470 * is not considered cheap.
471 *
472 * A number of conditions may prevent a vnode from being reclaimed.
473 * the buffer cache may have references on the vnode, a directory
474 * vnode may still have references due to the namei cache representing
475 * underlying files, or the vnode may be in active use. It is not
476 * desireable to reuse such vnodes. These conditions may cause the
477 * number of vnodes to reach some minimum value regardless of what
478 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
479 */
480static int
481vlrureclaim(struct mount *mp)
482{
483 struct vnode *vp;
41a01a4d
MD
484 lwkt_tokref ilock;
485 lwkt_tokref vlock;
984263bc
MD
486 int done;
487 int trigger;
488 int usevnodes;
489 int count;
490
491 /*
492 * Calculate the trigger point, don't allow user
493 * screwups to blow us up. This prevents us from
494 * recycling vnodes with lots of resident pages. We
495 * aren't trying to free memory, we are trying to
496 * free vnodes.
497 */
498 usevnodes = desiredvnodes;
499 if (usevnodes <= 0)
500 usevnodes = 1;
12e4aaff 501 trigger = vmstats.v_page_count * 2 / usevnodes;
984263bc
MD
502
503 done = 0;
41a01a4d 504 lwkt_gettoken(&ilock, &mntvnode_token);
984263bc
MD
505 count = mp->mnt_nvnodelistsize / 10 + 1;
506 while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
41a01a4d
MD
507 /*
508 * __VNODESCAN__
509 *
510 * The VP will stick around while we hold mntvnode_token,
511 * at least until we block, so we can safely do an initial
512 * check. But we have to check again after obtaining
513 * the vnode interlock. vp->v_interlock points to stable
514 * storage so it's ok if the vp gets ripped out from
515 * under us while we are blocked.
516 */
517 if (vp->v_type == VNON ||
518 vp->v_type == VBAD ||
519 !VMIGHTFREE(vp) || /* critical path opt */
520 (vp->v_object &&
521 vp->v_object->resident_page_count >= trigger)
522 ) {
523 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
524 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
525 --count;
526 continue;
527 }
528
529 /*
530 * Get the interlock, delay moving the node to the tail so
531 * we don't race against new additions to the mountlist.
532 */
533 lwkt_gettoken(&vlock, vp->v_interlock);
534 if (TAILQ_FIRST(&mp->mnt_nvnodelist) != vp) {
535 lwkt_reltoken(&vlock);
536 continue;
537 }
984263bc 538 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
41a01a4d 539 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
984263bc 540
41a01a4d
MD
541 /*
542 * Must check again
543 */
544 if (vp->v_type == VNON ||
545 vp->v_type == VBAD ||
546 !VMIGHTFREE(vp) || /* critical path opt */
547 (vp->v_object &&
548 vp->v_object->resident_page_count >= trigger)
984263bc 549 ) {
41a01a4d
MD
550 lwkt_reltoken(&vlock);
551 --count;
552 continue;
984263bc 553 }
41a01a4d
MD
554 vgonel(vp, &vlock, curthread);
555 ++done;
984263bc
MD
556 --count;
557 }
41a01a4d 558 lwkt_reltoken(&ilock);
984263bc
MD
559 return done;
560}
561
562/*
563 * Attempt to recycle vnodes in a context that is always safe to block.
564 * Calling vlrurecycle() from the bowels of file system code has some
565 * interesting deadlock problems.
566 */
bc6dffab 567static struct thread *vnlruthread;
984263bc
MD
568static int vnlruproc_sig;
569
570static void
571vnlru_proc(void)
572{
573 struct mount *mp, *nmp;
41a01a4d 574 lwkt_tokref ilock;
984263bc
MD
575 int s;
576 int done;
0cfcada1 577 struct thread *td = curthread;
984263bc 578
bc6dffab 579 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
984263bc
MD
580 SHUTDOWN_PRI_FIRST);
581
582 s = splbio();
583 for (;;) {
0cfcada1 584 kproc_suspend_loop();
984263bc
MD
585 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
586 vnlruproc_sig = 0;
587 wakeup(&vnlruproc_sig);
377d4740 588 tsleep(td, 0, "vlruwt", hz);
984263bc
MD
589 continue;
590 }
591 done = 0;
41a01a4d 592 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 593 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 594 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
984263bc
MD
595 nmp = TAILQ_NEXT(mp, mnt_list);
596 continue;
597 }
598 done += vlrureclaim(mp);
41a01a4d 599 lwkt_gettokref(&ilock);
984263bc 600 nmp = TAILQ_NEXT(mp, mnt_list);
dadab5e9 601 vfs_unbusy(mp, td);
984263bc 602 }
41a01a4d 603 lwkt_reltoken(&ilock);
984263bc
MD
604 if (done == 0) {
605 vnlru_nowhere++;
377d4740 606 tsleep(td, 0, "vlrup", hz * 3);
984263bc
MD
607 }
608 }
609 splx(s);
610}
611
612static struct kproc_desc vnlru_kp = {
613 "vnlru",
614 vnlru_proc,
bc6dffab 615 &vnlruthread
984263bc
MD
616};
617SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
618
619/*
620 * Routines having to do with the management of the vnode table.
621 */
2d3e977e 622extern struct vop_ops *dead_vnode_vops;
984263bc
MD
623
624/*
625 * Return the next vnode from the free list.
626 */
627int
dd98570a 628getnewvnode(enum vtagtype tag, struct mount *mp,
2d3e977e 629 struct vop_ops *vops, struct vnode **vpp)
984263bc
MD
630{
631 int s;
dadab5e9 632 struct thread *td = curthread; /* XXX */
984263bc 633 struct vnode *vp = NULL;
41a01a4d 634 struct vnode *xvp;
984263bc 635 vm_object_t object;
41a01a4d
MD
636 lwkt_tokref ilock;
637 lwkt_tokref vlock;
984263bc 638
da6efd2c 639 s = splbio(); /* YYY remove me */
984263bc
MD
640
641 /*
642 * Try to reuse vnodes if we hit the max. This situation only
643 * occurs in certain large-memory (2G+) situations. We cannot
644 * attempt to directly reclaim vnodes due to nasty recursion
645 * problems.
646 */
647 while (numvnodes - freevnodes > desiredvnodes) {
648 if (vnlruproc_sig == 0) {
649 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
bc6dffab 650 wakeup(vnlruthread);
984263bc 651 }
377d4740 652 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
984263bc
MD
653 }
654
655
656 /*
657 * Attempt to reuse a vnode already on the free list, allocating
658 * a new vnode if we can't find one or if we have not reached a
659 * good minimum for good LRU performance.
660 */
41a01a4d 661 lwkt_gettoken(&ilock, &vnode_free_list_token);
984263bc
MD
662 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
663 int count;
664
665 for (count = 0; count < freevnodes; count++) {
41a01a4d
MD
666 /*
667 * __VNODESCAN__
668 *
669 * Pull the next vnode off the free list and do some
670 * sanity checks. Note that regardless of how we
671 * block, if freevnodes is non-zero there had better
672 * be something on the list.
673 */
984263bc 674 vp = TAILQ_FIRST(&vnode_free_list);
41a01a4d 675 if (vp == NULL)
984263bc
MD
676 panic("getnewvnode: free vnode isn't");
677
8a8d5d85 678 /*
41a01a4d
MD
679 * Move the vnode to the end of the list so other
680 * processes do not double-block trying to recycle
681 * the same vnode (as an optimization), then get
682 * the interlock.
8a8d5d85 683 */
41a01a4d
MD
684 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
685 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
686
687 /*
688 * Skip vnodes that are in the process of being
689 * held or referenced. Since the act of adding or
690 * removing a vnode on the freelist requires a token
691 * and may block, the ref count may be adjusted
692 * prior to its addition or removal.
693 */
694 if (VSHOULDBUSY(vp)) {
8a8d5d85
MD
695 vp = NULL;
696 continue;
697 }
698
41a01a4d 699
8a8d5d85 700 /*
41a01a4d
MD
701 * Obtain the vnode interlock and check that the
702 * vnode is still on the free list.
703 *
704 * This normally devolves into a degenerate case so
705 * it is optimal. Loop up if it isn't. Note that
706 * the vnode could be in the middle of being moved
707 * off the free list (the VSHOULDBUSY() check) and
708 * must be skipped if so.
8a8d5d85 709 */
41a01a4d
MD
710 lwkt_gettoken(&vlock, vp->v_interlock);
711 TAILQ_FOREACH_REVERSE(xvp, &vnode_free_list,
712 freelst, v_freelist) {
713 if (vp == xvp)
714 break;
715 }
716 if (vp != xvp || VSHOULDBUSY(vp)) {
8a8d5d85
MD
717 vp = NULL;
718 continue;
719 }
720
721 /*
41a01a4d
MD
722 * We now safely own the vnode. If the vnode has
723 * an object do not recycle it if its VM object
724 * has resident pages or references.
8a8d5d85 725 */
41a01a4d
MD
726 if ((VOP_GETVOBJECT(vp, &object) == 0 &&
727 (object->resident_page_count || object->ref_count))
728 ) {
729 lwkt_reltoken(&vlock);
984263bc
MD
730 vp = NULL;
731 continue;
732 }
8a8d5d85 733
7ea21ed1 734 /*
41a01a4d
MD
735 * We can almost reuse this vnode. But we don't want
736 * to recycle it if the vnode has children in the
737 * namecache because that breaks the namecache's
738 * path element chain. (YYY use nc_refs for the
739 * check?)
7ea21ed1 740 */
41a01a4d
MD
741 KKASSERT(vp->v_flag & VFREE);
742 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
743
744 if (TAILQ_FIRST(&vp->v_namecache) == NULL ||
745 cache_leaf_test(vp) >= 0) {
746 /* ok, we can reuse this vnode */
747 break;
984263bc 748 }
41a01a4d
MD
749 lwkt_reltoken(&vlock);
750 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
751 vp = NULL;
984263bc
MD
752 }
753 }
754
41a01a4d
MD
755 /*
756 * If vp is non-NULL we hold it's interlock.
757 */
984263bc
MD
758 if (vp) {
759 vp->v_flag |= VDOOMED;
760 vp->v_flag &= ~VFREE;
761 freevnodes--;
41a01a4d 762 lwkt_reltoken(&ilock);
8a8d5d85 763 cache_purge(vp); /* YYY may block */
984263bc
MD
764 vp->v_lease = NULL;
765 if (vp->v_type != VBAD) {
41a01a4d 766 vgonel(vp, &vlock, td);
984263bc 767 } else {
41a01a4d 768 lwkt_reltoken(&vlock);
984263bc
MD
769 }
770
771#ifdef INVARIANTS
772 {
773 int s;
774
775 if (vp->v_data)
776 panic("cleaned vnode isn't");
777 s = splbio();
778 if (vp->v_numoutput)
779 panic("Clean vnode has pending I/O's");
780 splx(s);
781 }
782#endif
783 vp->v_flag = 0;
784 vp->v_lastw = 0;
785 vp->v_lasta = 0;
786 vp->v_cstart = 0;
787 vp->v_clen = 0;
788 vp->v_socket = 0;
789 vp->v_writecount = 0; /* XXX */
790 } else {
41a01a4d
MD
791 lwkt_reltoken(&ilock);
792 vp = zalloc(vnode_zone);
793 bzero(vp, sizeof(*vp));
794 vp->v_interlock = lwkt_token_pool_get(vp);
795 lwkt_token_init(&vp->v_pollinfo.vpi_token);
984263bc 796 cache_purge(vp);
7ea21ed1 797 TAILQ_INIT(&vp->v_namecache);
984263bc
MD
798 numvnodes++;
799 }
800
801 TAILQ_INIT(&vp->v_cleanblkhd);
802 TAILQ_INIT(&vp->v_dirtyblkhd);
803 vp->v_type = VNON;
804 vp->v_tag = tag;
2d3e977e 805 vp->v_vops = vops;
984263bc
MD
806 *vpp = vp;
807 vp->v_usecount = 1;
da6efd2c 808 vp->v_data = NULL;
984263bc
MD
809 splx(s);
810
da6efd2c
MD
811 /*
812 * Placing the vnode on the mount point's queue makes it visible.
813 * We had better already have a ref on it.
814 */
815 insmntque(vp, mp);
816
3b568787 817 vfs_object_create(vp, td);
984263bc
MD
818 return (0);
819}
820
821/*
822 * Move a vnode from one mount queue to another.
823 */
824static void
dd98570a 825insmntque(struct vnode *vp, struct mount *mp)
984263bc 826{
41a01a4d 827 lwkt_tokref ilock;
984263bc 828
41a01a4d 829 lwkt_gettoken(&ilock, &mntvnode_token);
984263bc
MD
830 /*
831 * Delete from old mount point vnode list, if on one.
832 */
833 if (vp->v_mount != NULL) {
834 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
835 ("bad mount point vnode list size"));
836 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
837 vp->v_mount->mnt_nvnodelistsize--;
838 }
839 /*
840 * Insert into list of vnodes for the new mount point, if available.
841 */
842 if ((vp->v_mount = mp) == NULL) {
41a01a4d 843 lwkt_reltoken(&ilock);
984263bc
MD
844 return;
845 }
846 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
847 mp->mnt_nvnodelistsize++;
41a01a4d 848 lwkt_reltoken(&ilock);
984263bc
MD
849}
850
851/*
852 * Update outstanding I/O count and do wakeup if requested.
853 */
854void
dd98570a 855vwakeup(struct buf *bp)
984263bc 856{
1fd87d54 857 struct vnode *vp;
984263bc
MD
858
859 bp->b_flags &= ~B_WRITEINPROG;
860 if ((vp = bp->b_vp)) {
861 vp->v_numoutput--;
862 if (vp->v_numoutput < 0)
863 panic("vwakeup: neg numoutput");
864 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
865 vp->v_flag &= ~VBWAIT;
866 wakeup((caddr_t) &vp->v_numoutput);
867 }
868 }
869}
870
871/*
872 * Flush out and invalidate all buffers associated with a vnode.
873 * Called with the underlying object locked.
874 */
875int
3b568787
MD
876vinvalbuf(struct vnode *vp, int flags, struct thread *td,
877 int slpflag, int slptimeo)
984263bc 878{
1fd87d54 879 struct buf *bp;
984263bc
MD
880 struct buf *nbp, *blist;
881 int s, error;
882 vm_object_t object;
41a01a4d 883 lwkt_tokref vlock;
984263bc
MD
884
885 if (flags & V_SAVE) {
886 s = splbio();
887 while (vp->v_numoutput) {
888 vp->v_flag |= VBWAIT;
889 error = tsleep((caddr_t)&vp->v_numoutput,
377d4740 890 slpflag, "vinvlbuf", slptimeo);
984263bc
MD
891 if (error) {
892 splx(s);
893 return (error);
894 }
895 }
896 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
897 splx(s);
3b568787 898 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
984263bc
MD
899 return (error);
900 s = splbio();
901 if (vp->v_numoutput > 0 ||
902 !TAILQ_EMPTY(&vp->v_dirtyblkhd))
903 panic("vinvalbuf: dirty bufs");
904 }
905 splx(s);
906 }
907 s = splbio();
908 for (;;) {
909 blist = TAILQ_FIRST(&vp->v_cleanblkhd);
910 if (!blist)
911 blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
912 if (!blist)
913 break;
914
915 for (bp = blist; bp; bp = nbp) {
916 nbp = TAILQ_NEXT(bp, b_vnbufs);
917 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
918 error = BUF_TIMELOCK(bp,
919 LK_EXCLUSIVE | LK_SLEEPFAIL,
920 "vinvalbuf", slpflag, slptimeo);
921 if (error == ENOLCK)
922 break;
923 splx(s);
924 return (error);
925 }
926 /*
927 * XXX Since there are no node locks for NFS, I
928 * believe there is a slight chance that a delayed
929 * write will occur while sleeping just above, so
930 * check for it. Note that vfs_bio_awrite expects
931 * buffers to reside on a queue, while VOP_BWRITE and
932 * brelse do not.
933 */
934 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
935 (flags & V_SAVE)) {
936
937 if (bp->b_vp == vp) {
938 if (bp->b_flags & B_CLUSTEROK) {
939 BUF_UNLOCK(bp);
940 vfs_bio_awrite(bp);
941 } else {
942 bremfree(bp);
943 bp->b_flags |= B_ASYNC;
944 VOP_BWRITE(bp->b_vp, bp);
945 }
946 } else {
947 bremfree(bp);
948 (void) VOP_BWRITE(bp->b_vp, bp);
949 }
950 break;
951 }
952 bremfree(bp);
953 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
954 bp->b_flags &= ~B_ASYNC;
955 brelse(bp);
956 }
957 }
958
959 /*
960 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
961 * have write I/O in-progress but if there is a VM object then the
962 * VM object can also have read-I/O in-progress.
963 */
964 do {
965 while (vp->v_numoutput > 0) {
966 vp->v_flag |= VBWAIT;
377d4740 967 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
984263bc
MD
968 }
969 if (VOP_GETVOBJECT(vp, &object) == 0) {
970 while (object->paging_in_progress)
971 vm_object_pip_sleep(object, "vnvlbx");
972 }
973 } while (vp->v_numoutput > 0);
974
975 splx(s);
976
977 /*
978 * Destroy the copy in the VM cache, too.
979 */
41a01a4d 980 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
981 if (VOP_GETVOBJECT(vp, &object) == 0) {
982 vm_object_page_remove(object, 0, 0,
983 (flags & V_SAVE) ? TRUE : FALSE);
984 }
41a01a4d 985 lwkt_reltoken(&vlock);
984263bc
MD
986
987 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
988 panic("vinvalbuf: flush failed");
989 return (0);
990}
991
992/*
993 * Truncate a file's buffer and pages to a specified length. This
994 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
995 * sync activity.
996 */
997int
3b568787 998vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
984263bc 999{
dadab5e9 1000 struct buf *bp;
984263bc
MD
1001 struct buf *nbp;
1002 int s, anyfreed;
1003 int trunclbn;
1004
1005 /*
1006 * Round up to the *next* lbn.
1007 */
1008 trunclbn = (length + blksize - 1) / blksize;
1009
1010 s = splbio();
1011restart:
1012 anyfreed = 1;
1013 for (;anyfreed;) {
1014 anyfreed = 0;
1015 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1016 nbp = TAILQ_NEXT(bp, b_vnbufs);
1017 if (bp->b_lblkno >= trunclbn) {
1018 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1019 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1020 goto restart;
1021 } else {
1022 bremfree(bp);
1023 bp->b_flags |= (B_INVAL | B_RELBUF);
1024 bp->b_flags &= ~B_ASYNC;
1025 brelse(bp);
1026 anyfreed = 1;
1027 }
1028 if (nbp &&
1029 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1030 (nbp->b_vp != vp) ||
1031 (nbp->b_flags & B_DELWRI))) {
1032 goto restart;
1033 }
1034 }
1035 }
1036
1037 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1038 nbp = TAILQ_NEXT(bp, b_vnbufs);
1039 if (bp->b_lblkno >= trunclbn) {
1040 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1041 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1042 goto restart;
1043 } else {
1044 bremfree(bp);
1045 bp->b_flags |= (B_INVAL | B_RELBUF);
1046 bp->b_flags &= ~B_ASYNC;
1047 brelse(bp);
1048 anyfreed = 1;
1049 }
1050 if (nbp &&
1051 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1052 (nbp->b_vp != vp) ||
1053 (nbp->b_flags & B_DELWRI) == 0)) {
1054 goto restart;
1055 }
1056 }
1057 }
1058 }
1059
1060 if (length > 0) {
1061restartsync:
1062 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1063 nbp = TAILQ_NEXT(bp, b_vnbufs);
1064 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1065 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1066 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1067 goto restart;
1068 } else {
1069 bremfree(bp);
1070 if (bp->b_vp == vp) {
1071 bp->b_flags |= B_ASYNC;
1072 } else {
1073 bp->b_flags &= ~B_ASYNC;
1074 }
1075 VOP_BWRITE(bp->b_vp, bp);
1076 }
1077 goto restartsync;
1078 }
1079
1080 }
1081 }
1082
1083 while (vp->v_numoutput > 0) {
1084 vp->v_flag |= VBWAIT;
377d4740 1085 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
984263bc
MD
1086 }
1087
1088 splx(s);
1089
1090 vnode_pager_setsize(vp, length);
1091
1092 return (0);
1093}
1094
1095/*
1096 * Associate a buffer with a vnode.
1097 */
1098void
dd98570a 1099bgetvp(struct vnode *vp, struct buf *bp)
984263bc
MD
1100{
1101 int s;
1102
1103 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1104
1105 vhold(vp);
1106 bp->b_vp = vp;
1107 bp->b_dev = vn_todev(vp);
1108 /*
1109 * Insert onto list for new vnode.
1110 */
1111 s = splbio();
1112 bp->b_xflags |= BX_VNCLEAN;
1113 bp->b_xflags &= ~BX_VNDIRTY;
1114 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1115 splx(s);
1116}
1117
1118/*
1119 * Disassociate a buffer from a vnode.
1120 */
1121void
dd98570a 1122brelvp(struct buf *bp)
984263bc
MD
1123{
1124 struct vnode *vp;
1125 struct buflists *listheadp;
1126 int s;
1127
1128 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1129
1130 /*
1131 * Delete from old vnode list, if on one.
1132 */
1133 vp = bp->b_vp;
1134 s = splbio();
1135 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1136 if (bp->b_xflags & BX_VNDIRTY)
1137 listheadp = &vp->v_dirtyblkhd;
1138 else
1139 listheadp = &vp->v_cleanblkhd;
1140 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1141 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1142 }
1143 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1144 vp->v_flag &= ~VONWORKLST;
1145 LIST_REMOVE(vp, v_synclist);
1146 }
1147 splx(s);
1148 bp->b_vp = (struct vnode *) 0;
1149 vdrop(vp);
1150}
1151
1152/*
1153 * The workitem queue.
1154 *
1155 * It is useful to delay writes of file data and filesystem metadata
1156 * for tens of seconds so that quickly created and deleted files need
1157 * not waste disk bandwidth being created and removed. To realize this,
1158 * we append vnodes to a "workitem" queue. When running with a soft
1159 * updates implementation, most pending metadata dependencies should
1160 * not wait for more than a few seconds. Thus, mounted on block devices
1161 * are delayed only about a half the time that file data is delayed.
1162 * Similarly, directory updates are more critical, so are only delayed
1163 * about a third the time that file data is delayed. Thus, there are
1164 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1165 * one each second (driven off the filesystem syncer process). The
1166 * syncer_delayno variable indicates the next queue that is to be processed.
1167 * Items that need to be processed soon are placed in this queue:
1168 *
1169 * syncer_workitem_pending[syncer_delayno]
1170 *
1171 * A delay of fifteen seconds is done by placing the request fifteen
1172 * entries later in the queue:
1173 *
1174 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1175 *
1176 */
1177
1178/*
1179 * Add an item to the syncer work queue.
1180 */
1181static void
1182vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1183{
1184 int s, slot;
1185
1186 s = splbio();
1187
1188 if (vp->v_flag & VONWORKLST) {
1189 LIST_REMOVE(vp, v_synclist);
1190 }
1191
1192 if (delay > syncer_maxdelay - 2)
1193 delay = syncer_maxdelay - 2;
1194 slot = (syncer_delayno + delay) & syncer_mask;
1195
1196 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1197 vp->v_flag |= VONWORKLST;
1198 splx(s);
1199}
1200
bc6dffab 1201struct thread *updatethread;
402ed7e1 1202static void sched_sync (void);
984263bc
MD
1203static struct kproc_desc up_kp = {
1204 "syncer",
1205 sched_sync,
bc6dffab 1206 &updatethread
984263bc
MD
1207};
1208SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1209
1210/*
1211 * System filesystem synchronizer daemon.
1212 */
1213void
1214sched_sync(void)
1215{
1216 struct synclist *slp;
1217 struct vnode *vp;
1218 long starttime;
1219 int s;
0cfcada1 1220 struct thread *td = curthread;
984263bc 1221
bc6dffab 1222 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
984263bc
MD
1223 SHUTDOWN_PRI_LAST);
1224
1225 for (;;) {
0cfcada1 1226 kproc_suspend_loop();
984263bc
MD
1227
1228 starttime = time_second;
1229
1230 /*
1231 * Push files whose dirty time has expired. Be careful
1232 * of interrupt race on slp queue.
1233 */
1234 s = splbio();
1235 slp = &syncer_workitem_pending[syncer_delayno];
1236 syncer_delayno += 1;
1237 if (syncer_delayno == syncer_maxdelay)
1238 syncer_delayno = 0;
1239 splx(s);
1240
1241 while ((vp = LIST_FIRST(slp)) != NULL) {
1242 if (VOP_ISLOCKED(vp, NULL) == 0) {
41a01a4d 1243 vn_lock(vp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
3b568787 1244 (void) VOP_FSYNC(vp, MNT_LAZY, td);
41a01a4d 1245 VOP_UNLOCK(vp, NULL, 0, td);
984263bc
MD
1246 }
1247 s = splbio();
1248 if (LIST_FIRST(slp) == vp) {
1249 /*
1250 * Note: v_tag VT_VFS vps can remain on the
1251 * worklist too with no dirty blocks, but
1252 * since sync_fsync() moves it to a different
1253 * slot we are safe.
1254 */
1255 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1256 !vn_isdisk(vp, NULL))
1257 panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1258 /*
1259 * Put us back on the worklist. The worklist
1260 * routine will remove us from our current
1261 * position and then add us back in at a later
1262 * position.
1263 */
1264 vn_syncer_add_to_worklist(vp, syncdelay);
1265 }
1266 splx(s);
1267 }
1268
1269 /*
1270 * Do soft update processing.
1271 */
1272 if (bioops.io_sync)
1273 (*bioops.io_sync)(NULL);
1274
1275 /*
1276 * The variable rushjob allows the kernel to speed up the
1277 * processing of the filesystem syncer process. A rushjob
1278 * value of N tells the filesystem syncer to process the next
1279 * N seconds worth of work on its queue ASAP. Currently rushjob
1280 * is used by the soft update code to speed up the filesystem
1281 * syncer process when the incore state is getting so far
1282 * ahead of the disk that the kernel memory pool is being
1283 * threatened with exhaustion.
1284 */
1285 if (rushjob > 0) {
1286 rushjob -= 1;
1287 continue;
1288 }
1289 /*
1290 * If it has taken us less than a second to process the
1291 * current work, then wait. Otherwise start right over
1292 * again. We can still lose time if any single round
1293 * takes more than two seconds, but it does not really
1294 * matter as we are just trying to generally pace the
1295 * filesystem activity.
1296 */
1297 if (time_second == starttime)
377d4740 1298 tsleep(&lbolt, 0, "syncer", 0);
984263bc
MD
1299 }
1300}
1301
1302/*
1303 * Request the syncer daemon to speed up its work.
1304 * We never push it to speed up more than half of its
1305 * normal turn time, otherwise it could take over the cpu.
f5865223
MD
1306 *
1307 * YYY wchan field protected by the BGL.
984263bc
MD
1308 */
1309int
dd98570a 1310speedup_syncer(void)
984263bc 1311{
f5865223
MD
1312 crit_enter();
1313 if (updatethread->td_wchan == &lbolt) { /* YYY */
1314 unsleep(updatethread);
1315 lwkt_schedule(updatethread);
1316 }
1317 crit_exit();
984263bc
MD
1318 if (rushjob < syncdelay / 2) {
1319 rushjob += 1;
1320 stat_rush_requests += 1;
1321 return (1);
1322 }
1323 return(0);
1324}
1325
1326/*
1327 * Associate a p-buffer with a vnode.
1328 *
1329 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1330 * with the buffer. i.e. the bp has not been linked into the vnode or
1331 * ref-counted.
1332 */
1333void
dd98570a 1334pbgetvp(struct vnode *vp, struct buf *bp)
984263bc 1335{
984263bc
MD
1336 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1337
1338 bp->b_vp = vp;
1339 bp->b_flags |= B_PAGING;
1340 bp->b_dev = vn_todev(vp);
1341}
1342
1343/*
1344 * Disassociate a p-buffer from a vnode.
1345 */
1346void
dd98570a 1347pbrelvp(struct buf *bp)
984263bc 1348{
984263bc
MD
1349 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1350
1351 /* XXX REMOVE ME */
1352 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1353 panic(
1354 "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1355 bp,
1356 (int)bp->b_flags
1357 );
1358 }
1359 bp->b_vp = (struct vnode *) 0;
1360 bp->b_flags &= ~B_PAGING;
1361}
1362
1363void
dd98570a 1364pbreassignbuf(struct buf *bp, struct vnode *newvp)
984263bc
MD
1365{
1366 if ((bp->b_flags & B_PAGING) == 0) {
1367 panic(
1368 "pbreassignbuf() on non phys bp %p",
1369 bp
1370 );
1371 }
1372 bp->b_vp = newvp;
1373}
1374
1375/*
1376 * Reassign a buffer from one vnode to another.
1377 * Used to assign file specific control information
1378 * (indirect blocks) to the vnode to which they belong.
1379 */
1380void
dd98570a 1381reassignbuf(struct buf *bp, struct vnode *newvp)
984263bc
MD
1382{
1383 struct buflists *listheadp;
1384 int delay;
1385 int s;
1386
1387 if (newvp == NULL) {
1388 printf("reassignbuf: NULL");
1389 return;
1390 }
1391 ++reassignbufcalls;
1392
1393 /*
1394 * B_PAGING flagged buffers cannot be reassigned because their vp
1395 * is not fully linked in.
1396 */
1397 if (bp->b_flags & B_PAGING)
1398 panic("cannot reassign paging buffer");
1399
1400 s = splbio();
1401 /*
1402 * Delete from old vnode list, if on one.
1403 */
1404 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1405 if (bp->b_xflags & BX_VNDIRTY)
1406 listheadp = &bp->b_vp->v_dirtyblkhd;
1407 else
1408 listheadp = &bp->b_vp->v_cleanblkhd;
1409 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1410 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1411 if (bp->b_vp != newvp) {
1412 vdrop(bp->b_vp);
1413 bp->b_vp = NULL; /* for clarification */
1414 }
1415 }
1416 /*
1417 * If dirty, put on list of dirty buffers; otherwise insert onto list
1418 * of clean buffers.
1419 */
1420 if (bp->b_flags & B_DELWRI) {
1421 struct buf *tbp;
1422
1423 listheadp = &newvp->v_dirtyblkhd;
1424 if ((newvp->v_flag & VONWORKLST) == 0) {
1425 switch (newvp->v_type) {
1426 case VDIR:
1427 delay = dirdelay;
1428 break;
1429 case VCHR:
1430 case VBLK:
e4c9c0c8
MD
1431 if (newvp->v_rdev &&
1432 newvp->v_rdev->si_mountpoint != NULL) {
984263bc
MD
1433 delay = metadelay;
1434 break;
1435 }
1436 /* fall through */
1437 default:
1438 delay = filedelay;
1439 }
1440 vn_syncer_add_to_worklist(newvp, delay);
1441 }
1442 bp->b_xflags |= BX_VNDIRTY;
1443 tbp = TAILQ_FIRST(listheadp);
1444 if (tbp == NULL ||
1445 bp->b_lblkno == 0 ||
1446 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1447 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1448 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1449 ++reassignbufsortgood;
1450 } else if (bp->b_lblkno < 0) {
1451 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1452 ++reassignbufsortgood;
1453 } else if (reassignbufmethod == 1) {
1454 /*
1455 * New sorting algorithm, only handle sequential case,
1456 * otherwise append to end (but before metadata)
1457 */
1458 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1459 (tbp->b_xflags & BX_VNDIRTY)) {
1460 /*
1461 * Found the best place to insert the buffer
1462 */
1463 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1464 ++reassignbufsortgood;
1465 } else {
1466 /*
1467 * Missed, append to end, but before meta-data.
1468 * We know that the head buffer in the list is
1469 * not meta-data due to prior conditionals.
1470 *
1471 * Indirect effects: NFS second stage write
1472 * tends to wind up here, giving maximum
1473 * distance between the unstable write and the
1474 * commit rpc.
1475 */
1476 tbp = TAILQ_LAST(listheadp, buflists);
1477 while (tbp && tbp->b_lblkno < 0)
1478 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1479 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1480 ++reassignbufsortbad;
1481 }
1482 } else {
1483 /*
1484 * Old sorting algorithm, scan queue and insert
1485 */
1486 struct buf *ttbp;
1487 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1488 (ttbp->b_lblkno < bp->b_lblkno)) {
1489 ++reassignbufloops;
1490 tbp = ttbp;
1491 }
1492 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1493 }
1494 } else {
1495 bp->b_xflags |= BX_VNCLEAN;
1496 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1497 if ((newvp->v_flag & VONWORKLST) &&
1498 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1499 newvp->v_flag &= ~VONWORKLST;
1500 LIST_REMOVE(newvp, v_synclist);
1501 }
1502 }
1503 if (bp->b_vp != newvp) {
1504 bp->b_vp = newvp;
1505 vhold(bp->b_vp);
1506 }
1507 splx(s);
1508}
1509
1510/*
1511 * Create a vnode for a block device.
1512 * Used for mounting the root file system.
1513 */
1514int
e4c9c0c8 1515bdevvp(dev_t dev, struct vnode **vpp)
984263bc 1516{
1fd87d54 1517 struct vnode *vp;
984263bc
MD
1518 struct vnode *nvp;
1519 int error;
1520
1521 if (dev == NODEV) {
1522 *vpp = NULLVP;
1523 return (ENXIO);
1524 }
2d3e977e 1525 error = getnewvnode(VT_NON, (struct mount *)0, spec_vnode_vops, &nvp);
984263bc
MD
1526 if (error) {
1527 *vpp = NULLVP;
1528 return (error);
1529 }
1530 vp = nvp;
e4c9c0c8
MD
1531 vp->v_type = VCHR;
1532 vp->v_udev = dev->si_udev;
984263bc
MD
1533 *vpp = vp;
1534 return (0);
1535}
1536
e4c9c0c8
MD
1537int
1538v_associate_rdev(struct vnode *vp, dev_t dev)
984263bc 1539{
e4c9c0c8 1540 lwkt_tokref ilock;
984263bc 1541
e4c9c0c8
MD
1542 if (dev == NULL || dev == NODEV)
1543 return(ENXIO);
1544 if (dev_is_good(dev) == 0)
1545 return(ENXIO);
1546 KKASSERT(vp->v_rdev == NULL);
1547 if (dev_ref_debug)
1548 printf("Z1");
1549 vp->v_rdev = reference_dev(dev);
1550 lwkt_gettoken(&ilock, &spechash_token);
1551 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1552 lwkt_reltoken(&ilock);
1553 return(0);
984263bc
MD
1554}
1555
1556void
e4c9c0c8 1557v_release_rdev(struct vnode *vp)
984263bc 1558{
41a01a4d 1559 lwkt_tokref ilock;
e4c9c0c8 1560 dev_t dev;
984263bc 1561
e4c9c0c8
MD
1562 if ((dev = vp->v_rdev) != NULL) {
1563 lwkt_gettoken(&ilock, &spechash_token);
1564 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1fbb5fc0
MD
1565 if (dev_ref_debug && vp->v_opencount != 0) {
1566 printf("releasing rdev with non-0 "
1567 "v_opencount(%d) (revoked?)\n",
1568 vp->v_opencount);
1569 }
e4c9c0c8 1570 vp->v_rdev = NULL;
1fbb5fc0 1571 vp->v_opencount = 0;
e4c9c0c8
MD
1572 release_dev(dev);
1573 lwkt_reltoken(&ilock);
1574 }
1575}
984263bc 1576
e4c9c0c8
MD
1577/*
1578 * Add a vnode to the alias list hung off the dev_t. We only associate
1579 * the device number with the vnode. The actual device is not associated
1580 * until the vnode is opened (usually in spec_open()), and will be
1581 * disassociated on last close.
1582 */
1583void
1584addaliasu(struct vnode *nvp, udev_t nvp_udev)
1585{
1586 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1587 panic("addaliasu on non-special vnode");
1588 nvp->v_udev = nvp_udev;
984263bc
MD
1589}
1590
1591/*
1592 * Grab a particular vnode from the free list, increment its
1593 * reference count and lock it. The vnode lock bit is set if the
1594 * vnode is being eliminated in vgone. The process is awakened
1595 * when the transition is completed, and an error returned to
1596 * indicate that the vnode is no longer usable (possibly having
1597 * been changed to a new file system type).
41a01a4d
MD
1598 *
1599 * This code is very sensitive. We are depending on the vnode interlock
1600 * to be maintained through to the vn_lock() call, which means that we
1601 * cannot block which means that we cannot call vbusy() until after vn_lock().
1602 * If the interlock is not maintained, the VXLOCK check will not properly
1603 * interlock against a vclean()'s LK_DRAIN operation on the lock.
984263bc
MD
1604 */
1605int
41a01a4d 1606vget(struct vnode *vp, lwkt_tokref_t vlock, int flags, thread_t td)
984263bc
MD
1607{
1608 int error;
41a01a4d
MD
1609 lwkt_tokref vvlock;
1610
1611 /*
1612 * We need the interlock to safely modify the v_ fields. ZZZ it is
1613 * only legal to pass (1) the vnode's interlock and (2) only pass
1614 * NULL w/o LK_INTERLOCK if the vnode is *ALREADY* referenced or
1615 * held.
1616 */
1617 if ((flags & LK_INTERLOCK) == 0) {
1618 lwkt_gettoken(&vvlock, vp->v_interlock);
1619 vlock = &vvlock;
1620 }
984263bc
MD
1621
1622 /*
1623 * If the vnode is in the process of being cleaned out for
1624 * another use, we wait for the cleaning to finish and then
1625 * return failure. Cleaning is determined by checking that
41a01a4d
MD
1626 * the VXLOCK flag is set. It is possible for the vnode to be
1627 * self-referenced during the cleaning operation.
984263bc 1628 */
984263bc 1629 if (vp->v_flag & VXLOCK) {
41a01a4d 1630 if (vp->v_vxthread == curthread) {
984263bc
MD
1631#if 0
1632 /* this can now occur in normal operation */
1633 log(LOG_INFO, "VXLOCK interlock avoided\n");
1634#endif
1635 } else {
1636 vp->v_flag |= VXWANT;
41a01a4d 1637 lwkt_reltoken(vlock);
377d4740 1638 tsleep((caddr_t)vp, 0, "vget", 0);
984263bc
MD
1639 return (ENOENT);
1640 }
1641 }
1642
2811dfbd 1643 /*
41a01a4d
MD
1644 * Bump v_usecount to prevent the vnode from being recycled. The
1645 * usecount needs to be bumped before we successfully get our lock.
2811dfbd 1646 */
41a01a4d 1647 vp->v_usecount++;
984263bc 1648 if (flags & LK_TYPE_MASK) {
41a01a4d 1649 if ((error = vn_lock(vp, vlock, flags | LK_INTERLOCK, td)) != 0) {
984263bc
MD
1650 /*
1651 * must expand vrele here because we do not want
1652 * to call VOP_INACTIVE if the reference count
1653 * drops back to zero since it was never really
1654 * active. We must remove it from the free list
1655 * before sleeping so that multiple processes do
1656 * not try to recycle it.
1657 */
41a01a4d 1658 lwkt_gettokref(vlock);
984263bc 1659 vp->v_usecount--;
41a01a4d
MD
1660 vmaybefree(vp);
1661 lwkt_reltoken(vlock);
984263bc
MD
1662 }
1663 return (error);
1664 }
41a01a4d
MD
1665 if (VSHOULDBUSY(vp))
1666 vbusy(vp); /* interlock must be held on call */
1667 lwkt_reltoken(vlock);
984263bc
MD
1668 return (0);
1669}
1670
1671void
1672vref(struct vnode *vp)
1673{
5d28270e
MD
1674 crit_enter(); /* YYY use crit section for moment / BGL protected */
1675 vp->v_usecount++;
1676 crit_exit();
984263bc
MD
1677}
1678
1679/*
1680 * Vnode put/release.
1681 * If count drops to zero, call inactive routine and return to freelist.
1682 */
1683void
dadab5e9 1684vrele(struct vnode *vp)
984263bc 1685{
dadab5e9 1686 struct thread *td = curthread; /* XXX */
41a01a4d 1687 lwkt_tokref vlock;
984263bc 1688
5d28270e
MD
1689 KASSERT(vp != NULL && vp->v_usecount >= 0,
1690 ("vrele: null vp or <=0 v_usecount"));
984263bc 1691
41a01a4d 1692 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1693
1694 if (vp->v_usecount > 1) {
984263bc 1695 vp->v_usecount--;
41a01a4d 1696 lwkt_reltoken(&vlock);
984263bc
MD
1697 return;
1698 }
1699
1700 if (vp->v_usecount == 1) {
1701 vp->v_usecount--;
1702 /*
41a01a4d
MD
1703 * We must call VOP_INACTIVE with the node locked and the
1704 * usecount 0. If we are doing a vpu, the node is already
1705 * locked, but, in the case of vrele, we must explicitly lock
1706 * the vnode before calling VOP_INACTIVE.
984263bc
MD
1707 */
1708
41a01a4d 1709 if (vn_lock(vp, NULL, LK_EXCLUSIVE, td) == 0)
dadab5e9 1710 VOP_INACTIVE(vp, td);
41a01a4d
MD
1711 vmaybefree(vp);
1712 lwkt_reltoken(&vlock);
984263bc
MD
1713 } else {
1714#ifdef DIAGNOSTIC
1715 vprint("vrele: negative ref count", vp);
984263bc 1716#endif
41a01a4d 1717 lwkt_reltoken(&vlock);
984263bc
MD
1718 panic("vrele: negative ref cnt");
1719 }
1720}
1721
1722void
dadab5e9 1723vput(struct vnode *vp)
984263bc 1724{
dadab5e9 1725 struct thread *td = curthread; /* XXX */
41a01a4d 1726 lwkt_tokref vlock;
984263bc
MD
1727
1728 KASSERT(vp != NULL, ("vput: null vp"));
1729
41a01a4d 1730 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1731
1732 if (vp->v_usecount > 1) {
1733 vp->v_usecount--;
41a01a4d 1734 VOP_UNLOCK(vp, &vlock, LK_INTERLOCK, td);
984263bc
MD
1735 return;
1736 }
1737
1738 if (vp->v_usecount == 1) {
1739 vp->v_usecount--;
1740 /*
1741 * We must call VOP_INACTIVE with the node locked.
1742 * If we are doing a vpu, the node is already locked,
1743 * so we just need to release the vnode mutex.
1744 */
dadab5e9 1745 VOP_INACTIVE(vp, td);
41a01a4d
MD
1746 vmaybefree(vp);
1747 lwkt_reltoken(&vlock);
984263bc
MD
1748 } else {
1749#ifdef DIAGNOSTIC
1750 vprint("vput: negative ref count", vp);
1751#endif
41a01a4d 1752 lwkt_reltoken(&vlock);
984263bc
MD
1753 panic("vput: negative ref cnt");
1754 }
1755}
1756
1757/*
41a01a4d
MD
1758 * Somebody doesn't want the vnode recycled. ZZZ vnode interlock should
1759 * be held but isn't.
984263bc
MD
1760 */
1761void
dd98570a 1762vhold(struct vnode *vp)
984263bc
MD
1763{
1764 int s;
1765
1766 s = splbio();
1767 vp->v_holdcnt++;
1768 if (VSHOULDBUSY(vp))
41a01a4d 1769 vbusy(vp); /* interlock must be held on call */
984263bc
MD
1770 splx(s);
1771}
1772
1773/*
1774 * One less who cares about this vnode.
1775 */
1776void
dd98570a 1777vdrop(struct vnode *vp)
984263bc 1778{
41a01a4d 1779 lwkt_tokref vlock;
984263bc 1780
41a01a4d 1781 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1782 if (vp->v_holdcnt <= 0)
1783 panic("vdrop: holdcnt");
1784 vp->v_holdcnt--;
41a01a4d
MD
1785 vmaybefree(vp);
1786 lwkt_reltoken(&vlock);
1787}
1788
1789int
1790vmntvnodescan(
1791 struct mount *mp,
1792 int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
dd98570a
MD
1793 int (*slowfunc)(struct mount *mp, struct vnode *vp,
1794 lwkt_tokref_t vlock, void *data),
41a01a4d
MD
1795 void *data
1796) {
1797 lwkt_tokref ilock;
1798 lwkt_tokref vlock;
1799 struct vnode *pvp;
1800 struct vnode *vp;
1801 int r = 0;
1802
1803 /*
1804 * Scan the vnodes on the mount's vnode list. Use a placemarker
1805 */
1806 pvp = zalloc(vnode_zone);
1807 pvp->v_flag |= VPLACEMARKER;
1808
1809 lwkt_gettoken(&ilock, &mntvnode_token);
1810 TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1811
1812 while ((vp = TAILQ_NEXT(pvp, v_nmntvnodes)) != NULL) {
1813 /*
1814 * Move the placemarker and skip other placemarkers we
1815 * encounter. The nothing can get in our way so the
1816 * mount point on the vp must be valid.
1817 */
1818 TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1819 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, pvp, v_nmntvnodes);
1820 if (vp->v_flag & VPLACEMARKER)
1821 continue;
1822 KKASSERT(vp->v_mount == mp);
1823
1824 /*
1825 * Quick test
1826 */
1827 if (fastfunc) {
1828 if ((r = fastfunc(mp, vp, data)) < 0)
1829 continue;
1830 if (r)
1831 break;
1832 }
1833
1834 /*
1835 * Get the vnodes interlock and make sure it is still on the
1836 * mount list. Skip it if it has moved (we may encounter it
1837 * later). Then do the with-interlock test. The callback
1838 * is responsible for releasing the vnode interlock.
1839 *
1840 * The interlock is type-stable.
1841 */
1842 if (slowfunc) {
1843 lwkt_gettoken(&vlock, vp->v_interlock);
1844 if (vp != TAILQ_PREV(pvp, vnodelst, v_nmntvnodes)) {
1845 printf("vmntvnodescan (debug info only): f=%p vp=%p vnode ripped out from under us\n", slowfunc, vp);
1846 lwkt_reltoken(&vlock);
1847 continue;
1848 }
1849 if ((r = slowfunc(mp, vp, &vlock, data)) != 0) {
1850 KKASSERT(lwkt_havetokref(&vlock) == 0);
1851 break;
1852 }
1853 KKASSERT(lwkt_havetokref(&vlock) == 0);
1854 }
1855 }
1856 TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1857 zfree(vnode_zone, pvp);
1858 lwkt_reltoken(&ilock);
1859 return(r);
984263bc
MD
1860}
1861
1862/*
1863 * Remove any vnodes in the vnode table belonging to mount point mp.
1864 *
1865 * If FORCECLOSE is not specified, there should not be any active ones,
1866 * return error if any are found (nb: this is a user error, not a
1867 * system error). If FORCECLOSE is specified, detach any active vnodes
1868 * that are found.
1869 *
1870 * If WRITECLOSE is set, only flush out regular file vnodes open for
1871 * writing.
1872 *
1873 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1874 *
1875 * `rootrefs' specifies the base reference count for the root vnode
1876 * of this filesystem. The root vnode is considered busy if its
1877 * v_usecount exceeds this value. On a successful return, vflush()
1878 * will call vrele() on the root vnode exactly rootrefs times.
1879 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1880 * be zero.
1881 */
1882#ifdef DIAGNOSTIC
1883static int busyprt = 0; /* print out busy vnodes */
1884SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1885#endif
1886
dd98570a
MD
1887static int vflush_scan(struct mount *mp, struct vnode *vp,
1888 lwkt_tokref_t vlock, void *data);
41a01a4d
MD
1889
1890struct vflush_info {
1891 int flags;
1892 int busy;
1893 thread_t td;
1894};
1895
984263bc 1896int
dd98570a 1897vflush(struct mount *mp, int rootrefs, int flags)
984263bc 1898{
dadab5e9 1899 struct thread *td = curthread; /* XXX */
41a01a4d
MD
1900 struct vnode *rootvp = NULL;
1901 int error;
1902 lwkt_tokref vlock;
1903 struct vflush_info vflush_info;
984263bc
MD
1904
1905 if (rootrefs > 0) {
1906 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1907 ("vflush: bad args"));
1908 /*
1909 * Get the filesystem root vnode. We can vput() it
1910 * immediately, since with rootrefs > 0, it won't go away.
1911 */
1912 if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1913 return (error);
1914 vput(rootvp);
1915 }
984263bc 1916
41a01a4d
MD
1917 vflush_info.busy = 0;
1918 vflush_info.flags = flags;
1919 vflush_info.td = td;
1920 vmntvnodescan(mp, NULL, vflush_scan, &vflush_info);
984263bc 1921
984263bc
MD
1922 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1923 /*
1924 * If just the root vnode is busy, and if its refcount
1925 * is equal to `rootrefs', then go ahead and kill it.
1926 */
41a01a4d
MD
1927 lwkt_gettoken(&vlock, rootvp->v_interlock);
1928 KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
984263bc 1929 KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
41a01a4d
MD
1930 if (vflush_info.busy == 1 && rootvp->v_usecount == rootrefs) {
1931 vgonel(rootvp, &vlock, td);
1932 vflush_info.busy = 0;
1933 } else {
1934 lwkt_reltoken(&vlock);
1935 }
984263bc 1936 }
41a01a4d 1937 if (vflush_info.busy)
984263bc
MD
1938 return (EBUSY);
1939 for (; rootrefs > 0; rootrefs--)
1940 vrele(rootvp);
1941 return (0);
1942}
1943
1944/*
41a01a4d 1945 * The scan callback is made with an interlocked vnode.
984263bc 1946 */
41a01a4d 1947static int
dd98570a
MD
1948vflush_scan(struct mount *mp, struct vnode *vp,
1949 lwkt_tokref_t vlock, void *data)
984263bc 1950{
41a01a4d
MD
1951 struct vflush_info *info = data;
1952 struct vattr vattr;
984263bc 1953
41a01a4d
MD
1954 /*
1955 * Skip over a vnodes marked VSYSTEM.
1956 */
1957 if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1958 lwkt_reltoken(vlock);
1959 return(0);
1960 }
1961
1962 /*
1963 * If WRITECLOSE is set, flush out unlinked but still open
1964 * files (even if open only for reading) and regular file
1965 * vnodes open for writing.
1966 */
1967 if ((info->flags & WRITECLOSE) &&
1968 (vp->v_type == VNON ||
1969 (VOP_GETATTR(vp, &vattr, info->td) == 0 &&
1970 vattr.va_nlink > 0)) &&
1971 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1972 lwkt_reltoken(vlock);
1973 return(0);
1974 }
1975
1976 /*
1977 * With v_usecount == 0, all we need to do is clear out the
1978 * vnode data structures and we are done.
1979 */
1980 if (vp->v_usecount == 0) {
1981 vgonel(vp, vlock, info->td);
1982 return(0);
1983 }
1984
1985 /*
1986 * If FORCECLOSE is set, forcibly close the vnode. For block
1987 * or character devices, revert to an anonymous device. For
1988 * all other files, just kill them.
1989 */
1990 if (info->flags & FORCECLOSE) {
1991 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1992 vgonel(vp, vlock, info->td);
1993 } else {
1994 vclean(vp, vlock, 0, info->td);
2d3e977e 1995 vp->v_vops = spec_vnode_vops;
41a01a4d
MD
1996 insmntque(vp, (struct mount *) 0);
1997 }
1998 return(0);
984263bc 1999 }
41a01a4d
MD
2000#ifdef DIAGNOSTIC
2001 if (busyprt)
2002 vprint("vflush: busy vnode", vp);
984263bc 2003#endif
41a01a4d
MD
2004 lwkt_reltoken(vlock);
2005 ++info->busy;
2006 return(0);
984263bc
MD
2007}
2008
2009/*
2010 * Disassociate the underlying file system from a vnode.
2011 */
2012static void
41a01a4d 2013vclean(struct vnode *vp, lwkt_tokref_t vlock, int flags, struct thread *td)
984263bc
MD
2014{
2015 int active;
2016
2017 /*
2018 * Check to see if the vnode is in use. If so we have to reference it
2019 * before we clean it out so that its count cannot fall to zero and
2020 * generate a race against ourselves to recycle it.
2021 */
2022 if ((active = vp->v_usecount))
2023 vp->v_usecount++;
2024
2025 /*
2026 * Prevent the vnode from being recycled or brought into use while we
2027 * clean it out.
2028 */
2029 if (vp->v_flag & VXLOCK)
2030 panic("vclean: deadlock");
2031 vp->v_flag |= VXLOCK;
41a01a4d
MD
2032 vp->v_vxthread = curthread;
2033
984263bc
MD
2034 /*
2035 * Even if the count is zero, the VOP_INACTIVE routine may still
2036 * have the object locked while it cleans it out. The VOP_LOCK
2037 * ensures that the VOP_INACTIVE routine is done with its work.
2038 * For active vnodes, it ensures that no other activity can
2039 * occur while the underlying object is being cleaned out.
41a01a4d
MD
2040 *
2041 * NOTE: we continue to hold the vnode interlock through to the
2042 * end of vclean().
984263bc 2043 */
41a01a4d 2044 VOP_LOCK(vp, NULL, LK_DRAIN, td);
984263bc
MD
2045
2046 /*
2047 * Clean out any buffers associated with the vnode.
2048 */
3b568787 2049 vinvalbuf(vp, V_SAVE, td, 0, 0);
984263bc
MD
2050 VOP_DESTROYVOBJECT(vp);
2051
2052 /*
2053 * If purging an active vnode, it must be closed and
2054 * deactivated before being reclaimed. Note that the
2055 * VOP_INACTIVE will unlock the vnode.
2056 */
2057 if (active) {
2058 if (flags & DOCLOSE)
3b568787 2059 VOP_CLOSE(vp, FNONBLOCK, td);
dadab5e9 2060 VOP_INACTIVE(vp, td);
984263bc
MD
2061 } else {
2062 /*
2063 * Any other processes trying to obtain this lock must first
2064 * wait for VXLOCK to clear, then call the new lock operation.
2065 */
41a01a4d 2066 VOP_UNLOCK(vp, NULL, 0, td);
984263bc
MD
2067 }
2068 /*
2069 * Reclaim the vnode.
2070 */
dadab5e9 2071 if (VOP_RECLAIM(vp, td))
984263bc
MD
2072 panic("vclean: cannot reclaim");
2073
2074 if (active) {
2075 /*
2076 * Inline copy of vrele() since VOP_INACTIVE
2077 * has already been called.
2078 */
984263bc
MD
2079 if (--vp->v_usecount <= 0) {
2080#ifdef DIAGNOSTIC
2081 if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2082 vprint("vclean: bad ref count", vp);
2083 panic("vclean: ref cnt");
2084 }
2085#endif
2086 vfree(vp);
2087 }
984263bc
MD
2088 }
2089
2090 cache_purge(vp);
2091 vp->v_vnlock = NULL;
41a01a4d 2092 vmaybefree(vp);
984263bc
MD
2093
2094 /*
2095 * Done with purge, notify sleepers of the grim news.
2096 */
2d3e977e 2097 vp->v_vops = dead_vnode_vops;
984263bc
MD
2098 vn_pollgone(vp);
2099 vp->v_tag = VT_NON;
2100 vp->v_flag &= ~VXLOCK;
41a01a4d 2101 vp->v_vxthread = NULL;
984263bc
MD
2102 if (vp->v_flag & VXWANT) {
2103 vp->v_flag &= ~VXWANT;
2104 wakeup((caddr_t) vp);
2105 }
41a01a4d 2106 lwkt_reltoken(vlock);
984263bc
MD
2107}
2108
2109/*
2110 * Eliminate all activity associated with the requested vnode
2111 * and with all vnodes aliased to the requested vnode.
dd98570a
MD
2112 *
2113 * revoke { struct vnode *a_vp, int a_flags }
984263bc
MD
2114 */
2115int
2d3e977e 2116vop_stdrevoke(struct vop_revoke_args *ap)
984263bc
MD
2117{
2118 struct vnode *vp, *vq;
41a01a4d 2119 lwkt_tokref ilock;
984263bc
MD
2120 dev_t dev;
2121
2122 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2123
2124 vp = ap->a_vp;
2125 /*
2126 * If a vgone (or vclean) is already in progress,
2127 * wait until it is done and return.
2128 */
2129 if (vp->v_flag & VXLOCK) {
2130 vp->v_flag |= VXWANT;
41a01a4d 2131 /*lwkt_reltoken(vlock); ZZZ */
377d4740 2132 tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
984263bc
MD
2133 return (0);
2134 }
e4c9c0c8
MD
2135
2136 /*
2137 * If the vnode has a device association, scrap all vnodes associated
2138 * with the device. Don't let the device disappear on us while we
2139 * are scrapping the vnodes.
2140 */
2141 if (vp->v_type != VCHR && vp->v_type != VBLK)
2142 return(0);
2143 if ((dev = vp->v_rdev) == NULL) {
2144 if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
2145 return(0);
2146 }
2147 reference_dev(dev);
984263bc 2148 for (;;) {
41a01a4d 2149 lwkt_gettoken(&ilock, &spechash_token);
984263bc 2150 vq = SLIST_FIRST(&dev->si_hlist);
41a01a4d 2151 lwkt_reltoken(&ilock);
e4c9c0c8 2152 if (vq == NULL)
984263bc
MD
2153 break;
2154 vgone(vq);
2155 }
e4c9c0c8 2156 release_dev(dev);
984263bc
MD
2157 return (0);
2158}
2159
2160/*
2161 * Recycle an unused vnode to the front of the free list.
2162 * Release the passed interlock if the vnode will be recycled.
2163 */
2164int
41a01a4d 2165vrecycle(struct vnode *vp, lwkt_tokref_t inter_lkp, struct thread *td)
984263bc 2166{
41a01a4d
MD
2167 lwkt_tokref vlock;
2168
2169 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc 2170 if (vp->v_usecount == 0) {
41a01a4d 2171 if (inter_lkp)
8a8d5d85 2172 lwkt_reltoken(inter_lkp);
41a01a4d 2173 vgonel(vp, &vlock, td);
984263bc
MD
2174 return (1);
2175 }
41a01a4d 2176 lwkt_reltoken(&vlock);
984263bc
MD
2177 return (0);
2178}
2179
2180/*
2181 * Eliminate all activity associated with a vnode
2182 * in preparation for reuse.
2183 */
2184void
dadab5e9 2185vgone(struct vnode *vp)
984263bc 2186{
dadab5e9 2187 struct thread *td = curthread; /* XXX */
41a01a4d 2188 lwkt_tokref vlock;
984263bc 2189
41a01a4d
MD
2190 lwkt_gettoken(&vlock, vp->v_interlock);
2191 vgonel(vp, &vlock, td);
984263bc
MD
2192}
2193
2194/*
2195 * vgone, with the vp interlock held.
2196 */
2197void
41a01a4d 2198vgonel(struct vnode *vp, lwkt_tokref_t vlock, struct thread *td)
984263bc 2199{
41a01a4d 2200 lwkt_tokref ilock;
984263bc
MD
2201 int s;
2202
2203 /*
2204 * If a vgone (or vclean) is already in progress,
2205 * wait until it is done and return.
2206 */
2207 if (vp->v_flag & VXLOCK) {
2208 vp->v_flag |= VXWANT;
41a01a4d 2209 lwkt_reltoken(vlock);
377d4740 2210 tsleep((caddr_t)vp, 0, "vgone", 0);
984263bc
MD
2211 return;
2212 }
2213
2214 /*
2215 * Clean out the filesystem specific data.
2216 */
41a01a4d
MD
2217 vclean(vp, vlock, DOCLOSE, td);
2218 lwkt_gettokref(vlock);
984263bc
MD
2219
2220 /*
2221 * Delete from old mount point vnode list, if on one.
2222 */
2223 if (vp->v_mount != NULL)
2224 insmntque(vp, (struct mount *)0);
dd98570a 2225
984263bc
MD
2226 /*
2227 * If special device, remove it from special device alias list
1fbb5fc0
MD
2228 * if it is on one. This should normally only occur if a vnode is
2229 * being revoked as the device should otherwise have been released
2230 * naturally.
984263bc
MD
2231 */
2232 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
e4c9c0c8 2233 v_release_rdev(vp);
984263bc
MD
2234 }
2235
2236 /*
2237 * If it is on the freelist and not already at the head,
2238 * move it to the head of the list. The test of the
2239 * VDOOMED flag and the reference count of zero is because
2240 * it will be removed from the free list by getnewvnode,
2241 * but will not have its reference count incremented until
2242 * after calling vgone. If the reference count were
2243 * incremented first, vgone would (incorrectly) try to
2244 * close the previous instance of the underlying object.
2245 */
2246 if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2247 s = splbio();
41a01a4d 2248 lwkt_gettoken(&ilock, &vnode_free_list_token);
984263bc
MD
2249 if (vp->v_flag & VFREE)
2250 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2251 else
2252 freevnodes++;
2253 vp->v_flag |= VFREE;
2254 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
41a01a4d 2255 lwkt_reltoken(&ilock);
984263bc
MD
2256 splx(s);
2257 }
984263bc 2258 vp->v_type = VBAD;
41a01a4d 2259 lwkt_reltoken(vlock);
984263bc
MD
2260}
2261
2262/*
2263 * Lookup a vnode by device number.
2264 */
2265int
dd98570a 2266vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
984263bc 2267{
41a01a4d 2268 lwkt_tokref ilock;
984263bc
MD
2269 struct vnode *vp;
2270
41a01a4d 2271 lwkt_gettoken(&ilock, &spechash_token);
984263bc
MD
2272 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2273 if (type == vp->v_type) {
2274 *vpp = vp;
41a01a4d 2275 lwkt_reltoken(&ilock);
984263bc
MD
2276 return (1);
2277 }
2278 }
41a01a4d 2279 lwkt_reltoken(&ilock);
984263bc
MD
2280 return (0);
2281}
2282
2283/*
e4c9c0c8
MD
2284 * Calculate the total number of references to a special device. This
2285 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
2286 * an overloaded field. Since udev2dev can now return NODEV, we have
2287 * to check for a NULL v_rdev.
984263bc
MD
2288 */
2289int
e4c9c0c8 2290count_dev(dev_t dev)
984263bc 2291{
41a01a4d 2292 lwkt_tokref ilock;
e4c9c0c8
MD
2293 struct vnode *vp;
2294 int count = 0;
984263bc 2295
e4c9c0c8
MD
2296 if (SLIST_FIRST(&dev->si_hlist)) {
2297 lwkt_gettoken(&ilock, &spechash_token);
2298 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2299 count += vp->v_usecount;
2300 }
2301 lwkt_reltoken(&ilock);
2302 }
2303 return(count);
984263bc
MD
2304}
2305
984263bc 2306int
e4c9c0c8 2307count_udev(udev_t udev)
984263bc 2308{
e4c9c0c8 2309 dev_t dev;
984263bc 2310
e4c9c0c8
MD
2311 if ((dev = udev2dev(udev, 0)) == NODEV)
2312 return(0);
2313 return(count_dev(dev));
2314}
2315
2316int
2317vcount(struct vnode *vp)
2318{
2319 if (vp->v_rdev == NULL)
2320 return(0);
2321 return(count_dev(vp->v_rdev));
984263bc
MD
2322}
2323
2324/*
2325 * Print out a description of a vnode.
2326 */
2327static char *typename[] =
2328{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2329
2330void
dd98570a 2331vprint(char *label, struct vnode *vp)
984263bc
MD
2332{
2333 char buf[96];
2334
2335 if (label != NULL)
2336 printf("%s: %p: ", label, (void *)vp);
2337 else
2338 printf("%p: ", (void *)vp);
2339 printf("type %s, usecount %d, writecount %d, refcount %d,",
2340 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2341 vp->v_holdcnt);
2342 buf[0] = '\0';
2343 if (vp->v_flag & VROOT)
2344 strcat(buf, "|VROOT");
2345 if (vp->v_flag & VTEXT)
2346 strcat(buf, "|VTEXT");
2347 if (vp->v_flag & VSYSTEM)
2348 strcat(buf, "|VSYSTEM");
2349 if (vp->v_flag & VXLOCK)
2350 strcat(buf, "|VXLOCK");
2351 if (vp->v_flag & VXWANT)
2352 strcat(buf, "|VXWANT");
2353 if (vp->v_flag & VBWAIT)
2354 strcat(buf, "|VBWAIT");
2355 if (vp->v_flag & VDOOMED)
2356 strcat(buf, "|VDOOMED");
2357 if (vp->v_flag & VFREE)
2358 strcat(buf, "|VFREE");
2359 if (vp->v_flag & VOBJBUF)
2360 strcat(buf, "|VOBJBUF");
2361 if (buf[0] != '\0')
2362 printf(" flags (%s)", &buf[1]);
2363 if (vp->v_data == NULL) {
2364 printf("\n");
2365 } else {
2366 printf("\n\t");
2367 VOP_PRINT(vp);
2368 }
2369}
2370
2371#ifdef DDB
2372#include <ddb/ddb.h>
2373/*
2374 * List all of the locked vnodes in the system.
2375 * Called when debugging the kernel.
2376 */
2377DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2378{
dadab5e9 2379 struct thread *td = curthread; /* XXX */
41a01a4d 2380 lwkt_tokref ilock;
984263bc
MD
2381 struct mount *mp, *nmp;
2382 struct vnode *vp;
2383
2384 printf("Locked vnodes\n");
41a01a4d 2385 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 2386 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 2387 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
984263bc
MD
2388 nmp = TAILQ_NEXT(mp, mnt_list);
2389 continue;
2390 }
2391 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2392 if (VOP_ISLOCKED(vp, NULL))
2393 vprint((char *)0, vp);
2394 }
41a01a4d 2395 lwkt_gettokref(&ilock);
984263bc 2396 nmp = TAILQ_NEXT(mp, mnt_list);
dadab5e9 2397 vfs_unbusy(mp, td);
984263bc 2398 }
41a01a4d 2399 lwkt_reltoken(&ilock);
984263bc
MD
2400}
2401#endif
2402
2403/*
2404 * Top level filesystem related information gathering.
2405 */
402ed7e1 2406static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
984263bc
MD
2407
2408static int
2409vfs_sysctl(SYSCTL_HANDLER_ARGS)
2410{
2411 int *name = (int *)arg1 - 1; /* XXX */
2412 u_int namelen = arg2 + 1; /* XXX */
2413 struct vfsconf *vfsp;
2414
2415#if 1 || defined(COMPAT_PRELITE2)
2416 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2417 if (namelen == 1)
2418 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2419#endif
2420
2421#ifdef notyet
2422 /* all sysctl names at this level are at least name and field */
2423 if (namelen < 2)
2424 return (ENOTDIR); /* overloaded */
2425 if (name[0] != VFS_GENERIC) {
2426 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2427 if (vfsp->vfc_typenum == name[0])
2428 break;
2429 if (vfsp == NULL)
2430 return (EOPNOTSUPP);
2431 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2432 oldp, oldlenp, newp, newlen, p));
2433 }
2434#endif
2435 switch (name[1]) {
2436 case VFS_MAXTYPENUM:
2437 if (namelen != 2)
2438 return (ENOTDIR);
2439 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2440 case VFS_CONF:
2441 if (namelen != 3)
2442 return (ENOTDIR); /* overloaded */
2443 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2444 if (vfsp->vfc_typenum == name[2])
2445 break;
2446 if (vfsp == NULL)
2447 return (EOPNOTSUPP);
2448 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2449 }
2450 return (EOPNOTSUPP);
2451}
2452
2453SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2454 "Generic filesystem");
2455
2456#if 1 || defined(COMPAT_PRELITE2)
2457
2458static int
2459sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2460{
2461 int error;
2462 struct vfsconf *vfsp;
2463 struct ovfsconf ovfs;
2464
2465 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2466 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
2467 strcpy(ovfs.vfc_name, vfsp->vfc_name);
2468 ovfs.vfc_index = vfsp->vfc_typenum;
2469 ovfs.vfc_refcount = vfsp->vfc_refcount;
2470 ovfs.vfc_flags = vfsp->vfc_flags;
2471 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2472 if (error)
2473 return error;
2474 }
2475 return 0;
2476}
2477
2478#endif /* 1 || COMPAT_PRELITE2 */
2479
2480#if 0
2481#define KINFO_VNODESLOP 10
2482/*
2483 * Dump vnode list (via sysctl).
2484 * Copyout address of vnode followed by vnode.
2485 */
2486/* ARGSUSED */
2487static int
2488sysctl_vnode(SYSCTL_HANDLER_ARGS)
2489{
2490 struct proc *p = curproc; /* XXX */
2491 struct mount *mp, *nmp;
2492 struct vnode *nvp, *vp;
41a01a4d
MD
2493 lwkt_tokref ilock;
2494 lwkt_tokref jlock;
984263bc
MD
2495 int error;
2496
2497#define VPTRSZ sizeof (struct vnode *)
2498#define VNODESZ sizeof (struct vnode)
2499
2500 req->lock = 0;
2501 if (!req->oldptr) /* Make an estimate */
2502 return (SYSCTL_OUT(req, 0,
2503 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2504
41a01a4d 2505 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 2506 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 2507 if (vfs_busy(mp, LK_NOWAIT, &ilock, p)) {
984263bc
MD
2508 nmp = TAILQ_NEXT(mp, mnt_list);
2509 continue;
2510 }
41a01a4d 2511 lwkt_gettoken(&jlock, &mntvnode_token);
984263bc 2512again:
984263bc
MD
2513 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2514 vp != NULL;
2515 vp = nvp) {
2516 /*
2517 * Check that the vp is still associated with
2518 * this filesystem. RACE: could have been
2519 * recycled onto the same filesystem.
2520 */
41a01a4d 2521 if (vp->v_mount != mp)
984263bc 2522 goto again;
984263bc 2523 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
984263bc 2524 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
41a01a4d
MD
2525 (error = SYSCTL_OUT(req, vp, VNODESZ))) {
2526 lwkt_reltoken(&jlock);
984263bc 2527 return (error);
41a01a4d 2528 }
984263bc 2529 }
41a01a4d
MD
2530 lwkt_reltoken(&jlock);
2531 lwkt_gettokref(&ilock);
2532 nmp = TAILQ_NEXT(mp, mnt_list); /* ZZZ */
984263bc
MD
2533 vfs_unbusy(mp, p);
2534 }
41a01a4d 2535 lwkt_reltoken(&ilock);
984263bc
MD
2536
2537 return (0);
2538}
2539#endif
2540
2541/*
2542 * XXX
2543 * Exporting the vnode list on large systems causes them to crash.
2544 * Exporting the vnode list on medium systems causes sysctl to coredump.
2545 */
2546#if 0
2547SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2548 0, 0, sysctl_vnode, "S,vnode", "");
2549#endif
2550
2551/*
2552 * Check to see if a filesystem is mounted on a block device.
2553 */
2554int
e4c9c0c8 2555vfs_mountedon(struct vnode *vp)
984263bc 2556{
e4c9c0c8 2557 dev_t dev;
984263bc 2558
e4c9c0c8
MD
2559 if ((dev = vp->v_rdev) == NULL)
2560 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
2561 if (dev != NODEV && dev->si_mountpoint)
984263bc
MD
2562 return (EBUSY);
2563 return (0);
2564}
2565
2566/*
2567 * Unmount all filesystems. The list is traversed in reverse order
2568 * of mounting to avoid dependencies.
2569 */
2570void
dd98570a 2571vfs_unmountall(void)
984263bc
MD
2572{
2573 struct mount *mp;
dadab5e9 2574 struct thread *td = curthread;
984263bc
MD
2575 int error;
2576
dadab5e9
MD
2577 if (td->td_proc == NULL)
2578 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
2579
984263bc
MD
2580 /*
2581 * Since this only runs when rebooting, it is not interlocked.
2582 */
2583 while(!TAILQ_EMPTY(&mountlist)) {
2584 mp = TAILQ_LAST(&mountlist, mntlist);
dadab5e9 2585 error = dounmount(mp, MNT_FORCE, td);
984263bc
MD
2586 if (error) {
2587 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2588 printf("unmount of %s failed (",
2589 mp->mnt_stat.f_mntonname);
2590 if (error == EBUSY)
2591 printf("BUSY)\n");
2592 else
2593 printf("%d)\n", error);
2594 } else {
2595 /* The unmount has removed mp from the mountlist */
2596 }
2597 }
2598}
2599
2600/*
2601 * Build hash lists of net addresses and hang them off the mount point.
2602 * Called by ufs_mount() to set up the lists of export addresses.
2603 */
2604static int
dd98570a
MD
2605vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2606 struct export_args *argp)
984263bc 2607{
1fd87d54
RG
2608 struct netcred *np;
2609 struct radix_node_head *rnh;
2610 int i;
984263bc
MD
2611 struct radix_node *rn;
2612 struct sockaddr *saddr, *smask = 0;
2613 struct domain *dom;
2614 int error;
2615
2616 if (argp->ex_addrlen == 0) {
2617 if (mp->mnt_flag & MNT_DEFEXPORTED)
2618 return (EPERM);
2619 np = &nep->ne_defexported;
2620 np->netc_exflags = argp->ex_flags;
2621 np->netc_anon = argp->ex_anon;
2622 np->netc_anon.cr_ref = 1;
2623 mp->mnt_flag |= MNT_DEFEXPORTED;
2624 return (0);
2625 }
2626
0260ddf9
MD
2627 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2628 return (EINVAL);
2629 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
984263bc
MD
2630 return (EINVAL);
2631
2632 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2633 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2634 bzero((caddr_t) np, i);
2635 saddr = (struct sockaddr *) (np + 1);
2636 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2637 goto out;
2638 if (saddr->sa_len > argp->ex_addrlen)
2639 saddr->sa_len = argp->ex_addrlen;
2640 if (argp->ex_masklen) {
dd98570a
MD
2641 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2642 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
984263bc
MD
2643 if (error)
2644 goto out;
2645 if (smask->sa_len > argp->ex_masklen)
2646 smask->sa_len = argp->ex_masklen;
2647 }
2648 i = saddr->sa_family;
2649 if ((rnh = nep->ne_rtable[i]) == 0) {
2650 /*
2651 * Seems silly to initialize every AF when most are not used,
2652 * do so on demand here
2653 */
2654 for (dom = domains; dom; dom = dom->dom_next)
2655 if (dom->dom_family == i && dom->dom_rtattach) {
2656 dom->dom_rtattach((void **) &nep->ne_rtable[i],
2657 dom->dom_rtoffset);
2658 break;
2659 }
2660 if ((rnh = nep->ne_rtable[i]) == 0) {
2661 error = ENOBUFS;
2662 goto out;
2663 }
2664 }
2665 rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2666 np->netc_rnodes);
2667 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
2668 error = EPERM;
2669 goto out;
2670 }
2671 np->netc_exflags = argp->ex_flags;
2672 np->netc_anon = argp->ex_anon;
2673 np->netc_anon.cr_ref = 1;
2674 return (0);
2675out:
2676 free(np, M_NETADDR);
2677 return (error);
2678}
2679
2680/* ARGSUSED */
2681static int
dd98570a 2682vfs_free_netcred(struct radix_node *rn, void *w)
984263bc 2683{
1fd87d54 2684 struct radix_node_head *rnh = (struct radix_node_head *) w;
984263bc
MD
2685
2686 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2687 free((caddr_t) rn, M_NETADDR);
2688 return (0);
2689}
2690
2691/*
2692 * Free the net address hash lists that are hanging off the mount points.
2693 */
2694static void
dd98570a 2695vfs_free_addrlist(struct netexport *nep)
984263bc 2696{
1fd87d54
RG
2697 int i;
2698 struct radix_node_head *rnh;
984263bc
MD
2699
2700 for (i = 0; i <= AF_MAX; i++)
2701 if ((rnh = nep->ne_rtable[i])) {
2702 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2703 (caddr_t) rnh);
2704 free((caddr_t) rnh, M_RTABLE);
2705 nep->ne_rtable[i] = 0;
2706 }
2707}
2708
2709int
dd98570a 2710vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
984263bc
MD
2711{
2712 int error;
2713
2714 if (argp->ex_flags & MNT_DELEXPORT) {
2715 if (mp->mnt_flag & MNT_EXPUBLIC) {
2716 vfs_setpublicfs(NULL, NULL, NULL);
2717 mp->mnt_flag &= ~MNT_EXPUBLIC;
2718 }
2719 vfs_free_addrlist(nep);
2720 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2721 }
2722 if (argp->ex_flags & MNT_EXPORTED) {
2723 if (argp->ex_flags & MNT_EXPUBLIC) {
2724 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2725 return (error);
2726 mp->mnt_flag |= MNT_EXPUBLIC;
2727 }
2728 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2729 return (error);
2730 mp->mnt_flag |= MNT_EXPORTED;
2731 }
2732 return (0);
2733}
2734
2735
2736/*
2737 * Set the publicly exported filesystem (WebNFS). Currently, only
2738 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2739 */
2740int
dd98570a
MD
2741vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2742 struct export_args *argp)
984263bc
MD
2743{
2744 int error;
2745 struct vnode *rvp;
2746 char *cp;
2747
2748 /*
2749 * mp == NULL -> invalidate the current info, the FS is
2750 * no longer exported. May be called from either vfs_export
2751 * or unmount, so check if it hasn't already been done.
2752 */
2753 if (mp == NULL) {
2754 if (nfs_pub.np_valid) {
2755 nfs_pub.np_valid = 0;
2756 if (nfs_pub.np_index != NULL) {
2757 FREE(nfs_pub.np_index, M_TEMP);
2758 nfs_pub.np_index = NULL;
2759 }
2760 }
2761 return (0);
2762 }
2763
2764 /*
2765 * Only one allowed at a time.
2766 */
2767 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2768 return (EBUSY);
2769
2770 /*
2771 * Get real filehandle for root of exported FS.
2772 */
2773 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2774 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2775
2776 if ((error = VFS_ROOT(mp, &rvp)))
2777 return (error);
2778
2779 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2780 return (error);
2781
2782 vput(rvp);
2783
2784 /*
2785 * If an indexfile was specified, pull it in.
2786 */
2787 if (argp->ex_indexfile != NULL) {
2788 MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2789 M_WAITOK);
2790 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2791 MAXNAMLEN, (size_t *)0);
2792 if (!error) {
2793 /*
2794 * Check for illegal filenames.
2795 */
2796 for (cp = nfs_pub.np_index; *cp; cp++) {
2797 if (*cp == '/') {
2798 error = EINVAL;
2799 break;
2800 }
2801 }
2802 }
2803 if (error) {
2804 FREE(nfs_pub.np_index, M_TEMP);
2805 return (error);
2806 }
2807 }
2808
2809 nfs_pub.np_mount = mp;
2810 nfs_pub.np_valid = 1;
2811 return (0);
2812}
2813
2814struct netcred *
dd98570a
MD
2815vfs_export_lookup(struct mount *mp, struct netexport *nep,
2816 struct sockaddr *nam)
984263bc 2817{
1fd87d54
RG
2818 struct netcred *np;
2819 struct radix_node_head *rnh;
984263bc
MD
2820 struct sockaddr *saddr;
2821
2822 np = NULL;
2823 if (mp->mnt_flag & MNT_EXPORTED) {
2824 /*
2825 * Lookup in the export list first.
2826 */
2827 if (nam != NULL) {
2828 saddr = nam;
2829 rnh = nep->ne_rtable[saddr->sa_family];
2830 if (rnh != NULL) {
2831 np = (struct netcred *)
2832 (*rnh->rnh_matchaddr)((caddr_t)saddr,
2833 rnh);
2834 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2835 np = NULL;
2836 }
2837 }
2838 /*
2839 * If no address match, use the default if it exists.
2840 */
2841 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2842 np = &nep->ne_defexported;
2843 }
2844 return (np);
2845}
2846
2847/*
41a01a4d
MD
2848 * perform msync on all vnodes under a mount point. The mount point must
2849 * be locked. This code is also responsible for lazy-freeing unreferenced
2850 * vnodes whos VM objects no longer contain pages.
2851 *
2852 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
984263bc 2853 */
41a01a4d
MD
2854static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2855static int vfs_msync_scan2(struct mount *mp, struct vnode *vp,
dd98570a 2856 lwkt_tokref_t vlock, void *data);
41a01a4d 2857
984263bc
MD
2858void
2859vfs_msync(struct mount *mp, int flags)
2860{
41a01a4d
MD
2861 vmntvnodescan(mp, vfs_msync_scan1, vfs_msync_scan2, (void *)flags);
2862}
984263bc 2863
41a01a4d
MD
2864/*
2865 * scan1 is a fast pre-check. There could be hundreds of thousands of
2866 * vnodes, we cannot afford to do anything heavy weight until we have a
2867 * fairly good indication that there is work to do.
2868 */
2869static
2870int
2871vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2872{
2873 int flags = (int)data;
984263bc 2874
41a01a4d
MD
2875 if ((vp->v_flag & VXLOCK) == 0) {
2876 if (VSHOULDFREE(vp))
2877 return(0);
2878 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2879 (vp->v_flag & VOBJDIRTY) &&
984263bc 2880 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
41a01a4d
MD
2881 return(0);
2882 }
2883 }
2884 return(-1);
2885}
2886
2887static
2888int
dd98570a
MD
2889vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2890 lwkt_tokref_t vlock, void *data)
41a01a4d
MD
2891{
2892 vm_object_t obj;
2893 int error;
2894 int flags = (int)data;
2895
2896 if (vp->v_flag & VXLOCK)
2897 return(0);
2898
2899 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2900 (vp->v_flag & VOBJDIRTY) &&
2901 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2902 error = vget(vp, vlock, LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ | LK_INTERLOCK, curthread);
2903 if (error == 0) {
2904 if (VOP_GETVOBJECT(vp, &obj) == 0) {
2905 vm_object_page_clean(obj, 0, 0,
2906 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
984263bc 2907 }
41a01a4d 2908 vput(vp);
984263bc 2909 }
41a01a4d 2910 return(0);
984263bc 2911 }
41a01a4d
MD
2912 vmaybefree(vp);
2913 lwkt_reltoken(vlock);
2914 return(0);
984263bc
MD
2915}
2916
2917/*
2918 * Create the VM object needed for VMIO and mmap support. This
2919 * is done for all VREG files in the system. Some filesystems might
2920 * afford the additional metadata buffering capability of the
2921 * VMIO code by making the device node be VMIO mode also.
2922 *
2923 * vp must be locked when vfs_object_create is called.
2924 */
2925int
3b568787 2926vfs_object_create(struct vnode *vp, struct thread *td)
984263bc 2927{
3b568787 2928 return (VOP_CREATEVOBJECT(vp, td));
984263bc
MD
2929}
2930
41a01a4d
MD
2931/*
2932 * NOTE: the vnode interlock must be held during the call. We have to recheck
2933 * the VFREE flag since the vnode may have been removed from the free list
2934 * while we were blocked on vnode_free_list_token. The use or hold count
2935 * must have already been bumped by the caller.
2936 */
2937static void
2938vbusy(struct vnode *vp)
984263bc 2939{
41a01a4d 2940 lwkt_tokref ilock;
984263bc 2941
41a01a4d
MD
2942 lwkt_gettoken(&ilock, &vnode_free_list_token);
2943 if ((vp->v_flag & VFREE) != 0) {
2944 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2945 freevnodes--;
2946 vp->v_flag &= ~(VFREE|VAGE);
984263bc 2947 }
41a01a4d 2948 lwkt_reltoken(&ilock);
984263bc
MD
2949}
2950
41a01a4d
MD
2951/*
2952 * NOTE: the vnode interlock must be held during the call. The use or hold
2953 * count must have already been bumped by the caller. We use a VINFREE to
2954 * interlock against other calls to vfree() which might occur while we
2955 * are blocked. The vnode cannot be reused until it has actually been
2956 * placed on the free list, so there are no other races even though the
2957 * use and hold counts are 0.
2958 */
2959static void
2960vfree(struct vnode *vp)
984263bc 2961{
41a01a4d 2962 lwkt_tokref ilock;
984263bc 2963
41a01a4d
MD
2964 if ((vp->v_flag & VINFREE) == 0) {
2965 vp->v_flag |= VINFREE;
2966 lwkt_gettoken(&ilock, &vnode_free_list_token); /* can block */
2967 KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2968 if (vp->v_flag & VAGE) {
2969 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2970 } else {
2971 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2972 }
2973 freevnodes++;
2974 vp->v_flag &= ~(VAGE|VINFREE);
2975 vp->v_flag |= VFREE;
2976 lwkt_reltoken(&ilock); /* can block */
2977 }
984263bc
MD
2978}
2979
41a01a4d 2980
984263bc
MD
2981/*
2982 * Record a process's interest in events which might happen to
2983 * a vnode. Because poll uses the historic select-style interface
2984 * internally, this routine serves as both the ``check for any
2985 * pending events'' and the ``record my interest in future events''
2986 * functions. (These are done together, while the lock is held,
2987 * to avoid race conditions.)
2988 */
2989int
dadab5e9 2990vn_pollrecord(struct vnode *vp, struct thread *td, int events)
984263bc 2991{
41a01a4d
MD
2992 lwkt_tokref ilock;
2993
2994 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
2995 if (vp->v_pollinfo.vpi_revents & events) {
2996 /*
2997 * This leaves events we are not interested
2998 * in available for the other process which
2999 * which presumably had requested them
3000 * (otherwise they would never have been
3001 * recorded).
3002 */
3003 events &= vp->v_pollinfo.vpi_revents;
3004 vp->v_pollinfo.vpi_revents &= ~events;
3005
41a01a4d 3006 lwkt_reltoken(&ilock);
984263bc
MD
3007 return events;
3008 }
3009 vp->v_pollinfo.vpi_events |= events;
dadab5e9 3010 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
41a01a4d 3011 lwkt_reltoken(&ilock);
984263bc
MD
3012 return 0;
3013}
3014
3015/*
3016 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
3017 * it is possible for us to miss an event due to race conditions, but
3018 * that condition is expected to be rare, so for the moment it is the
3019 * preferred interface.
3020 */
3021void
dd98570a 3022vn_pollevent(struct vnode *vp, int events)
984263bc 3023{
41a01a4d
MD
3024 lwkt_tokref ilock;
3025
3026 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
3027 if (vp->v_pollinfo.vpi_events & events) {
3028 /*
3029 * We clear vpi_events so that we don't
3030 * call selwakeup() twice if two events are
3031 * posted before the polling process(es) is
3032 * awakened. This also ensures that we take at
3033 * most one selwakeup() if the polling process
3034 * is no longer interested. However, it does
3035 * mean that only one event can be noticed at
3036 * a time. (Perhaps we should only clear those
3037 * event bits which we note?) XXX
3038 */
3039 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
3040 vp->v_pollinfo.vpi_revents |= events;
3041 selwakeup(&vp->v_pollinfo.vpi_selinfo);
3042 }
41a01a4d 3043 lwkt_reltoken(&ilock);
984263bc
MD
3044}
3045
3046/*
3047 * Wake up anyone polling on vp because it is being revoked.
3048 * This depends on dead_poll() returning POLLHUP for correct
3049 * behavior.
3050 */
3051void
dd98570a 3052vn_pollgone(struct vnode *vp)
984263bc 3053{
41a01a4d
MD
3054 lwkt_tokref ilock;
3055
3056 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
3057 if (vp->v_pollinfo.vpi_events) {
3058 vp->v_pollinfo.vpi_events = 0;
3059 selwakeup(&vp->v_pollinfo.vpi_selinfo);
3060 }
41a01a4d 3061 lwkt_reltoken(&ilock);
984263bc
MD
3062}
3063
3064
3065
3066/*
3067 * Routine to create and manage a filesystem syncer vnode.
3068 */
402ed7e1
RG
3069#define sync_close ((int (*) (struct vop_close_args *))nullop)
3070static int sync_fsync (struct vop_fsync_args *);
3071static int sync_inactive (struct vop_inactive_args *);
3072static int sync_reclaim (struct vop_reclaim_args *);
3073#define sync_lock ((int (*) (struct vop_lock_args *))vop_nolock)
3074#define sync_unlock ((int (*) (struct vop_unlock_args *))vop_nounlock)
3075static int sync_print (struct vop_print_args *);
3076#define sync_islocked ((int(*) (struct vop_islocked_args *))vop_noislocked)
984263bc 3077
2d3e977e 3078static struct vop_ops *sync_vnode_vops;
984263bc 3079static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2d3e977e
MD
3080 { &vop_default_desc, vop_eopnotsupp },
3081 { &vop_close_desc, (void *) sync_close }, /* close */
3082 { &vop_fsync_desc, (void *) sync_fsync }, /* fsync */
3083 { &vop_inactive_desc, (void *) sync_inactive }, /* inactive */
3084 { &vop_reclaim_desc, (void *) sync_reclaim }, /* reclaim */
3085 { &vop_lock_desc, (void *) sync_lock }, /* lock */
3086 { &vop_unlock_desc, (void *) sync_unlock }, /* unlock */
3087 { &vop_print_desc, (void *) sync_print }, /* print */
3088 { &vop_islocked_desc, (void *) sync_islocked }, /* islocked */
984263bc
MD
3089 { NULL, NULL }
3090};
3091static struct vnodeopv_desc sync_vnodeop_opv_desc =
2d3e977e 3092 { &sync_vnode_vops, sync_vnodeop_entries };
984263bc
MD
3093
3094VNODEOP_SET(sync_vnodeop_opv_desc);
3095
3096/*
3097 * Create a new filesystem syncer vnode for the specified mount point.
41a01a4d
MD
3098 * This vnode is placed on the worklist and is responsible for sync'ing
3099 * the filesystem.
3100 *
3101 * NOTE: read-only mounts are also placed on the worklist. The filesystem
3102 * sync code is also responsible for cleaning up vnodes.
984263bc
MD
3103 */
3104int
41a01a4d 3105vfs_allocate_syncvnode(struct mount *mp)
984263bc
MD
3106{
3107 struct vnode *vp;
3108 static long start, incr, next;
3109 int error;
3110
3111 /* Allocate a new vnode */
2d3e977e 3112 if ((error = getnewvnode(VT_VFS, mp, sync_vnode_vops, &vp)) != 0) {
984263bc
MD
3113 mp->mnt_syncer = NULL;
3114 return (error);
3115 }
3116 vp->v_type = VNON;
3117 /*
3118 * Place the vnode onto the syncer worklist. We attempt to
3119 * scatter them about on the list so that they will go off
3120 * at evenly distributed times even if all the filesystems
3121 * are mounted at once.
3122 */
3123 next += incr;
3124 if (next == 0 || next > syncer_maxdelay) {
3125 start /= 2;
3126 incr /= 2;
3127 if (start == 0) {
3128 start = syncer_maxdelay / 2;
3129 incr = syncer_maxdelay;
3130 }
3131 next = start;
3132 }
3133 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3134 mp->mnt_syncer = vp;
3135 return (0);
3136}
3137
3138/*
3139 * Do a lazy sync of the filesystem.
dd98570a
MD
3140 *
3141 * sync_fsync { struct vnode *a_vp, struct ucred *a_cred, int a_waitfor,
3142 * struct thread *a_td }
984263bc
MD
3143 */
3144static int
dd98570a 3145sync_fsync(struct vop_fsync_args *ap)
984263bc
MD
3146{
3147 struct vnode *syncvp = ap->a_vp;
3148 struct mount *mp = syncvp->v_mount;
dadab5e9 3149 struct thread *td = ap->a_td;
41a01a4d 3150 lwkt_tokref ilock;
984263bc
MD
3151 int asyncflag;
3152
3153 /*
3154 * We only need to do something if this is a lazy evaluation.
3155 */
3156 if (ap->a_waitfor != MNT_LAZY)
3157 return (0);
3158
3159 /*
3160 * Move ourselves to the back of the sync list.
3161 */
3162 vn_syncer_add_to_worklist(syncvp, syncdelay);
3163
3164 /*
3165 * Walk the list of vnodes pushing all that are dirty and
41a01a4d
MD
3166 * not already on the sync list, and freeing vnodes which have
3167 * no refs and whos VM objects are empty. vfs_msync() handles
3168 * the VM issues and must be called whether the mount is readonly
3169 * or not.
984263bc 3170 */
41a01a4d
MD
3171 lwkt_gettoken(&ilock, &mountlist_token);
3172 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &ilock, td) != 0) {
3173 lwkt_reltoken(&ilock);
984263bc
MD
3174 return (0);
3175 }
41a01a4d
MD
3176 if (mp->mnt_flag & MNT_RDONLY) {
3177 vfs_msync(mp, MNT_NOWAIT);
3178 } else {
3179 asyncflag = mp->mnt_flag & MNT_ASYNC;
3180 mp->mnt_flag &= ~MNT_ASYNC; /* ZZZ hack */
3181 vfs_msync(mp, MNT_NOWAIT);
3182 VFS_SYNC(mp, MNT_LAZY, td);
3183 if (asyncflag)
3184 mp->mnt_flag |= MNT_ASYNC;
3185 }
dadab5e9 3186 vfs_unbusy(mp, td);
984263bc
MD
3187 return (0);
3188}
3189
3190/*
3191 * The syncer vnode is no referenced.
dd98570a
MD
3192 *
3193 * sync_inactive { struct vnode *a_vp, struct proc *a_p }
984263bc
MD
3194 */
3195static int
dd98570a 3196sync_inactive(struct vop_inactive_args *ap)
984263bc 3197{
984263bc
MD
3198 vgone(ap->a_vp);
3199 return (0);
3200}
3201
3202/*
3203 * The syncer vnode is no longer needed and is being decommissioned.
3204 *
3205 * Modifications to the worklist must be protected at splbio().
dd98570a
MD
3206 *
3207 * sync_reclaim { struct vnode *a_vp }
984263bc
MD
3208 */
3209static int
dd98570a 3210sync_reclaim(struct vop_reclaim_args *ap)
984263bc
MD
3211{
3212 struct vnode *vp = ap->a_vp;
3213 int s;
3214
3215 s = splbio();
3216 vp->v_mount->mnt_syncer = NULL;
3217 if (vp->v_flag & VONWORKLST) {
3218 LIST_REMOVE(vp, v_synclist);
3219 vp->v_flag &= ~VONWORKLST;
3220 }
3221 splx(s);
3222
3223 return (0);
3224}
3225
3226/*
3227 * Print out a syncer vnode.
dd98570a
MD
3228 *
3229 * sync_print { struct vnode *a_vp }
984263bc
MD
3230 */
3231static int
dd98570a 3232sync_print(struct vop_print_args *ap)
984263bc
MD
3233{
3234 struct vnode *vp = ap->a_vp;
3235
3236 printf("syncer vnode");
3237 if (vp->v_vnlock != NULL)
3238 lockmgr_printinfo(vp->v_vnlock);
3239 printf("\n");
3240 return (0);
3241}
3242
3243/*
e4c9c0c8
MD
3244 * extract the dev_t from a VBLK or VCHR. The vnode must have been opened
3245 * (or v_rdev might be NULL).
984263bc
MD
3246 */
3247dev_t
e4c9c0c8 3248vn_todev(struct vnode *vp)
984263bc
MD
3249{
3250 if (vp->v_type != VBLK && vp->v_type != VCHR)
3251 return (NODEV);
e4c9c0c8 3252 KKASSERT(vp->v_rdev != NULL);
984263bc
MD
3253 return (vp->v_rdev);
3254}
3255
3256/*
e4c9c0c8
MD
3257 * Check if vnode represents a disk device. The vnode does not need to be
3258 * opened.
984263bc
MD
3259 */
3260int
e4c9c0c8 3261vn_isdisk(struct vnode *vp, int *errp)
984263bc 3262{
e4c9c0c8
MD
3263 dev_t dev;
3264
984263bc
MD
3265 if (vp->v_type != VBLK && vp->v_type != VCHR) {
3266 if (errp != NULL)
3267 *errp = ENOTBLK;
3268 return (0);
3269 }
e4c9c0c8
MD
3270
3271 if ((dev = vp->v_rdev) == NULL)
3272 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
3273 if (dev == NULL || dev == NODEV) {
984263bc
MD
3274 if (errp != NULL)
3275 *errp = ENXIO;
3276 return (0);
3277 }
e4c9c0c8 3278 if (dev_is_good(dev) == 0) {
984263bc
MD
3279 if (errp != NULL)
3280 *errp = ENXIO;
3281 return (0);
3282 }
e4c9c0c8 3283 if ((dev_dflags(dev) & D_DISK) == 0) {
984263bc
MD
3284 if (errp != NULL)
3285 *errp = ENOTBLK;
3286 return (0);
3287 }
3288 if (errp != NULL)
3289 *errp = 0;
3290 return (1);
3291}
3292
3293void
dd98570a 3294NDFREE(struct nameidata *ndp, const uint flags)
984263bc
MD
3295{
3296 if (!(flags & NDF_NO_FREE_PNBUF) &&
2b69e610 3297 (ndp->ni_cnd.cn_flags & CNP_HASBUF)) {
984263bc 3298 zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2b69e610 3299 ndp->ni_cnd.cn_flags &= ~CNP_HASBUF;
984263bc 3300 }
bc0c094e
MD
3301 if (!(flags & NDF_NO_DNCP_RELE) &&
3302 (ndp->ni_cnd.cn_flags & CNP_WANTDNCP) &&
3303 ndp->ni_dncp) {
3304 cache_drop(ndp->ni_dncp);
3305 ndp->ni_dncp = NULL;
3306 }
3307 if (!(flags & NDF_NO_NCP_RELE) &&
3308 (ndp->ni_cnd.cn_flags & CNP_WANTNCP) &&
3309 ndp->ni_ncp) {
3310 cache_drop(ndp->ni_ncp);
3311 ndp->ni_ncp = NULL;
3312 }
984263bc 3313 if (!(flags & NDF_NO_DVP_UNLOCK) &&
2b69e610 3314 (ndp->ni_cnd.cn_flags & CNP_LOCKPARENT) &&
bc0c094e 3315 ndp->ni_dvp != ndp->ni_vp) {
41a01a4d 3316 VOP_UNLOCK(ndp->ni_dvp, NULL, 0, ndp->ni_cnd.cn_td);
bc0c094e 3317 }
984263bc 3318 if (!(flags & NDF_NO_DVP_RELE) &&
2b69e610 3319 (ndp->ni_cnd.cn_flags & (CNP_LOCKPARENT|CNP_WANTPARENT))) {
984263bc
MD
3320 vrele(ndp->ni_dvp);
3321 ndp->ni_dvp = NULL;
3322 }
3323 if (!(flags & NDF_NO_VP_UNLOCK) &&
bc0c094e 3324 (ndp->ni_cnd.cn_flags & CNP_LOCKLEAF) && ndp->ni_vp) {
41a01a4d 3325 VOP_UNLOCK(ndp->ni_vp, NULL, 0, ndp->ni_cnd.cn_td);
bc0c094e 3326 }
984263bc
MD
3327 if (!(flags & NDF_NO_VP_RELE) &&
3328 ndp->ni_vp) {
3329 vrele(ndp->ni_vp);
3330 ndp->ni_vp = NULL;
3331 }
3332 if (!(flags & NDF_NO_STARTDIR_RELE) &&
2b69e610 3333 (ndp->ni_cnd.cn_flags & CNP_SAVESTART)) {
984263bc
MD
3334 vrele(ndp->ni_startdir);
3335 ndp->ni_startdir = NULL;
3336 }
3337}
bc0c094e 3338
4f322a84
EN
3339#ifdef DEBUG_VFS_LOCKS
3340
3341void
3342assert_vop_locked(struct vnode *vp, const char *str)
3343{
4f322a84
EN
3344 if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
3345 panic("%s: %p is not locked shared but should be", str, vp);
3346 }
3347}
3348
3349void
3350assert_vop_unlocked(struct vnode *vp, const char *str)
3351{
4f322a84
EN
3352 if (vp && IS_LOCKING_VFS(vp)) {
3353 if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
3354 panic("%s: %p is locked but should not be", str, vp);
3355 }
3356 }
3357}
3358
3359#endif