DEVFS - remove dev_ops_add(), dev_ops_get(), and get_dev()
[dragonfly.git] / sys / bus / cam / scsi / scsi_ses.c
CommitLineData
984263bc 1/* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
1c8b7a9a 2/* $DragonFly: src/sys/bus/cam/scsi/scsi_ses.c,v 1.29 2008/05/18 20:30:20 pavalos Exp $ */
984263bc
MD
3/*
4 * Copyright (c) 2000 Matthew Jacob
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification, immediately at the beginning of the file.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29#include <sys/param.h>
30#include <sys/queue.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/types.h>
34#include <sys/malloc.h>
35#include <sys/fcntl.h>
984263bc
MD
36#include <sys/conf.h>
37#include <sys/buf.h>
38#include <sys/errno.h>
39#include <sys/devicestat.h>
4e01b467 40#include <sys/thread2.h>
984263bc
MD
41#include <machine/stdarg.h>
42
1f2de5d4
MD
43#include "../cam.h"
44#include "../cam_ccb.h"
45#include "../cam_extend.h"
46#include "../cam_periph.h"
47#include "../cam_xpt_periph.h"
1f2de5d4 48#include "../cam_debug.h"
1c8b7a9a 49#include "../cam_sim.h"
984263bc 50
1f2de5d4
MD
51#include "scsi_all.h"
52#include "scsi_message.h"
1f2de5d4 53#include "scsi_ses.h"
984263bc
MD
54
55#include <opt_ses.h>
56
bc6e3c73
PA
57MALLOC_DEFINE(M_SCSISES, "SCSI SES", "SCSI SES buffers");
58
984263bc
MD
59/*
60 * Platform Independent Driver Internal Definitions for SES devices.
61 */
62typedef enum {
63 SES_NONE,
64 SES_SES_SCSI2,
65 SES_SES,
66 SES_SES_PASSTHROUGH,
67 SES_SEN,
68 SES_SAFT
69} enctyp;
70
71struct ses_softc;
72typedef struct ses_softc ses_softc_t;
73typedef struct {
74 int (*softc_init)(ses_softc_t *, int);
75 int (*init_enc)(ses_softc_t *);
76 int (*get_encstat)(ses_softc_t *, int);
77 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80} encvec;
81
82#define ENCI_SVALID 0x80
83
84typedef struct {
85 uint32_t
86 enctype : 8, /* enclosure type */
87 subenclosure : 8, /* subenclosure id */
88 svalid : 1, /* enclosure information valid */
89 priv : 15; /* private data, per object */
90 uint8_t encstat[4]; /* state && stats */
91} encobj;
92
93#define SEN_ID "UNISYS SUN_SEN"
94#define SEN_ID_LEN 24
95
96
97static enctyp ses_type(void *, int);
98
99
100/* Forward reference to Enclosure Functions */
101static int ses_softc_init(ses_softc_t *, int);
102static int ses_init_enc(ses_softc_t *);
103static int ses_get_encstat(ses_softc_t *, int);
104static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107
108static int safte_softc_init(ses_softc_t *, int);
109static int safte_init_enc(ses_softc_t *);
110static int safte_get_encstat(ses_softc_t *, int);
111static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114
115/*
116 * Platform implementation defines/functions for SES internal kernel stuff
117 */
118
119#define STRNCMP strncmp
85f8e2ea 120#define PRINTF kprintf
984263bc
MD
121#define SES_LOG ses_log
122#ifdef DEBUG
123#define SES_DLOG ses_log
124#else
125#define SES_DLOG if (0) ses_log
126#endif
127#define SES_VLOG if (bootverbose) ses_log
bc6e3c73
PA
128#define SES_MALLOC(amt) kmalloc(amt, M_SCSISES, M_INTWAIT)
129#define SES_FREE(ptr, amt) kfree(ptr, M_SCSISES)
984263bc
MD
130#define MEMZERO bzero
131#define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
132
133static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
134static void ses_log(struct ses_softc *, const char *, ...);
135
136/*
137 * Gerenal FreeBSD kernel stuff.
138 */
139
140
141#define ccb_state ppriv_field0
81b5c339 142#define ccb_bio ppriv_ptr1
984263bc
MD
143
144struct ses_softc {
145 enctyp ses_type; /* type of enclosure */
146 encvec ses_vec; /* vector to handlers */
147 void * ses_private; /* per-type private data */
148 encobj * ses_objmap; /* objects */
149 u_int32_t ses_nobjects; /* number of objects */
150 ses_encstat ses_encstat; /* overall status */
151 u_int8_t ses_flags;
152 union ccb ses_saved_ccb;
984263bc
MD
153 struct cam_periph *periph;
154};
155#define SES_FLAG_INVALID 0x01
156#define SES_FLAG_OPEN 0x02
157#define SES_FLAG_INITIALIZED 0x04
158
159#define SESUNIT(x) (minor((x)))
160#define SES_CDEV_MAJOR 110
161
162static d_open_t sesopen;
163static d_close_t sesclose;
164static d_ioctl_t sesioctl;
165static periph_init_t sesinit;
166static periph_ctor_t sesregister;
167static periph_oninv_t sesoninvalidate;
168static periph_dtor_t sescleanup;
169static periph_start_t sesstart;
170
171static void sesasync(void *, u_int32_t, struct cam_path *, void *);
172static void sesdone(struct cam_periph *, union ccb *);
173static int seserror(union ccb *, u_int32_t, u_int32_t);
174
175static struct periph_driver sesdriver = {
176 sesinit, "ses",
177 TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
178};
179
2ad14cb5 180PERIPHDRIVER_DECLARE(ses, sesdriver);
984263bc 181
fef8985e
MD
182static struct dev_ops ses_ops = {
183 { "ses", SES_CDEV_MAJOR, 0 },
184 .d_open = sesopen,
185 .d_close = sesclose,
186 .d_ioctl = sesioctl,
984263bc
MD
187};
188static struct extend_array *sesperiphs;
189
fb2e6209 190static void
984263bc
MD
191sesinit(void)
192{
193 cam_status status;
984263bc
MD
194
195 /*
196 * Create our extend array for storing the devices we attach to.
197 */
198 sesperiphs = cam_extend_new();
199 if (sesperiphs == NULL) {
85f8e2ea 200 kprintf("ses: Failed to alloc extend array!\n");
984263bc
MD
201 return;
202 }
203
204 /*
205 * Install a global async callback. This callback will
206 * receive async callbacks like "new device found".
207 */
1c8b7a9a 208 status = xpt_register_async(AC_FOUND_DEVICE, sesasync, NULL, NULL);
984263bc
MD
209
210 if (status != CAM_REQ_CMP) {
85f8e2ea 211 kprintf("ses: Failed to attach master async callback "
984263bc
MD
212 "due to status 0x%x!\n", status);
213 }
214}
215
216static void
217sesoninvalidate(struct cam_periph *periph)
218{
219 struct ses_softc *softc;
984263bc
MD
220
221 softc = (struct ses_softc *)periph->softc;
222
223 /*
224 * Unregister any async callbacks.
225 */
1c8b7a9a 226 xpt_register_async(0, sesasync, periph, periph->path);
984263bc
MD
227
228 softc->ses_flags |= SES_FLAG_INVALID;
229
1c8b7a9a 230 xpt_print(periph->path, "lost device\n");
984263bc
MD
231}
232
233static void
234sescleanup(struct cam_periph *periph)
235{
236 struct ses_softc *softc;
237
238 softc = (struct ses_softc *)periph->softc;
239
984263bc 240 cam_extend_release(sesperiphs, periph->unit_number);
1c8b7a9a 241 xpt_print(periph->path, "removing device entry\n");
cd29885a 242 dev_ops_remove_minor(&ses_ops, periph->unit_number);
bc6e3c73 243 kfree(softc, M_SCSISES);
984263bc
MD
244}
245
246static void
247sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
248{
249 struct cam_periph *periph;
250
251 periph = (struct cam_periph *)callback_arg;
252
253 switch(code) {
254 case AC_FOUND_DEVICE:
255 {
256 cam_status status;
257 struct ccb_getdev *cgd;
d878b746 258 int inq_len;
984263bc
MD
259
260 cgd = (struct ccb_getdev *)arg;
e9936c96
PA
261 if (arg == NULL) {
262 break;
263 }
984263bc 264
d878b746
PA
265 inq_len = cgd->inq_data.additional_length + 4;
266
984263bc
MD
267 /*
268 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
269 * PROBLEM: IS A SAF-TE DEVICE.
270 */
d878b746 271 switch (ses_type(&cgd->inq_data, inq_len)) {
984263bc
MD
272 case SES_SES:
273 case SES_SES_SCSI2:
274 case SES_SES_PASSTHROUGH:
275 case SES_SEN:
276 case SES_SAFT:
277 break;
278 default:
279 return;
280 }
281
282 status = cam_periph_alloc(sesregister, sesoninvalidate,
283 sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
284 cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
285
286 if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
85f8e2ea 287 kprintf("sesasync: Unable to probe new device due to "
984263bc
MD
288 "status 0x%x\n", status);
289 }
290 break;
291 }
292 default:
293 cam_periph_async(periph, code, path, arg);
294 break;
295 }
296}
297
298static cam_status
299sesregister(struct cam_periph *periph, void *arg)
300{
301 struct ses_softc *softc;
984263bc
MD
302 struct ccb_getdev *cgd;
303 char *tname;
304
305 cgd = (struct ccb_getdev *)arg;
306 if (periph == NULL) {
85f8e2ea 307 kprintf("sesregister: periph was NULL!!\n");
984263bc
MD
308 return (CAM_REQ_CMP_ERR);
309 }
310
311 if (cgd == NULL) {
85f8e2ea 312 kprintf("sesregister: no getdev CCB, can't register device\n");
984263bc
MD
313 return (CAM_REQ_CMP_ERR);
314 }
315
bc6e3c73 316 softc = kmalloc(sizeof (struct ses_softc), M_SCSISES, M_INTWAIT | M_ZERO);
984263bc
MD
317 periph->softc = softc;
318 softc->periph = periph;
319
320 softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
321
322 switch (softc->ses_type) {
323 case SES_SES:
324 case SES_SES_SCSI2:
325 case SES_SES_PASSTHROUGH:
326 softc->ses_vec.softc_init = ses_softc_init;
327 softc->ses_vec.init_enc = ses_init_enc;
328 softc->ses_vec.get_encstat = ses_get_encstat;
329 softc->ses_vec.set_encstat = ses_set_encstat;
330 softc->ses_vec.get_objstat = ses_get_objstat;
331 softc->ses_vec.set_objstat = ses_set_objstat;
332 break;
333 case SES_SAFT:
334 softc->ses_vec.softc_init = safte_softc_init;
335 softc->ses_vec.init_enc = safte_init_enc;
336 softc->ses_vec.get_encstat = safte_get_encstat;
337 softc->ses_vec.set_encstat = safte_set_encstat;
338 softc->ses_vec.get_objstat = safte_get_objstat;
339 softc->ses_vec.set_objstat = safte_set_objstat;
340 break;
341 case SES_SEN:
342 break;
343 case SES_NONE:
344 default:
bc6e3c73 345 kfree(softc, M_SCSISES);
984263bc
MD
346 return (CAM_REQ_CMP_ERR);
347 }
348
349 cam_extend_set(sesperiphs, periph->unit_number, periph);
350
1c8b7a9a 351 cam_periph_unlock(periph);
fef8985e 352 make_dev(&ses_ops, periph->unit_number,
e4c9c0c8
MD
353 UID_ROOT, GID_OPERATOR, 0600, "%s%d",
354 periph->periph_name, periph->unit_number);
1c8b7a9a 355 cam_periph_lock(periph);
984263bc
MD
356
357 /*
358 * Add an async callback so that we get
359 * notified if this device goes away.
360 */
1c8b7a9a 361 xpt_register_async(AC_LOST_DEVICE, sesasync, periph, periph->path);
984263bc
MD
362
363 switch (softc->ses_type) {
364 default:
365 case SES_NONE:
366 tname = "No SES device";
367 break;
368 case SES_SES_SCSI2:
369 tname = "SCSI-2 SES Device";
370 break;
371 case SES_SES:
372 tname = "SCSI-3 SES Device";
373 break;
374 case SES_SES_PASSTHROUGH:
375 tname = "SES Passthrough Device";
376 break;
377 case SES_SEN:
378 tname = "UNISYS SEN Device (NOT HANDLED YET)";
379 break;
380 case SES_SAFT:
381 tname = "SAF-TE Compliant Device";
382 break;
383 }
384 xpt_announce_periph(periph, tname);
385 return (CAM_REQ_CMP);
386}
387
388static int
fef8985e 389sesopen(struct dev_open_args *ap)
984263bc 390{
b13267a5 391 cdev_t dev = ap->a_head.a_dev;
984263bc
MD
392 struct cam_periph *periph;
393 struct ses_softc *softc;
1c8b7a9a 394 int error = 0;
984263bc 395
984263bc
MD
396 periph = cam_extend_get(sesperiphs, SESUNIT(dev));
397 if (periph == NULL) {
984263bc
MD
398 return (ENXIO);
399 }
984263bc
MD
400
401 if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
402 cam_periph_unlock(periph);
403 return (ENXIO);
404 }
405
1c8b7a9a
PA
406 cam_periph_lock(periph);
407
984263bc
MD
408 softc = (struct ses_softc *)periph->softc;
409
410 if (softc->ses_flags & SES_FLAG_INVALID) {
411 error = ENXIO;
412 goto out;
413 }
414 if (softc->ses_flags & SES_FLAG_OPEN) {
415 error = EBUSY;
416 goto out;
417 }
418 if (softc->ses_vec.softc_init == NULL) {
419 error = ENXIO;
420 goto out;
421 }
422
423 softc->ses_flags |= SES_FLAG_OPEN;
424 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
425 error = (*softc->ses_vec.softc_init)(softc, 1);
426 if (error)
427 softc->ses_flags &= ~SES_FLAG_OPEN;
428 else
429 softc->ses_flags |= SES_FLAG_INITIALIZED;
430 }
431
432out:
1c8b7a9a 433 cam_periph_unlock(periph);
984263bc
MD
434 if (error) {
435 cam_periph_release(periph);
436 }
984263bc
MD
437 return (error);
438}
439
440static int
fef8985e 441sesclose(struct dev_close_args *ap)
984263bc 442{
b13267a5 443 cdev_t dev = ap->a_head.a_dev;
984263bc
MD
444 struct cam_periph *periph;
445 struct ses_softc *softc;
446 int unit, error;
447
448 error = 0;
449
450 unit = SESUNIT(dev);
451 periph = cam_extend_get(sesperiphs, unit);
452 if (periph == NULL)
453 return (ENXIO);
454
1c8b7a9a 455 cam_periph_lock(periph);
984263bc 456
1c8b7a9a 457 softc = (struct ses_softc *)periph->softc;
984263bc
MD
458 softc->ses_flags &= ~SES_FLAG_OPEN;
459
460 cam_periph_unlock(periph);
461 cam_periph_release(periph);
462
463 return (0);
464}
465
466static void
467sesstart(struct cam_periph *p, union ccb *sccb)
468{
984263bc
MD
469 if (p->immediate_priority <= p->pinfo.priority) {
470 SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
471 p->immediate_priority = CAM_PRIORITY_NONE;
472 wakeup(&p->ccb_list);
473 }
984263bc
MD
474}
475
476static void
477sesdone(struct cam_periph *periph, union ccb *dccb)
478{
479 wakeup(&dccb->ccb_h.cbfcnp);
480}
481
482static int
483seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
484{
485 struct ses_softc *softc;
486 struct cam_periph *periph;
487
488 periph = xpt_path_periph(ccb->ccb_h.path);
489 softc = (struct ses_softc *)periph->softc;
490
491 return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
492}
493
494static int
fef8985e 495sesioctl(struct dev_ioctl_args *ap)
984263bc 496{
b13267a5 497 cdev_t dev = ap->a_head.a_dev;
984263bc
MD
498 struct cam_periph *periph;
499 ses_encstat tmp;
500 ses_objstat objs;
501 ses_object obj, *uobj;
502 struct ses_softc *ssc;
503 void *addr;
504 int error, i;
505
506
fef8985e
MD
507 if (ap->a_data)
508 addr = *((caddr_t *)ap->a_data);
984263bc
MD
509 else
510 addr = NULL;
511
512 periph = cam_extend_get(sesperiphs, SESUNIT(dev));
513 if (periph == NULL)
514 return (ENXIO);
515
516 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
517
1c8b7a9a 518 cam_periph_lock(periph);
984263bc
MD
519 ssc = (struct ses_softc *)periph->softc;
520
521 /*
522 * Now check to see whether we're initialized or not.
523 */
524 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
1c8b7a9a 525 cam_periph_unlock(periph);
984263bc
MD
526 return (ENXIO);
527 }
1c8b7a9a 528 cam_periph_unlock(periph);
984263bc
MD
529
530 error = 0;
531
532 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
fef8985e 533 ("trying to do ioctl %#lx\n", ap->a_cmd));
984263bc
MD
534
535 /*
536 * If this command can change the device's state,
537 * we must have the device open for writing.
538 */
fef8985e 539 switch (ap->a_cmd) {
984263bc
MD
540 case SESIOC_GETNOBJ:
541 case SESIOC_GETOBJMAP:
542 case SESIOC_GETENCSTAT:
543 case SESIOC_GETOBJSTAT:
544 break;
545 default:
fef8985e 546 if ((ap->a_fflag & FWRITE) == 0) {
984263bc
MD
547 return (EBADF);
548 }
549 }
550
fef8985e 551 switch (ap->a_cmd) {
984263bc
MD
552 case SESIOC_GETNOBJ:
553 error = copyout(&ssc->ses_nobjects, addr,
554 sizeof (ssc->ses_nobjects));
555 break;
556
557 case SESIOC_GETOBJMAP:
1c8b7a9a
PA
558 /*
559 * XXX Dropping the lock while copying multiple segments is
560 * bogus.
561 */
562 cam_periph_lock(periph);
984263bc
MD
563 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
564 obj.obj_id = i;
565 obj.subencid = ssc->ses_objmap[i].subenclosure;
566 obj.object_type = ssc->ses_objmap[i].enctype;
1c8b7a9a 567 cam_periph_unlock(periph);
984263bc 568 error = copyout(&obj, uobj, sizeof (ses_object));
1c8b7a9a 569 cam_periph_lock(periph);
984263bc
MD
570 if (error) {
571 break;
572 }
573 }
1c8b7a9a 574 cam_periph_unlock(periph);
984263bc
MD
575 break;
576
577 case SESIOC_GETENCSTAT:
1c8b7a9a 578 cam_periph_lock(periph);
984263bc 579 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
1c8b7a9a
PA
580 if (error) {
581 cam_periph_unlock(periph);
984263bc 582 break;
1c8b7a9a 583 }
984263bc 584 tmp = ssc->ses_encstat & ~ENCI_SVALID;
1c8b7a9a 585 cam_periph_unlock(periph);
984263bc
MD
586 error = copyout(&tmp, addr, sizeof (ses_encstat));
587 ssc->ses_encstat = tmp;
588 break;
589
590 case SESIOC_SETENCSTAT:
591 error = copyin(addr, &tmp, sizeof (ses_encstat));
592 if (error)
593 break;
1c8b7a9a 594 cam_periph_lock(periph);
984263bc 595 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
1c8b7a9a 596 cam_periph_unlock(periph);
984263bc
MD
597 break;
598
599 case SESIOC_GETOBJSTAT:
600 error = copyin(addr, &objs, sizeof (ses_objstat));
601 if (error)
602 break;
603 if (objs.obj_id >= ssc->ses_nobjects) {
604 error = EINVAL;
605 break;
606 }
1c8b7a9a 607 cam_periph_lock(periph);
984263bc 608 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
1c8b7a9a 609 cam_periph_unlock(periph);
984263bc
MD
610 if (error)
611 break;
612 error = copyout(&objs, addr, sizeof (ses_objstat));
613 /*
614 * Always (for now) invalidate entry.
615 */
616 ssc->ses_objmap[objs.obj_id].svalid = 0;
617 break;
618
619 case SESIOC_SETOBJSTAT:
620 error = copyin(addr, &objs, sizeof (ses_objstat));
621 if (error)
622 break;
623
624 if (objs.obj_id >= ssc->ses_nobjects) {
625 error = EINVAL;
626 break;
627 }
1c8b7a9a 628 cam_periph_lock(periph);
984263bc 629 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
1c8b7a9a 630 cam_periph_unlock(periph);
984263bc
MD
631
632 /*
633 * Always (for now) invalidate entry.
634 */
635 ssc->ses_objmap[objs.obj_id].svalid = 0;
636 break;
637
638 case SESIOC_INIT:
639
1c8b7a9a 640 cam_periph_lock(periph);
984263bc 641 error = (*ssc->ses_vec.init_enc)(ssc);
1c8b7a9a 642 cam_periph_unlock(periph);
984263bc
MD
643 break;
644
645 default:
1c8b7a9a 646 cam_periph_lock(periph);
fef8985e 647 error = cam_periph_ioctl(periph, ap->a_cmd, ap->a_data, seserror);
1c8b7a9a 648 cam_periph_unlock(periph);
984263bc
MD
649 break;
650 }
651 return (error);
652}
653
b05e84c9
PA
654#define SES_CFLAGS CAM_RETRY_SELTO
655#define SES_FLAGS SF_NO_PRINT | SF_RETRY_UA
984263bc
MD
656static int
657ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
658{
659 int error, dlen;
660 ccb_flags ddf;
661 union ccb *ccb;
662
663 if (dptr) {
664 if ((dlen = *dlenp) < 0) {
665 dlen = -dlen;
666 ddf = CAM_DIR_OUT;
667 } else {
668 ddf = CAM_DIR_IN;
669 }
670 } else {
671 dlen = 0;
672 ddf = CAM_DIR_NONE;
673 }
674
675 if (cdbl > IOCDBLEN) {
676 cdbl = IOCDBLEN;
677 }
678
679 ccb = cam_periph_getccb(ssc->periph, 1);
680 cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
681 dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
682 bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
683
b05e84c9 684 error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
984263bc
MD
685 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
686 cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
687 if (error) {
688 if (dptr) {
689 *dlenp = dlen;
690 }
691 } else {
692 if (dptr) {
693 *dlenp = ccb->csio.resid;
694 }
695 }
696 xpt_release_ccb(ccb);
697 return (error);
698}
699
700static void
701ses_log(struct ses_softc *ssc, const char *fmt, ...)
702{
e2565a42 703 __va_list ap;
984263bc 704
85f8e2ea 705 kprintf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
e2565a42 706 __va_start(ap, fmt);
379210cb 707 kvprintf(fmt, ap);
e2565a42 708 __va_end(ap);
984263bc
MD
709}
710
711/*
712 * The code after this point runs on many platforms,
713 * so forgive the slightly awkward and nonconforming
714 * appearance.
715 */
716
717/*
718 * Is this a device that supports enclosure services?
719 *
720 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
721 * an SES device. If it happens to be an old UNISYS SEN device, we can
722 * handle that too.
723 */
724
725#define SAFTE_START 44
726#define SAFTE_END 50
727#define SAFTE_LEN SAFTE_END-SAFTE_START
728
729static enctyp
730ses_type(void *buf, int buflen)
731{
732 unsigned char *iqd = buf;
733
984263bc
MD
734 if (buflen < 8+SEN_ID_LEN)
735 return (SES_NONE);
736
737 if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
738 if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
739 return (SES_SEN);
740 } else if ((iqd[2] & 0x7) > 2) {
741 return (SES_SES);
742 } else {
743 return (SES_SES_SCSI2);
744 }
745 return (SES_NONE);
746 }
747
748#ifdef SES_ENABLE_PASSTHROUGH
749 if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
750 /*
751 * PassThrough Device.
752 */
753 return (SES_SES_PASSTHROUGH);
754 }
755#endif
756
757 /*
758 * The comparison is short for a reason-
759 * some vendors were chopping it short.
760 */
761
762 if (buflen < SAFTE_END - 2) {
763 return (SES_NONE);
764 }
765
766 if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
767 return (SES_SAFT);
768 }
769 return (SES_NONE);
770}
771
772/*
773 * SES Native Type Device Support
774 */
775
776/*
777 * SES Diagnostic Page Codes
778 */
779
780typedef enum {
781 SesConfigPage = 0x1,
782 SesControlPage,
783#define SesStatusPage SesControlPage
784 SesHelpTxt,
785 SesStringOut,
786#define SesStringIn SesStringOut
787 SesThresholdOut,
788#define SesThresholdIn SesThresholdOut
789 SesArrayControl,
790#define SesArrayStatus SesArrayControl
791 SesElementDescriptor,
792 SesShortStatus
793} SesDiagPageCodes;
794
795/*
796 * minimal amounts
797 */
798
799/*
800 * Minimum amount of data, starting from byte 0, to have
801 * the config header.
802 */
803#define SES_CFGHDR_MINLEN 12
804
805/*
806 * Minimum amount of data, starting from byte 0, to have
807 * the config header and one enclosure header.
808 */
809#define SES_ENCHDR_MINLEN 48
810
811/*
812 * Take this value, subtract it from VEnclen and you know
813 * the length of the vendor unique bytes.
814 */
815#define SES_ENCHDR_VMIN 36
816
817/*
818 * SES Data Structures
819 */
820
821typedef struct {
822 uint32_t GenCode; /* Generation Code */
823 uint8_t Nsubenc; /* Number of Subenclosures */
824} SesCfgHdr;
825
826typedef struct {
827 uint8_t Subencid; /* SubEnclosure Identifier */
828 uint8_t Ntypes; /* # of supported types */
829 uint8_t VEnclen; /* Enclosure Descriptor Length */
830} SesEncHdr;
831
832typedef struct {
833 uint8_t encWWN[8]; /* XXX- Not Right Yet */
834 uint8_t encVid[8];
835 uint8_t encPid[16];
836 uint8_t encRev[4];
837 uint8_t encVen[1];
838} SesEncDesc;
839
840typedef struct {
841 uint8_t enc_type; /* type of element */
842 uint8_t enc_maxelt; /* maximum supported */
843 uint8_t enc_subenc; /* in SubEnc # N */
844 uint8_t enc_tlen; /* Type Descriptor Text Length */
845} SesThdr;
846
847typedef struct {
848 uint8_t comstatus;
849 uint8_t comstat[3];
850} SesComStat;
851
852struct typidx {
853 int ses_tidx;
854 int ses_oidx;
855};
856
857struct sscfg {
858 uint8_t ses_ntypes; /* total number of types supported */
859
860 /*
861 * We need to keep a type index as well as an
862 * object index for each object in an enclosure.
863 */
864 struct typidx *ses_typidx;
865
866 /*
867 * We also need to keep track of the number of elements
868 * per type of element. This is needed later so that we
869 * can find precisely in the returned status data the
870 * status for the Nth element of the Kth type.
871 */
872 uint8_t * ses_eltmap;
873};
874
875
876/*
877 * (de)canonicalization defines
878 */
879#define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
880#define sbit(x, bit) (((uint32_t)(x)) << bit)
881#define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
882
883#define sset16(outp, idx, sval) \
884 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
885 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
886
887
888#define sset24(outp, idx, sval) \
889 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
890 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
891 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
892
893
894#define sset32(outp, idx, sval) \
895 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
896 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
897 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
898 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
899
900#define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
901#define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
902#define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
903#define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
904
905#define sget16(inp, idx, lval) \
906 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
907 (((uint8_t *)(inp))[idx+1]), idx += 2
908
909#define gget16(inp, idx, lval) \
910 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
911 (((uint8_t *)(inp))[idx+1])
912
913#define sget24(inp, idx, lval) \
914 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
915 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
916 (((uint8_t *)(inp))[idx+2]), idx += 3
917
918#define gget24(inp, idx, lval) \
919 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
920 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
921 (((uint8_t *)(inp))[idx+2])
922
923#define sget32(inp, idx, lval) \
924 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
925 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
926 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
927 (((uint8_t *)(inp))[idx+3]), idx += 4
928
929#define gget32(inp, idx, lval) \
930 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
931 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
932 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
933 (((uint8_t *)(inp))[idx+3])
934
935#define SCSZ 0x2000
936#define CFLEN (256 + SES_ENCHDR_MINLEN)
937
938/*
939 * Routines specific && private to SES only
940 */
941
942static int ses_getconfig(ses_softc_t *);
943static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
944static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
945static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
946static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
947static int ses_getthdr(uint8_t *, int, int, SesThdr *);
948static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
949static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
950
951static int
952ses_softc_init(ses_softc_t *ssc, int doinit)
953{
954 if (doinit == 0) {
955 struct sscfg *cc;
956 if (ssc->ses_nobjects) {
957 SES_FREE(ssc->ses_objmap,
958 ssc->ses_nobjects * sizeof (encobj));
959 ssc->ses_objmap = NULL;
960 }
961 if ((cc = ssc->ses_private) != NULL) {
962 if (cc->ses_eltmap && cc->ses_ntypes) {
963 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
964 cc->ses_eltmap = NULL;
965 cc->ses_ntypes = 0;
966 }
967 if (cc->ses_typidx && ssc->ses_nobjects) {
968 SES_FREE(cc->ses_typidx,
969 ssc->ses_nobjects * sizeof (struct typidx));
970 cc->ses_typidx = NULL;
971 }
972 SES_FREE(cc, sizeof (struct sscfg));
973 ssc->ses_private = NULL;
974 }
975 ssc->ses_nobjects = 0;
976 return (0);
977 }
978 if (ssc->ses_private == NULL) {
979 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
980 }
981 if (ssc->ses_private == NULL) {
982 return (ENOMEM);
983 }
984 ssc->ses_nobjects = 0;
985 ssc->ses_encstat = 0;
986 return (ses_getconfig(ssc));
987}
988
989static int
990ses_init_enc(ses_softc_t *ssc)
991{
992 return (0);
993}
994
995static int
996ses_get_encstat(ses_softc_t *ssc, int slpflag)
997{
998 SesComStat ComStat;
999 int status;
1000
1001 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
1002 return (status);
1003 }
1004 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1005 return (0);
1006}
1007
1008static int
1009ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1010{
1011 SesComStat ComStat;
1012 int status;
1013
1014 ComStat.comstatus = encstat & 0xf;
1015 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1016 return (status);
1017 }
1018 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
1019 return (0);
1020}
1021
1022static int
1023ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1024{
1025 int i = (int)obp->obj_id;
1026
1027 if (ssc->ses_objmap[i].svalid == 0) {
1028 SesComStat ComStat;
1029 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1030 if (err)
1031 return (err);
1032 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1033 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1034 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1035 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1036 ssc->ses_objmap[i].svalid = 1;
1037 }
1038 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1039 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1040 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1041 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1042 return (0);
1043}
1044
1045static int
1046ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1047{
1048 SesComStat ComStat;
1049 int err;
1050 /*
1051 * If this is clear, we don't do diddly.
1052 */
1053 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1054 return (0);
1055 }
1056 ComStat.comstatus = obp->cstat[0];
1057 ComStat.comstat[0] = obp->cstat[1];
1058 ComStat.comstat[1] = obp->cstat[2];
1059 ComStat.comstat[2] = obp->cstat[3];
1060 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1061 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1062 return (err);
1063}
1064
1065static int
1066ses_getconfig(ses_softc_t *ssc)
1067{
1068 struct sscfg *cc;
1069 SesCfgHdr cf;
1070 SesEncHdr hd;
1071 SesEncDesc *cdp;
1072 SesThdr thdr;
1073 int err, amt, i, nobj, ntype, maxima;
1074 char storage[CFLEN], *sdata;
1075 static char cdb[6] = {
1076 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1077 };
1078
1079 cc = ssc->ses_private;
1080 if (cc == NULL) {
1081 return (ENXIO);
1082 }
1083
1084 sdata = SES_MALLOC(SCSZ);
1085 if (sdata == NULL)
1086 return (ENOMEM);
1087
1088 amt = SCSZ;
1089 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1090 if (err) {
1091 SES_FREE(sdata, SCSZ);
1092 return (err);
1093 }
1094 amt = SCSZ - amt;
1095
1096 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1097 SES_LOG(ssc, "Unable to parse SES Config Header\n");
1098 SES_FREE(sdata, SCSZ);
1099 return (EIO);
1100 }
1101 if (amt < SES_ENCHDR_MINLEN) {
1102 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1103 SES_FREE(sdata, SCSZ);
1104 return (EIO);
1105 }
1106
1107 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1108
1109 /*
1110 * Now waltz through all the subenclosures toting up the
1111 * number of types available in each. For this, we only
1112 * really need the enclosure header. However, we get the
1113 * enclosure descriptor for debug purposes, as well
1114 * as self-consistency checking purposes.
1115 */
1116
1117 maxima = cf.Nsubenc + 1;
1118 cdp = (SesEncDesc *) storage;
1119 for (ntype = i = 0; i < maxima; i++) {
1120 MEMZERO((caddr_t)cdp, sizeof (*cdp));
1121 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1122 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1123 SES_FREE(sdata, SCSZ);
1124 return (EIO);
1125 }
1126 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1127 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1128
1129 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1130 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1131 SES_FREE(sdata, SCSZ);
1132 return (EIO);
1133 }
1134 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1135 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1136 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1137 cdp->encWWN[6], cdp->encWWN[7]);
1138 ntype += hd.Ntypes;
1139 }
1140
1141 /*
1142 * Now waltz through all the types that are available, getting
1143 * the type header so we can start adding up the number of
1144 * objects available.
1145 */
1146 for (nobj = i = 0; i < ntype; i++) {
1147 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1148 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1149 SES_FREE(sdata, SCSZ);
1150 return (EIO);
1151 }
1152 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1153 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1154 thdr.enc_subenc, thdr.enc_tlen);
1155 nobj += thdr.enc_maxelt;
1156 }
1157
1158
1159 /*
1160 * Now allocate the object array and type map.
1161 */
1162
1163 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1164 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1165 cc->ses_eltmap = SES_MALLOC(ntype);
1166
1167 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1168 cc->ses_eltmap == NULL) {
1169 if (ssc->ses_objmap) {
1170 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1171 ssc->ses_objmap = NULL;
1172 }
1173 if (cc->ses_typidx) {
1174 SES_FREE(cc->ses_typidx,
1175 (nobj * sizeof (struct typidx)));
1176 cc->ses_typidx = NULL;
1177 }
1178 if (cc->ses_eltmap) {
1179 SES_FREE(cc->ses_eltmap, ntype);
1180 cc->ses_eltmap = NULL;
1181 }
1182 SES_FREE(sdata, SCSZ);
1183 return (ENOMEM);
1184 }
1185 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1186 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1187 MEMZERO(cc->ses_eltmap, ntype);
1188 cc->ses_ntypes = (uint8_t) ntype;
1189 ssc->ses_nobjects = nobj;
1190
1191 /*
1192 * Now waltz through the # of types again to fill in the types
1193 * (and subenclosure ids) of the allocated objects.
1194 */
1195 nobj = 0;
1196 for (i = 0; i < ntype; i++) {
1197 int j;
1198 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1199 continue;
1200 }
1201 cc->ses_eltmap[i] = thdr.enc_maxelt;
1202 for (j = 0; j < thdr.enc_maxelt; j++) {
1203 cc->ses_typidx[nobj].ses_tidx = i;
1204 cc->ses_typidx[nobj].ses_oidx = j;
1205 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1206 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1207 }
1208 }
1209 SES_FREE(sdata, SCSZ);
1210 return (0);
1211}
1212
1213static int
1214ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1215{
1216 struct sscfg *cc;
1217 int err, amt, bufsiz, tidx, oidx;
1218 char cdb[6], *sdata;
1219
1220 cc = ssc->ses_private;
1221 if (cc == NULL) {
1222 return (ENXIO);
1223 }
1224
1225 /*
1226 * If we're just getting overall enclosure status,
1227 * we only need 2 bytes of data storage.
1228 *
1229 * If we're getting anything else, we know how much
1230 * storage we need by noting that starting at offset
1231 * 8 in returned data, all object status bytes are 4
1232 * bytes long, and are stored in chunks of types(M)
1233 * and nth+1 instances of type M.
1234 */
1235 if (objid == -1) {
1236 bufsiz = 2;
1237 } else {
1238 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1239 }
1240 sdata = SES_MALLOC(bufsiz);
1241 if (sdata == NULL)
1242 return (ENOMEM);
1243
1244 cdb[0] = RECEIVE_DIAGNOSTIC;
1245 cdb[1] = 1;
1246 cdb[2] = SesStatusPage;
1247 cdb[3] = bufsiz >> 8;
1248 cdb[4] = bufsiz & 0xff;
1249 cdb[5] = 0;
1250 amt = bufsiz;
1251 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1252 if (err) {
1253 SES_FREE(sdata, bufsiz);
1254 return (err);
1255 }
1256 amt = bufsiz - amt;
1257
1258 if (objid == -1) {
1259 tidx = -1;
1260 oidx = -1;
1261 } else {
1262 tidx = cc->ses_typidx[objid].ses_tidx;
1263 oidx = cc->ses_typidx[objid].ses_oidx;
1264 }
1265 if (in) {
1266 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1267 err = ENODEV;
1268 }
1269 } else {
1270 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1271 err = ENODEV;
1272 } else {
1273 cdb[0] = SEND_DIAGNOSTIC;
1274 cdb[1] = 0x10;
1275 cdb[2] = 0;
1276 cdb[3] = bufsiz >> 8;
1277 cdb[4] = bufsiz & 0xff;
1278 cdb[5] = 0;
1279 amt = -bufsiz;
1280 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1281 }
1282 }
1283 SES_FREE(sdata, bufsiz);
1284 return (0);
1285}
1286
1287
1288/*
1289 * Routines to parse returned SES data structures.
1290 * Architecture and compiler independent.
1291 */
1292
1293static int
1294ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1295{
1296 if (buflen < SES_CFGHDR_MINLEN) {
1297 return (-1);
1298 }
1299 gget8(buffer, 1, cfp->Nsubenc);
1300 gget32(buffer, 4, cfp->GenCode);
1301 return (0);
1302}
1303
1304static int
1305ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1306{
1307 int s, off = 8;
1308 for (s = 0; s < SubEncId; s++) {
1309 if (off + 3 > amt)
1310 return (-1);
1311 off += buffer[off+3] + 4;
1312 }
1313 if (off + 3 > amt) {
1314 return (-1);
1315 }
1316 gget8(buffer, off+1, chp->Subencid);
1317 gget8(buffer, off+2, chp->Ntypes);
1318 gget8(buffer, off+3, chp->VEnclen);
1319 return (0);
1320}
1321
1322static int
1323ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1324{
1325 int s, e, enclen, off = 8;
1326 for (s = 0; s < SubEncId; s++) {
1327 if (off + 3 > amt)
1328 return (-1);
1329 off += buffer[off+3] + 4;
1330 }
1331 if (off + 3 > amt) {
1332 return (-1);
1333 }
1334 gget8(buffer, off+3, enclen);
1335 off += 4;
1336 if (off >= amt)
1337 return (-1);
1338
1339 e = off + enclen;
1340 if (e > amt) {
1341 e = amt;
1342 }
1343 MEMCPY(cdp, &buffer[off], e - off);
1344 return (0);
1345}
1346
1347static int
1348ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1349{
1350 int s, off = 8;
1351
1352 if (amt < SES_CFGHDR_MINLEN) {
1353 return (-1);
1354 }
1355 for (s = 0; s < buffer[1]; s++) {
1356 if (off + 3 > amt)
1357 return (-1);
1358 off += buffer[off+3] + 4;
1359 }
1360 if (off + 3 > amt) {
1361 return (-1);
1362 }
1363 off += buffer[off+3] + 4 + (nth * 4);
1364 if (amt < (off + 4))
1365 return (-1);
1366
1367 gget8(buffer, off++, thp->enc_type);
1368 gget8(buffer, off++, thp->enc_maxelt);
1369 gget8(buffer, off++, thp->enc_subenc);
1370 gget8(buffer, off, thp->enc_tlen);
1371 return (0);
1372}
1373
1374/*
1375 * This function needs a little explanation.
1376 *
1377 * The arguments are:
1378 *
1379 *
1380 * char *b, int amt
1381 *
1382 * These describes the raw input SES status data and length.
1383 *
1384 * uint8_t *ep
1385 *
1386 * This is a map of the number of types for each element type
1387 * in the enclosure.
1388 *
1389 * int elt
1390 *
1391 * This is the element type being sought. If elt is -1,
1392 * then overall enclosure status is being sought.
1393 *
1394 * int elm
1395 *
1396 * This is the ordinal Mth element of type elt being sought.
1397 *
1398 * SesComStat *sp
1399 *
1400 * This is the output area to store the status for
1401 * the Mth element of type Elt.
1402 */
1403
1404static int
1405ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1406{
1407 int idx, i;
1408
1409 /*
1410 * If it's overall enclosure status being sought, get that.
1411 * We need at least 2 bytes of status data to get that.
1412 */
1413 if (elt == -1) {
1414 if (amt < 2)
1415 return (-1);
1416 gget8(b, 1, sp->comstatus);
1417 sp->comstat[0] = 0;
1418 sp->comstat[1] = 0;
1419 sp->comstat[2] = 0;
1420 return (0);
1421 }
1422
1423 /*
1424 * Check to make sure that the Mth element is legal for type Elt.
1425 */
1426
1427 if (elm >= ep[elt])
1428 return (-1);
1429
1430 /*
1431 * Starting at offset 8, start skipping over the storage
1432 * for the element types we're not interested in.
1433 */
1434 for (idx = 8, i = 0; i < elt; i++) {
1435 idx += ((ep[i] + 1) * 4);
1436 }
1437
1438 /*
1439 * Skip over Overall status for this element type.
1440 */
1441 idx += 4;
1442
1443 /*
1444 * And skip to the index for the Mth element that we're going for.
1445 */
1446 idx += (4 * elm);
1447
1448 /*
1449 * Make sure we haven't overflowed the buffer.
1450 */
1451 if (idx+4 > amt)
1452 return (-1);
1453
1454 /*
1455 * Retrieve the status.
1456 */
1457 gget8(b, idx++, sp->comstatus);
1458 gget8(b, idx++, sp->comstat[0]);
1459 gget8(b, idx++, sp->comstat[1]);
1460 gget8(b, idx++, sp->comstat[2]);
1461#if 0
1462 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1463#endif
1464 return (0);
1465}
1466
1467/*
1468 * This is the mirror function to ses_decode, but we set the 'select'
1469 * bit for the object which we're interested in. All other objects,
1470 * after a status fetch, should have that bit off. Hmm. It'd be easy
1471 * enough to ensure this, so we will.
1472 */
1473
1474static int
1475ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1476{
1477 int idx, i;
1478
1479 /*
1480 * If it's overall enclosure status being sought, get that.
1481 * We need at least 2 bytes of status data to get that.
1482 */
1483 if (elt == -1) {
1484 if (amt < 2)
1485 return (-1);
1486 i = 0;
1487 sset8(b, i, 0);
1488 sset8(b, i, sp->comstatus & 0xf);
1489#if 0
1490 PRINTF("set EncStat %x\n", sp->comstatus);
1491#endif
1492 return (0);
1493 }
1494
1495 /*
1496 * Check to make sure that the Mth element is legal for type Elt.
1497 */
1498
1499 if (elm >= ep[elt])
1500 return (-1);
1501
1502 /*
1503 * Starting at offset 8, start skipping over the storage
1504 * for the element types we're not interested in.
1505 */
1506 for (idx = 8, i = 0; i < elt; i++) {
1507 idx += ((ep[i] + 1) * 4);
1508 }
1509
1510 /*
1511 * Skip over Overall status for this element type.
1512 */
1513 idx += 4;
1514
1515 /*
1516 * And skip to the index for the Mth element that we're going for.
1517 */
1518 idx += (4 * elm);
1519
1520 /*
1521 * Make sure we haven't overflowed the buffer.
1522 */
1523 if (idx+4 > amt)
1524 return (-1);
1525
1526 /*
1527 * Set the status.
1528 */
1529 sset8(b, idx, sp->comstatus);
1530 sset8(b, idx, sp->comstat[0]);
1531 sset8(b, idx, sp->comstat[1]);
1532 sset8(b, idx, sp->comstat[2]);
1533 idx -= 4;
1534
1535#if 0
1536 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1537 elt, elm, idx, sp->comstatus, sp->comstat[0],
1538 sp->comstat[1], sp->comstat[2]);
1539#endif
1540
1541 /*
1542 * Now make sure all other 'Select' bits are off.
1543 */
1544 for (i = 8; i < amt; i += 4) {
1545 if (i != idx)
1546 b[i] &= ~0x80;
1547 }
1548 /*
1549 * And make sure the INVOP bit is clear.
1550 */
1551 b[2] &= ~0x10;
1552
1553 return (0);
1554}
1555
1556/*
1557 * SAF-TE Type Device Emulation
1558 */
1559
1560static int safte_getconfig(ses_softc_t *);
fc6d0222 1561static int safte_rdstat(ses_softc_t *, int);
984263bc
MD
1562static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1563static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1564static void wrslot_stat(ses_softc_t *, int);
1565static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1566
1567#define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1568 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1569/*
1570 * SAF-TE specific defines- Mandatory ones only...
1571 */
1572
1573/*
1574 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1575 */
1576#define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1577#define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1578#define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1579
1580/*
1581 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1582 */
1583#define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1584#define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1585#define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1586#define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1587#define SAFTE_WT_GLOBAL 0x15 /* send global command */
1588
1589
1590#define SAFT_SCRATCH 64
1591#define NPSEUDO_THERM 16
1592#define NPSEUDO_ALARM 1
1593struct scfg {
1594 /*
1595 * Cached Configuration
1596 */
1597 uint8_t Nfans; /* Number of Fans */
1598 uint8_t Npwr; /* Number of Power Supplies */
1599 uint8_t Nslots; /* Number of Device Slots */
1600 uint8_t DoorLock; /* Door Lock Installed */
1601 uint8_t Ntherm; /* Number of Temperature Sensors */
1602 uint8_t Nspkrs; /* Number of Speakers */
1603 uint8_t Nalarm; /* Number of Alarms (at least one) */
1604 /*
1605 * Cached Flag Bytes for Global Status
1606 */
1607 uint8_t flag1;
1608 uint8_t flag2;
1609 /*
1610 * What object index ID is where various slots start.
1611 */
1612 uint8_t pwroff;
1613 uint8_t slotoff;
1614#define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1615};
1616
1617#define SAFT_FLG1_ALARM 0x1
1618#define SAFT_FLG1_GLOBFAIL 0x2
1619#define SAFT_FLG1_GLOBWARN 0x4
1620#define SAFT_FLG1_ENCPWROFF 0x8
1621#define SAFT_FLG1_ENCFANFAIL 0x10
1622#define SAFT_FLG1_ENCPWRFAIL 0x20
1623#define SAFT_FLG1_ENCDRVFAIL 0x40
1624#define SAFT_FLG1_ENCDRVWARN 0x80
1625
1626#define SAFT_FLG2_LOCKDOOR 0x4
1627#define SAFT_PRIVATE sizeof (struct scfg)
1628
1629static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1630#define SAFT_BAIL(r, x, k, l) \
4c6990b9 1631 if ((r) >= (x)) { \
984263bc 1632 SES_LOG(ssc, safte_2little, x, __LINE__);\
4c6990b9 1633 SES_FREE((k), (l)); \
984263bc
MD
1634 return (EIO); \
1635 }
1636
1637
fb2e6209 1638static int
984263bc
MD
1639safte_softc_init(ses_softc_t *ssc, int doinit)
1640{
1641 int err, i, r;
1642 struct scfg *cc;
1643
1644 if (doinit == 0) {
1645 if (ssc->ses_nobjects) {
1646 if (ssc->ses_objmap) {
1647 SES_FREE(ssc->ses_objmap,
1648 ssc->ses_nobjects * sizeof (encobj));
1649 ssc->ses_objmap = NULL;
1650 }
1651 ssc->ses_nobjects = 0;
1652 }
1653 if (ssc->ses_private) {
1654 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1655 ssc->ses_private = NULL;
1656 }
1657 return (0);
1658 }
1659
1660 if (ssc->ses_private == NULL) {
1661 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1662 if (ssc->ses_private == NULL) {
1663 return (ENOMEM);
1664 }
1665 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1666 }
1667
1668 ssc->ses_nobjects = 0;
1669 ssc->ses_encstat = 0;
1670
1671 if ((err = safte_getconfig(ssc)) != 0) {
1672 return (err);
1673 }
1674
1675 /*
1676 * The number of objects here, as well as that reported by the
1677 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1678 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1679 */
1680 cc = ssc->ses_private;
1681 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1682 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1683 ssc->ses_objmap = (encobj *)
1684 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1685 if (ssc->ses_objmap == NULL) {
1686 return (ENOMEM);
1687 }
1688 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1689
1690 r = 0;
1691 /*
1692 * Note that this is all arranged for the convenience
1693 * in later fetches of status.
1694 */
1695 for (i = 0; i < cc->Nfans; i++)
1696 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1697 cc->pwroff = (uint8_t) r;
1698 for (i = 0; i < cc->Npwr; i++)
1699 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1700 for (i = 0; i < cc->DoorLock; i++)
1701 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1702 for (i = 0; i < cc->Nspkrs; i++)
1703 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1704 for (i = 0; i < cc->Ntherm; i++)
1705 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1706 for (i = 0; i < NPSEUDO_THERM; i++)
1707 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1708 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1709 cc->slotoff = (uint8_t) r;
1710 for (i = 0; i < cc->Nslots; i++)
1711 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1712 return (0);
1713}
1714
fb2e6209 1715static int
984263bc
MD
1716safte_init_enc(ses_softc_t *ssc)
1717{
1718 int err;
1719 static char cdb0[6] = { SEND_DIAGNOSTIC };
1720
1721 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1722 if (err) {
1723 return (err);
1724 }
1725 DELAY(5000);
1726 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1727 return (err);
1728}
1729
fb2e6209 1730static int
984263bc
MD
1731safte_get_encstat(ses_softc_t *ssc, int slpflg)
1732{
1733 return (safte_rdstat(ssc, slpflg));
1734}
1735
fb2e6209 1736static int
984263bc
MD
1737safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1738{
1739 struct scfg *cc = ssc->ses_private;
1740 if (cc == NULL)
1741 return (0);
1742 /*
1743 * Since SAF-TE devices aren't necessarily sticky in terms
1744 * of state, make our soft copy of enclosure status 'sticky'-
1745 * that is, things set in enclosure status stay set (as implied
1746 * by conditions set in reading object status) until cleared.
1747 */
1748 ssc->ses_encstat &= ~ALL_ENC_STAT;
1749 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1750 ssc->ses_encstat |= ENCI_SVALID;
1751 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1752 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1753 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1754 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1755 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1756 }
1757 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1758}
1759
fb2e6209 1760static int
984263bc
MD
1761safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1762{
1763 int i = (int)obp->obj_id;
1764
1765 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1766 (ssc->ses_objmap[i].svalid) == 0) {
1767 int err = safte_rdstat(ssc, slpflg);
1768 if (err)
1769 return (err);
1770 }
1771 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1772 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1773 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1774 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1775 return (0);
1776}
1777
1778
fb2e6209 1779static int
984263bc
MD
1780safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1781{
1782 int idx, err;
1783 encobj *ep;
1784 struct scfg *cc;
1785
1786
1787 SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1788 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1789 obp->cstat[3]);
1790
1791 /*
1792 * If this is clear, we don't do diddly.
1793 */
1794 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1795 return (0);
1796 }
1797
1798 err = 0;
1799 /*
1800 * Check to see if the common bits are set and do them first.
1801 */
1802 if (obp->cstat[0] & ~SESCTL_CSEL) {
1803 err = set_objstat_sel(ssc, obp, slp);
1804 if (err)
1805 return (err);
1806 }
1807
1808 cc = ssc->ses_private;
1809 if (cc == NULL)
1810 return (0);
1811
1812 idx = (int)obp->obj_id;
1813 ep = &ssc->ses_objmap[idx];
1814
1815 switch (ep->enctype) {
1816 case SESTYP_DEVICE:
1817 {
1818 uint8_t slotop = 0;
1819 /*
1820 * XXX: I should probably cache the previous state
1821 * XXX: of SESCTL_DEVOFF so that when it goes from
1822 * XXX: true to false I can then set PREPARE FOR OPERATION
1823 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1824 */
1825 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1826 slotop |= 0x2;
1827 }
1828 if (obp->cstat[2] & SESCTL_RQSID) {
1829 slotop |= 0x4;
1830 }
1831 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1832 slotop, slp);
1833 if (err)
1834 return (err);
1835 if (obp->cstat[3] & SESCTL_RQSFLT) {
1836 ep->priv |= 0x2;
1837 } else {
1838 ep->priv &= ~0x2;
1839 }
1840 if (ep->priv & 0xc6) {
1841 ep->priv &= ~0x1;
1842 } else {
1843 ep->priv |= 0x1; /* no errors */
1844 }
1845 wrslot_stat(ssc, slp);
1846 break;
1847 }
1848 case SESTYP_POWER:
1849 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1850 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1851 } else {
1852 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1853 }
1854 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1855 cc->flag2, 0, slp);
1856 if (err)
1857 return (err);
1858 if (obp->cstat[3] & SESCTL_RQSTON) {
0e224b5d 1859 wrbuf16(ssc, SAFTE_WT_ACTPWS,
984263bc
MD
1860 idx - cc->pwroff, 0, 0, slp);
1861 } else {
0e224b5d 1862 wrbuf16(ssc, SAFTE_WT_ACTPWS,
984263bc
MD
1863 idx - cc->pwroff, 0, 1, slp);
1864 }
1865 break;
1866 case SESTYP_FAN:
1867 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1868 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1869 } else {
1870 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1871 }
1872 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1873 cc->flag2, 0, slp);
1874 if (err)
1875 return (err);
1876 if (obp->cstat[3] & SESCTL_RQSTON) {
1877 uint8_t fsp;
1878 if ((obp->cstat[3] & 0x7) == 7) {
1879 fsp = 4;
1880 } else if ((obp->cstat[3] & 0x7) == 6) {
1881 fsp = 3;
1882 } else if ((obp->cstat[3] & 0x7) == 4) {
1883 fsp = 2;
1884 } else {
1885 fsp = 1;
1886 }
0e224b5d 1887 wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
984263bc 1888 } else {
0e224b5d 1889 wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
984263bc
MD
1890 }
1891 break;
1892 case SESTYP_DOORLOCK:
1893 if (obp->cstat[3] & 0x1) {
1894 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1895 } else {
1896 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1897 }
0e224b5d 1898 wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
984263bc
MD
1899 break;
1900 case SESTYP_ALARM:
1901 /*
1902 * On all nonzero but the 'muted' bit, we turn on the alarm,
1903 */
1904 obp->cstat[3] &= ~0xa;
1905 if (obp->cstat[3] & 0x40) {
1906 cc->flag2 &= ~SAFT_FLG1_ALARM;
1907 } else if (obp->cstat[3] != 0) {
1908 cc->flag2 |= SAFT_FLG1_ALARM;
1909 } else {
1910 cc->flag2 &= ~SAFT_FLG1_ALARM;
1911 }
1912 ep->priv = obp->cstat[3];
0e224b5d 1913 wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
984263bc
MD
1914 break;
1915 default:
1916 break;
1917 }
1918 ep->svalid = 0;
1919 return (0);
1920}
1921
1922static int
1923safte_getconfig(ses_softc_t *ssc)
1924{
1925 struct scfg *cfg;
1926 int err, amt;
1927 char *sdata;
1928 static char cdb[10] =
1929 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1930
1931 cfg = ssc->ses_private;
1932 if (cfg == NULL)
1933 return (ENXIO);
1934
1935 sdata = SES_MALLOC(SAFT_SCRATCH);
1936 if (sdata == NULL)
1937 return (ENOMEM);
1938
1939 amt = SAFT_SCRATCH;
1940 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1941 if (err) {
1942 SES_FREE(sdata, SAFT_SCRATCH);
1943 return (err);
1944 }
1945 amt = SAFT_SCRATCH - amt;
1946 if (amt < 6) {
1947 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1948 SES_FREE(sdata, SAFT_SCRATCH);
1949 return (EIO);
1950 }
1951 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1952 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1953 cfg->Nfans = sdata[0];
1954 cfg->Npwr = sdata[1];
1955 cfg->Nslots = sdata[2];
1956 cfg->DoorLock = sdata[3];
1957 cfg->Ntherm = sdata[4];
1958 cfg->Nspkrs = sdata[5];
1959 cfg->Nalarm = NPSEUDO_ALARM;
1960 SES_FREE(sdata, SAFT_SCRATCH);
1961 return (0);
1962}
1963
1964static int
1965safte_rdstat(ses_softc_t *ssc, int slpflg)
1966{
1967 int err, oid, r, i, hiwater, nitems, amt;
1968 uint16_t tempflags;
1969 size_t buflen;
1970 uint8_t status, oencstat;
1971 char *sdata, cdb[10];
1972 struct scfg *cc = ssc->ses_private;
1973
1974
1975 /*
1976 * The number of objects overstates things a bit,
1977 * both for the bogus 'thermometer' entries and
1978 * the drive status (which isn't read at the same
1979 * time as the enclosure status), but that's okay.
1980 */
1981 buflen = 4 * cc->Nslots;
1982 if (ssc->ses_nobjects > buflen)
1983 buflen = ssc->ses_nobjects;
1984 sdata = SES_MALLOC(buflen);
1985 if (sdata == NULL)
1986 return (ENOMEM);
1987
1988 cdb[0] = READ_BUFFER;
1989 cdb[1] = 1;
1990 cdb[2] = SAFTE_RD_RDESTS;
1991 cdb[3] = 0;
1992 cdb[4] = 0;
1993 cdb[5] = 0;
1994 cdb[6] = 0;
1995 cdb[7] = (buflen >> 8) & 0xff;
1996 cdb[8] = buflen & 0xff;
1997 cdb[9] = 0;
1998 amt = buflen;
1999 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2000 if (err) {
2001 SES_FREE(sdata, buflen);
2002 return (err);
2003 }
2004 hiwater = buflen - amt;
2005
2006
2007 /*
2008 * invalidate all status bits.
2009 */
2010 for (i = 0; i < ssc->ses_nobjects; i++)
2011 ssc->ses_objmap[i].svalid = 0;
2012 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2013 ssc->ses_encstat = 0;
2014
2015
2016 /*
2017 * Now parse returned buffer.
2018 * If we didn't get enough data back,
2019 * that's considered a fatal error.
2020 */
2021 oid = r = 0;
2022
2023 for (nitems = i = 0; i < cc->Nfans; i++) {
2024 SAFT_BAIL(r, hiwater, sdata, buflen);
2025 /*
2026 * 0 = Fan Operational
2027 * 1 = Fan is malfunctioning
2028 * 2 = Fan is not present
2029 * 0x80 = Unknown or Not Reportable Status
2030 */
2031 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
2032 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
2033 switch ((int)(uint8_t)sdata[r]) {
2034 case 0:
2035 nitems++;
2036 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2037 /*
2038 * We could get fancier and cache
2039 * fan speeds that we have set, but
2040 * that isn't done now.
2041 */
2042 ssc->ses_objmap[oid].encstat[3] = 7;
2043 break;
2044
2045 case 1:
2046 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2047 /*
2048 * FAIL and FAN STOPPED synthesized
2049 */
2050 ssc->ses_objmap[oid].encstat[3] = 0x40;
2051 /*
2052 * Enclosure marked with CRITICAL error
2053 * if only one fan or no thermometers,
2054 * else the NONCRITICAL error is set.
2055 */
2056 if (cc->Nfans == 1 || cc->Ntherm == 0)
2057 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2058 else
2059 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2060 break;
2061 case 2:
2062 ssc->ses_objmap[oid].encstat[0] =
2063 SES_OBJSTAT_NOTINSTALLED;
2064 ssc->ses_objmap[oid].encstat[3] = 0;
2065 /*
2066 * Enclosure marked with CRITICAL error
2067 * if only one fan or no thermometers,
2068 * else the NONCRITICAL error is set.
2069 */
2070 if (cc->Nfans == 1)
2071 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2072 else
2073 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2074 break;
2075 case 0x80:
2076 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2077 ssc->ses_objmap[oid].encstat[3] = 0;
2078 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2079 break;
2080 default:
2081 ssc->ses_objmap[oid].encstat[0] =
2082 SES_OBJSTAT_UNSUPPORTED;
2083 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2084 sdata[r] & 0xff);
2085 break;
2086 }
2087 ssc->ses_objmap[oid++].svalid = 1;
2088 r++;
2089 }
2090
2091 /*
2092 * No matter how you cut it, no cooling elements when there
2093 * should be some there is critical.
2094 */
2095 if (cc->Nfans && nitems == 0) {
2096 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2097 }
2098
2099
2100 for (i = 0; i < cc->Npwr; i++) {
2101 SAFT_BAIL(r, hiwater, sdata, buflen);
2102 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2103 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
2104 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
2105 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
2106 switch ((uint8_t)sdata[r]) {
2107 case 0x00: /* pws operational and on */
2108 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2109 break;
2110 case 0x01: /* pws operational and off */
2111 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2112 ssc->ses_objmap[oid].encstat[3] = 0x10;
2113 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2114 break;
2115 case 0x10: /* pws is malfunctioning and commanded on */
2116 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2117 ssc->ses_objmap[oid].encstat[3] = 0x61;
2118 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2119 break;
2120
2121 case 0x11: /* pws is malfunctioning and commanded off */
2122 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2123 ssc->ses_objmap[oid].encstat[3] = 0x51;
2124 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2125 break;
2126 case 0x20: /* pws is not present */
2127 ssc->ses_objmap[oid].encstat[0] =
2128 SES_OBJSTAT_NOTINSTALLED;
2129 ssc->ses_objmap[oid].encstat[3] = 0;
2130 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2131 break;
2132 case 0x21: /* pws is present */
2133 /*
2134 * This is for enclosures that cannot tell whether the
2135 * device is on or malfunctioning, but know that it is
2136 * present. Just fall through.
2137 */
2138 /* FALLTHROUGH */
2139 case 0x80: /* Unknown or Not Reportable Status */
2140 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2141 ssc->ses_objmap[oid].encstat[3] = 0;
2142 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2143 break;
2144 default:
2145 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2146 i, sdata[r] & 0xff);
2147 break;
2148 }
2149 ssc->ses_objmap[oid++].svalid = 1;
2150 r++;
2151 }
2152
2153 /*
2154 * Skip over Slot SCSI IDs
2155 */
2156 r += cc->Nslots;
2157
2158 /*
2159 * We always have doorlock status, no matter what,
2160 * but we only save the status if we have one.
2161 */
2162 SAFT_BAIL(r, hiwater, sdata, buflen);
2163 if (cc->DoorLock) {
2164 /*
2165 * 0 = Door Locked
2166 * 1 = Door Unlocked, or no Lock Installed
2167 * 0x80 = Unknown or Not Reportable Status
2168 */
2169 ssc->ses_objmap[oid].encstat[1] = 0;
2170 ssc->ses_objmap[oid].encstat[2] = 0;
2171 switch ((uint8_t)sdata[r]) {
2172 case 0:
2173 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2174 ssc->ses_objmap[oid].encstat[3] = 0;
2175 break;
2176 case 1:
2177 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2178 ssc->ses_objmap[oid].encstat[3] = 1;
2179 break;
2180 case 0x80:
2181 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2182 ssc->ses_objmap[oid].encstat[3] = 0;
2183 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2184 break;
2185 default:
2186 ssc->ses_objmap[oid].encstat[0] =
2187 SES_OBJSTAT_UNSUPPORTED;
2188 SES_LOG(ssc, "unknown lock status 0x%x\n",
2189 sdata[r] & 0xff);
2190 break;
2191 }
2192 ssc->ses_objmap[oid++].svalid = 1;
2193 }
2194 r++;
2195
2196 /*
2197 * We always have speaker status, no matter what,
2198 * but we only save the status if we have one.
2199 */
2200 SAFT_BAIL(r, hiwater, sdata, buflen);
2201 if (cc->Nspkrs) {
2202 ssc->ses_objmap[oid].encstat[1] = 0;
2203 ssc->ses_objmap[oid].encstat[2] = 0;
2204 if (sdata[r] == 1) {
2205 /*
2206 * We need to cache tone urgency indicators.
2207 * Someday.
2208 */
2209 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2210 ssc->ses_objmap[oid].encstat[3] = 0x8;
2211 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2212 } else if (sdata[r] == 0) {
2213 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2214 ssc->ses_objmap[oid].encstat[3] = 0;
2215 } else {
2216 ssc->ses_objmap[oid].encstat[0] =
2217 SES_OBJSTAT_UNSUPPORTED;
2218 ssc->ses_objmap[oid].encstat[3] = 0;
2219 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2220 sdata[r] & 0xff);
2221 }
2222 ssc->ses_objmap[oid++].svalid = 1;
2223 }
2224 r++;
2225
2226 for (i = 0; i < cc->Ntherm; i++) {
2227 SAFT_BAIL(r, hiwater, sdata, buflen);
2228 /*
2229 * Status is a range from -10 to 245 deg Celsius,
2230 * which we need to normalize to -20 to -245 according
2231 * to the latest SCSI spec, which makes little
2232 * sense since this would overflow an 8bit value.
2233 * Well, still, the base normalization is -20,
2234 * not -10, so we have to adjust.
2235 *
2236 * So what's over and under temperature?
2237 * Hmm- we'll state that 'normal' operating
2238 * is 10 to 40 deg Celsius.
2239 */
2240
2241 /*
2242 * Actually.... All of the units that people out in the world
2243 * seem to have do not come even close to setting a value that
2244 * complies with this spec.
2245 *
2246 * The closest explanation I could find was in an
2247 * LSI-Logic manual, which seemed to indicate that
2248 * this value would be set by whatever the I2C code
2249 * would interpolate from the output of an LM75
2250 * temperature sensor.
2251 *
2252 * This means that it is impossible to use the actual
2253 * numeric value to predict anything. But we don't want
2254 * to lose the value. So, we'll propagate the *uncorrected*
2255 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2256 * temperature flags for warnings.
2257 */
2258 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2259 ssc->ses_objmap[oid].encstat[1] = 0;
2260 ssc->ses_objmap[oid].encstat[2] = sdata[r];
fc6d0222 2261 ssc->ses_objmap[oid].encstat[3] = 0;
984263bc
MD
2262 ssc->ses_objmap[oid++].svalid = 1;
2263 r++;
2264 }
2265
2266 /*
2267 * Now, for "pseudo" thermometers, we have two bytes
2268 * of information in enclosure status- 16 bits. Actually,
2269 * the MSB is a single TEMP ALERT flag indicating whether
2270 * any other bits are set, but, thanks to fuzzy thinking,
2271 * in the SAF-TE spec, this can also be set even if no
2272 * other bits are set, thus making this really another
2273 * binary temperature sensor.
2274 */
2275
2276 SAFT_BAIL(r, hiwater, sdata, buflen);
2277 tempflags = sdata[r++];
2278 SAFT_BAIL(r, hiwater, sdata, buflen);
2279 tempflags |= (tempflags << 8) | sdata[r++];
2280
2281 for (i = 0; i < NPSEUDO_THERM; i++) {
2282 ssc->ses_objmap[oid].encstat[1] = 0;
2283 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2284 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2285 ssc->ses_objmap[4].encstat[2] = 0xff;
2286 /*
2287 * Set 'over temperature' failure.
2288 */
2289 ssc->ses_objmap[oid].encstat[3] = 8;
2290 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2291 } else {
2292 /*
2293 * We used to say 'not available' and synthesize a
2294 * nominal 30 deg (C)- that was wrong. Actually,
2295 * Just say 'OK', and use the reserved value of
2296 * zero.
2297 */
2298 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2299 ssc->ses_objmap[oid].encstat[2] = 0;
2300 ssc->ses_objmap[oid].encstat[3] = 0;
2301 }
2302 ssc->ses_objmap[oid++].svalid = 1;
2303 }
2304
2305 /*
2306 * Get alarm status.
2307 */
2308 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2309 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2310 ssc->ses_objmap[oid++].svalid = 1;
2311
2312 /*
2313 * Now get drive slot status
2314 */
2315 cdb[2] = SAFTE_RD_RDDSTS;
2316 amt = buflen;
2317 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2318 if (err) {
2319 SES_FREE(sdata, buflen);
2320 return (err);
2321 }
2322 hiwater = buflen - amt;
2323 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2324 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2325 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2326 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2327 ssc->ses_objmap[oid].encstat[2] = 0;
2328 ssc->ses_objmap[oid].encstat[3] = 0;
2329 status = sdata[r+3];
2330 if ((status & 0x1) == 0) { /* no device */
2331 ssc->ses_objmap[oid].encstat[0] =
2332 SES_OBJSTAT_NOTINSTALLED;
2333 } else {
2334 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2335 }
2336 if (status & 0x2) {
2337 ssc->ses_objmap[oid].encstat[2] = 0x8;
2338 }
2339 if ((status & 0x4) == 0) {
2340 ssc->ses_objmap[oid].encstat[3] = 0x10;
2341 }
2342 ssc->ses_objmap[oid++].svalid = 1;
2343 }
2344 /* see comment below about sticky enclosure status */
2345 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2346 SES_FREE(sdata, buflen);
2347 return (0);
2348}
2349
2350static int
2351set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2352{
2353 int idx;
2354 encobj *ep;
2355 struct scfg *cc = ssc->ses_private;
2356
2357 if (cc == NULL)
2358 return (0);
2359
2360 idx = (int)obp->obj_id;
2361 ep = &ssc->ses_objmap[idx];
2362
2363 switch (ep->enctype) {
2364 case SESTYP_DEVICE:
2365 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2366 ep->priv |= 0x40;
2367 }
2368 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2369 if (obp->cstat[0] & SESCTL_DISABLE) {
2370 ep->priv |= 0x80;
2371 /*
2372 * Hmm. Try to set the 'No Drive' flag.
2373 * Maybe that will count as a 'disable'.
2374 */
2375 }
2376 if (ep->priv & 0xc6) {
2377 ep->priv &= ~0x1;
2378 } else {
2379 ep->priv |= 0x1; /* no errors */
2380 }
2381 wrslot_stat(ssc, slp);
2382 break;
2383 case SESTYP_POWER:
2384 /*
2385 * Okay- the only one that makes sense here is to
2386 * do the 'disable' for a power supply.
2387 */
2388 if (obp->cstat[0] & SESCTL_DISABLE) {
0e224b5d 2389 wrbuf16(ssc, SAFTE_WT_ACTPWS,
984263bc
MD
2390 idx - cc->pwroff, 0, 0, slp);
2391 }
2392 break;
2393 case SESTYP_FAN:
2394 /*
2395 * Okay- the only one that makes sense here is to
2396 * set fan speed to zero on disable.
2397 */
2398 if (obp->cstat[0] & SESCTL_DISABLE) {
2399 /* remember- fans are the first items, so idx works */
0e224b5d 2400 wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
984263bc
MD
2401 }
2402 break;
2403 case SESTYP_DOORLOCK:
2404 /*
2405 * Well, we can 'disable' the lock.
2406 */
2407 if (obp->cstat[0] & SESCTL_DISABLE) {
2408 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
0e224b5d 2409 wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
984263bc
MD
2410 cc->flag2, 0, slp);
2411 }
2412 break;
2413 case SESTYP_ALARM:
2414 /*
2415 * Well, we can 'disable' the alarm.
2416 */
2417 if (obp->cstat[0] & SESCTL_DISABLE) {
2418 cc->flag2 &= ~SAFT_FLG1_ALARM;
2419 ep->priv |= 0x40; /* Muted */
0e224b5d 2420 wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
984263bc
MD
2421 cc->flag2, 0, slp);
2422 }
2423 break;
2424 default:
2425 break;
2426 }
2427 ep->svalid = 0;
2428 return (0);
2429}
2430
2431/*
2432 * This function handles all of the 16 byte WRITE BUFFER commands.
2433 */
2434static int
2435wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2436 uint8_t b3, int slp)
2437{
2438 int err, amt;
2439 char *sdata;
2440 struct scfg *cc = ssc->ses_private;
2441 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2442
2443 if (cc == NULL)
2444 return (0);
2445
2446 sdata = SES_MALLOC(16);
2447 if (sdata == NULL)
2448 return (ENOMEM);
2449
2450 SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2451
2452 sdata[0] = op;
2453 sdata[1] = b1;
2454 sdata[2] = b2;
2455 sdata[3] = b3;
2456 MEMZERO(&sdata[4], 12);
2457 amt = -16;
2458 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2459 SES_FREE(sdata, 16);
2460 return (err);
2461}
2462
2463/*
2464 * This function updates the status byte for the device slot described.
2465 *
2466 * Since this is an optional SAF-TE command, there's no point in
2467 * returning an error.
2468 */
2469static void
2470wrslot_stat(ses_softc_t *ssc, int slp)
2471{
2472 int i, amt;
2473 encobj *ep;
2474 char cdb[10], *sdata;
2475 struct scfg *cc = ssc->ses_private;
2476
2477 if (cc == NULL)
2478 return;
2479
2480 SES_DLOG(ssc, "saf_wrslot\n");
2481 cdb[0] = WRITE_BUFFER;
2482 cdb[1] = 1;
2483 cdb[2] = 0;
2484 cdb[3] = 0;
2485 cdb[4] = 0;
2486 cdb[5] = 0;
2487 cdb[6] = 0;
2488 cdb[7] = 0;
2489 cdb[8] = cc->Nslots * 3 + 1;
2490 cdb[9] = 0;
2491
2492 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2493 if (sdata == NULL)
2494 return;
2495 MEMZERO(sdata, cc->Nslots * 3 + 1);
2496
2497 sdata[0] = SAFTE_WT_DSTAT;
2498 for (i = 0; i < cc->Nslots; i++) {
2499 ep = &ssc->ses_objmap[cc->slotoff + i];
2500 SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2501 sdata[1 + (3 * i)] = ep->priv & 0xff;
2502 }
2503 amt = -(cc->Nslots * 3 + 1);
0e224b5d 2504 ses_runcmd(ssc, cdb, 10, sdata, &amt);
984263bc
MD
2505 SES_FREE(sdata, cc->Nslots * 3 + 1);
2506}
2507
2508/*
2509 * This function issues the "PERFORM SLOT OPERATION" command.
2510 */
2511static int
2512perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2513{
2514 int err, amt;
2515 char *sdata;
2516 struct scfg *cc = ssc->ses_private;
2517 static char cdb[10] =
2518 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2519
2520 if (cc == NULL)
2521 return (0);
2522
2523 sdata = SES_MALLOC(SAFT_SCRATCH);
2524 if (sdata == NULL)
2525 return (ENOMEM);
2526 MEMZERO(sdata, SAFT_SCRATCH);
2527
2528 sdata[0] = SAFTE_WT_SLTOP;
2529 sdata[1] = slot;
2530 sdata[2] = opflag;
2531 SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2532 amt = -SAFT_SCRATCH;
2533 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2534 SES_FREE(sdata, SAFT_SCRATCH);
2535 return (err);
2536}