growfs(8): Fix building with -DFS_DEBUG.
[dragonfly.git] / sbin / growfs / growfs.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgment:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors, as well as Christoph
21 * Herrmann and Thomas-Henning von Kamptz.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39 *
1de703da
MD
40 * @(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz Copyright (c) 1980, 1989, 1993 The Regents of the University of California. All rights reserved.
41 * $FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $
984263bc
MD
42 */
43
984263bc
MD
44/* ********************************************************** INCLUDES ***** */
45#include <sys/param.h>
595e3440 46#include <sys/diskslice.h>
984263bc
MD
47#include <sys/ioctl.h>
48#include <sys/stat.h>
49
50#include <stdio.h>
51#include <paths.h>
52#include <ctype.h>
53#include <err.h>
54#include <fcntl.h>
55#include <stdlib.h>
56#include <string.h>
57#include <unistd.h>
38a690d7
MD
58#include <vfs/ufs/dinode.h>
59#include <vfs/ufs/fs.h>
984263bc
MD
60
61#include "debug.h"
62
63/* *************************************************** GLOBALS & TYPES ***** */
64#ifdef FS_DEBUG
65int _dbg_lvl_ = (DL_INFO); /* DL_TRC */
66#endif /* FS_DEBUG */
67
68static union {
69 struct fs fs;
70 char pad[SBSIZE];
71} fsun1, fsun2;
72#define sblock fsun1.fs /* the new superblock */
73#define osblock fsun2.fs /* the old superblock */
74
75static union {
76 struct cg cg;
77 char pad[MAXBSIZE];
78} cgun1, cgun2;
79#define acg cgun1.cg /* a cylinder cgroup (new) */
80#define aocg cgun2.cg /* an old cylinder group */
81
82static char ablk[MAXBSIZE]; /* a block */
83static char i1blk[MAXBSIZE]; /* some indirect blocks */
84static char i2blk[MAXBSIZE];
85static char i3blk[MAXBSIZE];
86
87 /* where to write back updated blocks */
88static daddr_t in_src, i1_src, i2_src, i3_src;
89
90 /* what object contains the reference */
91enum pointer_source {
92 GFS_PS_INODE,
93 GFS_PS_IND_BLK_LVL1,
94 GFS_PS_IND_BLK_LVL2,
95 GFS_PS_IND_BLK_LVL3
96};
97
98static struct csum *fscs; /* cylinder summary */
99
67ad9090 100static struct ufs1_dinode zino[MAXBSIZE/sizeof(struct ufs1_dinode)]; /* some inodes */
984263bc
MD
101
102/*
103 * An array of elements of type struct gfs_bpp describes all blocks to
104 * be relocated in order to free the space needed for the cylinder group
105 * summary for all cylinder groups located in the first cylinder group.
106 */
107struct gfs_bpp {
108 daddr_t old; /* old block number */
109 daddr_t new; /* new block number */
110#define GFS_FL_FIRST 1
111#define GFS_FL_LAST 2
112 unsigned int flags; /* special handling required */
113 int found; /* how many references were updated */
114};
115
116/* ******************************************************** PROTOTYPES ***** */
117static void growfs(int, int, unsigned int);
118static void rdfs(daddr_t, size_t, void *, int);
119static void wtfs(daddr_t, size_t, void *, int, unsigned int);
120static daddr_t alloc(void);
121static int charsperline(void);
122static void usage(void);
123static int isblock(struct fs *, unsigned char *, int);
124static void clrblock(struct fs *, unsigned char *, int);
125static void setblock(struct fs *, unsigned char *, int);
126static void initcg(int, time_t, int, unsigned int);
127static void updjcg(int, time_t, int, int, unsigned int);
128static void updcsloc(time_t, int, int, unsigned int);
67ad9090 129static struct ufs1_dinode *ginode(ino_t, int, int);
984263bc
MD
130static void frag_adjust(daddr_t, int);
131static void cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
132 enum pointer_source, int, unsigned int);
133static void updclst(int);
134static void updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
135
136/* ************************************************************ growfs ***** */
137/*
138 * Here we actually start growing the filesystem. We basically read the
139 * cylinder summary from the first cylinder group as we want to update
140 * this on the fly during our various operations. First we handle the
141 * changes in the former last cylinder group. Afterwards we create all new
142 * cylinder groups. Now we handle the cylinder group containing the
143 * cylinder summary which might result in a relocation of the whole
144 * structure. In the end we write back the updated cylinder summary, the
145 * new superblock, and slightly patched versions of the super block
146 * copies.
147 */
148static void
149growfs(int fsi, int fso, unsigned int Nflag)
150{
151 DBG_FUNC("growfs")
152 int i;
153 int cylno, j;
154 time_t utime;
155 int width;
156 char tmpbuf[100];
157#ifdef FSIRAND
158 static int randinit=0;
159
160 DBG_ENTER;
161
162 if (!randinit) {
163 randinit = 1;
164 srandomdev();
165 }
166#else /* not FSIRAND */
167
168 DBG_ENTER;
169
170#endif /* FSIRAND */
171 time(&utime);
172
173 /*
174 * Get the cylinder summary into the memory.
175 */
176 fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
177 if(fscs == NULL) {
178 errx(1, "calloc failed");
179 }
180 for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
181 rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
182 numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
183 osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
184 }
185
186#ifdef FS_DEBUG
187{
188 struct csum *dbg_csp;
189 int dbg_csc;
190 char dbg_line[80];
191
192 dbg_csp=fscs;
193 for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
194 snprintf(dbg_line, sizeof(dbg_line),
195 "%d. old csum in old location", dbg_csc);
196 DBG_DUMP_CSUM(&osblock,
197 dbg_line,
198 dbg_csp++);
199 }
200}
201#endif /* FS_DEBUG */
202 DBG_PRINT0("fscs read\n");
203
204 /*
205 * Do all needed changes in the former last cylinder group.
206 */
207 updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
208
209 /*
210 * Dump out summary information about file system.
211 */
212 printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
213 sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
214 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
215#define B2MBFACTOR (1 / (1024.0 * 1024.0))
216 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
217 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
218 sblock.fs_ncg, sblock.fs_cpg,
219 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
220 sblock.fs_ipg);
221#undef B2MBFACTOR
222
223 /*
224 * Now build the cylinders group blocks and
225 * then print out indices of cylinder groups.
226 */
227 printf("super-block backups (for fsck -b #) at:\n");
228 i = 0;
229 width = charsperline();
230
231 /*
232 * Iterate for only the new cylinder groups.
233 */
234 for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
235 initcg(cylno, utime, fso, Nflag);
236 j = sprintf(tmpbuf, " %d%s",
237 (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
238 cylno < (sblock.fs_ncg-1) ? "," : "" );
239 if (i + j >= width) {
240 printf("\n");
241 i = 0;
242 }
243 i += j;
244 printf("%s", tmpbuf);
245 fflush(stdout);
246 }
247 printf("\n");
248
249 /*
250 * Do all needed changes in the first cylinder group.
251 * allocate blocks in new location
252 */
253 updcsloc(utime, fsi, fso, Nflag);
254
255 /*
256 * Now write the cylinder summary back to disk.
257 */
258 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
259 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
260 (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
261 (void *)(((char *)fscs) + i), fso, Nflag);
262 }
263 DBG_PRINT0("fscs written\n");
264
265#ifdef FS_DEBUG
266{
267 struct csum *dbg_csp;
268 int dbg_csc;
269 char dbg_line[80];
270
271 dbg_csp=fscs;
272 for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
273 snprintf(dbg_line, sizeof(dbg_line),
274 "%d. new csum in new location", dbg_csc);
275 DBG_DUMP_CSUM(&sblock,
276 dbg_line,
277 dbg_csp++);
278 }
279}
280#endif /* FS_DEBUG */
281
282 /*
283 * Now write the new superblock back to disk.
284 */
285 sblock.fs_time = utime;
4e1af74f 286 wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, &sblock,
984263bc
MD
287 fso, Nflag);
288 DBG_PRINT0("sblock written\n");
289 DBG_DUMP_FS(&sblock,
290 "new initial sblock");
291
292 /*
293 * Clean up the dynamic fields in our superblock copies.
294 */
295 sblock.fs_fmod = 0;
296 sblock.fs_clean = 1;
297 sblock.fs_ronly = 0;
298 sblock.fs_cgrotor = 0;
299 sblock.fs_state = 0;
300 memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
301 sblock.fs_flags &= FS_DOSOFTDEP;
302
303 /*
304 * XXX
305 * The following fields are currently distributed from the superblock
306 * to the copies:
307 * fs_minfree
308 * fs_rotdelay
309 * fs_maxcontig
310 * fs_maxbpg
311 * fs_minfree,
312 * fs_optim
313 * fs_flags regarding SOFTPDATES
314 *
315 * We probably should rather change the summary for the cylinder group
316 * statistics here to the value of what would be in there, if the file
317 * system were created initially with the new size. Therefor we still
318 * need to find an easy way of calculating that.
319 * Possibly we can try to read the first superblock copy and apply the
320 * "diffed" stats between the old and new superblock by still copying
321 * certain parameters onto that.
322 */
323
324 /*
325 * Write out the duplicate super blocks.
326 */
327 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
328 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
4e1af74f 329 (size_t)SBSIZE, &sblock, fso, Nflag);
984263bc
MD
330 }
331 DBG_PRINT0("sblock copies written\n");
332 DBG_DUMP_FS(&sblock,
333 "new other sblocks");
334
335 DBG_LEAVE;
336 return;
337}
338
339/* ************************************************************ initcg ***** */
340/*
341 * This creates a new cylinder group structure, for more details please see
342 * the source of newfs(8), as this function is taken over almost unchanged.
343 * As this is never called for the first cylinder group, the special
344 * provisions for that case are removed here.
345 */
346static void
347initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
348{
349 DBG_FUNC("initcg")
350 daddr_t cbase, d, dlower, dupper, dmax, blkno;
351 int i;
307fef7a 352 struct csum *cs;
984263bc
MD
353#ifdef FSIRAND
354 int j;
355#endif
356
357 DBG_ENTER;
358
359 /*
360 * Determine block bounds for cylinder group.
361 */
362 cbase = cgbase(&sblock, cylno);
363 dmax = cbase + sblock.fs_fpg;
364 if (dmax > sblock.fs_size) {
365 dmax = sblock.fs_size;
366 }
367 dlower = cgsblock(&sblock, cylno) - cbase;
368 dupper = cgdmin(&sblock, cylno) - cbase;
369 if (cylno == 0) { /* XXX fscs may be relocated */
370 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
371 }
372 cs = fscs + cylno;
373 memset(&acg, 0, (size_t)sblock.fs_cgsize);
374 acg.cg_time = utime;
375 acg.cg_magic = CG_MAGIC;
376 acg.cg_cgx = cylno;
377 if (cylno == sblock.fs_ncg - 1) {
378 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
379 } else {
380 acg.cg_ncyl = sblock.fs_cpg;
381 }
382 acg.cg_niblk = sblock.fs_ipg;
383 acg.cg_ndblk = dmax - cbase;
384 if (sblock.fs_contigsumsize > 0) {
385 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
386 }
387 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
388 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
389 acg.cg_iusedoff = acg.cg_boff +
390 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
391 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
392 if (sblock.fs_contigsumsize <= 0) {
393 acg.cg_nextfreeoff = acg.cg_freeoff +
394 howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
395 } else {
396 acg.cg_clustersumoff = acg.cg_freeoff + howmany
397 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
398 sizeof(u_int32_t);
399 acg.cg_clustersumoff =
400 roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
401 acg.cg_clusteroff = acg.cg_clustersumoff +
402 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
403 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
404 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
405 }
11870ba5 406 if (acg.cg_nextfreeoff-(intptr_t)(&acg.cg_firstfield) > sblock.fs_cgsize) {
984263bc
MD
407 /*
408 * XXX This should never happen as we would have had that panic
409 * already on filesystem creation
410 */
411 errx(37, "panic: cylinder group too big");
412 }
413 acg.cg_cs.cs_nifree += sblock.fs_ipg;
414 if (cylno == 0)
415 for (i = 0; (size_t)i < ROOTINO; i++) {
416 setbit(cg_inosused(&acg), i);
417 acg.cg_cs.cs_nifree--;
418 }
419 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
420#ifdef FSIRAND
67ad9090 421 for (j = 0; j < sblock.fs_bsize / sizeof(struct ufs1_dinode); j++) {
984263bc
MD
422 zino[j].di_gen = random();
423 }
424#endif
425 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
426 (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
427 }
428 for (d = 0; d < dlower; d += sblock.fs_frag) {
429 blkno = d / sblock.fs_frag;
430 setblock(&sblock, cg_blksfree(&acg), blkno);
431 if (sblock.fs_contigsumsize > 0) {
432 setbit(cg_clustersfree(&acg), blkno);
433 }
434 acg.cg_cs.cs_nbfree++;
435 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
436 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
437 [cbtorpos(&sblock, d)]++;
438 }
439 sblock.fs_dsize += dlower;
440 sblock.fs_dsize += acg.cg_ndblk - dupper;
441 if ((i = dupper % sblock.fs_frag)) {
442 acg.cg_frsum[sblock.fs_frag - i]++;
443 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
444 setbit(cg_blksfree(&acg), dupper);
445 acg.cg_cs.cs_nffree++;
446 }
447 }
448 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
449 blkno = d / sblock.fs_frag;
450 setblock(&sblock, cg_blksfree(&acg), blkno);
451 if (sblock.fs_contigsumsize > 0) {
452 setbit(cg_clustersfree(&acg), blkno);
453 }
454 acg.cg_cs.cs_nbfree++;
455 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
456 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
457 [cbtorpos(&sblock, d)]++;
458 d += sblock.fs_frag;
459 }
460 if (d < dmax - cbase) {
461 acg.cg_frsum[dmax - cbase - d]++;
462 for (; d < dmax - cbase; d++) {
463 setbit(cg_blksfree(&acg), d);
464 acg.cg_cs.cs_nffree++;
465 }
466 }
467 if (sblock.fs_contigsumsize > 0) {
468 int32_t *sump = cg_clustersum(&acg);
469 u_char *mapp = cg_clustersfree(&acg);
470 int map = *mapp++;
471 int bit = 1;
472 int run = 0;
473
474 for (i = 0; i < acg.cg_nclusterblks; i++) {
475 if ((map & bit) != 0) {
476 run++;
477 } else if (run != 0) {
478 if (run > sblock.fs_contigsumsize) {
479 run = sblock.fs_contigsumsize;
480 }
481 sump[run]++;
482 run = 0;
483 }
484 if ((i & (NBBY - 1)) != (NBBY - 1)) {
485 bit <<= 1;
486 } else {
487 map = *mapp++;
488 bit = 1;
489 }
490 }
491 if (run != 0) {
492 if (run > sblock.fs_contigsumsize) {
493 run = sblock.fs_contigsumsize;
494 }
495 sump[run]++;
496 }
497 }
498 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
499 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
500 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
501 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
502 *cs = acg.cg_cs;
503 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
4e1af74f 504 (size_t)sblock.fs_bsize, &acg, fso, Nflag);
984263bc
MD
505 DBG_DUMP_CG(&sblock,
506 "new cg",
507 &acg);
508
509 DBG_LEAVE;
510 return;
511}
512
513/* ******************************************************* frag_adjust ***** */
514/*
515 * Here we add or subtract (sign +1/-1) the available fragments in a given
516 * block to or from the fragment statistics. By subtracting before and adding
517 * after an operation on the free frag map we can easy update the fragment
518 * statistic, which seems to be otherwise an rather complex operation.
519 */
520static void
521frag_adjust(daddr_t frag, int sign)
522{
523 DBG_FUNC("frag_adjust")
524 int fragsize;
525 int f;
526
527 DBG_ENTER;
528
529 fragsize=0;
530 /*
531 * Here frag only needs to point to any fragment in the block we want
532 * to examine.
533 */
534 for(f=rounddown(frag, sblock.fs_frag);
535 f<roundup(frag+1, sblock.fs_frag);
536 f++) {
537 /*
538 * Count contiguos free fragments.
539 */
540 if(isset(cg_blksfree(&acg), f)) {
541 fragsize++;
542 } else {
543 if(fragsize && fragsize<sblock.fs_frag) {
544 /*
545 * We found something in between.
546 */
547 acg.cg_frsum[fragsize]+=sign;
548 DBG_PRINT2("frag_adjust [%d]+=%d\n",
549 fragsize,
550 sign);
551 }
552 fragsize=0;
553 }
554 }
555 if(fragsize && fragsize<sblock.fs_frag) {
556 /*
557 * We found something.
558 */
559 acg.cg_frsum[fragsize]+=sign;
560 DBG_PRINT2("frag_adjust [%d]+=%d\n",
561 fragsize,
562 sign);
563 }
564 DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
565 fragsize,
566 sign);
567
568 DBG_LEAVE;
569 return;
570}
571
572/* ******************************************************* cond_bl_upd ***** */
573/*
574 * Here we conditionally update a pointer to a fragment. We check for all
575 * relocated blocks if any of it's fragments is referenced by the current
576 * field, and update the pointer to the respective fragment in our new
577 * block. If we find a reference we write back the block immediately,
578 * as there is no easy way for our general block reading engine to figure
579 * out if a write back operation is needed.
580 */
581static void
582cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
583 enum pointer_source source, int fso, unsigned int Nflag)
584{
585 DBG_FUNC("cond_bl_upd")
586 struct gfs_bpp *f;
587 char *src;
588 daddr_t dst=0;
589
590 DBG_ENTER;
591
592 f=field;
593 while(f->old) { /* for all old blocks */
594 if(*block/sblock.fs_frag == f->old) {
595 /*
596 * The fragment is part of the block, so update.
597 */
598 *block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
599 f->found++;
600 DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
601 f->old,
602 f->new,
603 *block%sblock.fs_frag);
604
605 /* Write the block back to disk immediately */
606 switch (source) {
607 case GFS_PS_INODE:
608 src=ablk;
609 dst=in_src;
610 break;
611 case GFS_PS_IND_BLK_LVL1:
612 src=i1blk;
613 dst=i1_src;
614 break;
615 case GFS_PS_IND_BLK_LVL2:
616 src=i2blk;
617 dst=i2_src;
618 break;
619 case GFS_PS_IND_BLK_LVL3:
620 src=i3blk;
621 dst=i3_src;
622 break;
623 default: /* error */
624 src=NULL;
625 break;
626 }
627 if(src) {
628 /*
629 * XXX If src is not of type inode we have to
630 * implement copy on write here in case
631 * of active snapshots.
632 */
4e1af74f 633 wtfs(dst, (size_t)sblock.fs_bsize, src,
984263bc
MD
634 fso, Nflag);
635 }
636
637 /*
638 * The same block can't be found again in this loop.
639 */
640 break;
641 }
642 f++;
643 }
644
645 DBG_LEAVE;
646 return;
647}
648
649/* ************************************************************ updjcg ***** */
650/*
651 * Here we do all needed work for the former last cylinder group. It has to be
652 * changed in any case, even if the filesystem ended exactly on the end of
653 * this group, as there is some slightly inconsistent handling of the number
654 * of cylinders in the cylinder group. We start again by reading the cylinder
655 * group from disk. If the last block was not fully available, we first handle
656 * the missing fragments, then we handle all new full blocks in that file
657 * system and finally we handle the new last fragmented block in the file
658 * system. We again have to handle the fragment statistics rotational layout
659 * tables and cluster summary during all those operations.
660 */
661static void
662updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
663{
664 DBG_FUNC("updjcg")
665 daddr_t cbase, dmax, dupper;
666 struct csum *cs;
667 int i,k;
668 int j=0;
669
670 DBG_ENTER;
671
672 /*
673 * Read the former last (joining) cylinder group from disk, and make
674 * a copy.
675 */
676 rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
4e1af74f 677 (size_t)osblock.fs_cgsize, &aocg, fsi);
984263bc
MD
678 DBG_PRINT0("jcg read\n");
679 DBG_DUMP_CG(&sblock,
680 "old joining cg",
681 &aocg);
682
683 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
684
685 /*
686 * If the cylinder group had already it's new final size almost
687 * nothing is to be done ... except:
688 * For some reason the value of cg_ncyl in the last cylinder group has
689 * to be zero instead of fs_cpg. As this is now no longer the last
690 * cylinder group we have to change that value now to fs_cpg.
691 */
692
693 if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
694 acg.cg_ncyl=sblock.fs_cpg;
695
696 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
4e1af74f 697 (size_t)sblock.fs_cgsize, &acg, fso, Nflag);
984263bc
MD
698 DBG_PRINT0("jcg written\n");
699 DBG_DUMP_CG(&sblock,
700 "new joining cg",
701 &acg);
702
703 DBG_LEAVE;
704 return;
705 }
706
707 /*
708 * Set up some variables needed later.
709 */
710 cbase = cgbase(&sblock, cylno);
711 dmax = cbase + sblock.fs_fpg;
712 if (dmax > sblock.fs_size)
713 dmax = sblock.fs_size;
714 dupper = cgdmin(&sblock, cylno) - cbase;
715 if (cylno == 0) { /* XXX fscs may be relocated */
716 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
717 }
718
719 /*
720 * Set pointer to the cylinder summary for our cylinder group.
721 */
722 cs = fscs + cylno;
723
724 /*
725 * Touch the cylinder group, update all fields in the cylinder group as
726 * needed, update the free space in the superblock.
727 */
728 acg.cg_time = utime;
729 if (cylno == sblock.fs_ncg - 1) {
730 /*
731 * This is still the last cylinder group.
732 */
733 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
734 } else {
735 acg.cg_ncyl = sblock.fs_cpg;
736 }
737 DBG_PRINT4("jcg dbg: %d %u %d %u\n",
738 cylno,
739 sblock.fs_ncg,
740 acg.cg_ncyl,
741 sblock.fs_cpg);
742 acg.cg_ndblk = dmax - cbase;
743 sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
744 if (sblock.fs_contigsumsize > 0) {
745 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
746 }
747
748 /*
749 * Now we have to update the free fragment bitmap for our new free
750 * space. There again we have to handle the fragmentation and also
751 * the rotational layout tables and the cluster summary. This is
752 * also done per fragment for the first new block if the old file
753 * system end was not on a block boundary, per fragment for the new
754 * last block if the new file system end is not on a block boundary,
755 * and per block for all space in between.
756 *
757 * Handle the first new block here if it was partially available
758 * before.
759 */
760 if(osblock.fs_size % sblock.fs_frag) {
761 if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
762 /*
763 * The new space is enough to fill at least this
764 * block
765 */
766 j=0;
767 for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
768 i>=osblock.fs_size-cbase;
769 i--) {
770 setbit(cg_blksfree(&acg), i);
771 acg.cg_cs.cs_nffree++;
772 j++;
773 }
774
775 /*
776 * Check if the fragment just created could join an
777 * already existing fragment at the former end of the
778 * file system.
779 */
780 if(isblock(&sblock, cg_blksfree(&acg),
781 ((osblock.fs_size - cgbase(&sblock, cylno))/
782 sblock.fs_frag))) {
783 /*
784 * The block is now completely available
785 */
786 DBG_PRINT0("block was\n");
787 acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
788 acg.cg_cs.cs_nbfree++;
789 acg.cg_cs.cs_nffree-=sblock.fs_frag;
790 k=rounddown(osblock.fs_size-cbase,
791 sblock.fs_frag);
792 cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
793 cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
794 [cbtorpos(&sblock, k)]++;
795 updclst((osblock.fs_size-cbase)/sblock.fs_frag);
796 } else {
797 /*
798 * Lets rejoin a possible partially growed
799 * fragment.
800 */
801 k=0;
802 while(isset(cg_blksfree(&acg), i) &&
803 (i>=rounddown(osblock.fs_size-cbase,
804 sblock.fs_frag))) {
805 i--;
806 k++;
807 }
808 if(k) {
809 acg.cg_frsum[k]--;
810 }
811 acg.cg_frsum[k+j]++;
812 }
813 } else {
814 /*
815 * We only grow by some fragments within this last
816 * block.
817 */
818 for(i=sblock.fs_size-cbase-1;
819 i>=osblock.fs_size-cbase;
820 i--) {
821 setbit(cg_blksfree(&acg), i);
822 acg.cg_cs.cs_nffree++;
823 j++;
824 }
825 /*
826 * Lets rejoin a possible partially growed fragment.
827 */
828 k=0;
829 while(isset(cg_blksfree(&acg), i) &&
830 (i>=rounddown(osblock.fs_size-cbase,
831 sblock.fs_frag))) {
832 i--;
833 k++;
834 }
835 if(k) {
836 acg.cg_frsum[k]--;
837 }
838 acg.cg_frsum[k+j]++;
839 }
840 }
841
842 /*
843 * Handle all new complete blocks here.
844 */
845 for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
846 i+sblock.fs_frag<=dmax-cbase; /* XXX <= or only < ? */
847 i+=sblock.fs_frag) {
848 j = i / sblock.fs_frag;
849 setblock(&sblock, cg_blksfree(&acg), j);
850 updclst(j);
851 acg.cg_cs.cs_nbfree++;
852 cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
853 cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
854 [cbtorpos(&sblock, i)]++;
855 }
856
857 /*
858 * Handle the last new block if there are stll some new fragments left.
859 * Here we don't have to bother about the cluster summary or the even
860 * the rotational layout table.
861 */
862 if (i < (dmax - cbase)) {
863 acg.cg_frsum[dmax - cbase - i]++;
864 for (; i < dmax - cbase; i++) {
865 setbit(cg_blksfree(&acg), i);
866 acg.cg_cs.cs_nffree++;
867 }
868 }
869
870 sblock.fs_cstotal.cs_nffree +=
871 (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
872 sblock.fs_cstotal.cs_nbfree +=
873 (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
874 /*
875 * The following statistics are not changed here:
876 * sblock.fs_cstotal.cs_ndir
877 * sblock.fs_cstotal.cs_nifree
878 * As the statistics for this cylinder group are ready, copy it to
879 * the summary information array.
880 */
881 *cs = acg.cg_cs;
882
883 /*
884 * Write the updated "joining" cylinder group back to disk.
885 */
886 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
4e1af74f 887 &acg, fso, Nflag);
984263bc
MD
888 DBG_PRINT0("jcg written\n");
889 DBG_DUMP_CG(&sblock,
890 "new joining cg",
891 &acg);
892
893 DBG_LEAVE;
894 return;
895}
896
897/* ********************************************************** updcsloc ***** */
898/*
899 * Here we update the location of the cylinder summary. We have two possible
900 * ways of growing the cylinder summary.
901 * (1) We can try to grow the summary in the current location, and relocate
902 * possibly used blocks within the current cylinder group.
903 * (2) Alternatively we can relocate the whole cylinder summary to the first
904 * new completely empty cylinder group. Once the cylinder summary is no
905 * longer in the beginning of the first cylinder group you should never
906 * use a version of fsck which is not aware of the possibility to have
907 * this structure in a non standard place.
908 * Option (1) is considered to be less intrusive to the structure of the file-
909 * system. So we try to stick to that whenever possible. If there is not enough
910 * space in the cylinder group containing the cylinder summary we have to use
911 * method (2). In case of active snapshots in the filesystem we probably can
912 * completely avoid implementing copy on write if we stick to method (2) only.
913 */
914static void
915updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
916{
917 DBG_FUNC("updcsloc")
918 struct csum *cs;
919 int ocscg, ncscg;
920 int blocks;
921 daddr_t cbase, dupper, odupper, d, f, g;
922 int ind;
923 int cylno, inc;
924 struct gfs_bpp *bp;
925 int i, l;
926 int lcs=0;
927 int block;
928
929 DBG_ENTER;
930
931 if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
932 howmany(osblock.fs_cssize, osblock.fs_fsize)) {
933 /*
934 * No new fragment needed.
935 */
936 DBG_LEAVE;
937 return;
938 }
939 ocscg=dtog(&osblock, osblock.fs_csaddr);
940 cs=fscs+ocscg;
941 blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
942 howmany(osblock.fs_cssize, osblock.fs_bsize);
943
944 /*
945 * Read original cylinder group from disk, and make a copy.
946 * XXX If Nflag is set in some very rare cases we now miss
947 * some changes done in updjcg by reading the unmodified
948 * block from disk.
949 */
950 rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
4e1af74f 951 (size_t)osblock.fs_cgsize, &aocg, fsi);
984263bc
MD
952 DBG_PRINT0("oscg read\n");
953 DBG_DUMP_CG(&sblock,
954 "old summary cg",
955 &aocg);
956
957 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
958
959 /*
960 * Touch the cylinder group, set up local variables needed later
961 * and update the superblock.
962 */
963 acg.cg_time = utime;
964
965 /*
966 * XXX In the case of having active snapshots we may need much more
967 * blocks for the copy on write. We need each block twice, and
968 * also up to 8*3 blocks for indirect blocks for all possible
969 * references.
970 */
971 if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
972 /*
973 * There is not enough space in the old cylinder group to
974 * relocate all blocks as needed, so we relocate the whole
975 * cylinder group summary to a new group. We try to use the
976 * first complete new cylinder group just created. Within the
977 * cylinder group we allign the area immediately after the
978 * cylinder group information location in order to be as
979 * close as possible to the original implementation of ffs.
980 *
981 * First we have to make sure we'll find enough space in the
982 * new cylinder group. If not, then we currently give up.
983 * We start with freeing everything which was used by the
984 * fragments of the old cylinder summary in the current group.
985 * Now we write back the group meta data, read in the needed
986 * meta data from the new cylinder group, and start allocating
987 * within that group. Here we can assume, the group to be
988 * completely empty. Which makes the handling of fragments and
989 * clusters a lot easier.
990 */
991 DBG_TRC;
992 if(sblock.fs_ncg-osblock.fs_ncg < 2) {
993 errx(2, "panic: not enough space");
994 }
995
996 /*
997 * Point "d" to the first fragment not used by the cylinder
998 * summary.
999 */
1000 d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1001
1002 /*
1003 * Set up last cluster size ("lcs") already here. Calculate
1004 * the size for the trailing cluster just behind where "d"
1005 * points to.
1006 */
1007 if(sblock.fs_contigsumsize > 0) {
1008 for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1009 lcs=0; lcs<sblock.fs_contigsumsize;
1010 block++, lcs++) {
1011 if(isclr(cg_clustersfree(&acg), block)){
1012 break;
1013 }
1014 }
1015 }
1016
1017 /*
1018 * Point "d" to the last frag used by the cylinder summary.
1019 */
1020 d--;
1021
1022 DBG_PRINT1("d=%d\n",
1023 d);
1024 if((d+1)%sblock.fs_frag) {
1025 /*
1026 * The end of the cylinder summary is not a complete
1027 * block.
1028 */
1029 DBG_TRC;
1030 frag_adjust(d%sblock.fs_fpg, -1);
1031 for(; (d+1)%sblock.fs_frag; d--) {
1032 DBG_PRINT1("d=%d\n",
1033 d);
1034 setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1035 acg.cg_cs.cs_nffree++;
1036 sblock.fs_cstotal.cs_nffree++;
1037 }
1038 /*
1039 * Point "d" to the last fragment of the last
1040 * (incomplete) block of the clinder summary.
1041 */
1042 d++;
1043 frag_adjust(d%sblock.fs_fpg, 1);
1044
1045 if(isblock(&sblock, cg_blksfree(&acg),
1046 (d%sblock.fs_fpg)/sblock.fs_frag)) {
1047 DBG_PRINT1("d=%d\n",
1048 d);
1049 acg.cg_cs.cs_nffree-=sblock.fs_frag;
1050 acg.cg_cs.cs_nbfree++;
1051 sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1052 sblock.fs_cstotal.cs_nbfree++;
1053 cg_blktot(&acg)[cbtocylno(&sblock,
1054 d%sblock.fs_fpg)]++;
1055 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1056 d%sblock.fs_fpg))[cbtorpos(&sblock,
1057 d%sblock.fs_fpg)]++;
1058 if(sblock.fs_contigsumsize > 0) {
1059 setbit(cg_clustersfree(&acg),
1060 (d%sblock.fs_fpg)/sblock.fs_frag);
1061 if(lcs < sblock.fs_contigsumsize) {
1062 if(lcs) {
1063 cg_clustersum(&acg)
1064 [lcs]--;
1065 }
1066 lcs++;
1067 cg_clustersum(&acg)[lcs]++;
1068 }
1069 }
1070 }
1071 /*
1072 * Point "d" to the first fragment of the block before
1073 * the last incomplete block.
1074 */
1075 d--;
1076 }
1077
1078 DBG_PRINT1("d=%d\n",
1079 d);
1080 for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1081 d-=sblock.fs_frag) {
1082 DBG_TRC;
1083 DBG_PRINT1("d=%d\n",
1084 d);
1085 setblock(&sblock, cg_blksfree(&acg),
1086 (d%sblock.fs_fpg)/sblock.fs_frag);
1087 acg.cg_cs.cs_nbfree++;
1088 sblock.fs_cstotal.cs_nbfree++;
1089 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1090 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1091 d%sblock.fs_fpg))[cbtorpos(&sblock,
1092 d%sblock.fs_fpg)]++;
1093 if(sblock.fs_contigsumsize > 0) {
1094 setbit(cg_clustersfree(&acg),
1095 (d%sblock.fs_fpg)/sblock.fs_frag);
1096 /*
1097 * The last cluster size is already set up.
1098 */
1099 if(lcs < sblock.fs_contigsumsize) {
1100 if(lcs) {
1101 cg_clustersum(&acg)[lcs]--;
1102 }
1103 lcs++;
1104 cg_clustersum(&acg)[lcs]++;
1105 }
1106 }
1107 }
1108 *cs = acg.cg_cs;
1109
1110 /*
1111 * Now write the former cylinder group containing the cylinder
1112 * summary back to disk.
1113 */
1114 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
4e1af74f 1115 (size_t)sblock.fs_cgsize, &acg, fso, Nflag);
984263bc
MD
1116 DBG_PRINT0("oscg written\n");
1117 DBG_DUMP_CG(&sblock,
1118 "old summary cg",
1119 &acg);
1120
1121 /*
1122 * Find the beginning of the new cylinder group containing the
1123 * cylinder summary.
1124 */
1125 sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1126 ncscg=dtog(&sblock, sblock.fs_csaddr);
1127 cs=fscs+ncscg;
1128
1129
1130 /*
1131 * If Nflag is specified, we would now read random data instead
1132 * of an empty cg structure from disk. So we can't simulate that
1133 * part for now.
1134 */
1135 if(Nflag) {
1136 DBG_PRINT0("nscg update skipped\n");
1137 DBG_LEAVE;
1138 return;
1139 }
1140
1141 /*
1142 * Read the future cylinder group containing the cylinder
1143 * summary from disk, and make a copy.
1144 */
1145 rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
4e1af74f 1146 (size_t)sblock.fs_cgsize, &aocg, fsi);
984263bc
MD
1147 DBG_PRINT0("nscg read\n");
1148 DBG_DUMP_CG(&sblock,
1149 "new summary cg",
1150 &aocg);
1151
1152 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1153
1154 /*
1155 * Allocate all complete blocks used by the new cylinder
1156 * summary.
1157 */
1158 for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1159 sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1160 d+=sblock.fs_frag) {
1161 clrblock(&sblock, cg_blksfree(&acg),
1162 (d%sblock.fs_fpg)/sblock.fs_frag);
1163 acg.cg_cs.cs_nbfree--;
1164 sblock.fs_cstotal.cs_nbfree--;
1165 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1166 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1167 d%sblock.fs_fpg))[cbtorpos(&sblock,
1168 d%sblock.fs_fpg)]--;
1169 if(sblock.fs_contigsumsize > 0) {
1170 clrbit(cg_clustersfree(&acg),
1171 (d%sblock.fs_fpg)/sblock.fs_frag);
1172 }
1173 }
1174
1175 /*
1176 * Allocate all fragments used by the cylinder summary in the
1177 * last block.
1178 */
1179 if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1180 for(; d-sblock.fs_csaddr<
1181 sblock.fs_cssize/sblock.fs_fsize;
1182 d++) {
1183 clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1184 acg.cg_cs.cs_nffree--;
1185 sblock.fs_cstotal.cs_nffree--;
1186 }
1187 acg.cg_cs.cs_nbfree--;
1188 acg.cg_cs.cs_nffree+=sblock.fs_frag;
1189 sblock.fs_cstotal.cs_nbfree--;
1190 sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1191 cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1192 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1193 d%sblock.fs_fpg))[cbtorpos(&sblock,
1194 d%sblock.fs_fpg)]--;
1195 if(sblock.fs_contigsumsize > 0) {
1196 clrbit(cg_clustersfree(&acg),
1197 (d%sblock.fs_fpg)/sblock.fs_frag);
1198 }
1199
1200 frag_adjust(d%sblock.fs_fpg, +1);
1201 }
1202 /*
1203 * XXX Handle the cluster statistics here in the case this
1204 * cylinder group is now almost full, and the remaining
1205 * space is less then the maximum cluster size. This is
1206 * probably not needed, as you would hardly find a file
1207 * system which has only MAXCSBUFS+FS_MAXCONTIG of free
1208 * space right behind the cylinder group information in
1209 * any new cylinder group.
1210 */
1211
1212 /*
1213 * Update our statistics in the cylinder summary.
1214 */
1215 *cs = acg.cg_cs;
1216
1217 /*
1218 * Write the new cylinder group containing the cylinder summary
1219 * back to disk.
1220 */
1221 wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
4e1af74f 1222 (size_t)sblock.fs_cgsize, &acg, fso, Nflag);
984263bc
MD
1223 DBG_PRINT0("nscg written\n");
1224 DBG_DUMP_CG(&sblock,
1225 "new summary cg",
1226 &acg);
1227
1228 DBG_LEAVE;
1229 return;
1230 }
1231 /*
1232 * We have got enough of space in the current cylinder group, so we
1233 * can relocate just a few blocks, and let the summary information
1234 * grow in place where it is right now.
1235 */
1236 DBG_TRC;
1237
1238 cbase = cgbase(&osblock, ocscg); /* old and new are equal */
1239 dupper = sblock.fs_csaddr - cbase +
1240 howmany(sblock.fs_cssize, sblock.fs_fsize);
1241 odupper = osblock.fs_csaddr - cbase +
1242 howmany(osblock.fs_cssize, osblock.fs_fsize);
1243
1244 sblock.fs_dsize -= dupper-odupper;
1245
1246 /*
1247 * Allocate the space for the array of blocks to be relocated.
1248 */
1249 bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1250 sizeof(struct gfs_bpp));
1251 if(bp == NULL) {
1252 errx(1, "malloc failed");
1253 }
1254 memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1255 sizeof(struct gfs_bpp));
1256
1257 /*
1258 * Lock all new frags needed for the cylinder group summary. This is
1259 * done per fragment in the first and last block of the new required
1260 * area, and per block for all other blocks.
1261 *
1262 * Handle the first new block here (but only if some fragments where
1263 * already used for the cylinder summary).
1264 */
1265 ind=0;
1266 frag_adjust(odupper, -1);
1267 for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1268 DBG_PRINT1("scg first frag check loop d=%d\n",
1269 d);
1270 if(isclr(cg_blksfree(&acg), d)) {
1271 if (!ind) {
1272 bp[ind].old=d/sblock.fs_frag;
1273 bp[ind].flags|=GFS_FL_FIRST;
1274 if(roundup(d, sblock.fs_frag) >= dupper) {
1275 bp[ind].flags|=GFS_FL_LAST;
1276 }
1277 ind++;
1278 }
1279 } else {
1280 clrbit(cg_blksfree(&acg), d);
1281 acg.cg_cs.cs_nffree--;
1282 sblock.fs_cstotal.cs_nffree--;
1283 }
1284 /*
1285 * No cluster handling is needed here, as there was at least
1286 * one fragment in use by the cylinder summary in the old
1287 * file system.
1288 * No block-free counter handling here as this block was not
1289 * a free block.
1290 */
1291 }
1292 frag_adjust(odupper, 1);
1293
1294 /*
1295 * Handle all needed complete blocks here.
1296 */
1297 for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1298 DBG_PRINT1("scg block check loop d=%d\n",
1299 d);
1300 if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1301 for(f=d; f<d+sblock.fs_frag; f++) {
1302 if(isset(cg_blksfree(&aocg), f)) {
1303 acg.cg_cs.cs_nffree--;
1304 sblock.fs_cstotal.cs_nffree--;
1305 }
1306 }
1307 clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1308 bp[ind].old=d/sblock.fs_frag;
1309 ind++;
1310 } else {
1311 clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1312 acg.cg_cs.cs_nbfree--;
1313 sblock.fs_cstotal.cs_nbfree--;
1314 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1315 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1316 [cbtorpos(&sblock, d)]--;
1317 if(sblock.fs_contigsumsize > 0) {
1318 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1319 for(lcs=0, l=(d/sblock.fs_frag)+1;
1320 lcs<sblock.fs_contigsumsize;
1321 l++, lcs++ ) {
1322 if(isclr(cg_clustersfree(&acg),l)){
1323 break;
1324 }
1325 }
1326 if(lcs < sblock.fs_contigsumsize) {
1327 cg_clustersum(&acg)[lcs+1]--;
1328 if(lcs) {
1329 cg_clustersum(&acg)[lcs]++;
1330 }
1331 }
1332 }
1333 }
1334 /*
1335 * No fragment counter handling is needed here, as this finally
1336 * doesn't change after the relocation.
1337 */
1338 }
1339
1340 /*
1341 * Handle all fragments needed in the last new affected block.
1342 */
1343 if(d<dupper) {
1344 frag_adjust(dupper-1, -1);
1345
1346 if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1347 acg.cg_cs.cs_nbfree--;
1348 sblock.fs_cstotal.cs_nbfree--;
1349 acg.cg_cs.cs_nffree+=sblock.fs_frag;
1350 sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1351 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1352 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1353 [cbtorpos(&sblock, d)]--;
1354 if(sblock.fs_contigsumsize > 0) {
1355 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1356 for(lcs=0, l=(d/sblock.fs_frag)+1;
1357 lcs<sblock.fs_contigsumsize;
1358 l++, lcs++ ) {
1359 if(isclr(cg_clustersfree(&acg),l)){
1360 break;
1361 }
1362 }
1363 if(lcs < sblock.fs_contigsumsize) {
1364 cg_clustersum(&acg)[lcs+1]--;
1365 if(lcs) {
1366 cg_clustersum(&acg)[lcs]++;
1367 }
1368 }
1369 }
1370 }
1371
1372 for(; d<dupper; d++) {
1373 DBG_PRINT1("scg second frag check loop d=%d\n",
1374 d);
1375 if(isclr(cg_blksfree(&acg), d)) {
1376 bp[ind].old=d/sblock.fs_frag;
1377 bp[ind].flags|=GFS_FL_LAST;
1378 } else {
1379 clrbit(cg_blksfree(&acg), d);
1380 acg.cg_cs.cs_nffree--;
1381 sblock.fs_cstotal.cs_nffree--;
1382 }
1383 }
1384 if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1385 ind++;
1386 }
1387 frag_adjust(dupper-1, 1);
1388 }
1389
1390 /*
1391 * If we found a block to relocate just do so.
1392 */
1393 if(ind) {
1394 for(i=0; i<ind; i++) {
1395 if(!bp[i].old) { /* no more blocks listed */
1396 /*
1397 * XXX A relative blocknumber should not be
1398 * zero, which is not explicitly
1399 * guaranteed by our code.
1400 */
1401 break;
1402 }
1403 /*
1404 * Allocate a complete block in the same (current)
1405 * cylinder group.
1406 */
1407 bp[i].new=alloc()/sblock.fs_frag;
1408
1409 /*
1410 * There is no frag_adjust() needed for the new block
1411 * as it will have no fragments yet :-).
1412 */
1413 for(f=bp[i].old*sblock.fs_frag,
1414 g=bp[i].new*sblock.fs_frag;
1415 f<(bp[i].old+1)*sblock.fs_frag;
1416 f++, g++) {
1417 if(isset(cg_blksfree(&aocg), f)) {
1418 setbit(cg_blksfree(&acg), g);
1419 acg.cg_cs.cs_nffree++;
1420 sblock.fs_cstotal.cs_nffree++;
1421 }
1422 }
1423
1424 /*
1425 * Special handling is required if this was the first
1426 * block. We have to consider the fragments which were
1427 * used by the cylinder summary in the original block
1428 * which re to be free in the copy of our block. We
1429 * have to be careful if this first block happens to
1430 * be also the last block to be relocated.
1431 */
1432 if(bp[i].flags & GFS_FL_FIRST) {
1433 for(f=bp[i].old*sblock.fs_frag,
1434 g=bp[i].new*sblock.fs_frag;
1435 f<odupper;
1436 f++, g++) {
1437 setbit(cg_blksfree(&acg), g);
1438 acg.cg_cs.cs_nffree++;
1439 sblock.fs_cstotal.cs_nffree++;
1440 }
1441 if(!(bp[i].flags & GFS_FL_LAST)) {
1442 frag_adjust(bp[i].new*sblock.fs_frag,1);
1443 }
1444
1445 }
1446
1447 /*
1448 * Special handling is required if this is the last
1449 * block to be relocated.
1450 */
1451 if(bp[i].flags & GFS_FL_LAST) {
1452 frag_adjust(bp[i].new*sblock.fs_frag, 1);
1453 frag_adjust(bp[i].old*sblock.fs_frag, -1);
1454 for(f=dupper;
1455 f<roundup(dupper, sblock.fs_frag);
1456 f++) {
1457 if(isclr(cg_blksfree(&acg), f)) {
1458 setbit(cg_blksfree(&acg), f);
1459 acg.cg_cs.cs_nffree++;
1460 sblock.fs_cstotal.cs_nffree++;
1461 }
1462 }
1463 frag_adjust(bp[i].old*sblock.fs_frag, 1);
1464 }
1465
1466 /*
1467 * !!! Attach the cylindergroup offset here.
1468 */
1469 bp[i].old+=cbase/sblock.fs_frag;
1470 bp[i].new+=cbase/sblock.fs_frag;
1471
1472 /*
1473 * Copy the content of the block.
1474 */
1475 /*
1476 * XXX Here we will have to implement a copy on write
1477 * in the case we have any active snapshots.
1478 */
1479 rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
4e1af74f 1480 (size_t)sblock.fs_bsize, &ablk, fsi);
984263bc 1481 wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
4e1af74f 1482 (size_t)sblock.fs_bsize, &ablk, fso, Nflag);
984263bc
MD
1483 DBG_DUMP_HEX(&sblock,
1484 "copied full block",
1485 (unsigned char *)&ablk);
1486
1487 DBG_PRINT2("scg (%d->%d) block relocated\n",
1488 bp[i].old,
1489 bp[i].new);
1490 }
1491
1492 /*
1493 * Now we have to update all references to any fragment which
1494 * belongs to any block relocated. We iterate now over all
1495 * cylinder groups, within those over all non zero length
1496 * inodes.
1497 */
1498 for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1499 DBG_PRINT1("scg doing cg (%d)\n",
1500 cylno);
1501 for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1502 updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1503 }
1504 }
1505
1506 /*
1507 * All inodes are checked, now make sure the number of
1508 * references found make sense.
1509 */
1510 for(i=0; i<ind; i++) {
1511 if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1512 warnx("error: %d refs found for block %d.",
1513 bp[i].found, bp[i].old);
1514 }
1515
1516 }
1517 }
1518 /*
1519 * The following statistics are not changed here:
1520 * sblock.fs_cstotal.cs_ndir
1521 * sblock.fs_cstotal.cs_nifree
1522 * The following statistics were already updated on the fly:
1523 * sblock.fs_cstotal.cs_nffree
1524 * sblock.fs_cstotal.cs_nbfree
1525 * As the statistics for this cylinder group are ready, copy it to
1526 * the summary information array.
1527 */
1528
1529 *cs = acg.cg_cs;
1530
1531 /*
1532 * Write summary cylinder group back to disk.
1533 */
1534 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
4e1af74f 1535 &acg, fso, Nflag);
984263bc
MD
1536 DBG_PRINT0("scg written\n");
1537 DBG_DUMP_CG(&sblock,
1538 "new summary cg",
1539 &acg);
1540
1541 DBG_LEAVE;
1542 return;
1543}
1544
1545/* ************************************************************** rdfs ***** */
1546/*
1547 * Here we read some block(s) from disk.
1548 */
1549static void
1550rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1551{
1552 DBG_FUNC("rdfs")
1553 ssize_t n;
1554
1555 DBG_ENTER;
1556
1557 if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1558 err(33, "rdfs: seek error: %ld", (long)bno);
1559 }
1560 n = read(fsi, bf, size);
1561 if (n != (ssize_t)size) {
1562 err(34, "rdfs: read error: %ld", (long)bno);
1563 }
1564
1565 DBG_LEAVE;
1566 return;
1567}
1568
1569/* ************************************************************** wtfs ***** */
1570/*
1571 * Here we write some block(s) to disk.
1572 */
1573static void
1574wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1575{
1576 DBG_FUNC("wtfs")
1577 ssize_t n;
1578
1579 DBG_ENTER;
1580
1581 if (Nflag) {
1582 DBG_LEAVE;
1583 return;
1584 }
1585 if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1586 err(35, "wtfs: seek error: %ld", (long)bno);
1587 }
1588 n = write(fso, bf, size);
1589 if (n != (ssize_t)size) {
1590 err(36, "wtfs: write error: %ld", (long)bno);
1591 }
1592
1593 DBG_LEAVE;
1594 return;
1595}
1596
1597/* ************************************************************* alloc ***** */
1598/*
1599 * Here we allocate a free block in the current cylinder group. It is assumed,
1600 * that acg contains the current cylinder group. As we may take a block from
1601 * somewhere in the filesystem we have to handle cluster summary here.
1602 */
1603static daddr_t
1604alloc(void)
1605{
1606 DBG_FUNC("alloc")
1607 daddr_t d, blkno;
1608 int lcs1, lcs2;
1609 int l;
1610 int csmin, csmax;
1611 int dlower, dupper, dmax;
1612
1613 DBG_ENTER;
1614
1615 if (acg.cg_magic != CG_MAGIC) {
1616 warnx("acg: bad magic number");
1617 DBG_LEAVE;
1618 return (0);
1619 }
1620 if (acg.cg_cs.cs_nbfree == 0) {
1621 warnx("error: cylinder group ran out of space");
1622 DBG_LEAVE;
1623 return (0);
1624 }
1625 /*
1626 * We start seeking for free blocks only from the space available after
1627 * the end of the new grown cylinder summary. Otherwise we allocate a
1628 * block here which we have to relocate a couple of seconds later again
1629 * again, and we are not prepared to to this anyway.
1630 */
1631 blkno=-1;
1632 dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1633 dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1634 dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1635 if (dmax > sblock.fs_size) {
1636 dmax = sblock.fs_size;
1637 }
1638 dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1639 csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1640 csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1641 DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1642 dlower,
1643 dupper,
1644 dmax);
1645 DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1646 csmin,
1647 csmax);
1648
1649 for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1650 if(d>=csmin && d<=csmax) {
1651 continue;
1652 }
1653 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1654 d))) {
1655 blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1656 break;
1657 }
1658 }
1659 for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1660 if(d>=csmin && d<=csmax) {
1661 continue;
1662 }
1663 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1664 d))) {
1665 blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1666 break;
1667 }
1668 }
1669 if(blkno==-1) {
1670 warnx("internal error: couldn't find promised block in cg");
1671 DBG_LEAVE;
1672 return (0);
1673 }
1674
1675 /*
1676 * This is needed if the block was found already in the first loop.
1677 */
1678 d=blkstofrags(&sblock, blkno);
1679
1680 clrblock(&sblock, cg_blksfree(&acg), blkno);
1681 if (sblock.fs_contigsumsize > 0) {
1682 /*
1683 * Handle the cluster allocation bitmap.
1684 */
1685 clrbit(cg_clustersfree(&acg), blkno);
1686 /*
1687 * We possibly have split a cluster here, so we have to do
1688 * recalculate the sizes of the remaining cluster halves now,
1689 * and use them for updating the cluster summary information.
1690 *
1691 * Lets start with the blocks before our allocated block ...
1692 */
1693 for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1694 l--, lcs1++ ) {
1695 if(isclr(cg_clustersfree(&acg),l)){
1696 break;
1697 }
1698 }
1699 /*
1700 * ... and continue with the blocks right after our allocated
1701 * block.
1702 */
1703 for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1704 l++, lcs2++ ) {
1705 if(isclr(cg_clustersfree(&acg),l)){
1706 break;
1707 }
1708 }
1709
1710 /*
1711 * Now update all counters.
1712 */
1713 cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1714 if(lcs1) {
1715 cg_clustersum(&acg)[lcs1]++;
1716 }
1717 if(lcs2) {
1718 cg_clustersum(&acg)[lcs2]++;
1719 }
1720 }
1721 /*
1722 * Update all statistics based on blocks.
1723 */
1724 acg.cg_cs.cs_nbfree--;
1725 sblock.fs_cstotal.cs_nbfree--;
1726 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1727 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1728
1729 DBG_LEAVE;
1730 return (d);
1731}
1732
1733/* *********************************************************** isblock ***** */
1734/*
1735 * Here we check if all frags of a block are free. For more details again
1736 * please see the source of newfs(8), as this function is taken over almost
1737 * unchanged.
1738 */
1739static int
1740isblock(struct fs *fs, unsigned char *cp, int h)
1741{
1742 DBG_FUNC("isblock")
1743 unsigned char mask;
1744
1745 DBG_ENTER;
1746
1747 switch (fs->fs_frag) {
1748 case 8:
1749 DBG_LEAVE;
1750 return (cp[h] == 0xff);
1751 case 4:
1752 mask = 0x0f << ((h & 0x1) << 2);
1753 DBG_LEAVE;
1754 return ((cp[h >> 1] & mask) == mask);
1755 case 2:
1756 mask = 0x03 << ((h & 0x3) << 1);
1757 DBG_LEAVE;
1758 return ((cp[h >> 2] & mask) == mask);
1759 case 1:
1760 mask = 0x01 << (h & 0x7);
1761 DBG_LEAVE;
1762 return ((cp[h >> 3] & mask) == mask);
1763 default:
1764 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1765 DBG_LEAVE;
1766 return (0);
1767 }
1768}
1769
1770/* ********************************************************** clrblock ***** */
1771/*
1772 * Here we allocate a complete block in the block map. For more details again
1773 * please see the source of newfs(8), as this function is taken over almost
1774 * unchanged.
1775 */
1776static void
1777clrblock(struct fs *fs, unsigned char *cp, int h)
1778{
1779 DBG_FUNC("clrblock")
1780
1781 DBG_ENTER;
1782
1783 switch ((fs)->fs_frag) {
1784 case 8:
1785 cp[h] = 0;
1786 break;
1787 case 4:
1788 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1789 break;
1790 case 2:
1791 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1792 break;
1793 case 1:
1794 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1795 break;
1796 default:
1797 warnx("clrblock bad fs_frag %d", fs->fs_frag);
1798 break;
1799 }
1800
1801 DBG_LEAVE;
1802 return;
1803}
1804
1805/* ********************************************************** setblock ***** */
1806/*
1807 * Here we free a complete block in the free block map. For more details again
1808 * please see the source of newfs(8), as this function is taken over almost
1809 * unchanged.
1810 */
1811static void
1812setblock(struct fs *fs, unsigned char *cp, int h)
1813{
1814 DBG_FUNC("setblock")
1815
1816 DBG_ENTER;
1817
1818 switch (fs->fs_frag) {
1819 case 8:
1820 cp[h] = 0xff;
1821 break;
1822 case 4:
1823 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1824 break;
1825 case 2:
1826 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1827 break;
1828 case 1:
1829 cp[h >> 3] |= (0x01 << (h & 0x7));
1830 break;
1831 default:
1832 warnx("setblock bad fs_frag %d", fs->fs_frag);
1833 break;
1834 }
1835
1836 DBG_LEAVE;
1837 return;
1838}
1839
1840/* ************************************************************ ginode ***** */
1841/*
1842 * This function provides access to an individual inode. We find out in which
1843 * block the requested inode is located, read it from disk if needed, and
1844 * return the pointer into that block. We maintain a cache of one block to
1845 * not read the same block again and again if we iterate linearly over all
1846 * inodes.
1847 */
67ad9090 1848static struct ufs1_dinode *
984263bc
MD
1849ginode(ino_t inumber, int fsi, int cg)
1850{
1851 DBG_FUNC("ginode")
1852 ufs_daddr_t iblk;
1853 static ino_t startinum=0; /* first inode in cached block */
67ad9090 1854 struct ufs1_dinode *pi;
984263bc
MD
1855
1856 DBG_ENTER;
1857
67ad9090 1858 pi=(struct ufs1_dinode *)(void *)ablk;
984263bc
MD
1859 inumber+=(cg * sblock.fs_ipg);
1860 if (startinum == 0 || inumber < startinum ||
1861 inumber >= startinum + INOPB(&sblock)) {
1862 /*
1863 * The block needed is not cached, so we have to read it from
1864 * disk now.
1865 */
1866 iblk = ino_to_fsba(&sblock, inumber);
1867 in_src=fsbtodb(&sblock, iblk);
4e1af74f 1868 rdfs(in_src, (size_t)sblock.fs_bsize, &ablk, fsi);
984263bc
MD
1869 startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1870 }
1871
1872 DBG_LEAVE;
1873 return (&(pi[inumber % INOPB(&sblock)]));
1874}
1875
1876/* ****************************************************** charsperline ***** */
1877/*
1878 * Figure out how many lines our current terminal has. For more details again
1879 * please see the source of newfs(8), as this function is taken over almost
1880 * unchanged.
1881 */
1882static int
1883charsperline(void)
1884{
1885 DBG_FUNC("charsperline")
1886 int columns;
1887 char *cp;
1888 struct winsize ws;
1889
1890 DBG_ENTER;
1891
1892 columns = 0;
1893 if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1894 columns = ws.ws_col;
1895 }
1896 if (columns == 0 && (cp = getenv("COLUMNS"))) {
1897 columns = atoi(cp);
1898 }
1899 if (columns == 0) {
1900 columns = 80; /* last resort */
1901 }
1902
1903 DBG_LEAVE;
1904 return columns;
1905}
1906
1907/* ************************************************************** main ***** */
1908/*
1909 * growfs(8) is a utility which allows to increase the size of an existing
1910 * ufs filesystem. Currently this can only be done on unmounted file system.
1911 * It recognizes some command line options to specify the new desired size,
1912 * and it does some basic checkings. The old file system size is determined
1913 * and after some more checks like we can really access the new last block
1914 * on the disk etc. we calculate the new parameters for the superblock. After
1915 * having done this we just call growfs() which will do the work. Before
1916 * we finish the only thing left is to update the disklabel.
1917 * We still have to provide support for snapshots. Therefore we first have to
1918 * understand what data structures are always replicated in the snapshot on
1919 * creation, for all other blocks we touch during our procedure, we have to
1920 * keep the old blocks unchanged somewhere available for the snapshots. If we
1921 * are lucky, then we only have to handle our blocks to be relocated in that
1922 * way.
1923 * Also we have to consider in what order we actually update the critical
1924 * data structures of the filesystem to make sure, that in case of a disaster
1925 * fsck(8) is still able to restore any lost data.
1926 * The foreseen last step then will be to provide for growing even mounted
1927 * file systems. There we have to extend the mount() system call to provide
1928 * userland access to the file system locking facility.
1929 */
1930int
1931main(int argc, char **argv)
1932{
1933 DBG_FUNC("main")
595e3440 1934 struct partinfo pinfo;
984263bc
MD
1935 char *device, *special, *cp;
1936 char ch;
1937 unsigned int size=0;
1938 size_t len;
1939 unsigned int Nflag=0;
1940 int ExpertFlag=0;
1941 struct stat st;
984263bc
MD
1942 int fsi,fso;
1943 char reply[5];
1944#ifdef FSMAXSNAP
1945 int j;
1946#endif /* FSMAXSNAP */
1947
1948 DBG_ENTER;
1949
1950 while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1951 switch(ch) {
1952 case 'N':
1953 Nflag=1;
1954 break;
1955 case 's':
1956 size=(size_t)atol(optarg);
1957 if(size<1) {
1958 usage();
1959 }
1960 break;
1961 case 'v': /* for compatibility to newfs */
1962 break;
1963 case 'y':
1964 ExpertFlag=1;
1965 break;
1966 case '?':
1967 /* FALLTHROUGH */
1968 default:
1969 usage();
1970 }
1971 }
1972 argc -= optind;
1973 argv += optind;
1974
1975 if(argc != 1) {
1976 usage();
1977 }
1978 device=*argv;
1979
1980 /*
1981 * Now try to guess the (raw)device name.
1982 */
1983 if (0 == strrchr(device, '/')) {
1984 /*
1985 * No path prefix was given, so try in that order:
1986 * /dev/r%s
1987 * /dev/%s
1988 * /dev/vinum/r%s
1989 * /dev/vinum/%s.
1990 *
1991 * FreeBSD now doesn't distinguish between raw and block
1992 * devices any longer, but it should still work this way.
1993 */
1994 len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1995 special=(char *)malloc(len);
1996 if(special == NULL) {
1997 errx(1, "malloc failed");
1998 }
1999 snprintf(special, len, "%sr%s", _PATH_DEV, device);
2000 if (stat(special, &st) == -1) {
2001 snprintf(special, len, "%s%s", _PATH_DEV, device);
2002 if (stat(special, &st) == -1) {
2003 snprintf(special, len, "%svinum/r%s",
2004 _PATH_DEV, device);
2005 if (stat(special, &st) == -1) {
2006 /* For now this is the 'last resort' */
2007 snprintf(special, len, "%svinum/%s",
2008 _PATH_DEV, device);
2009 }
2010 }
2011 }
2012 device = special;
2013 }
2014
2015 /*
2016 * Try to access our devices for writing ...
2017 */
2018 if (Nflag) {
2019 fso = -1;
2020 } else {
2021 fso = open(device, O_WRONLY);
2022 if (fso < 0) {
2023 err(1, "%s", device);
2024 }
2025 }
2026
2027 /*
2028 * ... and reading.
2029 */
2030 fsi = open(device, O_RDONLY);
2031 if (fsi < 0) {
2032 err(1, "%s", device);
2033 }
2034
2035 /*
2036 * Try to read a label and gess the slice if not specified. This
2037 * code should guess the right thing and avaid to bother the user
2038 * user with the task of specifying the option -v on vinum volumes.
2039 */
2040 cp=device+strlen(device)-1;
595e3440
MD
2041
2042 if (ioctl(fsi, DIOCGPART, &pinfo) < 0) {
2043 if (fstat(fsi, &st) < 0)
2044 err(1, "unable to figure out the partition size");
2045 pinfo.media_blocks = st.st_size / DEV_BSIZE;
2046 pinfo.media_blksize = DEV_BSIZE;
984263bc
MD
2047 }
2048
2049 /*
2050 * Check if that partition looks suited for growing a file system.
2051 */
595e3440 2052 if (pinfo.media_blocks < 1) {
984263bc
MD
2053 errx(1, "partition is unavailable");
2054 }
984263bc
MD
2055
2056 /*
2057 * Read the current superblock, and take a backup.
2058 */
4e1af74f 2059 rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, &osblock, fsi);
984263bc
MD
2060 if (osblock.fs_magic != FS_MAGIC) {
2061 errx(1, "superblock not recognized");
2062 }
2063 memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2064
2065 DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2066 DBG_DUMP_FS(&sblock,
2067 "old sblock");
2068
2069 /*
2070 * Determine size to grow to. Default to the full size specified in
2071 * the disk label.
2072 */
595e3440 2073 sblock.fs_size = dbtofsb(&osblock, pinfo.media_blocks);
984263bc 2074 if (size != 0) {
595e3440 2075 if (size > pinfo.media_blocks){
a276dc6b
MD
2076 errx(1, "There is not enough space (%ju < %d)",
2077 (intmax_t)pinfo.media_blocks, size);
984263bc
MD
2078 }
2079 sblock.fs_size = dbtofsb(&osblock, size);
2080 }
2081
2082 /*
2083 * Are we really growing ?
2084 */
2085 if(osblock.fs_size >= sblock.fs_size) {
2086 errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2087 sblock.fs_size);
2088 }
2089
2090
2091#ifdef FSMAXSNAP
2092 /*
2093 * Check if we find an active snapshot.
2094 */
2095 if(ExpertFlag == 0) {
2096 for(j=0; j<FSMAXSNAP; j++) {
2097 if(sblock.fs_snapinum[j]) {
2098 errx(1, "active snapshot found in filesystem\n"
2099 " please remove all snapshots before "
2100 "using growfs\n");
2101 }
2102 if(!sblock.fs_snapinum[j]) { /* list is dense */
2103 break;
2104 }
2105 }
2106 }
2107#endif
2108
2109 if (ExpertFlag == 0 && Nflag == 0) {
2110 printf("We strongly recommend you to make a backup "
2111 "before growing the Filesystem\n\n"
2112 " Did you backup your data (Yes/No) ? ");
2113 fgets(reply, (int)sizeof(reply), stdin);
2114 if (strcmp(reply, "Yes\n")){
2115 printf("\n Nothing done \n");
2116 exit (0);
2117 }
2118 }
2119
2120 printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2121
2122 /*
2123 * Try to access our new last block in the filesystem. Even if we
2124 * later on realize we have to abort our operation, on that block
2125 * there should be no data, so we can't destroy something yet.
2126 */
4e1af74f 2127 wtfs((daddr_t)pinfo.media_blocks-1, (size_t)DEV_BSIZE, &sblock, fso,
984263bc
MD
2128 Nflag);
2129
2130 /*
2131 * Now calculate new superblock values and check for reasonable
2132 * bound for new file system size:
2133 * fs_size: is derived from label or user input
2134 * fs_dsize: should get updated in the routines creating or
2135 * updating the cylinder groups on the fly
2136 * fs_cstotal: should get updated in the routines creating or
2137 * updating the cylinder groups
2138 */
2139
2140 /*
2141 * Update the number of cylinders in the filesystem.
2142 */
2143 sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2144 if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2145 sblock.fs_ncyl++;
2146 }
2147
2148 /*
2149 * Update the number of cylinder groups in the filesystem.
2150 */
2151 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2152 if (sblock.fs_ncyl % sblock.fs_cpg) {
2153 sblock.fs_ncg++;
2154 }
2155
2156 if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2157 sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2158 cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2159 (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2160 /*
2161 * The space in the new last cylinder group is too small,
2162 * so revert back.
2163 */
2164 sblock.fs_ncg--;
2165#if 1 /* this is a bit more safe */
2166 sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2167#else
2168 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2169#endif
2170 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2171 printf( "Warning: %d sector(s) cannot be allocated.\n",
2172 (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2173 NSPF(&sblock));
2174 sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2175 }
2176
2177 /*
2178 * Update the space for the cylinder group summary information in the
2179 * respective cylinder group data area.
2180 */
2181 sblock.fs_cssize =
2182 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2183
2184 if(osblock.fs_size >= sblock.fs_size) {
2185 errx(1, "not enough new space");
2186 }
2187
2188 DBG_PRINT0("sblock calculated\n");
2189
2190 /*
2191 * Ok, everything prepared, so now let's do the tricks.
2192 */
2193 growfs(fsi, fso, Nflag);
2194
984263bc
MD
2195 close(fsi);
2196 if(fso>-1) close(fso);
2197
2198 DBG_CLOSE;
2199
2200 DBG_LEAVE;
2201 return 0;
2202}
2203
984263bc
MD
2204/* ************************************************************* usage ***** */
2205/*
2206 * Dump a line of usage.
2207 */
2208static void
2209usage(void)
2210{
2211 DBG_FUNC("usage")
2212
2213 DBG_ENTER;
2214
2215 fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2216
2217 DBG_LEAVE;
2218 exit(1);
2219}
2220
2221/* *********************************************************** updclst ***** */
2222/*
2223 * This updates most paramters and the bitmap related to cluster. We have to
2224 * assume, that sblock, osblock, acg are set up.
2225 */
2226static void
2227updclst(int block)
2228{
2229 DBG_FUNC("updclst")
2230 static int lcs=0;
2231
2232 DBG_ENTER;
2233
2234 if(sblock.fs_contigsumsize < 1) { /* no clustering */
2235 return;
2236 }
2237 /*
2238 * update cluster allocation map
2239 */
2240 setbit(cg_clustersfree(&acg), block);
2241
2242 /*
2243 * update cluster summary table
2244 */
2245 if(!lcs) {
2246 /*
2247 * calculate size for the trailing cluster
2248 */
2249 for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2250 if(isclr(cg_clustersfree(&acg), block)){
2251 break;
2252 }
2253 }
2254 }
2255 if(lcs < sblock.fs_contigsumsize) {
2256 if(lcs) {
2257 cg_clustersum(&acg)[lcs]--;
2258 }
2259 lcs++;
2260 cg_clustersum(&acg)[lcs]++;
2261 }
2262
2263 DBG_LEAVE;
2264 return;
2265}
2266
2267/* *********************************************************** updrefs ***** */
2268/*
2269 * This updates all references to relocated blocks for the given inode. The
2270 * inode is given as number within the cylinder group, and the number of the
2271 * cylinder group.
2272 */
2273static void
2274updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2275 Nflag)
2276{
2277 DBG_FUNC("updrefs")
2278 unsigned int ictr, ind2ctr, ind3ctr;
2279 ufs_daddr_t *iptr, *ind2ptr, *ind3ptr;
67ad9090 2280 struct ufs1_dinode *ino;
984263bc
MD
2281 int remaining_blocks;
2282
2283 DBG_ENTER;
2284
2285 /*
2286 * XXX We should skip unused inodes even from beeing read from disk
2287 * here by using the bitmap.
2288 */
2289 ino=ginode(in, fsi, cg);
2290 if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2291 (ino->di_mode & IFMT)==IFLNK)) {
2292 DBG_LEAVE;
2293 return; /* only check DIR, FILE, LINK */
2294 }
2295 if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2296 DBG_LEAVE;
2297 return; /* skip short symlinks */
2298 }
2299 if(!ino->di_size) {
2300 DBG_LEAVE;
2301 return; /* skip empty file */
2302 }
2303 if(!ino->di_blocks) {
2304 DBG_LEAVE;
2305 return; /* skip empty swiss cheesy file or old fastlink */
2306 }
3a5f212d
SW
2307 DBG_PRINT2("scg checking inode (%ju in %d)\n",
2308 (uintmax_t)in,
984263bc
MD
2309 cg);
2310
2311 /*
2312 * Start checking all direct blocks.
2313 */
2314 remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2315 for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2316 ictr++) {
2317 iptr=&(ino->di_db[ictr]);
2318 if(*iptr) {
2319 cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2320 }
2321 }
2322 DBG_PRINT0("~~scg direct blocks checked\n");
2323
2324 remaining_blocks-=NDADDR;
2325 if(remaining_blocks<0) {
2326 DBG_LEAVE;
2327 return;
2328 }
2329 if(ino->di_ib[0]) {
2330 /*
2331 * Start checking first indirect block
2332 */
2333 cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2334 i1_src=fsbtodb(&sblock, ino->di_ib[0]);
4e1af74f 2335 rdfs(i1_src, (size_t)sblock.fs_bsize, &i1blk, fsi);
984263bc
MD
2336 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2337 sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2338 ictr++) {
2339 iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2340 if(*iptr) {
2341 cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2342 fso, Nflag);
2343 }
2344 }
2345 }
2346 DBG_PRINT0("scg indirect_1 blocks checked\n");
2347
2348 remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2349 if(remaining_blocks<0) {
2350 DBG_LEAVE;
2351 return;
2352 }
2353 if(ino->di_ib[1]) {
2354 /*
2355 * Start checking second indirect block
2356 */
2357 cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2358 i2_src=fsbtodb(&sblock, ino->di_ib[1]);
4e1af74f 2359 rdfs(i2_src, (size_t)sblock.fs_bsize, &i2blk, fsi);
984263bc
MD
2360 for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2361 sizeof(ufs_daddr_t)); ind2ctr++) {
2362 ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2363 if(!*ind2ptr) {
2364 continue;
2365 }
2366 cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2367 Nflag);
2368 i1_src=fsbtodb(&sblock, *ind2ptr);
4e1af74f 2369 rdfs(i1_src, (size_t)sblock.fs_bsize, &i1blk,
984263bc
MD
2370 fsi);
2371 for(ictr=0; ictr<MIN(howmany((unsigned int)
2372 sblock.fs_bsize, sizeof(ufs_daddr_t)),
2373 (unsigned int)remaining_blocks); ictr++) {
2374 iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2375 if(*iptr) {
2376 cond_bl_upd(iptr, bp,
2377 GFS_PS_IND_BLK_LVL1, fso, Nflag);
2378 }
2379 }
2380 }
2381 }
2382 DBG_PRINT0("scg indirect_2 blocks checked\n");
2383
2384#define SQUARE(a) ((a)*(a))
2385 remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2386#undef SQUARE
2387 if(remaining_blocks<0) {
2388 DBG_LEAVE;
2389 return;
2390 }
2391
2392 if(ino->di_ib[2]) {
2393 /*
2394 * Start checking third indirect block
2395 */
2396 cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2397 i3_src=fsbtodb(&sblock, ino->di_ib[2]);
4e1af74f 2398 rdfs(i3_src, (size_t)sblock.fs_bsize, &i3blk, fsi);
984263bc
MD
2399 for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2400 sizeof(ufs_daddr_t)); ind3ctr ++) {
2401 ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2402 if(!*ind3ptr) {
2403 continue;
2404 }
2405 cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2406 Nflag);
2407 i2_src=fsbtodb(&sblock, *ind3ptr);
4e1af74f 2408 rdfs(i2_src, (size_t)sblock.fs_bsize, &i2blk,
984263bc
MD
2409 fsi);
2410 for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2411 sizeof(ufs_daddr_t)); ind2ctr ++) {
2412 ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2413 [ind2ctr];
2414 if(!*ind2ptr) {
2415 continue;
2416 }
2417 cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2418 fso, Nflag);
2419 i1_src=fsbtodb(&sblock, *ind2ptr);
2420 rdfs(i1_src, (size_t)sblock.fs_bsize,
4e1af74f 2421 &i1blk, fsi);
984263bc
MD
2422 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2423 sizeof(ufs_daddr_t)),
2424 (unsigned int)remaining_blocks); ictr++) {
2425 iptr=&((ufs_daddr_t *)(void *)&i1blk)
2426 [ictr];
2427 if(*iptr) {
2428 cond_bl_upd(iptr, bp,
2429 GFS_PS_IND_BLK_LVL1, fso,
2430 Nflag);
2431 }
2432 }
2433 }
2434 }
2435 }
2436
2437 DBG_PRINT0("scg indirect_3 blocks checked\n");
2438
2439 DBG_LEAVE;
2440 return;
2441}
2442