Sync with FreeBSD.
[dragonfly.git] / sys / vfs / nfs / nfs_vnops.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95
37 * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
a15b4eef 38 * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.72 2007/06/15 17:25:05 dillon Exp $
984263bc
MD
39 */
40
41
42/*
43 * vnode op calls for Sun NFS version 2 and 3
44 */
45
46#include "opt_inet.h"
47
48#include <sys/param.h>
49#include <sys/kernel.h>
50#include <sys/systm.h>
51#include <sys/resourcevar.h>
52#include <sys/proc.h>
53#include <sys/mount.h>
54#include <sys/buf.h>
55#include <sys/malloc.h>
56#include <sys/mbuf.h>
57#include <sys/namei.h>
fad57d0e 58#include <sys/nlookup.h>
984263bc
MD
59#include <sys/socket.h>
60#include <sys/vnode.h>
61#include <sys/dirent.h>
62#include <sys/fcntl.h>
63#include <sys/lockf.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/conf.h>
67
68#include <vm/vm.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_zone.h>
71
3020e3be
MD
72#include <sys/buf2.h>
73
1f2de5d4 74#include <vfs/fifofs/fifo.h>
01f31ab3
JS
75#include <vfs/ufs/dir.h>
76
77#undef DIRBLKSIZ
984263bc 78
1f2de5d4
MD
79#include "rpcv2.h"
80#include "nfsproto.h"
81#include "nfs.h"
1f2de5d4 82#include "nfsmount.h"
c1cf1e59 83#include "nfsnode.h"
1f2de5d4
MD
84#include "xdr_subs.h"
85#include "nfsm_subs.h"
984263bc
MD
86
87#include <net/if.h>
88#include <netinet/in.h>
89#include <netinet/in_var.h>
90
165dba55
DR
91#include <sys/thread2.h>
92
984263bc
MD
93/* Defs */
94#define TRUE 1
95#define FALSE 0
96
a6ee311a
RG
97static int nfsspec_read (struct vop_read_args *);
98static int nfsspec_write (struct vop_write_args *);
99static int nfsfifo_read (struct vop_read_args *);
100static int nfsfifo_write (struct vop_write_args *);
101static int nfsspec_close (struct vop_close_args *);
102static int nfsfifo_close (struct vop_close_args *);
984263bc 103#define nfs_poll vop_nopoll
a6ee311a 104static int nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
e62afb5f
MD
105static int nfs_lookup (struct vop_old_lookup_args *);
106static int nfs_create (struct vop_old_create_args *);
107static int nfs_mknod (struct vop_old_mknod_args *);
a6ee311a
RG
108static int nfs_open (struct vop_open_args *);
109static int nfs_close (struct vop_close_args *);
110static int nfs_access (struct vop_access_args *);
111static int nfs_getattr (struct vop_getattr_args *);
112static int nfs_setattr (struct vop_setattr_args *);
113static int nfs_read (struct vop_read_args *);
114static int nfs_mmap (struct vop_mmap_args *);
115static int nfs_fsync (struct vop_fsync_args *);
e62afb5f
MD
116static int nfs_remove (struct vop_old_remove_args *);
117static int nfs_link (struct vop_old_link_args *);
118static int nfs_rename (struct vop_old_rename_args *);
119static int nfs_mkdir (struct vop_old_mkdir_args *);
120static int nfs_rmdir (struct vop_old_rmdir_args *);
121static int nfs_symlink (struct vop_old_symlink_args *);
a6ee311a
RG
122static int nfs_readdir (struct vop_readdir_args *);
123static int nfs_bmap (struct vop_bmap_args *);
124static int nfs_strategy (struct vop_strategy_args *);
125static int nfs_lookitup (struct vnode *, const char *, int,
126 struct ucred *, struct thread *, struct nfsnode **);
127static int nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128static int nfsspec_access (struct vop_access_args *);
129static int nfs_readlink (struct vop_readlink_args *);
130static int nfs_print (struct vop_print_args *);
131static int nfs_advlock (struct vop_advlock_args *);
fad57d0e
MD
132
133static int nfs_nresolve (struct vop_nresolve_args *);
984263bc
MD
134/*
135 * Global vfs data structures for nfs
136 */
66a1ddf5
MD
137struct vop_ops nfsv2_vnode_vops = {
138 .vop_default = vop_defaultop,
139 .vop_access = nfs_access,
140 .vop_advlock = nfs_advlock,
141 .vop_bmap = nfs_bmap,
142 .vop_close = nfs_close,
143 .vop_old_create = nfs_create,
144 .vop_fsync = nfs_fsync,
145 .vop_getattr = nfs_getattr,
146 .vop_getpages = nfs_getpages,
147 .vop_putpages = nfs_putpages,
148 .vop_inactive = nfs_inactive,
66a1ddf5 149 .vop_old_link = nfs_link,
66a1ddf5
MD
150 .vop_old_lookup = nfs_lookup,
151 .vop_old_mkdir = nfs_mkdir,
152 .vop_old_mknod = nfs_mknod,
153 .vop_mmap = nfs_mmap,
154 .vop_open = nfs_open,
155 .vop_poll = nfs_poll,
156 .vop_print = nfs_print,
157 .vop_read = nfs_read,
158 .vop_readdir = nfs_readdir,
159 .vop_readlink = nfs_readlink,
160 .vop_reclaim = nfs_reclaim,
161 .vop_old_remove = nfs_remove,
162 .vop_old_rename = nfs_rename,
163 .vop_old_rmdir = nfs_rmdir,
164 .vop_setattr = nfs_setattr,
165 .vop_strategy = nfs_strategy,
166 .vop_old_symlink = nfs_symlink,
66a1ddf5
MD
167 .vop_write = nfs_write,
168 .vop_nresolve = nfs_nresolve
984263bc 169};
984263bc
MD
170
171/*
172 * Special device vnode ops
173 */
66a1ddf5
MD
174struct vop_ops nfsv2_spec_vops = {
175 .vop_default = spec_vnoperate,
176 .vop_access = nfsspec_access,
177 .vop_close = nfsspec_close,
178 .vop_fsync = nfs_fsync,
179 .vop_getattr = nfs_getattr,
180 .vop_inactive = nfs_inactive,
66a1ddf5
MD
181 .vop_print = nfs_print,
182 .vop_read = nfsspec_read,
183 .vop_reclaim = nfs_reclaim,
184 .vop_setattr = nfs_setattr,
66a1ddf5 185 .vop_write = nfsspec_write
984263bc 186};
984263bc 187
66a1ddf5
MD
188struct vop_ops nfsv2_fifo_vops = {
189 .vop_default = fifo_vnoperate,
190 .vop_access = nfsspec_access,
191 .vop_close = nfsfifo_close,
192 .vop_fsync = nfs_fsync,
193 .vop_getattr = nfs_getattr,
194 .vop_inactive = nfs_inactive,
66a1ddf5
MD
195 .vop_print = nfs_print,
196 .vop_read = nfsfifo_read,
197 .vop_reclaim = nfs_reclaim,
198 .vop_setattr = nfs_setattr,
66a1ddf5 199 .vop_write = nfsfifo_write
984263bc 200};
984263bc 201
a6ee311a 202static int nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
984263bc 203 struct componentname *cnp,
a6ee311a
RG
204 struct vattr *vap);
205static int nfs_removerpc (struct vnode *dvp, const char *name,
984263bc 206 int namelen,
a6ee311a
RG
207 struct ucred *cred, struct thread *td);
208static int nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
984263bc
MD
209 int fnamelen, struct vnode *tdvp,
210 const char *tnameptr, int tnamelen,
a6ee311a
RG
211 struct ucred *cred, struct thread *td);
212static int nfs_renameit (struct vnode *sdvp,
984263bc 213 struct componentname *scnp,
a6ee311a 214 struct sillyrename *sp);
984263bc
MD
215
216/*
217 * Global variables
218 */
219extern u_int32_t nfs_true, nfs_false;
220extern u_int32_t nfs_xdrneg1;
221extern struct nfsstats nfsstats;
222extern nfstype nfsv3_type[9];
dadab5e9 223struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
984263bc
MD
224struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225int nfs_numasync = 0;
984263bc
MD
226
227SYSCTL_DECL(_vfs_nfs);
228
97100839 229static int nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
984263bc
MD
230SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
231 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
232
4d17b298
MD
233static int nfsneg_cache_timeout = NFS_MINATTRTIMO;
234SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
a15b4eef
MD
235 &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
236
237static int nfspos_cache_timeout = NFS_MINATTRTIMO;
238SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
239 &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
4d17b298 240
984263bc
MD
241static int nfsv3_commit_on_close = 0;
242SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
243 &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
244#if 0
245SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
246 &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
247
248SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
249 &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
250#endif
251
252#define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \
253 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \
254 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
255static int
dadab5e9 256nfs3_access_otw(struct vnode *vp, int wmode,
e851b29e 257 struct thread *td, struct ucred *cred)
984263bc
MD
258{
259 const int v3 = 1;
260 u_int32_t *tl;
261 int error = 0, attrflag;
262
263 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
264 caddr_t bpos, dpos, cp2;
40393ded
RG
265 int32_t t1, t2;
266 caddr_t cp;
984263bc
MD
267 u_int32_t rmode;
268 struct nfsnode *np = VTONFS(vp);
269
270 nfsstats.rpccnt[NFSPROC_ACCESS]++;
271 nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
272 nfsm_fhtom(vp, v3);
273 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
274 *tl = txdr_unsigned(wmode);
dadab5e9 275 nfsm_request(vp, NFSPROC_ACCESS, td, cred);
5a9187cb 276 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
277 if (!error) {
278 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
279 rmode = fxdr_unsigned(u_int32_t, *tl);
280 np->n_mode = rmode;
281 np->n_modeuid = cred->cr_uid;
3a6f9faf 282 np->n_modestamp = mycpu->gd_time_seconds;
984263bc 283 }
6b08710e
MD
284 m_freem(mrep);
285nfsmout:
984263bc
MD
286 return error;
287}
288
289/*
290 * nfs access vnode op.
291 * For nfs version 2, just return ok. File accesses may fail later.
292 * For nfs version 3, use the access rpc to check accessibility. If file modes
293 * are changed on the server, accesses might still fail later.
e851b29e
CP
294 *
295 * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
296 * struct thread *a_td)
984263bc
MD
297 */
298static int
e851b29e 299nfs_access(struct vop_access_args *ap)
984263bc 300{
40393ded 301 struct vnode *vp = ap->a_vp;
87de5057 302 thread_t td = curthread;
984263bc
MD
303 int error = 0;
304 u_int32_t mode, wmode;
305 int v3 = NFS_ISV3(vp);
306 struct nfsnode *np = VTONFS(vp);
307
308 /*
309 * Disallow write attempts on filesystems mounted read-only;
310 * unless the file is a socket, fifo, or a block or character
311 * device resident on the filesystem.
312 */
313 if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
314 switch (vp->v_type) {
315 case VREG:
316 case VDIR:
317 case VLNK:
318 return (EROFS);
319 default:
320 break;
321 }
322 }
323 /*
324 * For nfs v3, check to see if we have done this recently, and if
325 * so return our cached result instead of making an ACCESS call.
326 * If not, do an access rpc, otherwise you are stuck emulating
327 * ufs_access() locally using the vattr. This may not be correct,
328 * since the server may apply other access criteria such as
329 * client uid-->server uid mapping that we do not know about.
330 */
331 if (v3) {
332 if (ap->a_mode & VREAD)
333 mode = NFSV3ACCESS_READ;
334 else
335 mode = 0;
336 if (vp->v_type != VDIR) {
337 if (ap->a_mode & VWRITE)
338 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
339 if (ap->a_mode & VEXEC)
340 mode |= NFSV3ACCESS_EXECUTE;
341 } else {
342 if (ap->a_mode & VWRITE)
343 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
344 NFSV3ACCESS_DELETE);
345 if (ap->a_mode & VEXEC)
346 mode |= NFSV3ACCESS_LOOKUP;
347 }
348 /* XXX safety belt, only make blanket request if caching */
349 if (nfsaccess_cache_timeout > 0) {
350 wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
351 NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
352 NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
353 } else {
354 wmode = mode;
355 }
356
357 /*
358 * Does our cached result allow us to give a definite yes to
359 * this request?
360 */
fad57d0e
MD
361 if (np->n_modestamp &&
362 (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
363 (ap->a_cred->cr_uid == np->n_modeuid) &&
364 ((np->n_mode & mode) == mode)) {
984263bc
MD
365 nfsstats.accesscache_hits++;
366 } else {
367 /*
368 * Either a no, or a don't know. Go to the wire.
369 */
370 nfsstats.accesscache_misses++;
87de5057 371 error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
984263bc
MD
372 if (!error) {
373 if ((np->n_mode & mode) != mode) {
374 error = EACCES;
375 }
376 }
377 }
984263bc
MD
378 } else {
379 if ((error = nfsspec_access(ap)) != 0)
380 return (error);
381
382 /*
383 * Attempt to prevent a mapped root from accessing a file
384 * which it shouldn't. We try to read a byte from the file
385 * if the user is root and the file is not zero length.
386 * After calling nfsspec_access, we should have the correct
387 * file size cached.
388 */
389 if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
390 && VTONFS(vp)->n_size > 0) {
391 struct iovec aiov;
392 struct uio auio;
393 char buf[1];
394
395 aiov.iov_base = buf;
396 aiov.iov_len = 1;
397 auio.uio_iov = &aiov;
398 auio.uio_iovcnt = 1;
399 auio.uio_offset = 0;
400 auio.uio_resid = 1;
401 auio.uio_segflg = UIO_SYSSPACE;
402 auio.uio_rw = UIO_READ;
87de5057 403 auio.uio_td = td;
984263bc 404
c1cf1e59 405 if (vp->v_type == VREG) {
3b568787 406 error = nfs_readrpc(vp, &auio);
c1cf1e59 407 } else if (vp->v_type == VDIR) {
984263bc 408 char* bp;
efda3bd0 409 bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
984263bc
MD
410 aiov.iov_base = bp;
411 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
3b568787 412 error = nfs_readdirrpc(vp, &auio);
efda3bd0 413 kfree(bp, M_TEMP);
c1cf1e59 414 } else if (vp->v_type == VLNK) {
3b568787 415 error = nfs_readlinkrpc(vp, &auio);
c1cf1e59 416 } else {
984263bc 417 error = EACCES;
c1cf1e59 418 }
984263bc 419 }
984263bc 420 }
c1cf1e59
MD
421 /*
422 * [re]record creds for reading and/or writing if access
09b1ee9b
MD
423 * was granted. Assume the NFS server will grant read access
424 * for execute requests.
c1cf1e59
MD
425 */
426 if (error == 0) {
09b1ee9b 427 if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
c1cf1e59
MD
428 crhold(ap->a_cred);
429 if (np->n_rucred)
430 crfree(np->n_rucred);
431 np->n_rucred = ap->a_cred;
432 }
433 if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
434 crhold(ap->a_cred);
435 if (np->n_wucred)
436 crfree(np->n_wucred);
437 np->n_wucred = ap->a_cred;
438 }
439 }
440 return(error);
984263bc
MD
441}
442
443/*
444 * nfs open vnode op
445 * Check to see if the type is ok
446 * and that deletion is not in progress.
447 * For paged in text files, you will need to flush the page cache
448 * if consistency is lost.
e851b29e 449 *
87de5057 450 * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
984263bc
MD
451 */
452/* ARGSUSED */
453static int
e851b29e 454nfs_open(struct vop_open_args *ap)
984263bc 455{
40393ded 456 struct vnode *vp = ap->a_vp;
984263bc 457 struct nfsnode *np = VTONFS(vp);
984263bc
MD
458 struct vattr vattr;
459 int error;
460
461 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
462#ifdef DIAGNOSTIC
086c1d7e 463 kprintf("open eacces vtyp=%d\n",vp->v_type);
984263bc 464#endif
ca3a2b2f 465 return (EOPNOTSUPP);
984263bc 466 }
5a9187cb 467
984263bc 468 /*
5a9187cb
MD
469 * Clear the attribute cache only if opening with write access. It
470 * is unclear if we should do this at all here, but we certainly
471 * should not clear the cache unconditionally simply because a file
472 * is being opened.
984263bc 473 */
5a9187cb
MD
474 if (ap->a_mode & FWRITE)
475 np->n_attrstamp = 0;
476
e07fef60
MD
477 /*
478 * For normal NFS, reconcile changes made locally verses
479 * changes made remotely. Note that VOP_GETATTR only goes
480 * to the wire if the cached attribute has timed out or been
481 * cleared.
482 *
483 * If local modifications have been made clear the attribute
484 * cache to force an attribute and modified time check. If
485 * GETATTR detects that the file has been changed by someone
486 * other then us it will set NRMODIFIED.
487 *
488 * If we are opening a directory and local changes have been
489 * made we have to invalidate the cache in order to ensure
490 * that we get the most up-to-date information from the
491 * server. XXX
492 */
493 if (np->n_flag & NLMODIFIED) {
494 np->n_attrstamp = 0;
495 if (vp->v_type == VDIR) {
87de5057 496 error = nfs_vinvalbuf(vp, V_SAVE, 1);
5a9187cb
MD
497 if (error == EINTR)
498 return (error);
e07fef60 499 nfs_invaldir(vp);
5a9187cb 500 }
984263bc 501 }
87de5057 502 error = VOP_GETATTR(vp, &vattr);
e07fef60
MD
503 if (error)
504 return (error);
505 if (np->n_flag & NRMODIFIED) {
506 if (vp->v_type == VDIR)
507 nfs_invaldir(vp);
87de5057 508 error = nfs_vinvalbuf(vp, V_SAVE, 1);
e07fef60
MD
509 if (error == EINTR)
510 return (error);
511 np->n_flag &= ~NRMODIFIED;
512 }
fad57d0e 513
8ddc6004 514 return (vop_stdopen(ap));
984263bc
MD
515}
516
517/*
518 * nfs close vnode op
519 * What an NFS client should do upon close after writing is a debatable issue.
520 * Most NFS clients push delayed writes to the server upon close, basically for
521 * two reasons:
522 * 1 - So that any write errors may be reported back to the client process
523 * doing the close system call. By far the two most likely errors are
524 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
525 * 2 - To put a worst case upper bound on cache inconsistency between
526 * multiple clients for the file.
527 * There is also a consistency problem for Version 2 of the protocol w.r.t.
528 * not being able to tell if other clients are writing a file concurrently,
529 * since there is no way of knowing if the changed modify time in the reply
530 * is only due to the write for this client.
531 * (NFS Version 3 provides weak cache consistency data in the reply that
532 * should be sufficient to detect and handle this case.)
533 *
534 * The current code does the following:
535 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
536 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
537 * or commit them (this satisfies 1 and 2 except for the
538 * case where the server crashes after this close but
539 * before the commit RPC, which is felt to be "good
540 * enough". Changing the last argument to nfs_flush() to
541 * a 1 would force a commit operation, if it is felt a
542 * commit is necessary now.
543 * for NQNFS - do nothing now, since 2 is dealt with via leases and
544 * 1 should be dealt with via an fsync() system call for
545 * cases where write errors are important.
e851b29e 546 *
31bd717a 547 * nfs_close(struct vnode *a_vp, int a_fflag,
e851b29e 548 * struct ucred *a_cred, struct thread *a_td)
984263bc
MD
549 */
550/* ARGSUSED */
551static int
e851b29e 552nfs_close(struct vop_close_args *ap)
984263bc 553{
40393ded
RG
554 struct vnode *vp = ap->a_vp;
555 struct nfsnode *np = VTONFS(vp);
984263bc 556 int error = 0;
87de5057 557 thread_t td = curthread;
984263bc
MD
558
559 if (vp->v_type == VREG) {
e07fef60 560 if (np->n_flag & NLMODIFIED) {
984263bc
MD
561 if (NFS_ISV3(vp)) {
562 /*
563 * Under NFSv3 we have dirty buffers to dispose of. We
564 * must flush them to the NFS server. We have the option
565 * of waiting all the way through the commit rpc or just
566 * waiting for the initial write. The default is to only
567 * wait through the initial write so the data is in the
568 * server's cache, which is roughly similar to the state
569 * a standard disk subsystem leaves the file in on close().
570 *
5a9187cb 571 * We cannot clear the NLMODIFIED bit in np->n_flag due to
984263bc
MD
572 * potential races with other processes, and certainly
573 * cannot clear it if we don't commit.
574 */
575 int cm = nfsv3_commit_on_close ? 1 : 0;
87de5057 576 error = nfs_flush(vp, MNT_WAIT, td, cm);
5a9187cb 577 /* np->n_flag &= ~NLMODIFIED; */
984263bc 578 } else {
87de5057 579 error = nfs_vinvalbuf(vp, V_SAVE, 1);
984263bc
MD
580 }
581 np->n_attrstamp = 0;
582 }
583 if (np->n_flag & NWRITEERR) {
584 np->n_flag &= ~NWRITEERR;
585 error = np->n_error;
586 }
587 }
8ddc6004 588 vop_stdclose(ap);
984263bc
MD
589 return (error);
590}
591
592/*
593 * nfs getattr call from vfs.
e851b29e
CP
594 *
595 * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
596 * struct thread *a_td)
984263bc
MD
597 */
598static int
e851b29e 599nfs_getattr(struct vop_getattr_args *ap)
984263bc 600{
40393ded
RG
601 struct vnode *vp = ap->a_vp;
602 struct nfsnode *np = VTONFS(vp);
603 caddr_t cp;
604 u_int32_t *tl;
605 int32_t t1, t2;
984263bc
MD
606 caddr_t bpos, dpos;
607 int error = 0;
608 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
609 int v3 = NFS_ISV3(vp);
87de5057 610 thread_t td = curthread;
984263bc
MD
611
612 /*
613 * Update local times for special files.
614 */
615 if (np->n_flag & (NACC | NUPD))
616 np->n_flag |= NCHG;
617 /*
618 * First look in the cache.
619 */
620 if (nfs_getattrcache(vp, ap->a_vap) == 0)
621 return (0);
622
623 if (v3 && nfsaccess_cache_timeout > 0) {
624 nfsstats.accesscache_misses++;
87de5057 625 nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
984263bc
MD
626 if (nfs_getattrcache(vp, ap->a_vap) == 0)
627 return (0);
628 }
629
630 nfsstats.rpccnt[NFSPROC_GETATTR]++;
631 nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
632 nfsm_fhtom(vp, v3);
87de5057 633 nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
984263bc
MD
634 if (!error) {
635 nfsm_loadattr(vp, ap->a_vap);
636 }
6b08710e
MD
637 m_freem(mrep);
638nfsmout:
984263bc
MD
639 return (error);
640}
641
642/*
643 * nfs setattr call.
e851b29e 644 *
31bd717a 645 * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
984263bc
MD
646 */
647static int
e851b29e 648nfs_setattr(struct vop_setattr_args *ap)
984263bc 649{
40393ded
RG
650 struct vnode *vp = ap->a_vp;
651 struct nfsnode *np = VTONFS(vp);
652 struct vattr *vap = ap->a_vap;
984263bc
MD
653 int error = 0;
654 u_quad_t tsize;
87de5057 655 thread_t td = curthread;
984263bc
MD
656
657#ifndef nolint
658 tsize = (u_quad_t)0;
659#endif
660
661 /*
662 * Setting of flags is not supported.
663 */
664 if (vap->va_flags != VNOVAL)
665 return (EOPNOTSUPP);
666
667 /*
668 * Disallow write attempts if the filesystem is mounted read-only.
669 */
670 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
671 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
672 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
673 (vp->v_mount->mnt_flag & MNT_RDONLY))
674 return (EROFS);
675 if (vap->va_size != VNOVAL) {
676 switch (vp->v_type) {
677 case VDIR:
678 return (EISDIR);
679 case VCHR:
680 case VBLK:
681 case VSOCK:
682 case VFIFO:
683 if (vap->va_mtime.tv_sec == VNOVAL &&
684 vap->va_atime.tv_sec == VNOVAL &&
685 vap->va_mode == (mode_t)VNOVAL &&
686 vap->va_uid == (uid_t)VNOVAL &&
687 vap->va_gid == (gid_t)VNOVAL)
688 return (0);
689 vap->va_size = VNOVAL;
690 break;
691 default:
692 /*
693 * Disallow write attempts if the filesystem is
694 * mounted read-only.
695 */
696 if (vp->v_mount->mnt_flag & MNT_RDONLY)
697 return (EROFS);
698
699 /*
a004bca6
MD
700 * This is nasty. The RPCs we send to flush pending
701 * data often return attribute information which is
702 * cached via a callback to nfs_loadattrcache(), which
703 * has the effect of changing our notion of the file
704 * size. Due to flushed appends and other operations
705 * the file size can be set to virtually anything,
706 * including values that do not match either the old
707 * or intended file size.
708 *
709 * When this condition is detected we must loop to
710 * try the operation again. Hopefully no more
711 * flushing is required on the loop so it works the
712 * second time around. THIS CASE ALMOST ALWAYS
713 * HAPPENS!
984263bc 714 */
984263bc 715 tsize = np->n_size;
a004bca6 716again:
87de5057 717 error = nfs_meta_setsize(vp, td, vap->va_size);
984263bc 718
5a9187cb 719 if (np->n_flag & NLMODIFIED) {
984263bc 720 if (vap->va_size == 0)
87de5057 721 error = nfs_vinvalbuf(vp, 0, 1);
984263bc 722 else
87de5057 723 error = nfs_vinvalbuf(vp, V_SAVE, 1);
984263bc 724 }
a004bca6
MD
725 /*
726 * note: this loop case almost always happens at
727 * least once per truncation.
b07fc55c 728 */
a004bca6
MD
729 if (error == 0 && np->n_size != vap->va_size)
730 goto again;
731 np->n_vattr.va_size = vap->va_size;
5a9187cb
MD
732 break;
733 }
984263bc 734 } else if ((vap->va_mtime.tv_sec != VNOVAL ||
5a9187cb 735 vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
984263bc 736 vp->v_type == VREG &&
87de5057 737 (error = nfs_vinvalbuf(vp, V_SAVE, 1)) == EINTR
a004bca6 738 ) {
984263bc 739 return (error);
a004bca6 740 }
87de5057 741 error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
a004bca6
MD
742
743 /*
744 * Sanity check if a truncation was issued. This should only occur
745 * if multiple processes are racing on the same file.
746 */
747 if (error == 0 && vap->va_size != VNOVAL &&
748 np->n_size != vap->va_size) {
086c1d7e 749 kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
a004bca6
MD
750 goto again;
751 }
984263bc
MD
752 if (error && vap->va_size != VNOVAL) {
753 np->n_size = np->n_vattr.va_size = tsize;
754 vnode_pager_setsize(vp, np->n_size);
755 }
756 return (error);
757}
758
759/*
760 * Do an nfs setattr rpc.
761 */
762static int
dadab5e9 763nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
e851b29e 764 struct ucred *cred, struct thread *td)
984263bc 765{
40393ded 766 struct nfsv2_sattr *sp;
999914df 767 struct nfsnode *np = VTONFS(vp);
40393ded
RG
768 caddr_t cp;
769 int32_t t1, t2;
984263bc
MD
770 caddr_t bpos, dpos, cp2;
771 u_int32_t *tl;
772 int error = 0, wccflag = NFSV3_WCCRATTR;
773 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
774 int v3 = NFS_ISV3(vp);
775
776 nfsstats.rpccnt[NFSPROC_SETATTR]++;
777 nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
778 nfsm_fhtom(vp, v3);
779 if (v3) {
780 nfsm_v3attrbuild(vap, TRUE);
781 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
782 *tl = nfs_false;
783 } else {
784 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
785 if (vap->va_mode == (mode_t)VNOVAL)
786 sp->sa_mode = nfs_xdrneg1;
787 else
788 sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
789 if (vap->va_uid == (uid_t)VNOVAL)
790 sp->sa_uid = nfs_xdrneg1;
791 else
792 sp->sa_uid = txdr_unsigned(vap->va_uid);
793 if (vap->va_gid == (gid_t)VNOVAL)
794 sp->sa_gid = nfs_xdrneg1;
795 else
796 sp->sa_gid = txdr_unsigned(vap->va_gid);
797 sp->sa_size = txdr_unsigned(vap->va_size);
798 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
799 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
800 }
dadab5e9 801 nfsm_request(vp, NFSPROC_SETATTR, td, cred);
984263bc 802 if (v3) {
999914df 803 np->n_modestamp = 0;
984263bc
MD
804 nfsm_wcc_data(vp, wccflag);
805 } else
806 nfsm_loadattr(vp, (struct vattr *)0);
6b08710e
MD
807 m_freem(mrep);
808nfsmout:
984263bc
MD
809 return (error);
810}
811
a15b4eef
MD
812static
813void
814nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
815{
816 if (nctimeout == 0)
817 nctimeout = 1;
818 else
819 nctimeout *= hz;
820 cache_setvp(nch, vp);
821 cache_settimeout(nch, nctimeout);
822}
823
fad57d0e
MD
824/*
825 * NEW API CALL - replaces nfs_lookup(). However, we cannot remove
826 * nfs_lookup() until all remaining new api calls are implemented.
827 *
828 * Resolve a namecache entry. This function is passed a locked ncp and
a15b4eef 829 * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
fad57d0e
MD
830 */
831static int
832nfs_nresolve(struct vop_nresolve_args *ap)
833{
834 struct thread *td = curthread;
835 struct namecache *ncp;
836 struct ucred *cred;
837 struct nfsnode *np;
838 struct vnode *dvp;
839 struct vnode *nvp;
840 nfsfh_t *fhp;
841 int attrflag;
842 int fhsize;
843 int error;
844 int len;
845 int v3;
846 /******NFSM MACROS********/
847 struct mbuf *mb, *mrep, *mreq, *mb2, *md;
848 caddr_t bpos, dpos, cp, cp2;
849 u_int32_t *tl;
850 int32_t t1, t2;
851
852 cred = ap->a_cred;
28623bf9 853 ncp = ap->a_nch->ncp;
fad57d0e
MD
854
855 KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp);
856 dvp = ncp->nc_parent->nc_vp;
87de5057 857 if ((error = vget(dvp, LK_SHARED)) != 0)
fad57d0e
MD
858 return (error);
859
860 nvp = NULL;
861 v3 = NFS_ISV3(dvp);
862 nfsstats.lookupcache_misses++;
863 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
864 len = ncp->nc_nlen;
865 nfsm_reqhead(dvp, NFSPROC_LOOKUP,
866 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
867 nfsm_fhtom(dvp, v3);
868 nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
869 nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
870 if (error) {
871 /*
872 * Cache negatve lookups to reduce NFS traffic, but use
873 * a fast timeout. Otherwise use a timeout of 1 tick.
874 * XXX we should add a namecache flag for no-caching
875 * to uncache the negative hit as soon as possible, but
876 * we cannot simply destroy the entry because it is used
877 * as a placeholder by the caller.
878 */
a15b4eef
MD
879 if (error == ENOENT)
880 nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
5a9187cb 881 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
fad57d0e
MD
882 m_freem(mrep);
883 goto nfsmout;
884 }
885
886 /*
887 * Success, get the file handle, do various checks, and load
888 * post-operation data from the reply packet. Theoretically
889 * we should never be looking up "." so, theoretically, we
890 * should never get the same file handle as our directory. But
891 * we check anyway. XXX
892 *
893 * Note that no timeout is set for the positive cache hit. We
894 * assume, theoretically, that ESTALE returns will be dealt with
895 * properly to handle NFS races and in anycase we cannot depend
896 * on a timeout to deal with NFS open/create/excl issues so instead
897 * of a bad hack here the rest of the NFS client code needs to do
898 * the right thing.
899 */
900 nfsm_getfh(fhp, fhsize, v3);
901
902 np = VTONFS(dvp);
903 if (NFS_CMPFH(np, fhp, fhsize)) {
904 vref(dvp);
905 nvp = dvp;
906 } else {
907 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
908 if (error) {
909 m_freem(mrep);
910 vput(dvp);
911 return (error);
912 }
913 nvp = NFSTOV(np);
914 }
915 if (v3) {
5a9187cb
MD
916 nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
917 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
fad57d0e
MD
918 } else {
919 nfsm_loadattr(nvp, NULL);
920 }
a15b4eef 921 nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
fad57d0e
MD
922 m_freem(mrep);
923nfsmout:
924 vput(dvp);
925 if (nvp) {
926 if (nvp == dvp)
927 vrele(nvp);
928 else
929 vput(nvp);
930 }
931 return (error);
932}
933
984263bc 934/*
4d17b298 935 * 'cached' nfs directory lookup
e851b29e 936 *
fad57d0e
MD
937 * NOTE: cannot be removed until NFS implements all the new n*() API calls.
938 *
31bd717a
MD
939 * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
940 * struct componentname *a_cnp)
984263bc
MD
941 */
942static int
e62afb5f 943nfs_lookup(struct vop_old_lookup_args *ap)
984263bc
MD
944{
945 struct componentname *cnp = ap->a_cnp;
946 struct vnode *dvp = ap->a_dvp;
947 struct vnode **vpp = ap->a_vpp;
948 int flags = cnp->cn_flags;
949 struct vnode *newvp;
950 u_int32_t *tl;
951 caddr_t cp;
952 int32_t t1, t2;
953 struct nfsmount *nmp;
954 caddr_t bpos, dpos, cp2;
955 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
956 long len;
957 nfsfh_t *fhp;
958 struct nfsnode *np;
959 int lockparent, wantparent, error = 0, attrflag, fhsize;
960 int v3 = NFS_ISV3(dvp);
984263bc 961
4d17b298
MD
962 /*
963 * Read-only mount check and directory check.
964 */
984263bc 965 *vpp = NULLVP;
fad57d0e 966 if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
2b69e610 967 (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
984263bc 968 return (EROFS);
4d17b298 969
984263bc
MD
970 if (dvp->v_type != VDIR)
971 return (ENOTDIR);
4d17b298
MD
972
973 /*
974 * Look it up in the cache. Note that ENOENT is only returned if we
975 * previously entered a negative hit (see later on). The additional
976 * nfsneg_cache_timeout check causes previously cached results to
977 * be instantly ignored if the negative caching is turned off.
978 */
2b69e610
MD
979 lockparent = flags & CNP_LOCKPARENT;
980 wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
984263bc
MD
981 nmp = VFSTONFS(dvp->v_mount);
982 np = VTONFS(dvp);
984263bc 983
4d17b298 984 /*
fad57d0e 985 * Go to the wire.
4d17b298 986 */
984263bc
MD
987 error = 0;
988 newvp = NULLVP;
989 nfsstats.lookupcache_misses++;
990 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
991 len = cnp->cn_namelen;
992 nfsm_reqhead(dvp, NFSPROC_LOOKUP,
993 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
994 nfsm_fhtom(dvp, v3);
995 nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
dadab5e9 996 nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
984263bc 997 if (error) {
5a9187cb 998 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
999 m_freem(mrep);
1000 goto nfsmout;
1001 }
1002 nfsm_getfh(fhp, fhsize, v3);
1003
1004 /*
1005 * Handle RENAME case...
1006 */
fad57d0e 1007 if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
984263bc
MD
1008 if (NFS_CMPFH(np, fhp, fhsize)) {
1009 m_freem(mrep);
1010 return (EISDIR);
1011 }
1012 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1013 if (error) {
1014 m_freem(mrep);
1015 return (error);
1016 }
1017 newvp = NFSTOV(np);
1018 if (v3) {
5a9187cb
MD
1019 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1020 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
1021 } else
1022 nfsm_loadattr(newvp, (struct vattr *)0);
1023 *vpp = newvp;
1024 m_freem(mrep);
7ab77df6 1025 if (!lockparent) {
a11aaa81 1026 vn_unlock(dvp);
7ab77df6
MD
1027 cnp->cn_flags |= CNP_PDIRUNLOCK;
1028 }
984263bc
MD
1029 return (0);
1030 }
1031
2b69e610 1032 if (flags & CNP_ISDOTDOT) {
a11aaa81 1033 vn_unlock(dvp);
7ab77df6 1034 cnp->cn_flags |= CNP_PDIRUNLOCK;
984263bc
MD
1035 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1036 if (error) {
ca466bae 1037 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
7ab77df6
MD
1038 cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1039 return (error); /* NOTE: return error from nget */
984263bc
MD
1040 }
1041 newvp = NFSTOV(np);
fad57d0e 1042 if (lockparent) {
ca466bae 1043 error = vn_lock(dvp, LK_EXCLUSIVE);
7ab77df6
MD
1044 if (error) {
1045 vput(newvp);
1046 return (error);
1047 }
1048 cnp->cn_flags |= CNP_PDIRUNLOCK;
984263bc
MD
1049 }
1050 } else if (NFS_CMPFH(np, fhp, fhsize)) {
597aea93 1051 vref(dvp);
984263bc
MD
1052 newvp = dvp;
1053 } else {
1054 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1055 if (error) {
1056 m_freem(mrep);
1057 return (error);
1058 }
fad57d0e 1059 if (!lockparent) {
a11aaa81 1060 vn_unlock(dvp);
7ab77df6
MD
1061 cnp->cn_flags |= CNP_PDIRUNLOCK;
1062 }
984263bc
MD
1063 newvp = NFSTOV(np);
1064 }
1065 if (v3) {
5a9187cb
MD
1066 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1067 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
1068 } else
1069 nfsm_loadattr(newvp, (struct vattr *)0);
fad57d0e
MD
1070#if 0
1071 /* XXX MOVE TO nfs_nremove() */
2b69e610 1072 if ((cnp->cn_flags & CNP_MAKEENTRY) &&
fad57d0e
MD
1073 cnp->cn_nameiop != NAMEI_DELETE) {
1074 np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
984263bc 1075 }
fad57d0e 1076#endif
984263bc 1077 *vpp = newvp;
6b08710e
MD
1078 m_freem(mrep);
1079nfsmout:
984263bc
MD
1080 if (error) {
1081 if (newvp != NULLVP) {
1082 vrele(newvp);
1083 *vpp = NULLVP;
1084 }
fad57d0e
MD
1085 if ((cnp->cn_nameiop == NAMEI_CREATE ||
1086 cnp->cn_nameiop == NAMEI_RENAME) &&
1087 error == ENOENT) {
7ab77df6 1088 if (!lockparent) {
a11aaa81 1089 vn_unlock(dvp);
7ab77df6
MD
1090 cnp->cn_flags |= CNP_PDIRUNLOCK;
1091 }
984263bc
MD
1092 if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1093 error = EROFS;
1094 else
1095 error = EJUSTRETURN;
1096 }
984263bc
MD
1097 }
1098 return (error);
1099}
1100
1101/*
1102 * nfs read call.
1103 * Just call nfs_bioread() to do the work.
e851b29e
CP
1104 *
1105 * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1106 * struct ucred *a_cred)
984263bc
MD
1107 */
1108static int
e851b29e 1109nfs_read(struct vop_read_args *ap)
984263bc 1110{
40393ded 1111 struct vnode *vp = ap->a_vp;
984263bc 1112
3b568787 1113 return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
ca3a2b2f
HP
1114 switch (vp->v_type) {
1115 case VREG:
1116 return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1117 case VDIR:
1118 return (EISDIR);
1119 default:
1120 return EOPNOTSUPP;
1121 }
984263bc
MD
1122}
1123
1124/*
1125 * nfs readlink call
e851b29e
CP
1126 *
1127 * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
984263bc
MD
1128 */
1129static int
e851b29e 1130nfs_readlink(struct vop_readlink_args *ap)
984263bc 1131{
40393ded 1132 struct vnode *vp = ap->a_vp;
984263bc
MD
1133
1134 if (vp->v_type != VLNK)
1135 return (EINVAL);
3b568787 1136 return (nfs_bioread(vp, ap->a_uio, 0));
984263bc
MD
1137}
1138
1139/*
1140 * Do a readlink rpc.
1141 * Called by nfs_doio() from below the buffer cache.
1142 */
1143int
3b568787 1144nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
984263bc 1145{
40393ded
RG
1146 u_int32_t *tl;
1147 caddr_t cp;
1148 int32_t t1, t2;
984263bc
MD
1149 caddr_t bpos, dpos, cp2;
1150 int error = 0, len, attrflag;
1151 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1152 int v3 = NFS_ISV3(vp);
1153
1154 nfsstats.rpccnt[NFSPROC_READLINK]++;
1155 nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1156 nfsm_fhtom(vp, v3);
c1cf1e59 1157 nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
984263bc 1158 if (v3)
5a9187cb 1159 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
1160 if (!error) {
1161 nfsm_strsiz(len, NFS_MAXPATHLEN);
1162 if (len == NFS_MAXPATHLEN) {
1163 struct nfsnode *np = VTONFS(vp);
1164 if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1165 len = np->n_size;
1166 }
1167 nfsm_mtouio(uiop, len);
1168 }
6b08710e
MD
1169 m_freem(mrep);
1170nfsmout:
984263bc
MD
1171 return (error);
1172}
1173
1174/*
1175 * nfs read rpc call
1176 * Ditto above
1177 */
1178int
3b568787 1179nfs_readrpc(struct vnode *vp, struct uio *uiop)
984263bc 1180{
40393ded
RG
1181 u_int32_t *tl;
1182 caddr_t cp;
1183 int32_t t1, t2;
984263bc
MD
1184 caddr_t bpos, dpos, cp2;
1185 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1186 struct nfsmount *nmp;
1187 int error = 0, len, retlen, tsiz, eof, attrflag;
1188 int v3 = NFS_ISV3(vp);
1189
1190#ifndef nolint
1191 eof = 0;
1192#endif
1193 nmp = VFSTONFS(vp->v_mount);
1194 tsiz = uiop->uio_resid;
1195 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1196 return (EFBIG);
1197 while (tsiz > 0) {
1198 nfsstats.rpccnt[NFSPROC_READ]++;
1199 len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1200 nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1201 nfsm_fhtom(vp, v3);
1202 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1203 if (v3) {
1204 txdr_hyper(uiop->uio_offset, tl);
1205 *(tl + 2) = txdr_unsigned(len);
1206 } else {
1207 *tl++ = txdr_unsigned(uiop->uio_offset);
1208 *tl++ = txdr_unsigned(len);
1209 *tl = 0;
1210 }
c1cf1e59 1211 nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
984263bc 1212 if (v3) {
5a9187cb 1213 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
1214 if (error) {
1215 m_freem(mrep);
1216 goto nfsmout;
1217 }
1218 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1219 eof = fxdr_unsigned(int, *(tl + 1));
1220 } else
1221 nfsm_loadattr(vp, (struct vattr *)0);
1222 nfsm_strsiz(retlen, nmp->nm_rsize);
1223 nfsm_mtouio(uiop, retlen);
1224 m_freem(mrep);
1225 tsiz -= retlen;
1226 if (v3) {
1227 if (eof || retlen == 0) {
1228 tsiz = 0;
1229 }
1230 } else if (retlen < len) {
1231 tsiz = 0;
1232 }
1233 }
1234nfsmout:
1235 return (error);
1236}
1237
1238/*
1239 * nfs write call
1240 */
1241int
e851b29e 1242nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
984263bc 1243{
40393ded
RG
1244 u_int32_t *tl;
1245 caddr_t cp;
1246 int32_t t1, t2, backup;
984263bc
MD
1247 caddr_t bpos, dpos, cp2;
1248 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1249 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1250 int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1251 int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1252
1253#ifndef DIAGNOSTIC
1254 if (uiop->uio_iovcnt != 1)
1255 panic("nfs: writerpc iovcnt > 1");
1256#endif
1257 *must_commit = 0;
1258 tsiz = uiop->uio_resid;
1259 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1260 return (EFBIG);
1261 while (tsiz > 0) {
1262 nfsstats.rpccnt[NFSPROC_WRITE]++;
1263 len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1264 nfsm_reqhead(vp, NFSPROC_WRITE,
1265 NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1266 nfsm_fhtom(vp, v3);
1267 if (v3) {
1268 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1269 txdr_hyper(uiop->uio_offset, tl);
1270 tl += 2;
1271 *tl++ = txdr_unsigned(len);
1272 *tl++ = txdr_unsigned(*iomode);
1273 *tl = txdr_unsigned(len);
1274 } else {
40393ded 1275 u_int32_t x;
984263bc
MD
1276
1277 nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1278 /* Set both "begin" and "current" to non-garbage. */
1279 x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1280 *tl++ = x; /* "begin offset" */
1281 *tl++ = x; /* "current offset" */
1282 x = txdr_unsigned(len);
1283 *tl++ = x; /* total to this offset */
1284 *tl = x; /* size of this write */
1285 }
1286 nfsm_uiotom(uiop, len);
c1cf1e59 1287 nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
984263bc 1288 if (v3) {
5a9187cb
MD
1289 /*
1290 * The write RPC returns a before and after mtime. The
1291 * nfsm_wcc_data() macro checks the before n_mtime
1292 * against the before time and stores the after time
1293 * in the nfsnode's cached vattr and n_mtime field.
1294 * The NRMODIFIED bit will be set if the before
1295 * time did not match the original mtime.
1296 */
984263bc
MD
1297 wccflag = NFSV3_WCCCHK;
1298 nfsm_wcc_data(vp, wccflag);
1299 if (!error) {
1300 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1301 + NFSX_V3WRITEVERF);
1302 rlen = fxdr_unsigned(int, *tl++);
1303 if (rlen == 0) {
1304 error = NFSERR_IO;
1305 m_freem(mrep);
1306 break;
1307 } else if (rlen < len) {
1308 backup = len - rlen;
1309 uiop->uio_iov->iov_base -= backup;
1310 uiop->uio_iov->iov_len += backup;
1311 uiop->uio_offset -= backup;
1312 uiop->uio_resid += backup;
1313 len = rlen;
1314 }
1315 commit = fxdr_unsigned(int, *tl++);
1316
1317 /*
1318 * Return the lowest committment level
1319 * obtained by any of the RPCs.
1320 */
1321 if (committed == NFSV3WRITE_FILESYNC)
1322 committed = commit;
1323 else if (committed == NFSV3WRITE_DATASYNC &&
1324 commit == NFSV3WRITE_UNSTABLE)
1325 committed = commit;
1326 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1327 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1328 NFSX_V3WRITEVERF);
1329 nmp->nm_state |= NFSSTA_HASWRITEVERF;
1330 } else if (bcmp((caddr_t)tl,
1331 (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1332 *must_commit = 1;
1333 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1334 NFSX_V3WRITEVERF);
1335 }
1336 }
5a9187cb
MD
1337 } else {
1338 nfsm_loadattr(vp, (struct vattr *)0);
1339 }
984263bc
MD
1340 m_freem(mrep);
1341 if (error)
1342 break;
1343 tsiz -= len;
1344 }
1345nfsmout:
1346 if (vp->v_mount->mnt_flag & MNT_ASYNC)
1347 committed = NFSV3WRITE_FILESYNC;
1348 *iomode = committed;
1349 if (error)
1350 uiop->uio_resid = tsiz;
1351 return (error);
1352}
1353
1354/*
1355 * nfs mknod rpc
1356 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1357 * mode set to specify the file type and the size field for rdev.
1358 */
1359static int
e851b29e
CP
1360nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1361 struct vattr *vap)
984263bc 1362{
40393ded
RG
1363 struct nfsv2_sattr *sp;
1364 u_int32_t *tl;
1365 caddr_t cp;
1366 int32_t t1, t2;
984263bc
MD
1367 struct vnode *newvp = (struct vnode *)0;
1368 struct nfsnode *np = (struct nfsnode *)0;
1369 struct vattr vattr;
1370 char *cp2;
1371 caddr_t bpos, dpos;
1372 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1373 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
0e9b9130 1374 int rmajor, rminor;
984263bc
MD
1375 int v3 = NFS_ISV3(dvp);
1376
0e9b9130
MD
1377 if (vap->va_type == VCHR || vap->va_type == VBLK) {
1378 rmajor = txdr_unsigned(vap->va_rmajor);
1379 rminor = txdr_unsigned(vap->va_rminor);
1380 } else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1381 rmajor = nfs_xdrneg1;
1382 rminor = nfs_xdrneg1;
1383 } else {
984263bc
MD
1384 return (EOPNOTSUPP);
1385 }
87de5057 1386 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
984263bc
MD
1387 return (error);
1388 }
1389 nfsstats.rpccnt[NFSPROC_MKNOD]++;
1390 nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1391 + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1392 nfsm_fhtom(dvp, v3);
1393 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1394 if (v3) {
1395 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1396 *tl++ = vtonfsv3_type(vap->va_type);
1397 nfsm_v3attrbuild(vap, FALSE);
1398 if (vap->va_type == VCHR || vap->va_type == VBLK) {
1399 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
0e9b9130
MD
1400 *tl++ = txdr_unsigned(vap->va_rmajor);
1401 *tl = txdr_unsigned(vap->va_rminor);
984263bc
MD
1402 }
1403 } else {
1404 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1405 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1406 sp->sa_uid = nfs_xdrneg1;
1407 sp->sa_gid = nfs_xdrneg1;
0e9b9130 1408 sp->sa_size = makeudev(rmajor, rminor);
984263bc
MD
1409 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1410 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1411 }
dadab5e9 1412 nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
984263bc
MD
1413 if (!error) {
1414 nfsm_mtofh(dvp, newvp, v3, gotvp);
1415 if (!gotvp) {
1416 if (newvp) {
1417 vput(newvp);
1418 newvp = (struct vnode *)0;
1419 }
1420 error = nfs_lookitup(dvp, cnp->cn_nameptr,
dadab5e9 1421 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
984263bc
MD
1422 if (!error)
1423 newvp = NFSTOV(np);
1424 }
1425 }
1426 if (v3)
1427 nfsm_wcc_data(dvp, wccflag);
6b08710e
MD
1428 m_freem(mrep);
1429nfsmout:
984263bc
MD
1430 if (error) {
1431 if (newvp)
1432 vput(newvp);
1433 } else {
984263bc
MD
1434 *vpp = newvp;
1435 }
5a9187cb 1436 VTONFS(dvp)->n_flag |= NLMODIFIED;
984263bc
MD
1437 if (!wccflag)
1438 VTONFS(dvp)->n_attrstamp = 0;
1439 return (error);
1440}
1441
1442/*
1443 * nfs mknod vop
1444 * just call nfs_mknodrpc() to do the work.
e851b29e
CP
1445 *
1446 * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1447 * struct componentname *a_cnp, struct vattr *a_vap)
984263bc
MD
1448 */
1449/* ARGSUSED */
1450static int
e62afb5f 1451nfs_mknod(struct vop_old_mknod_args *ap)
984263bc
MD
1452{
1453 return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1454}
1455
1456static u_long create_verf;
1457/*
1458 * nfs file create call
e851b29e
CP
1459 *
1460 * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1461 * struct componentname *a_cnp, struct vattr *a_vap)
984263bc
MD
1462 */
1463static int
e62afb5f 1464nfs_create(struct vop_old_create_args *ap)
984263bc 1465{
40393ded
RG
1466 struct vnode *dvp = ap->a_dvp;
1467 struct vattr *vap = ap->a_vap;
1468 struct componentname *cnp = ap->a_cnp;
1469 struct nfsv2_sattr *sp;
1470 u_int32_t *tl;
1471 caddr_t cp;
1472 int32_t t1, t2;
984263bc
MD
1473 struct nfsnode *np = (struct nfsnode *)0;
1474 struct vnode *newvp = (struct vnode *)0;
1475 caddr_t bpos, dpos, cp2;
1476 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1477 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1478 struct vattr vattr;
1479 int v3 = NFS_ISV3(dvp);
1480
1481 /*
1482 * Oops, not for me..
1483 */
1484 if (vap->va_type == VSOCK)
1485 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1486
87de5057 1487 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
984263bc
MD
1488 return (error);
1489 }
1490 if (vap->va_vaflags & VA_EXCLUSIVE)
1491 fmode |= O_EXCL;
1492again:
1493 nfsstats.rpccnt[NFSPROC_CREATE]++;
1494 nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1495 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1496 nfsm_fhtom(dvp, v3);
1497 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1498 if (v3) {
1499 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1500 if (fmode & O_EXCL) {
1501 *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1502 nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1503#ifdef INET
1504 if (!TAILQ_EMPTY(&in_ifaddrhead))
ecd80f47 1505 *tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
984263bc
MD
1506 else
1507#endif
1508 *tl++ = create_verf;
1509 *tl = ++create_verf;
1510 } else {
1511 *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1512 nfsm_v3attrbuild(vap, FALSE);
1513 }
1514 } else {
1515 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1516 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1517 sp->sa_uid = nfs_xdrneg1;
1518 sp->sa_gid = nfs_xdrneg1;
1519 sp->sa_size = 0;
1520 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1521 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1522 }
dadab5e9 1523 nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
984263bc
MD
1524 if (!error) {
1525 nfsm_mtofh(dvp, newvp, v3, gotvp);
1526 if (!gotvp) {
1527 if (newvp) {
1528 vput(newvp);
1529 newvp = (struct vnode *)0;
1530 }
1531 error = nfs_lookitup(dvp, cnp->cn_nameptr,
dadab5e9 1532 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
984263bc
MD
1533 if (!error)
1534 newvp = NFSTOV(np);
1535 }
1536 }
1537 if (v3)
1538 nfsm_wcc_data(dvp, wccflag);
6b08710e
MD
1539 m_freem(mrep);
1540nfsmout:
984263bc
MD
1541 if (error) {
1542 if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1543 fmode &= ~O_EXCL;
1544 goto again;
1545 }
1546 if (newvp)
1547 vput(newvp);
1548 } else if (v3 && (fmode & O_EXCL)) {
1549 /*
1550 * We are normally called with only a partially initialized
1551 * VAP. Since the NFSv3 spec says that server may use the
1552 * file attributes to store the verifier, the spec requires
1553 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1554 * in atime, but we can't really assume that all servers will
1555 * so we ensure that our SETATTR sets both atime and mtime.
1556 */
1557 if (vap->va_mtime.tv_sec == VNOVAL)
1558 vfs_timestamp(&vap->va_mtime);
1559 if (vap->va_atime.tv_sec == VNOVAL)
1560 vap->va_atime = vap->va_mtime;
dadab5e9 1561 error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
984263bc
MD
1562 }
1563 if (!error) {
c1cf1e59
MD
1564 /*
1565 * The new np may have enough info for access
1566 * checks, make sure rucred and wucred are
1567 * initialized for read and write rpc's.
1568 */
1569 np = VTONFS(newvp);
1570 if (np->n_rucred == NULL)
1571 np->n_rucred = crhold(cnp->cn_cred);
1572 if (np->n_wucred == NULL)
1573 np->n_wucred = crhold(cnp->cn_cred);
984263bc
MD
1574 *ap->a_vpp = newvp;
1575 }
5a9187cb 1576 VTONFS(dvp)->n_flag |= NLMODIFIED;
984263bc
MD
1577 if (!wccflag)
1578 VTONFS(dvp)->n_attrstamp = 0;
1579 return (error);
1580}
1581
1582/*
1583 * nfs file remove call
1584 * To try and make nfs semantics closer to ufs semantics, a file that has
1585 * other processes using the vnode is renamed instead of removed and then
1586 * removed later on the last close.
3c37c940 1587 * - If v_sysref.refcnt > 1
984263bc
MD
1588 * If a rename is not already in the works
1589 * call nfs_sillyrename() to set it up
1590 * else
1591 * do the remove rpc
e851b29e 1592 *
31bd717a
MD
1593 * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1594 * struct componentname *a_cnp)
984263bc
MD
1595 */
1596static int
e62afb5f 1597nfs_remove(struct vop_old_remove_args *ap)
984263bc 1598{
40393ded
RG
1599 struct vnode *vp = ap->a_vp;
1600 struct vnode *dvp = ap->a_dvp;
1601 struct componentname *cnp = ap->a_cnp;
1602 struct nfsnode *np = VTONFS(vp);
984263bc
MD
1603 int error = 0;
1604 struct vattr vattr;
1605
1606#ifndef DIAGNOSTIC
3c37c940
MD
1607 if (vp->v_sysref.refcnt < 1)
1608 panic("nfs_remove: bad v_sysref.refcnt");
984263bc
MD
1609#endif
1610 if (vp->v_type == VDIR)
1611 error = EPERM;
3c37c940 1612 else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
87de5057 1613 VOP_GETATTR(vp, &vattr) == 0 &&
984263bc 1614 vattr.va_nlink > 1)) {
984263bc
MD
1615 /*
1616 * throw away biocache buffers, mainly to avoid
1617 * unnecessary delayed writes later.
1618 */
87de5057 1619 error = nfs_vinvalbuf(vp, 0, 1);
984263bc
MD
1620 /* Do the rpc */
1621 if (error != EINTR)
1622 error = nfs_removerpc(dvp, cnp->cn_nameptr,
dadab5e9 1623 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
984263bc
MD
1624 /*
1625 * Kludge City: If the first reply to the remove rpc is lost..
1626 * the reply to the retransmitted request will be ENOENT
1627 * since the file was in fact removed
1628 * Therefore, we cheat and return success.
1629 */
1630 if (error == ENOENT)
1631 error = 0;
fad57d0e 1632 } else if (!np->n_sillyrename) {
984263bc 1633 error = nfs_sillyrename(dvp, vp, cnp);
fad57d0e 1634 }
984263bc
MD
1635 np->n_attrstamp = 0;
1636 return (error);
1637}
1638
1639/*
1640 * nfs file remove rpc called from nfs_inactive
1641 */
1642int
dadab5e9 1643nfs_removeit(struct sillyrename *sp)
984263bc 1644{
dadab5e9
MD
1645 return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1646 sp->s_cred, NULL));
984263bc
MD
1647}
1648
1649/*
1650 * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1651 */
1652static int
e851b29e
CP
1653nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1654 struct ucred *cred, struct thread *td)
984263bc 1655{
40393ded
RG
1656 u_int32_t *tl;
1657 caddr_t cp;
1658 int32_t t1, t2;
984263bc
MD
1659 caddr_t bpos, dpos, cp2;
1660 int error = 0, wccflag = NFSV3_WCCRATTR;
1661 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1662 int v3 = NFS_ISV3(dvp);
1663
1664 nfsstats.rpccnt[NFSPROC_REMOVE]++;
1665 nfsm_reqhead(dvp, NFSPROC_REMOVE,
1666 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1667 nfsm_fhtom(dvp, v3);
1668 nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
dadab5e9 1669 nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
984263bc
MD
1670 if (v3)
1671 nfsm_wcc_data(dvp, wccflag);
6b08710e
MD
1672 m_freem(mrep);
1673nfsmout:
5a9187cb 1674 VTONFS(dvp)->n_flag |= NLMODIFIED;
984263bc
MD
1675 if (!wccflag)
1676 VTONFS(dvp)->n_attrstamp = 0;
1677 return (error);
1678}
1679
1680/*
1681 * nfs file rename call
e851b29e
CP
1682 *
1683 * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1684 * struct componentname *a_fcnp, struct vnode *a_tdvp,
1685 * struct vnode *a_tvp, struct componentname *a_tcnp)
984263bc
MD
1686 */
1687static int
e62afb5f 1688nfs_rename(struct vop_old_rename_args *ap)
984263bc 1689{
40393ded
RG
1690 struct vnode *fvp = ap->a_fvp;
1691 struct vnode *tvp = ap->a_tvp;
1692 struct vnode *fdvp = ap->a_fdvp;
1693 struct vnode *tdvp = ap->a_tdvp;
1694 struct componentname *tcnp = ap->a_tcnp;
1695 struct componentname *fcnp = ap->a_fcnp;
984263bc
MD
1696 int error;
1697
984263bc
MD
1698 /* Check for cross-device rename */
1699 if ((fvp->v_mount != tdvp->v_mount) ||
1700 (tvp && (fvp->v_mount != tvp->v_mount))) {
1701 error = EXDEV;
1702 goto out;
1703 }
1704
1705 /*
1706 * We have to flush B_DELWRI data prior to renaming
1707 * the file. If we don't, the delayed-write buffers
1708 * can be flushed out later after the file has gone stale
1709 * under NFSV3. NFSV2 does not have this problem because
1710 * ( as far as I can tell ) it flushes dirty buffers more
1711 * often.
1712 */
1713
87de5057 1714 VOP_FSYNC(fvp, MNT_WAIT);
984263bc 1715 if (tvp)
87de5057 1716 VOP_FSYNC(tvp, MNT_WAIT);
984263bc
MD
1717
1718 /*
1719 * If the tvp exists and is in use, sillyrename it before doing the
1720 * rename of the new file over it.
fad57d0e 1721 *
984263bc 1722 * XXX Can't sillyrename a directory.
5fd012e0 1723 *
fad57d0e
MD
1724 * We do not attempt to do any namecache purges in this old API
1725 * routine. The new API compat functions have access to the actual
1726 * namecache structures and will do it for us.
984263bc 1727 */
3c37c940 1728 if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
984263bc
MD
1729 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1730 vput(tvp);
1731 tvp = NULL;
5fd012e0 1732 } else if (tvp) {
fad57d0e 1733 ;
984263bc
MD
1734 }
1735
1736 error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1737 tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
dadab5e9 1738 tcnp->cn_td);
984263bc 1739
984263bc
MD
1740out:
1741 if (tdvp == tvp)
1742 vrele(tdvp);
1743 else
1744 vput(tdvp);
1745 if (tvp)
1746 vput(tvp);
1747 vrele(fdvp);
1748 vrele(fvp);
1749 /*
1750 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1751 */
1752 if (error == ENOENT)
1753 error = 0;
1754 return (error);
1755}
1756
1757/*
1758 * nfs file rename rpc called from nfs_remove() above
1759 */
1760static int
e851b29e
CP
1761nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1762 struct sillyrename *sp)
984263bc
MD
1763{
1764 return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
dadab5e9 1765 sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
984263bc
MD
1766}
1767
1768/*
1769 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1770 */
1771static int
e851b29e
CP
1772nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1773 struct vnode *tdvp, const char *tnameptr, int tnamelen,
1774 struct ucred *cred, struct thread *td)
984263bc 1775{
40393ded
RG
1776 u_int32_t *tl;
1777 caddr_t cp;
1778 int32_t t1, t2;
984263bc
MD
1779 caddr_t bpos, dpos, cp2;
1780 int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1781 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1782 int v3 = NFS_ISV3(fdvp);
1783
1784 nfsstats.rpccnt[NFSPROC_RENAME]++;
1785 nfsm_reqhead(fdvp, NFSPROC_RENAME,
1786 (NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1787 nfsm_rndup(tnamelen));
1788 nfsm_fhtom(fdvp, v3);
1789 nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1790 nfsm_fhtom(tdvp, v3);
1791 nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
dadab5e9 1792 nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
984263bc
MD
1793 if (v3) {
1794 nfsm_wcc_data(fdvp, fwccflag);
1795 nfsm_wcc_data(tdvp, twccflag);
1796 }
6b08710e
MD
1797 m_freem(mrep);
1798nfsmout:
5a9187cb
MD
1799 VTONFS(fdvp)->n_flag |= NLMODIFIED;
1800 VTONFS(tdvp)->n_flag |= NLMODIFIED;
984263bc
MD
1801 if (!fwccflag)
1802 VTONFS(fdvp)->n_attrstamp = 0;
1803 if (!twccflag)
1804 VTONFS(tdvp)->n_attrstamp = 0;
1805 return (error);
1806}
1807
1808/*
1809 * nfs hard link create call
e851b29e
CP
1810 *
1811 * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1812 * struct componentname *a_cnp)
984263bc
MD
1813 */
1814static int
e62afb5f 1815nfs_link(struct vop_old_link_args *ap)
984263bc 1816{
40393ded
RG
1817 struct vnode *vp = ap->a_vp;
1818 struct vnode *tdvp = ap->a_tdvp;
1819 struct componentname *cnp = ap->a_cnp;
1820 u_int32_t *tl;
1821 caddr_t cp;
1822 int32_t t1, t2;
984263bc
MD
1823 caddr_t bpos, dpos, cp2;
1824 int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1825 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1826 int v3;
1827
1828 if (vp->v_mount != tdvp->v_mount) {
1829 return (EXDEV);
1830 }
1831
1832 /*
1833 * Push all writes to the server, so that the attribute cache
1834 * doesn't get "out of sync" with the server.
1835 * XXX There should be a better way!
1836 */
87de5057 1837 VOP_FSYNC(vp, MNT_WAIT);
984263bc
MD
1838
1839 v3 = NFS_ISV3(vp);
1840 nfsstats.rpccnt[NFSPROC_LINK]++;
1841 nfsm_reqhead(vp, NFSPROC_LINK,
1842 NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1843 nfsm_fhtom(vp, v3);
1844 nfsm_fhtom(tdvp, v3);
1845 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
dadab5e9 1846 nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
984263bc 1847 if (v3) {
5a9187cb 1848 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
1849 nfsm_wcc_data(tdvp, wccflag);
1850 }
6b08710e
MD
1851 m_freem(mrep);
1852nfsmout:
5a9187cb 1853 VTONFS(tdvp)->n_flag |= NLMODIFIED;
984263bc
MD
1854 if (!attrflag)
1855 VTONFS(vp)->n_attrstamp = 0;
1856 if (!wccflag)
1857 VTONFS(tdvp)->n_attrstamp = 0;
1858 /*
1859 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1860 */
1861 if (error == EEXIST)
1862 error = 0;
1863 return (error);
1864}
1865
1866/*
1867 * nfs symbolic link create call
e851b29e
CP
1868 *
1869 * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1870 * struct componentname *a_cnp, struct vattr *a_vap,
1871 * char *a_target)
984263bc
MD
1872 */
1873static int
e62afb5f 1874nfs_symlink(struct vop_old_symlink_args *ap)
984263bc 1875{
40393ded
RG
1876 struct vnode *dvp = ap->a_dvp;
1877 struct vattr *vap = ap->a_vap;
1878 struct componentname *cnp = ap->a_cnp;
1879 struct nfsv2_sattr *sp;
1880 u_int32_t *tl;
1881 caddr_t cp;
1882 int32_t t1, t2;
984263bc
MD
1883 caddr_t bpos, dpos, cp2;
1884 int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1885 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1886 struct vnode *newvp = (struct vnode *)0;
1887 int v3 = NFS_ISV3(dvp);
1888
1889 nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1890 slen = strlen(ap->a_target);
1891 nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1892 nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1893 nfsm_fhtom(dvp, v3);
1894 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1895 if (v3) {
1896 nfsm_v3attrbuild(vap, FALSE);
1897 }
1898 nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1899 if (!v3) {
1900 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1901 sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1902 sp->sa_uid = nfs_xdrneg1;
1903 sp->sa_gid = nfs_xdrneg1;
1904 sp->sa_size = nfs_xdrneg1;
1905 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1906 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1907 }
1908
1909 /*
1910 * Issue the NFS request and get the rpc response.
1911 *
1912 * Only NFSv3 responses returning an error of 0 actually return
1913 * a file handle that can be converted into newvp without having
1914 * to do an extra lookup rpc.
1915 */
dadab5e9 1916 nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
984263bc
MD
1917 if (v3) {
1918 if (error == 0)
1919 nfsm_mtofh(dvp, newvp, v3, gotvp);
1920 nfsm_wcc_data(dvp, wccflag);
1921 }
1922
1923 /*
1924 * out code jumps -> here, mrep is also freed.
1925 */
1926
6b08710e
MD
1927 m_freem(mrep);
1928nfsmout:
984263bc
MD
1929
1930 /*
1931 * If we get an EEXIST error, silently convert it to no-error
1932 * in case of an NFS retry.
1933 */
1934 if (error == EEXIST)
1935 error = 0;
1936
1937 /*
1938 * If we do not have (or no longer have) an error, and we could
1939 * not extract the newvp from the response due to the request being
1940 * NFSv2 or the error being EEXIST. We have to do a lookup in order
1941 * to obtain a newvp to return.
1942 */
1943 if (error == 0 && newvp == NULL) {
1944 struct nfsnode *np = NULL;
1945
1946 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
dadab5e9 1947 cnp->cn_cred, cnp->cn_td, &np);
984263bc
MD
1948 if (!error)
1949 newvp = NFSTOV(np);
1950 }
1951 if (error) {
1952 if (newvp)
1953 vput(newvp);
1954 } else {
1955 *ap->a_vpp = newvp;
1956 }
5a9187cb 1957 VTONFS(dvp)->n_flag |= NLMODIFIED;
984263bc
MD
1958 if (!wccflag)
1959 VTONFS(dvp)->n_attrstamp = 0;
1960 return (error);
1961}
1962
1963/*
1964 * nfs make dir call
e851b29e
CP
1965 *
1966 * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1967 * struct componentname *a_cnp, struct vattr *a_vap)
984263bc
MD
1968 */
1969static int
e62afb5f 1970nfs_mkdir(struct vop_old_mkdir_args *ap)
984263bc 1971{
40393ded
RG
1972 struct vnode *dvp = ap->a_dvp;
1973 struct vattr *vap = ap->a_vap;
1974 struct componentname *cnp = ap->a_cnp;
1975 struct nfsv2_sattr *sp;
1976 u_int32_t *tl;
1977 caddr_t cp;
1978 int32_t t1, t2;
1979 int len;
984263bc
MD
1980 struct nfsnode *np = (struct nfsnode *)0;
1981 struct vnode *newvp = (struct vnode *)0;
1982 caddr_t bpos, dpos, cp2;
1983 int error = 0, wccflag = NFSV3_WCCRATTR;
1984 int gotvp = 0;
1985 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1986 struct vattr vattr;
1987 int v3 = NFS_ISV3(dvp);
1988
87de5057 1989 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
984263bc
MD
1990 return (error);
1991 }
1992 len = cnp->cn_namelen;
1993 nfsstats.rpccnt[NFSPROC_MKDIR]++;
1994 nfsm_reqhead(dvp, NFSPROC_MKDIR,
1995 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
1996 nfsm_fhtom(dvp, v3);
1997 nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1998 if (v3) {
1999 nfsm_v3attrbuild(vap, FALSE);
2000 } else {
2001 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2002 sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2003 sp->sa_uid = nfs_xdrneg1;
2004 sp->sa_gid = nfs_xdrneg1;
2005 sp->sa_size = nfs_xdrneg1;
2006 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2007 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2008 }
dadab5e9 2009 nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
984263bc
MD
2010 if (!error)
2011 nfsm_mtofh(dvp, newvp, v3, gotvp);
2012 if (v3)
2013 nfsm_wcc_data(dvp, wccflag);
6b08710e
MD
2014 m_freem(mrep);
2015nfsmout:
5a9187cb 2016 VTONFS(dvp)->n_flag |= NLMODIFIED;
984263bc
MD
2017 if (!wccflag)
2018 VTONFS(dvp)->n_attrstamp = 0;
2019 /*
2020 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2021 * if we can succeed in looking up the directory.
2022 */
2023 if (error == EEXIST || (!error && !gotvp)) {
2024 if (newvp) {
2025 vrele(newvp);
2026 newvp = (struct vnode *)0;
2027 }
2028 error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
dadab5e9 2029 cnp->cn_td, &np);
984263bc
MD
2030 if (!error) {
2031 newvp = NFSTOV(np);
2032 if (newvp->v_type != VDIR)
2033 error = EEXIST;
2034 }
2035 }
2036 if (error) {
2037 if (newvp)
2038 vrele(newvp);
2039 } else
2040 *ap->a_vpp = newvp;
2041 return (error);
2042}
2043
2044/*
2045 * nfs remove directory call
e851b29e
CP
2046 *
2047 * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2048 * struct componentname *a_cnp)
984263bc
MD
2049 */
2050static int
e62afb5f 2051nfs_rmdir(struct vop_old_rmdir_args *ap)
984263bc 2052{
40393ded
RG
2053 struct vnode *vp = ap->a_vp;
2054 struct vnode *dvp = ap->a_dvp;
2055 struct componentname *cnp = ap->a_cnp;
2056 u_int32_t *tl;
2057 caddr_t cp;
2058 int32_t t1, t2;
984263bc
MD
2059 caddr_t bpos, dpos, cp2;
2060 int error = 0, wccflag = NFSV3_WCCRATTR;
2061 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2062 int v3 = NFS_ISV3(dvp);
2063
2064 if (dvp == vp)
2065 return (EINVAL);
2066 nfsstats.rpccnt[NFSPROC_RMDIR]++;
2067 nfsm_reqhead(dvp, NFSPROC_RMDIR,
2068 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2069 nfsm_fhtom(dvp, v3);
2070 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
dadab5e9 2071 nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
984263bc
MD
2072 if (v3)
2073 nfsm_wcc_data(dvp, wccflag);
6b08710e
MD
2074 m_freem(mrep);
2075nfsmout:
5a9187cb 2076 VTONFS(dvp)->n_flag |= NLMODIFIED;
984263bc
MD
2077 if (!wccflag)
2078 VTONFS(dvp)->n_attrstamp = 0;
984263bc
MD
2079 /*
2080 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2081 */
2082 if (error == ENOENT)
2083 error = 0;
2084 return (error);
2085}
2086
2087/*
2088 * nfs readdir call
e851b29e
CP
2089 *
2090 * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
984263bc
MD
2091 */
2092static int
e851b29e 2093nfs_readdir(struct vop_readdir_args *ap)
984263bc 2094{
40393ded
RG
2095 struct vnode *vp = ap->a_vp;
2096 struct nfsnode *np = VTONFS(vp);
2097 struct uio *uio = ap->a_uio;
984263bc
MD
2098 int tresid, error;
2099 struct vattr vattr;
2100
2101 if (vp->v_type != VDIR)
2102 return (EPERM);
5a9187cb 2103
885ecb13
MD
2104 if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2105 return (error);
2106
984263bc 2107 /*
5a9187cb
MD
2108 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2109 * and then check that is still valid, or if this is an NQNFS mount
2110 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR(). Note that
2111 * VOP_GETATTR() does not necessarily go to the wire.
984263bc
MD
2112 */
2113 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
5a9187cb 2114 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
87de5057 2115 if (VOP_GETATTR(vp, &vattr) == 0 &&
e07fef60 2116 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
5a9187cb 2117 ) {
984263bc 2118 nfsstats.direofcache_hits++;
885ecb13 2119 goto done;
984263bc
MD
2120 }
2121 }
2122
2123 /*
5a9187cb
MD
2124 * Call nfs_bioread() to do the real work. nfs_bioread() does its
2125 * own cache coherency checks so we do not have to.
984263bc
MD
2126 */
2127 tresid = uio->uio_resid;
3b568787 2128 error = nfs_bioread(vp, uio, 0);
984263bc
MD
2129
2130 if (!error && uio->uio_resid == tresid)
2131 nfsstats.direofcache_misses++;
885ecb13
MD
2132done:
2133 vn_unlock(vp);
984263bc
MD
2134 return (error);
2135}
2136
2137/*
7d877edf
MD
2138 * Readdir rpc call. nfs_bioread->nfs_doio->nfs_readdirrpc.
2139 *
2140 * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2141 * offset/block and converts the nfs formatted directory entries for userland
2142 * consumption as well as deals with offsets into the middle of blocks.
2143 * nfs_doio only deals with logical blocks. In particular, uio_offset will
2144 * be block-bounded. It must convert to cookies for the actual RPC.
984263bc
MD
2145 */
2146int
3b568787 2147nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
984263bc 2148{
40393ded 2149 int len, left;
01f31ab3 2150 struct nfs_dirent *dp = NULL;
40393ded
RG
2151 u_int32_t *tl;
2152 caddr_t cp;
2153 int32_t t1, t2;
2154 nfsuint64 *cookiep;
984263bc
MD
2155 caddr_t bpos, dpos, cp2;
2156 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2157 nfsuint64 cookie;
2158 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2159 struct nfsnode *dnp = VTONFS(vp);
2160 u_quad_t fileno;
2161 int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2162 int attrflag;
2163 int v3 = NFS_ISV3(vp);
2164
2165#ifndef DIAGNOSTIC
2166 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2167 (uiop->uio_resid & (DIRBLKSIZ - 1)))
2168 panic("nfs readdirrpc bad uio");
2169#endif
2170
2171 /*
2172 * If there is no cookie, assume directory was stale.
2173 */
2174 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2175 if (cookiep)
2176 cookie = *cookiep;
2177 else
2178 return (NFSERR_BAD_COOKIE);
2179 /*
2180 * Loop around doing readdir rpc's of size nm_readdirsize
2181 * truncated to a multiple of DIRBLKSIZ.
2182 * The stopping criteria is EOF or buffer full.
2183 */
2184 while (more_dirs && bigenough) {
2185 nfsstats.rpccnt[NFSPROC_READDIR]++;
2186 nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2187 NFSX_READDIR(v3));
2188 nfsm_fhtom(vp, v3);
2189 if (v3) {
2190 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2191 *tl++ = cookie.nfsuquad[0];
2192 *tl++ = cookie.nfsuquad[1];
2193 *tl++ = dnp->n_cookieverf.nfsuquad[0];
2194 *tl++ = dnp->n_cookieverf.nfsuquad[1];
2195 } else {
2196 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2197 *tl++ = cookie.nfsuquad[0];
2198 }
2199 *tl = txdr_unsigned(nmp->nm_readdirsize);
c1cf1e59 2200 nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
984263bc 2201 if (v3) {
5a9187cb 2202 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
2203 if (!error) {
2204 nfsm_dissect(tl, u_int32_t *,
2205 2 * NFSX_UNSIGNED);
2206 dnp->n_cookieverf.nfsuquad[0] = *tl++;
2207 dnp->n_cookieverf.nfsuquad[1] = *tl;
2208 } else {
2209 m_freem(mrep);
2210 goto nfsmout;
2211 }
2212 }
2213 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2214 more_dirs = fxdr_unsigned(int, *tl);
2215
7d877edf 2216 /* loop thru the dir entries, converting them to std form */
984263bc
MD
2217 while (more_dirs && bigenough) {
2218 if (v3) {
2219 nfsm_dissect(tl, u_int32_t *,
2220 3 * NFSX_UNSIGNED);
2221 fileno = fxdr_hyper(tl);
2222 len = fxdr_unsigned(int, *(tl + 2));
2223 } else {
2224 nfsm_dissect(tl, u_int32_t *,
2225 2 * NFSX_UNSIGNED);
2226 fileno = fxdr_unsigned(u_quad_t, *tl++);
2227 len = fxdr_unsigned(int, *tl);
2228 }
2229 if (len <= 0 || len > NFS_MAXNAMLEN) {
2230 error = EBADRPC;
2231 m_freem(mrep);
2232 goto nfsmout;
2233 }
7d877edf
MD
2234
2235 /*
2236 * len is the number of bytes in the path element
2237 * name, not including the \0 termination.
2238 *
2239 * tlen is the number of bytes w have to reserve for
2240 * the path element name.
2241 */
984263bc
MD
2242 tlen = nfsm_rndup(len);
2243 if (tlen == len)
2244 tlen += 4; /* To ensure null termination */
7d877edf
MD
2245
2246 /*
2247 * If the entry would cross a DIRBLKSIZ boundary,
2248 * extend the previous nfs_dirent to cover the
2249 * remaining space.
2250 */
984263bc 2251 left = DIRBLKSIZ - blksiz;
01f31ab3
JS
2252 if ((tlen + sizeof(struct nfs_dirent)) > left) {
2253 dp->nfs_reclen += left;
984263bc
MD
2254 uiop->uio_iov->iov_base += left;
2255 uiop->uio_iov->iov_len -= left;
2256 uiop->uio_offset += left;
2257 uiop->uio_resid -= left;
2258 blksiz = 0;
2259 }
01f31ab3 2260 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
984263bc
MD
2261 bigenough = 0;
2262 if (bigenough) {
01f31ab3
JS
2263 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2264 dp->nfs_ino = fileno;
2265 dp->nfs_namlen = len;
2266 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2267 dp->nfs_type = DT_UNKNOWN;
2268 blksiz += dp->nfs_reclen;
984263bc
MD
2269 if (blksiz == DIRBLKSIZ)
2270 blksiz = 0;
01f31ab3
JS
2271 uiop->uio_offset += sizeof(struct nfs_dirent);
2272 uiop->uio_resid -= sizeof(struct nfs_dirent);
2273 uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2274 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
984263bc 2275 nfsm_mtouio(uiop, len);
7d877edf
MD
2276
2277 /*
2278 * The uiop has advanced by nfs_dirent + len
2279 * but really needs to advance by
2280 * nfs_dirent + tlen
2281 */
984263bc
MD
2282 cp = uiop->uio_iov->iov_base;
2283 tlen -= len;
2284 *cp = '\0'; /* null terminate */
2285 uiop->uio_iov->iov_base += tlen;
2286 uiop->uio_iov->iov_len -= tlen;
2287 uiop->uio_offset += tlen;
2288 uiop->uio_resid -= tlen;
7d877edf
MD
2289 } else {
2290 /*
2291 * NFS strings must be rounded up (nfsm_myouio
2292 * handled that in the bigenough case).
2293 */
984263bc 2294 nfsm_adv(nfsm_rndup(len));
7d877edf 2295 }
984263bc
MD
2296 if (v3) {
2297 nfsm_dissect(tl, u_int32_t *,
2298 3 * NFSX_UNSIGNED);
2299 } else {
2300 nfsm_dissect(tl, u_int32_t *,
2301 2 * NFSX_UNSIGNED);
2302 }
7d877edf
MD
2303
2304 /*
2305 * If we were able to accomodate the last entry,
2306 * get the cookie for the next one. Otherwise
2307 * hold-over the cookie for the one we were not
2308 * able to accomodate.
2309 */
984263bc
MD
2310 if (bigenough) {
2311 cookie.nfsuquad[0] = *tl++;
2312 if (v3)
2313 cookie.nfsuquad[1] = *tl++;
7d877edf 2314 } else if (v3) {
984263bc 2315 tl += 2;
7d877edf 2316 } else {
984263bc 2317 tl++;
7d877edf 2318 }
984263bc
MD
2319 more_dirs = fxdr_unsigned(int, *tl);
2320 }
2321 /*
2322 * If at end of rpc data, get the eof boolean
2323 */
2324 if (!more_dirs) {
2325 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2326 more_dirs = (fxdr_unsigned(int, *tl) == 0);
2327 }
2328 m_freem(mrep);
2329 }
2330 /*
2331 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2332 * by increasing d_reclen for the last record.
2333 */
2334 if (blksiz > 0) {
2335 left = DIRBLKSIZ - blksiz;
01f31ab3 2336 dp->nfs_reclen += left;
984263bc
MD
2337 uiop->uio_iov->iov_base += left;
2338 uiop->uio_iov->iov_len -= left;
2339 uiop->uio_offset += left;
2340 uiop->uio_resid -= left;
2341 }
2342
7d877edf
MD
2343 if (bigenough) {
2344 /*
2345 * We hit the end of the directory, update direofoffset.
2346 */
984263bc 2347 dnp->n_direofoffset = uiop->uio_offset;
7d877edf
MD
2348 } else {
2349 /*
2350 * There is more to go, insert the link cookie so the
2351 * next block can be read.
2352 */
984263bc 2353 if (uiop->uio_resid > 0)
086c1d7e 2354 kprintf("EEK! readdirrpc resid > 0\n");
984263bc
MD
2355 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2356 *cookiep = cookie;
2357 }
2358nfsmout:
2359 return (error);
2360}
2361
2362/*
2363 * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2364 */
2365int
3b568787 2366nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
984263bc 2367{
40393ded 2368 int len, left;
01f31ab3 2369 struct nfs_dirent *dp;
40393ded
RG
2370 u_int32_t *tl;
2371 caddr_t cp;
2372 int32_t t1, t2;
2373 struct vnode *newvp;
2374 nfsuint64 *cookiep;
984263bc
MD
2375 caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2376 struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
984263bc
MD
2377 nfsuint64 cookie;
2378 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2379 struct nfsnode *dnp = VTONFS(vp), *np;
2380 nfsfh_t *fhp;
2381 u_quad_t fileno;
2382 int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2383 int attrflag, fhsize;
28623bf9
MD
2384 struct nchandle nch;
2385 struct nchandle dnch;
fad57d0e 2386 struct nlcomponent nlc;
984263bc
MD
2387
2388#ifndef nolint
01f31ab3 2389 dp = NULL;
984263bc
MD
2390#endif
2391#ifndef DIAGNOSTIC
2392 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2393 (uiop->uio_resid & (DIRBLKSIZ - 1)))
2394 panic("nfs readdirplusrpc bad uio");
2395#endif
fad57d0e
MD
2396 /*
2397 * Obtain the namecache record for the directory so we have something
2398 * to use as a basis for creating the entries. This function will
2399 * return a held (but not locked) ncp. The ncp may be disconnected
2400 * from the tree and cannot be used for upward traversals, and the
2401 * ncp may be unnamed. Note that other unrelated operations may
2402 * cause the ncp to be named at any time.
2403 */
28623bf9 2404 cache_fromdvp(vp, NULL, 0, &dnch);
fad57d0e 2405 bzero(&nlc, sizeof(nlc));
984263bc
MD
2406 newvp = NULLVP;
2407
2408 /*
2409 * If there is no cookie, assume directory was stale.
2410 */
2411 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2412 if (cookiep)
2413 cookie = *cookiep;
2414 else
2415 return (NFSERR_BAD_COOKIE);
2416 /*
2417 * Loop around doing readdir rpc's of size nm_readdirsize
2418 * truncated to a multiple of DIRBLKSIZ.
2419 * The stopping criteria is EOF or buffer full.
2420 */
2421 while (more_dirs && bigenough) {
2422 nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2423 nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2424 NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2425 nfsm_fhtom(vp, 1);
2426 nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2427 *tl++ = cookie.nfsuquad[0];
2428 *tl++ = cookie.nfsuquad[1];
2429 *tl++ = dnp->n_cookieverf.nfsuquad[0];
2430 *tl++ = dnp->n_cookieverf.nfsuquad[1];
2431 *tl++ = txdr_unsigned(nmp->nm_readdirsize);
2432 *tl = txdr_unsigned(nmp->nm_rsize);
c1cf1e59 2433 nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
5a9187cb 2434 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
2435 if (error) {
2436 m_freem(mrep);
2437 goto nfsmout;
2438 }
2439 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2440 dnp->n_cookieverf.nfsuquad[0] = *tl++;
2441 dnp->n_cookieverf.nfsuquad[1] = *tl++;
2442 more_dirs = fxdr_unsigned(int, *tl);
2443
2444 /* loop thru the dir entries, doctoring them to 4bsd form */
2445 while (more_dirs && bigenough) {
2446 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2447 fileno = fxdr_hyper(tl);
2448 len = fxdr_unsigned(int, *(tl + 2));
2449 if (len <= 0 || len > NFS_MAXNAMLEN) {
2450 error = EBADRPC;
2451 m_freem(mrep);
2452 goto nfsmout;
2453 }
2454 tlen = nfsm_rndup(len);
2455 if (tlen == len)
2456 tlen += 4; /* To ensure null termination*/
2457 left = DIRBLKSIZ - blksiz;
01f31ab3
JS
2458 if ((tlen + sizeof(struct nfs_dirent)) > left) {
2459 dp->nfs_reclen += left;
984263bc
MD
2460 uiop->uio_iov->iov_base += left;
2461 uiop->uio_iov->iov_len -= left;
2462 uiop->uio_offset += left;
2463 uiop->uio_resid -= left;
2464 blksiz = 0;
2465 }
01f31ab3 2466 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
984263bc
MD
2467 bigenough = 0;
2468 if (bigenough) {
01f31ab3
JS
2469 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2470 dp->nfs_ino = fileno;
2471 dp->nfs_namlen = len;
2472 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2473 dp->nfs_type = DT_UNKNOWN;
2474 blksiz += dp->nfs_reclen;
984263bc
MD
2475 if (blksiz == DIRBLKSIZ)
2476 blksiz = 0;
01f31ab3
JS
2477 uiop->uio_offset += sizeof(struct nfs_dirent);
2478 uiop->uio_resid -= sizeof(struct nfs_dirent);
2479 uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2480 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
fad57d0e
MD
2481 nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2482 nlc.nlc_namelen = len;
984263bc
MD
2483 nfsm_mtouio(uiop, len);
2484 cp = uiop->uio_iov->iov_base;
2485 tlen -= len;
2486 *cp = '\0';
2487 uiop->uio_iov->iov_base += tlen;
2488 uiop->uio_iov->iov_len -= tlen;
2489 uiop->uio_offset += tlen;
2490 uiop->uio_resid -= tlen;
2491 } else
2492 nfsm_adv(nfsm_rndup(len));
2493 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2494 if (bigenough) {
2495 cookie.nfsuquad[0] = *tl++;
2496 cookie.nfsuquad[1] = *tl++;
2497 } else
2498 tl += 2;
2499
2500 /*
2501 * Since the attributes are before the file handle
2502 * (sigh), we must skip over the attributes and then
2503 * come back and get them.
2504 */
2505 attrflag = fxdr_unsigned(int, *tl);
2506 if (attrflag) {
2507 dpossav1 = dpos;
2508 mdsav1 = md;
2509 nfsm_adv(NFSX_V3FATTR);
2510 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2511 doit = fxdr_unsigned(int, *tl);
2512 if (doit) {
2513 nfsm_getfh(fhp, fhsize, 1);
2514 if (NFS_CMPFH(dnp, fhp, fhsize)) {
597aea93 2515 vref(vp);
984263bc
MD
2516 newvp = vp;
2517 np = dnp;
2518 } else {
2519 error = nfs_nget(vp->v_mount, fhp,
2520 fhsize, &np);
2521 if (error)
2522 doit = 0;
2523 else
2524 newvp = NFSTOV(np);
2525 }
2526 }
2527 if (doit && bigenough) {
2528 dpossav2 = dpos;
2529 dpos = dpossav1;
2530 mdsav2 = md;
2531 md = mdsav1;
2532 nfsm_loadattr(newvp, (struct vattr *)0);
2533 dpos = dpossav2;
2534 md = mdsav2;
01f31ab3 2535 dp->nfs_type =
984263bc 2536 IFTODT(VTTOIF(np->n_vattr.va_type));
28623bf9 2537 if (dnch.ncp) {
086c1d7e 2538 kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
fad57d0e
MD
2539 nlc.nlc_namelen, nlc.nlc_namelen,
2540 nlc.nlc_nameptr);
28623bf9
MD
2541 nch = cache_nlookup(&dnch, &nlc);
2542 cache_setunresolved(&nch);
a15b4eef
MD
2543 nfs_cache_setvp(&nch, newvp,
2544 nfspos_cache_timeout);
28623bf9 2545 cache_put(&nch);
fad57d0e 2546 } else {
086c1d7e 2547 kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
fad57d0e
MD
2548 " %*.*s\n",
2549 nlc.nlc_namelen, nlc.nlc_namelen,
2550 nlc.nlc_nameptr);
2551 }
984263bc
MD
2552 }
2553 } else {
2554 /* Just skip over the file handle */
2555 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2556 i = fxdr_unsigned(int, *tl);
2557 nfsm_adv(nfsm_rndup(i));
2558 }
2559 if (newvp != NULLVP) {
2560 if (newvp == vp)
2561 vrele(newvp);
2562 else
2563 vput(newvp);
2564 newvp = NULLVP;
2565 }
2566 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2567 more_dirs = fxdr_unsigned(int, *tl);
2568 }
2569 /*
2570 * If at end of rpc data, get the eof boolean
2571 */
2572 if (!more_dirs) {
2573 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2574 more_dirs = (fxdr_unsigned(int, *tl) == 0);
2575 }
2576 m_freem(mrep);
2577 }
2578 /*
2579 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2580 * by increasing d_reclen for the last record.
2581 */
2582 if (blksiz > 0) {
2583 left = DIRBLKSIZ - blksiz;
01f31ab3 2584 dp->nfs_reclen += left;
984263bc
MD
2585 uiop->uio_iov->iov_base += left;
2586 uiop->uio_iov->iov_len -= left;
2587 uiop->uio_offset += left;
2588 uiop->uio_resid -= left;
2589 }
2590
2591 /*
2592 * We are now either at the end of the directory or have filled the
2593 * block.
2594 */
2595 if (bigenough)
2596 dnp->n_direofoffset = uiop->uio_offset;
2597 else {
2598 if (uiop->uio_resid > 0)
086c1d7e 2599 kprintf("EEK! readdirplusrpc resid > 0\n");
984263bc
MD
2600 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2601 *cookiep = cookie;
2602 }
2603nfsmout:
2604 if (newvp != NULLVP) {
2605 if (newvp == vp)
2606 vrele(newvp);
2607 else
2608 vput(newvp);
2609 newvp = NULLVP;
2610 }
28623bf9
MD
2611 if (dnch.ncp)
2612 cache_drop(&dnch);
984263bc
MD
2613 return (error);
2614}
2615
2616/*
2617 * Silly rename. To make the NFS filesystem that is stateless look a little
2618 * more like the "ufs" a remove of an active vnode is translated to a rename
2619 * to a funny looking filename that is removed by nfs_inactive on the
2620 * nfsnode. There is the potential for another process on a different client
2621 * to create the same funny name between the nfs_lookitup() fails and the
2622 * nfs_rename() completes, but...
2623 */
2624static int
e851b29e 2625nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
984263bc 2626{
40393ded 2627 struct sillyrename *sp;
984263bc
MD
2628 struct nfsnode *np;
2629 int error;
984263bc 2630
8c361dda
MD
2631 /*
2632 * We previously purged dvp instead of vp. I don't know why, it
2633 * completely destroys performance. We can't do it anyway with the
2634 * new VFS API since we would be breaking the namecache topology.
2635 */
fad57d0e 2636 cache_purge(vp); /* XXX */
984263bc
MD
2637 np = VTONFS(vp);
2638#ifndef DIAGNOSTIC
2639 if (vp->v_type == VDIR)
2640 panic("nfs: sillyrename dir");
2641#endif
2642 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2643 M_NFSREQ, M_WAITOK);
2644 sp->s_cred = crdup(cnp->cn_cred);
2645 sp->s_dvp = dvp;
597aea93 2646 vref(dvp);
984263bc
MD
2647
2648 /* Fudge together a funny name */
f8c7a42d 2649 sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
984263bc
MD
2650
2651 /* Try lookitups until we get one that isn't there */
2652 while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
dadab5e9 2653 cnp->cn_td, (struct nfsnode **)0) == 0) {
984263bc
MD
2654 sp->s_name[4]++;
2655 if (sp->s_name[4] > 'z') {
2656 error = EINVAL;
2657 goto bad;
2658 }
2659 }
2660 error = nfs_renameit(dvp, cnp, sp);
2661 if (error)
2662 goto bad;
2663 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
dadab5e9 2664 cnp->cn_td, &np);
984263bc
MD
2665 np->n_sillyrename = sp;
2666 return (0);
2667bad:
2668 vrele(sp->s_dvp);
2669 crfree(sp->s_cred);
efda3bd0 2670 kfree((caddr_t)sp, M_NFSREQ);
984263bc
MD
2671 return (error);
2672}
2673
2674/*
2675 * Look up a file name and optionally either update the file handle or
2676 * allocate an nfsnode, depending on the value of npp.
2677 * npp == NULL --> just do the lookup
2678 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2679 * handled too
2680 * *npp != NULL --> update the file handle in the vnode
2681 */
2682static int
e851b29e
CP
2683nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2684 struct thread *td, struct nfsnode **npp)
984263bc 2685{
40393ded
RG
2686 u_int32_t *tl;
2687 caddr_t cp;
2688 int32_t t1, t2;
984263bc
MD
2689 struct vnode *newvp = (struct vnode *)0;
2690 struct nfsnode *np, *dnp = VTONFS(dvp);
2691 caddr_t bpos, dpos, cp2;
2692 int error = 0, fhlen, attrflag;
2693 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2694 nfsfh_t *nfhp;
2695 int v3 = NFS_ISV3(dvp);
2696
2697 nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2698 nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2699 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2700 nfsm_fhtom(dvp, v3);
2701 nfsm_strtom(name, len, NFS_MAXNAMLEN);
dadab5e9 2702 nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
984263bc
MD
2703 if (npp && !error) {
2704 nfsm_getfh(nfhp, fhlen, v3);
2705 if (*npp) {
2706 np = *npp;
2707 if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
efda3bd0 2708 kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
984263bc
MD
2709 np->n_fhp = &np->n_fh;
2710 } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
efda3bd0 2711 np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
984263bc
MD
2712 bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2713 np->n_fhsize = fhlen;
2714 newvp = NFSTOV(np);
2715 } else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
597aea93 2716 vref(dvp);
984263bc
MD
2717 newvp = dvp;
2718 } else {
2719 error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2720 if (error) {
2721 m_freem(mrep);
2722 return (error);
2723 }
2724 newvp = NFSTOV(np);
2725 }
2726 if (v3) {
5a9187cb 2727 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
984263bc
MD
2728 if (!attrflag && *npp == NULL) {
2729 m_freem(mrep);
2730 if (newvp == dvp)
2731 vrele(newvp);
2732 else
2733 vput(newvp);
2734 return (ENOENT);
2735 }
2736 } else
2737 nfsm_loadattr(newvp, (struct vattr *)0);
2738 }
6b08710e
MD
2739 m_freem(mrep);
2740nfsmout:
984263bc
MD
2741 if (npp && *npp == NULL) {
2742 if (error) {
2743 if (newvp) {
2744 if (newvp == dvp)
2745 vrele(newvp);
2746 else
2747 vput(newvp);
2748 }
2749 } else
2750 *npp = np;
2751 }
2752 return (error);
2753}
2754
2755/*
2756 * Nfs Version 3 commit rpc
2757 */
2758int
3b568787 2759nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
984263bc 2760{
40393ded
RG
2761 caddr_t cp;
2762 u_int32_t *tl;
2763 int32_t t1, t2;
2764 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
984263bc
MD
2765 caddr_t bpos, dpos, cp2;
2766 int error = 0, wccflag = NFSV3_WCCRATTR;
2767 struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2768
2769 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2770 return (0);
2771 nfsstats.rpccnt[NFSPROC_COMMIT]++;
2772 nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2773 nfsm_fhtom(vp, 1);
2774 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2775 txdr_hyper(offset, tl);
2776 tl += 2;
2777 *tl = txdr_unsigned(cnt);
c1cf1e59 2778 nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
984263bc
MD
2779 nfsm_wcc_data(vp, wccflag);
2780 if (!error) {
2781 nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2782 if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2783 NFSX_V3WRITEVERF)) {
2784 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2785 NFSX_V3WRITEVERF);
2786 error = NFSERR_STALEWRITEVERF;
2787 }
2788 }
6b08710e
MD
2789 m_freem(mrep);
2790nfsmout:
984263bc
MD
2791 return (error);
2792}
2793
2794/*
2795 * Kludge City..
2796 * - make nfs_bmap() essentially a no-op that does no translation
2797 * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2798 * (Maybe I could use the process's page mapping, but I was concerned that
2799 * Kernel Write might not be enabled and also figured copyout() would do
2800 * a lot more work than bcopy() and also it currently happens in the
2801 * context of the swapper process (2).
e851b29e 2802 *
54078292
MD
2803 * nfs_bmap(struct vnode *a_vp, off_t a_loffset, struct vnode **a_vpp,
2804 * off_t *a_doffsetp, int *a_runp, int *a_runb)
984263bc
MD
2805 */
2806static int
e851b29e 2807nfs_bmap(struct vop_bmap_args *ap)
984263bc 2808{
40393ded 2809 struct vnode *vp = ap->a_vp;
984263bc
MD
2810
2811 if (ap->a_vpp != NULL)
2812 *ap->a_vpp = vp;
54078292
MD
2813 if (ap->a_doffsetp != NULL)
2814 *ap->a_doffsetp = ap->a_loffset;
984263bc
MD
2815 if (ap->a_runp != NULL)
2816 *ap->a_runp = 0;
2817 if (ap->a_runb != NULL)
2818 *ap->a_runb = 0;
2819 return (0);
2820}
2821
2822/*
2823 * Strategy routine.
81b5c339 2824 *
984263bc
MD
2825 * For async requests when nfsiod(s) are running, queue the request by
2826 * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2827 * request.
2828 */
2829static int
e851b29e 2830nfs_strategy(struct vop_strategy_args *ap)
984263bc 2831{
81b5c339
MD
2832 struct bio *bio = ap->a_bio;
2833 struct bio *nbio;
2834 struct buf *bp = bio->bio_buf;
dadab5e9 2835 struct thread *td;
984263bc
MD
2836 int error = 0;
2837
10f3fee5
MD
2838 KASSERT(bp->b_cmd != BUF_CMD_DONE,
2839 ("nfs_strategy: buffer %p unexpectedly marked done", bp));
81b5c339
MD
2840 KASSERT(BUF_REFCNT(bp) > 0,
2841 ("nfs_strategy: buffer %p not locked", bp));
984263bc 2842
984263bc 2843 if (bp->b_flags & B_ASYNC)
dadab5e9 2844 td = NULL;
984263bc 2845 else
dadab5e9 2846 td = curthread; /* XXX */
984263bc 2847
81b5c339 2848 /*
54078292
MD
2849 * We probably don't need to push an nbio any more since no
2850 * block conversion is required due to the use of 64 bit byte
2851 * offsets, but do it anyway.
81b5c339
MD
2852 */
2853 nbio = push_bio(bio);
54078292 2854 nbio->bio_offset = bio->bio_offset;
81b5c339 2855
984263bc
MD
2856 /*
2857 * If the op is asynchronous and an i/o daemon is waiting
2858 * queue the request, wake it up and wait for completion
2859 * otherwise just do it ourselves.
2860 */
81b5c339
MD
2861 if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2862 error = nfs_doio(ap->a_vp, nbio, td);
984263bc
MD
2863 return (error);
2864}
2865
2866/*
2867 * Mmap a file
2868 *
2869 * NB Currently unsupported.
e851b29e
CP
2870 *
2871 * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2872 * struct thread *a_td)
984263bc
MD
2873 */
2874/* ARGSUSED */
2875static int
e851b29e 2876nfs_mmap(struct vop_mmap_args *ap)
984263bc 2877{
984263bc
MD
2878 return (EINVAL);
2879}
2880
2881/*
2882 * fsync vnode op. Just call nfs_flush() with commit == 1.
e851b29e 2883 *
31bd717a
MD
2884 * nfs_fsync(struct vnode *a_vp, struct ucred * a_cred, int a_waitfor,
2885 * struct thread *a_td)
984263bc
MD
2886 */
2887/* ARGSUSED */
2888static int
e851b29e 2889nfs_fsync(struct vop_fsync_args *ap)
984263bc 2890{
87de5057 2891 return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
984263bc
MD
2892}
2893
2894/*
6bae6177
MD
2895 * Flush all the blocks associated with a vnode. Dirty NFS buffers may be
2896 * in one of two states: If B_NEEDCOMMIT is clear then the buffer contains
2897 * new NFS data which needs to be written to the server. If B_NEEDCOMMIT is
2898 * set the buffer contains data that has already been written to the server
2899 * and which now needs a commit RPC.
2900 *
2901 * If commit is 0 we only take one pass and only flush buffers containing new
2902 * dirty data.
2903 *
2904 * If commit is 1 we take two passes, issuing a commit RPC in the second
2905 * pass.
2906 *
2907 * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2908 * to completely flush all pending data.
2909 *
2910 * Note that the RB_SCAN code properly handles the case where the
2911 * callback might block and directly or indirectly (another thread) cause
2912 * the RB tree to change.
984263bc 2913 */
6bae6177
MD
2914
2915#ifndef NFS_COMMITBVECSIZ
2916#define NFS_COMMITBVECSIZ 16
2917#endif
2918
2919struct nfs_flush_info {
2920 enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2921 struct thread *td;
2922 struct vnode *vp;
2923 int waitfor;
2924 int slpflag;
2925 int slptimeo;
2926 int loops;
2927 struct buf *bvary[NFS_COMMITBVECSIZ];
2928 int bvsize;
2929 off_t beg_off;
2930 off_t end_off;
2931};
2932
2933static int nfs_flush_bp(struct buf *bp, void *data);
2934static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2935
5a9187cb 2936int
e851b29e 2937nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
984263bc 2938{
40393ded 2939 struct nfsnode *np = VTONFS(vp);
984263bc 2940 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
6bae6177
MD
2941 struct nfs_flush_info info;
2942 int error;
984263bc 2943
6bae6177
MD
2944 bzero(&info, sizeof(info));
2945 info.td = td;
2946 info.vp = vp;
2947 info.waitfor = waitfor;
2948 info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2949 info.loops = 0;
2950
2951 do {
984263bc 2952 /*
6bae6177 2953 * Flush mode
984263bc 2954 */
6bae6177
MD
2955 info.mode = NFI_FLUSHNEW;
2956 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2957 nfs_flush_bp, &info);
2958
2959 /*
2960 * Take a second pass if committing and no error occured.
2961 * Clean up any left over collection (whether an error
2962 * occurs or not).
2963 */
2964 if (commit && error == 0) {
2965 info.mode = NFI_COMMIT;
2966 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2967 nfs_flush_bp, &info);
2968 if (info.bvsize)
2969 error = nfs_flush_docommit(&info, error);
984263bc 2970 }
6bae6177 2971
984263bc 2972 /*
6bae6177
MD
2973 * Wait for pending I/O to complete before checking whether
2974 * any further dirty buffers exist.
984263bc 2975 */
81b5c339
MD
2976 while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2977 vp->v_track_write.bk_waitflag = 1;
2978 error = tsleep(&vp->v_track_write,
6bae6177
MD
2979 info.slpflag, "nfsfsync", info.slptimeo);
2980 if (error) {
2981 /*
2982 * We have to be able to break out if this
2983 * is an 'intr' mount.
2984 */
2985 if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2986 error = -EINTR;
2987 break;
2988 }
2989
2990 /*
2991 * Since we do not process pending signals,
2992 * once we get a PCATCH our tsleep() will no
2993 * longer sleep, switch to a fixed timeout
2994 * instead.
2995 */
2996 if (info.slpflag == PCATCH) {
2997 info.slpflag = 0;
2998 info.slptimeo = 2 * hz;
2999 }
3000 error = 0;
3001 }
3002 }
3003 ++info.loops;
3004 /*
3005 * Loop if we are flushing synchronous as well as committing,
3006 * and dirty buffers are still present. Otherwise we might livelock.
3007 */
3008 } while (waitfor == MNT_WAIT && commit &&
3009 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3010
3011 /*
3012 * The callbacks have to return a negative error to terminate the
3013 * RB scan.
3014 */
3015 if (error < 0)
3016 error = -error;
3017
3018 /*
3019 * Deal with any error collection
3020 */
3021 if (np->n_flag & NWRITEERR) {
3022 error = np->n_error;
3023 np->n_flag &= ~NWRITEERR;
3024 }
3025 return (error);
3026}
3027
3028
3029static
3030int
3031nfs_flush_bp(struct buf *bp, void *data)
3032{
3033 struct nfs_flush_info *info = data;
3034 off_t toff;
3035 int error;
6bae6177
MD
3036
3037 error = 0;
3038 switch(info->mode) {
3039 case NFI_FLUSHNEW:
165dba55 3040 crit_enter();
6bae6177
MD
3041 if (info->loops && info->waitfor == MNT_WAIT) {
3042 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3043 if (error) {
f2770c70
MD
3044 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3045 if (info->slpflag & PCATCH)
3046 lkflags |= LK_PCATCH;
3047 error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3048 info->slptimeo);
6bae6177 3049 }
984263bc 3050 } else {
6bae6177 3051 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
984263bc 3052 }
6bae6177 3053 if (error == 0) {
65c6c519
MD
3054 KKASSERT(bp->b_vp == info->vp);
3055
6bae6177
MD
3056 if ((bp->b_flags & B_DELWRI) == 0)
3057 panic("nfs_fsync: not dirty");
3058 if (bp->b_flags & B_NEEDCOMMIT) {
3059 BUF_UNLOCK(bp);
165dba55 3060 crit_exit();
984263bc 3061 break;
6bae6177 3062 }
984263bc 3063 bremfree(bp);
984263bc 3064
6bae6177 3065 bp->b_flags |= B_ASYNC;
165dba55 3066 crit_exit();
62cfda27 3067 bwrite(bp);
6bae6177 3068 } else {
165dba55 3069 crit_exit();
6bae6177
MD
3070 error = 0;
3071 }
3072 break;
3073 case NFI_COMMIT:
3074 /*
3075 * Only process buffers in need of a commit which we can
3076 * immediately lock. This may prevent a buffer from being
3077 * committed, but the normal flush loop will block on the
3078 * same buffer so we shouldn't get into an endless loop.
3079 */
165dba55 3080 crit_enter();
6bae6177
MD
3081 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3082 (B_DELWRI | B_NEEDCOMMIT) ||
3083 BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
165dba55 3084 crit_exit();
6bae6177
MD
3085 break;
3086 }
984263bc 3087
65c6c519 3088 KKASSERT(bp->b_vp == info->vp);
6bae6177
MD
3089 bremfree(bp);
3090
3091 /*
10f3fee5
MD
3092 * NOTE: storing the bp in the bvary[] basically sets
3093 * it up for a commit operation.
3094 *
3095 * We must call vfs_busy_pages() now so the commit operation
3096 * is interlocked with user modifications to memory mapped
3097 * pages.
6bae6177
MD
3098 *
3099 * Note: to avoid loopback deadlocks, we do not
3100 * assign b_runningbufspace.
3101 */
10f3fee5
MD
3102 bp->b_cmd = BUF_CMD_WRITE;
3103 vfs_busy_pages(bp->b_vp, bp);
6bae6177 3104 info->bvary[info->bvsize] = bp;
54078292 3105 toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
6bae6177
MD
3106 if (info->bvsize == 0 || toff < info->beg_off)
3107 info->beg_off = toff;
54078292 3108 toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
6bae6177
MD
3109 if (info->bvsize == 0 || toff > info->end_off)
3110 info->end_off = toff;
3111 ++info->bvsize;
3112 if (info->bvsize == NFS_COMMITBVECSIZ) {
3113 error = nfs_flush_docommit(info, 0);
3114 KKASSERT(info->bvsize == 0);
984263bc 3115 }
165dba55 3116 crit_exit();
984263bc 3117 }
6bae6177
MD
3118 return (error);
3119}
3120
3121static
3122int
3123nfs_flush_docommit(struct nfs_flush_info *info, int error)
3124{
3125 struct vnode *vp;
3126 struct buf *bp;
3127 off_t bytes;
3128 int retv;
3129 int i;
6bae6177
MD
3130
3131 vp = info->vp;
3132
3133 if (info->bvsize > 0) {
984263bc 3134 /*
3b568787
MD
3135 * Commit data on the server, as required. Note that
3136 * nfs_commit will use the vnode's cred for the commit.
6bae6177 3137 * The NFSv3 commit RPC is limited to a 32 bit byte count.
984263bc 3138 */
6bae6177
MD
3139 bytes = info->end_off - info->beg_off;
3140 if (bytes > 0x40000000)
3141 bytes = 0x40000000;
3142 if (error) {
3143 retv = -error;
3144 } else {
3145 retv = nfs_commit(vp, info->beg_off,
3146 (int)bytes, info->td);
3147 if (retv == NFSERR_STALEWRITEVERF)
3148 nfs_clearcommit(vp->v_mount);
3149 }
984263bc
MD
3150
3151 /*
3152 * Now, either mark the blocks I/O done or mark the
3153 * blocks dirty, depending on whether the commit
3154 * succeeded.
3155 */
6bae6177
MD
3156 for (i = 0; i < info->bvsize; ++i) {
3157 bp = info->bvary[i];
3158 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
984263bc
MD
3159 if (retv) {
3160 /*
3161 * Error, leave B_DELWRI intact
3162 */
3163 vfs_unbusy_pages(bp);
10f3fee5 3164 bp->b_cmd = BUF_CMD_DONE;
984263bc
MD
3165 brelse(bp);
3166 } else {
3167 /*
3168 * Success, remove B_DELWRI ( bundirty() ).
3169 *
3170 * b_dirtyoff/b_dirtyend seem to be NFS
3171 * specific. We should probably move that
3172 * into bundirty(). XXX
81b5c339
MD
3173 *
3174 * We are faking an I/O write, we have to
3175 * start the transaction in order to
3176 * immediately biodone() it.
984263bc 3177 */
165dba55 3178 crit_enter();
984263bc
MD
3179 bp->b_flags |= B_ASYNC;
3180 bundirty(bp);
10f3fee5 3181 bp->b_flags &= ~B_ERROR;
984263bc 3182 bp->b_dirtyoff = bp->b_dirtyend = 0;
165dba55 3183 crit_exit();
81b5c339 3184 biodone(&bp->b_bio1);
984263bc
MD
3185 }
3186 }
6bae6177 3187 info->bvsize = 0;
984263bc 3188 }
984263bc
MD
3189 return (error);
3190}
3191
3192/*
3193 * NFS advisory byte-level locks.
3194 * Currently unsupported.
e851b29e
CP
3195 *
3196 * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3197 * int a_flags)
984263bc
MD
3198 */
3199static int
e851b29e 3200nfs_advlock(struct vop_advlock_args *ap)
984263bc 3201{
40393ded 3202 struct nfsnode *np = VTONFS(ap->a_vp);
984263bc
MD
3203
3204 /*
3205 * The following kludge is to allow diskless support to work
3206 * until a real NFS lockd is implemented. Basically, just pretend
3207 * that this is a local lock.
3208 */
3209 return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3210}
3211
3212/*
3213 * Print out the contents of an nfsnode.
e851b29e
CP
3214 *
3215 * nfs_print(struct vnode *a_vp)
984263bc
MD
3216 */
3217static int
e851b29e 3218nfs_print(struct vop_print_args *ap)
984263bc 3219{
40393ded
RG
3220 struct vnode *vp = ap->a_vp;
3221 struct nfsnode *np = VTONFS(vp);
984263bc 3222
086c1d7e 3223 kprintf("tag VT_NFS, fileid %ld fsid 0x%x",
984263bc
MD
3224 np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3225 if (vp->v_type == VFIFO)
3226 fifo_printinfo(vp);
086c1d7e 3227 kprintf("\n");
984263bc
MD
3228 return (0);
3229}
3230
984263bc
MD
3231/*
3232 * nfs special file access vnode op.
3233 * Essentially just get vattr and then imitate iaccess() since the device is
3234 * local to the client.
e851b29e
CP
3235 *
3236 * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3237 * struct thread *a_td)
984263bc
MD
3238 */
3239static int
e851b29e 3240nfsspec_access(struct vop_access_args *ap)
984263bc 3241{
40393ded
RG
3242 struct vattr *vap;
3243 gid_t *gp;
3244 struct ucred *cred = ap->a_cred;
984263bc
MD
3245 struct vnode *vp = ap->a_vp;
3246 mode_t mode = ap->a_mode;
3247 struct vattr vattr;
40393ded 3248 int i;
984263bc
MD
3249 int error;
3250
3251 /*
3252 * Disallow write attempts on filesystems mounted read-only;
3253 * unless the file is a socket, fifo, or a block or character
3254 * device resident on the filesystem.
3255 */
3256 if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3257 switch (vp->v_type) {
3258 case VREG:
3259 case VDIR:
3260 case VLNK:
3261 return (EROFS);
3262 default:
3263 break;
3264 }
3265 }
3266 /*
3267 * If you're the super-user,
3268 * you always get access.
3269 */
3270 if (cred->cr_uid == 0)
3271 return (0);
3272 vap = &vattr;
87de5057 3273 error = VOP_GETATTR(vp, vap);
984263bc
MD
3274 if (error)
3275 return (error);
3276 /*
3277 * Access check is based on only one of owner, group, public.
3278 * If not owner, then check group. If not a member of the
3279 * group, then check public access.
3280 */
3281 if (cred->cr_uid != vap->va_uid) {
3282 mode >>= 3;
3283 gp = cred->cr_groups;
3284 for (i = 0; i < cred->cr_ngroups; i++, gp++)
3285 if (vap->va_gid == *gp)
3286 goto found;
3287 mode >>= 3;
3288found:
3289 ;
3290 }
3291 error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3292 return (error);
3293}
3294
3295/*
3296 * Read wrapper for special devices.
e851b29e
CP
3297 *
3298 * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3299 * struct ucred *a_cred)
984263bc
MD
3300 */
3301static int
e851b29e 3302nfsspec_read(struct vop_read_args *ap)
984263bc 3303{
40393ded 3304 struct nfsnode *np = VTONFS(ap->a_vp);
984263bc
MD
3305
3306 /*
3307 * Set access flag.
3308 */
3309 np->n_flag |= NACC;
3310 getnanotime(&np->n_atim);
66a1ddf5 3311 return (VOCALL(&spec_vnode_vops, &ap->a_head));
984263bc
MD
3312}
3313
3314/*
3315 * Write wrapper for special devices.
e851b29e
CP
3316 *
3317 * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3318 * struct ucred *a_cred)
984263bc
MD
3319 */
3320static int
e851b29e 3321nfsspec_write(struct vop_write_args *ap)
984263bc 3322{
40393ded 3323 struct nfsnode *np = VTONFS(ap->a_vp);
984263bc
MD
3324
3325 /*
3326 * Set update flag.
3327 */
3328 np->n_flag |= NUPD;
3329 getnanotime(&np->n_mtim);
66a1ddf5 3330 return (VOCALL(&spec_vnode_vops, &ap->a_head));
984263bc
MD
3331}
3332
3333/*
3334 * Close wrapper for special devices.
3335 *
3336 * Update the times on the nfsnode then do device close.
e851b29e
CP
3337 *
3338 * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3339 * struct thread *a_td)
984263bc
MD
3340 */
3341static int
e851b29e 3342nfsspec_close(struct vop_close_args *ap)
984263bc 3343{
40393ded
RG
3344 struct vnode *vp = ap->a_vp;
3345 struct nfsnode *np = VTONFS(vp);
984263bc
MD
3346 struct vattr vattr;
3347
3348 if (np->n_flag & (NACC | NUPD)) {
3349 np->n_flag |= NCHG;
3c37c940 3350 if (vp->v_sysref.refcnt == 1 &&
984263bc
MD
3351 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3352 VATTR_NULL(&vattr);
3353 if (np->n_flag & NACC)
3354 vattr.va_atime = np->n_atim;
3355 if (np->n_flag & NUPD)
3356 vattr.va_mtime = np->n_mtim;
87de5057 3357 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
984263bc
MD
3358 }
3359 }
66a1ddf5 3360 return (VOCALL(&spec_vnode_vops, &ap->a_head));
984263bc
MD
3361}
3362
3363/*
3364 * Read wrapper for fifos.
e851b29e
CP
3365 *
3366 * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3367 * struct ucred *a_cred)
984263bc
MD
3368 */
3369static int
e851b29e 3370nfsfifo_read(struct vop_read_args *ap)
984263bc 3371{
40393ded 3372 struct nfsnode *np = VTONFS(ap->a_vp);
984263bc
MD
3373
3374 /*
3375 * Set access flag.
3376 */
3377 np->n_flag |= NACC;
3378 getnanotime(&np->n_atim);
66a1ddf5 3379 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
984263bc
MD
3380}
3381
3382/*
3383 * Write wrapper for fifos.
e851b29e
CP
3384 *
3385 * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3386 * struct ucred *a_cred)
984263bc
MD
3387 */
3388static int
e851b29e 3389nfsfifo_write(struct vop_write_args *ap)
984263bc 3390{
40393ded 3391 struct nfsnode *np = VTONFS(ap->a_vp);
984263bc
MD
3392
3393 /*
3394 * Set update flag.
3395 */
3396 np->n_flag |= NUPD;
3397 getnanotime(&np->n_mtim);
66a1ddf5 3398 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
984263bc
MD
3399}
3400
3401/*
3402 * Close wrapper for fifos.
3403 *
3404 * Update the times on the nfsnode then do fifo close.
e851b29e
CP
3405 *
3406 * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
984263bc
MD
3407 */
3408static int
e851b29e 3409nfsfifo_close(struct vop_close_args *ap)
984263bc 3410{
40393ded
RG
3411 struct vnode *vp = ap->a_vp;
3412 struct nfsnode *np = VTONFS(vp);
984263bc
MD
3413 struct vattr vattr;
3414 struct timespec ts;
3415
3416 if (np->n_flag & (NACC | NUPD)) {
3417 getnanotime(&ts);
3418 if (np->n_flag & NACC)
3419 np->n_atim = ts;
3420 if (np->n_flag & NUPD)
3421 np->n_mtim = ts;
3422 np->n_flag |= NCHG;
3c37c940 3423 if (vp->v_sysref.refcnt == 1 &&
984263bc
MD
3424 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3425 VATTR_NULL(&vattr);
3426 if (np->n_flag & NACC)
3427 vattr.va_atime = np->n_atim;
3428 if (np->n_flag & NUPD)
3429 vattr.va_mtime = np->n_mtim;
87de5057 3430 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
984263bc
MD
3431 }
3432 }
66a1ddf5 3433 return (VOCALL(&fifo_vnode_vops, &ap->a_head));
984263bc
MD
3434}
3435