Add noops for vga_pxlmouse_direct and vga_pxlmouse_planar in the case where
[dragonfly.git] / sys / kern / vfs_subr.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
3446c007 40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.38 2004/08/28 19:02:05 dillon Exp $
984263bc
MD
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
984263bc 61#include <sys/proc.h>
dadab5e9 62#include <sys/namei.h>
984263bc
MD
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72
73#include <vm/vm.h>
74#include <vm/vm_object.h>
75#include <vm/vm_extern.h>
6ef943a3 76#include <vm/vm_kern.h>
984263bc
MD
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
3020e3be 84#include <sys/buf2.h>
f5865223 85#include <sys/thread2.h>
3020e3be 86
984263bc
MD
87static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88
402ed7e1 89static void insmntque (struct vnode *vp, struct mount *mp);
dd98570a
MD
90static void vclean (struct vnode *vp, lwkt_tokref_t vlock,
91 int flags, struct thread *td);
92
93static unsigned long numvnodes;
984263bc
MD
94SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
95
96enum vtype iftovt_tab[16] = {
97 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99};
100int vttoif_tab[9] = {
101 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102 S_IFSOCK, S_IFIFO, S_IFMT,
103};
104
105static TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
106
107static u_long wantfreevnodes = 25;
dd98570a
MD
108SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
109 &wantfreevnodes, 0, "");
984263bc 110static u_long freevnodes = 0;
dd98570a
MD
111SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD,
112 &freevnodes, 0, "");
984263bc
MD
113
114static int reassignbufcalls;
dd98570a
MD
115SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
116 &reassignbufcalls, 0, "");
984263bc 117static int reassignbufloops;
dd98570a
MD
118SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
119 &reassignbufloops, 0, "");
984263bc 120static int reassignbufsortgood;
dd98570a
MD
121SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
122 &reassignbufsortgood, 0, "");
984263bc 123static int reassignbufsortbad;
dd98570a
MD
124SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
125 &reassignbufsortbad, 0, "");
984263bc 126static int reassignbufmethod = 1;
dd98570a
MD
127SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
128 &reassignbufmethod, 0, "");
984263bc
MD
129
130#ifdef ENABLE_VFS_IOOPT
131int vfs_ioopt = 0;
132SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
133#endif
134
135struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
8a8d5d85
MD
136struct lwkt_token mountlist_token;
137struct lwkt_token mntvnode_token;
984263bc 138int nfs_mount_type = -1;
8a8d5d85
MD
139static struct lwkt_token mntid_token;
140static struct lwkt_token vnode_free_list_token;
141static struct lwkt_token spechash_token;
984263bc
MD
142struct nfs_public nfs_pub; /* publicly exported FS */
143static vm_zone_t vnode_zone;
144
145/*
146 * The workitem queue.
147 */
148#define SYNCER_MAXDELAY 32
149static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
150time_t syncdelay = 30; /* max time to delay syncing data */
dd98570a
MD
151SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW,
152 &syncdelay, 0, "VFS data synchronization delay");
984263bc 153time_t filedelay = 30; /* time to delay syncing files */
dd98570a
MD
154SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
155 &filedelay, 0, "File synchronization delay");
984263bc 156time_t dirdelay = 29; /* time to delay syncing directories */
dd98570a
MD
157SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
158 &dirdelay, 0, "Directory synchronization delay");
984263bc 159time_t metadelay = 28; /* time to delay syncing metadata */
dd98570a
MD
160SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
161 &metadelay, 0, "VFS metadata synchronization delay");
984263bc
MD
162static int rushjob; /* number of slots to run ASAP */
163static int stat_rush_requests; /* number of times I/O speeded up */
dd98570a
MD
164SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
165 &stat_rush_requests, 0, "");
984263bc
MD
166
167static int syncer_delayno = 0;
168static long syncer_mask;
169LIST_HEAD(synclist, vnode);
170static struct synclist *syncer_workitem_pending;
171
172int desiredvnodes;
173SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
dd98570a 174 &desiredvnodes, 0, "Maximum number of vnodes");
984263bc
MD
175static int minvnodes;
176SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
dd98570a 177 &minvnodes, 0, "Minimum number of vnodes");
984263bc 178static int vnlru_nowhere = 0;
dd98570a
MD
179SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
180 &vnlru_nowhere, 0,
181 "Number of times the vnlru process ran without success");
984263bc 182
402ed7e1
RG
183static void vfs_free_addrlist (struct netexport *nep);
184static int vfs_free_netcred (struct radix_node *rn, void *w);
185static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
186 struct export_args *argp);
984263bc 187
41a01a4d
MD
188#define VSHOULDFREE(vp) \
189 (!((vp)->v_flag & (VFREE|VDOOMED)) && \
190 !(vp)->v_holdcnt && !(vp)->v_usecount && \
191 (!(vp)->v_object || \
192 !((vp)->v_object->ref_count || (vp)->v_object->resident_page_count)))
193
194#define VMIGHTFREE(vp) \
195 (((vp)->v_flag & (VFREE|VDOOMED|VXLOCK)) == 0 && \
196 cache_leaf_test(vp) == 0 && (vp)->v_usecount == 0)
197
198#define VSHOULDBUSY(vp) \
199 (((vp)->v_flag & VFREE) && \
200 ((vp)->v_holdcnt || (vp)->v_usecount))
201
202static void vbusy(struct vnode *vp);
203static void vfree(struct vnode *vp);
204static void vmaybefree(struct vnode *vp);
205
e4c9c0c8 206extern int dev_ref_debug;
0961aa92 207extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
e4c9c0c8 208
41a01a4d
MD
209/*
210 * NOTE: the vnode interlock must be held on call.
211 */
212static __inline void
213vmaybefree(struct vnode *vp)
214{
215 if (VSHOULDFREE(vp))
216 vfree(vp);
217}
218
984263bc
MD
219/*
220 * Initialize the vnode management data structures.
221 */
222void
dd98570a 223vntblinit(void)
984263bc 224{
6ef943a3
MD
225 /*
226 * Desired vnodes is a result of the physical page count
227 * and the size of kernel's heap. It scales in proportion
228 * to the amount of available physical memory. This can
229 * cause trouble on 64-bit and large memory platforms.
230 */
231 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
232 desiredvnodes =
233 min(maxproc + vmstats.v_page_count /4,
234 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
235 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
236
984263bc 237 minvnodes = desiredvnodes / 4;
41a01a4d
MD
238 lwkt_token_init(&mountlist_token);
239 lwkt_token_init(&mntvnode_token);
240 lwkt_token_init(&mntid_token);
241 lwkt_token_init(&spechash_token);
984263bc 242 TAILQ_INIT(&vnode_free_list);
41a01a4d 243 lwkt_token_init(&vnode_free_list_token);
984263bc
MD
244 vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
245 /*
246 * Initialize the filesystem syncer.
247 */
248 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
249 &syncer_mask);
250 syncer_maxdelay = syncer_mask + 1;
251}
252
253/*
254 * Mark a mount point as busy. Used to synchronize access and to delay
255 * unmounting. Interlock is not released on failure.
256 */
257int
dd98570a
MD
258vfs_busy(struct mount *mp, int flags,
259 lwkt_tokref_t interlkp, struct thread *td)
984263bc
MD
260{
261 int lkflags;
262
263 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
264 if (flags & LK_NOWAIT)
265 return (ENOENT);
266 mp->mnt_kern_flag |= MNTK_MWAIT;
984263bc
MD
267 /*
268 * Since all busy locks are shared except the exclusive
269 * lock granted when unmounting, the only place that a
270 * wakeup needs to be done is at the release of the
271 * exclusive lock at the end of dounmount.
41a01a4d
MD
272 *
273 * note: interlkp is a serializer and thus can be safely
274 * held through any sleep
984263bc 275 */
377d4740 276 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
984263bc
MD
277 return (ENOENT);
278 }
279 lkflags = LK_SHARED | LK_NOPAUSE;
280 if (interlkp)
281 lkflags |= LK_INTERLOCK;
dadab5e9 282 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
984263bc
MD
283 panic("vfs_busy: unexpected lock failure");
284 return (0);
285}
286
287/*
288 * Free a busy filesystem.
289 */
290void
dadab5e9 291vfs_unbusy(struct mount *mp, struct thread *td)
984263bc 292{
dadab5e9 293 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
984263bc
MD
294}
295
296/*
297 * Lookup a filesystem type, and if found allocate and initialize
298 * a mount structure for it.
299 *
300 * Devname is usually updated by mount(8) after booting.
301 */
302int
dadab5e9 303vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
984263bc 304{
dadab5e9 305 struct thread *td = curthread; /* XXX */
984263bc
MD
306 struct vfsconf *vfsp;
307 struct mount *mp;
308
309 if (fstypename == NULL)
310 return (ENODEV);
6b98993e 311 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
984263bc
MD
312 if (!strcmp(vfsp->vfc_name, fstypename))
313 break;
6b98993e 314 }
984263bc
MD
315 if (vfsp == NULL)
316 return (ENODEV);
317 mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
318 bzero((char *)mp, (u_long)sizeof(struct mount));
377d4740 319 lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
41a01a4d 320 vfs_busy(mp, LK_NOWAIT, NULL, td);
984263bc
MD
321 TAILQ_INIT(&mp->mnt_nvnodelist);
322 TAILQ_INIT(&mp->mnt_reservedvnlist);
323 mp->mnt_nvnodelistsize = 0;
324 mp->mnt_vfc = vfsp;
325 mp->mnt_op = vfsp->vfc_vfsops;
326 mp->mnt_flag = MNT_RDONLY;
327 mp->mnt_vnodecovered = NULLVP;
328 vfsp->vfc_refcount++;
329 mp->mnt_iosize_max = DFLTPHYS;
330 mp->mnt_stat.f_type = vfsp->vfc_typenum;
331 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
332 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
333 mp->mnt_stat.f_mntonname[0] = '/';
334 mp->mnt_stat.f_mntonname[1] = 0;
335 (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
336 *mpp = mp;
337 return (0);
338}
339
984263bc
MD
340/*
341 * Lookup a mount point by filesystem identifier.
342 */
343struct mount *
dd98570a 344vfs_getvfs(fsid_t *fsid)
984263bc 345{
1fd87d54 346 struct mount *mp;
41a01a4d 347 lwkt_tokref ilock;
984263bc 348
41a01a4d 349 lwkt_gettoken(&ilock, &mountlist_token);
984263bc
MD
350 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
351 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
352 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
41a01a4d 353 break;
984263bc
MD
354 }
355 }
41a01a4d
MD
356 lwkt_reltoken(&ilock);
357 return (mp);
984263bc
MD
358}
359
360/*
361 * Get a new unique fsid. Try to make its val[0] unique, since this value
362 * will be used to create fake device numbers for stat(). Also try (but
363 * not so hard) make its val[0] unique mod 2^16, since some emulators only
364 * support 16-bit device numbers. We end up with unique val[0]'s for the
365 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
366 *
367 * Keep in mind that several mounts may be running in parallel. Starting
368 * the search one past where the previous search terminated is both a
369 * micro-optimization and a defense against returning the same fsid to
370 * different mounts.
371 */
372void
dd98570a 373vfs_getnewfsid(struct mount *mp)
984263bc
MD
374{
375 static u_int16_t mntid_base;
41a01a4d 376 lwkt_tokref ilock;
984263bc
MD
377 fsid_t tfsid;
378 int mtype;
379
41a01a4d 380 lwkt_gettoken(&ilock, &mntid_token);
984263bc
MD
381 mtype = mp->mnt_vfc->vfc_typenum;
382 tfsid.val[1] = mtype;
383 mtype = (mtype & 0xFF) << 24;
384 for (;;) {
385 tfsid.val[0] = makeudev(255,
386 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
387 mntid_base++;
388 if (vfs_getvfs(&tfsid) == NULL)
389 break;
390 }
391 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
392 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
41a01a4d 393 lwkt_reltoken(&ilock);
984263bc
MD
394}
395
396/*
397 * Knob to control the precision of file timestamps:
398 *
399 * 0 = seconds only; nanoseconds zeroed.
400 * 1 = seconds and nanoseconds, accurate within 1/HZ.
401 * 2 = seconds and nanoseconds, truncated to microseconds.
402 * >=3 = seconds and nanoseconds, maximum precision.
403 */
404enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
405
406static int timestamp_precision = TSP_SEC;
407SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
dd98570a 408 &timestamp_precision, 0, "");
984263bc
MD
409
410/*
411 * Get a current timestamp.
412 */
413void
dd98570a 414vfs_timestamp(struct timespec *tsp)
984263bc
MD
415{
416 struct timeval tv;
417
418 switch (timestamp_precision) {
419 case TSP_SEC:
420 tsp->tv_sec = time_second;
421 tsp->tv_nsec = 0;
422 break;
423 case TSP_HZ:
424 getnanotime(tsp);
425 break;
426 case TSP_USEC:
427 microtime(&tv);
428 TIMEVAL_TO_TIMESPEC(&tv, tsp);
429 break;
430 case TSP_NSEC:
431 default:
432 nanotime(tsp);
433 break;
434 }
435}
436
437/*
438 * Set vnode attributes to VNOVAL
439 */
440void
dd98570a 441vattr_null(struct vattr *vap)
984263bc 442{
984263bc
MD
443 vap->va_type = VNON;
444 vap->va_size = VNOVAL;
445 vap->va_bytes = VNOVAL;
446 vap->va_mode = VNOVAL;
447 vap->va_nlink = VNOVAL;
448 vap->va_uid = VNOVAL;
449 vap->va_gid = VNOVAL;
450 vap->va_fsid = VNOVAL;
451 vap->va_fileid = VNOVAL;
452 vap->va_blocksize = VNOVAL;
453 vap->va_rdev = VNOVAL;
454 vap->va_atime.tv_sec = VNOVAL;
455 vap->va_atime.tv_nsec = VNOVAL;
456 vap->va_mtime.tv_sec = VNOVAL;
457 vap->va_mtime.tv_nsec = VNOVAL;
458 vap->va_ctime.tv_sec = VNOVAL;
459 vap->va_ctime.tv_nsec = VNOVAL;
460 vap->va_flags = VNOVAL;
461 vap->va_gen = VNOVAL;
462 vap->va_vaflags = 0;
463}
464
465/*
466 * This routine is called when we have too many vnodes. It attempts
467 * to free <count> vnodes and will potentially free vnodes that still
468 * have VM backing store (VM backing store is typically the cause
469 * of a vnode blowout so we want to do this). Therefore, this operation
470 * is not considered cheap.
471 *
472 * A number of conditions may prevent a vnode from being reclaimed.
473 * the buffer cache may have references on the vnode, a directory
474 * vnode may still have references due to the namei cache representing
475 * underlying files, or the vnode may be in active use. It is not
476 * desireable to reuse such vnodes. These conditions may cause the
477 * number of vnodes to reach some minimum value regardless of what
478 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
479 */
480static int
481vlrureclaim(struct mount *mp)
482{
483 struct vnode *vp;
41a01a4d
MD
484 lwkt_tokref ilock;
485 lwkt_tokref vlock;
984263bc
MD
486 int done;
487 int trigger;
488 int usevnodes;
489 int count;
490
491 /*
492 * Calculate the trigger point, don't allow user
493 * screwups to blow us up. This prevents us from
494 * recycling vnodes with lots of resident pages. We
495 * aren't trying to free memory, we are trying to
496 * free vnodes.
497 */
498 usevnodes = desiredvnodes;
499 if (usevnodes <= 0)
500 usevnodes = 1;
12e4aaff 501 trigger = vmstats.v_page_count * 2 / usevnodes;
984263bc
MD
502
503 done = 0;
41a01a4d 504 lwkt_gettoken(&ilock, &mntvnode_token);
984263bc
MD
505 count = mp->mnt_nvnodelistsize / 10 + 1;
506 while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
41a01a4d
MD
507 /*
508 * __VNODESCAN__
509 *
510 * The VP will stick around while we hold mntvnode_token,
511 * at least until we block, so we can safely do an initial
512 * check. But we have to check again after obtaining
513 * the vnode interlock. vp->v_interlock points to stable
514 * storage so it's ok if the vp gets ripped out from
515 * under us while we are blocked.
516 */
517 if (vp->v_type == VNON ||
518 vp->v_type == VBAD ||
519 !VMIGHTFREE(vp) || /* critical path opt */
520 (vp->v_object &&
521 vp->v_object->resident_page_count >= trigger)
522 ) {
523 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
524 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
525 --count;
526 continue;
527 }
528
529 /*
530 * Get the interlock, delay moving the node to the tail so
531 * we don't race against new additions to the mountlist.
532 */
533 lwkt_gettoken(&vlock, vp->v_interlock);
534 if (TAILQ_FIRST(&mp->mnt_nvnodelist) != vp) {
535 lwkt_reltoken(&vlock);
536 continue;
537 }
984263bc 538 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
41a01a4d 539 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
984263bc 540
41a01a4d
MD
541 /*
542 * Must check again
543 */
544 if (vp->v_type == VNON ||
545 vp->v_type == VBAD ||
546 !VMIGHTFREE(vp) || /* critical path opt */
547 (vp->v_object &&
548 vp->v_object->resident_page_count >= trigger)
984263bc 549 ) {
41a01a4d
MD
550 lwkt_reltoken(&vlock);
551 --count;
552 continue;
984263bc 553 }
41a01a4d
MD
554 vgonel(vp, &vlock, curthread);
555 ++done;
984263bc
MD
556 --count;
557 }
41a01a4d 558 lwkt_reltoken(&ilock);
984263bc
MD
559 return done;
560}
561
562/*
563 * Attempt to recycle vnodes in a context that is always safe to block.
564 * Calling vlrurecycle() from the bowels of file system code has some
565 * interesting deadlock problems.
566 */
bc6dffab 567static struct thread *vnlruthread;
984263bc
MD
568static int vnlruproc_sig;
569
570static void
571vnlru_proc(void)
572{
573 struct mount *mp, *nmp;
41a01a4d 574 lwkt_tokref ilock;
984263bc
MD
575 int s;
576 int done;
0cfcada1 577 struct thread *td = curthread;
984263bc 578
bc6dffab 579 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
984263bc
MD
580 SHUTDOWN_PRI_FIRST);
581
582 s = splbio();
583 for (;;) {
0cfcada1 584 kproc_suspend_loop();
984263bc
MD
585 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
586 vnlruproc_sig = 0;
587 wakeup(&vnlruproc_sig);
377d4740 588 tsleep(td, 0, "vlruwt", hz);
984263bc
MD
589 continue;
590 }
591 done = 0;
41a01a4d 592 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 593 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 594 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
984263bc
MD
595 nmp = TAILQ_NEXT(mp, mnt_list);
596 continue;
597 }
598 done += vlrureclaim(mp);
41a01a4d 599 lwkt_gettokref(&ilock);
984263bc 600 nmp = TAILQ_NEXT(mp, mnt_list);
dadab5e9 601 vfs_unbusy(mp, td);
984263bc 602 }
41a01a4d 603 lwkt_reltoken(&ilock);
984263bc
MD
604 if (done == 0) {
605 vnlru_nowhere++;
377d4740 606 tsleep(td, 0, "vlrup", hz * 3);
984263bc
MD
607 }
608 }
609 splx(s);
610}
611
612static struct kproc_desc vnlru_kp = {
613 "vnlru",
614 vnlru_proc,
bc6dffab 615 &vnlruthread
984263bc
MD
616};
617SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
618
619/*
620 * Routines having to do with the management of the vnode table.
621 */
984263bc
MD
622
623/*
624 * Return the next vnode from the free list.
625 */
626int
3446c007
MD
627getnewvnode(enum vtagtype tag, struct mount *mp, struct vop_ops *ops,
628 struct vnode **vpp, int lktimeout, int lkflags)
984263bc
MD
629{
630 int s;
dadab5e9 631 struct thread *td = curthread; /* XXX */
984263bc 632 struct vnode *vp = NULL;
41a01a4d 633 struct vnode *xvp;
984263bc 634 vm_object_t object;
41a01a4d
MD
635 lwkt_tokref ilock;
636 lwkt_tokref vlock;
984263bc 637
da6efd2c 638 s = splbio(); /* YYY remove me */
984263bc
MD
639
640 /*
641 * Try to reuse vnodes if we hit the max. This situation only
642 * occurs in certain large-memory (2G+) situations. We cannot
643 * attempt to directly reclaim vnodes due to nasty recursion
644 * problems.
645 */
646 while (numvnodes - freevnodes > desiredvnodes) {
647 if (vnlruproc_sig == 0) {
648 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
bc6dffab 649 wakeup(vnlruthread);
984263bc 650 }
377d4740 651 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
984263bc
MD
652 }
653
654
655 /*
656 * Attempt to reuse a vnode already on the free list, allocating
657 * a new vnode if we can't find one or if we have not reached a
658 * good minimum for good LRU performance.
659 */
41a01a4d 660 lwkt_gettoken(&ilock, &vnode_free_list_token);
984263bc
MD
661 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
662 int count;
663
664 for (count = 0; count < freevnodes; count++) {
41a01a4d
MD
665 /*
666 * __VNODESCAN__
667 *
668 * Pull the next vnode off the free list and do some
669 * sanity checks. Note that regardless of how we
670 * block, if freevnodes is non-zero there had better
671 * be something on the list.
672 */
984263bc 673 vp = TAILQ_FIRST(&vnode_free_list);
41a01a4d 674 if (vp == NULL)
984263bc
MD
675 panic("getnewvnode: free vnode isn't");
676
8a8d5d85 677 /*
41a01a4d
MD
678 * Move the vnode to the end of the list so other
679 * processes do not double-block trying to recycle
680 * the same vnode (as an optimization), then get
681 * the interlock.
8a8d5d85 682 */
41a01a4d
MD
683 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
684 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
685
686 /*
687 * Skip vnodes that are in the process of being
688 * held or referenced. Since the act of adding or
689 * removing a vnode on the freelist requires a token
690 * and may block, the ref count may be adjusted
691 * prior to its addition or removal.
692 */
693 if (VSHOULDBUSY(vp)) {
8a8d5d85
MD
694 vp = NULL;
695 continue;
696 }
697
41a01a4d 698
8a8d5d85 699 /*
41a01a4d
MD
700 * Obtain the vnode interlock and check that the
701 * vnode is still on the free list.
702 *
703 * This normally devolves into a degenerate case so
704 * it is optimal. Loop up if it isn't. Note that
705 * the vnode could be in the middle of being moved
706 * off the free list (the VSHOULDBUSY() check) and
707 * must be skipped if so.
8a8d5d85 708 */
41a01a4d
MD
709 lwkt_gettoken(&vlock, vp->v_interlock);
710 TAILQ_FOREACH_REVERSE(xvp, &vnode_free_list,
711 freelst, v_freelist) {
712 if (vp == xvp)
713 break;
714 }
715 if (vp != xvp || VSHOULDBUSY(vp)) {
8a8d5d85
MD
716 vp = NULL;
717 continue;
718 }
719
720 /*
41a01a4d
MD
721 * We now safely own the vnode. If the vnode has
722 * an object do not recycle it if its VM object
723 * has resident pages or references.
8a8d5d85 724 */
41a01a4d
MD
725 if ((VOP_GETVOBJECT(vp, &object) == 0 &&
726 (object->resident_page_count || object->ref_count))
727 ) {
728 lwkt_reltoken(&vlock);
984263bc
MD
729 vp = NULL;
730 continue;
731 }
8a8d5d85 732
7ea21ed1 733 /*
41a01a4d
MD
734 * We can almost reuse this vnode. But we don't want
735 * to recycle it if the vnode has children in the
736 * namecache because that breaks the namecache's
737 * path element chain. (YYY use nc_refs for the
738 * check?)
7ea21ed1 739 */
41a01a4d
MD
740 KKASSERT(vp->v_flag & VFREE);
741 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
742
743 if (TAILQ_FIRST(&vp->v_namecache) == NULL ||
744 cache_leaf_test(vp) >= 0) {
745 /* ok, we can reuse this vnode */
746 break;
984263bc 747 }
41a01a4d
MD
748 lwkt_reltoken(&vlock);
749 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
750 vp = NULL;
984263bc
MD
751 }
752 }
753
41a01a4d
MD
754 /*
755 * If vp is non-NULL we hold it's interlock.
756 */
984263bc
MD
757 if (vp) {
758 vp->v_flag |= VDOOMED;
759 vp->v_flag &= ~VFREE;
760 freevnodes--;
41a01a4d 761 lwkt_reltoken(&ilock);
8a8d5d85 762 cache_purge(vp); /* YYY may block */
984263bc
MD
763 vp->v_lease = NULL;
764 if (vp->v_type != VBAD) {
41a01a4d 765 vgonel(vp, &vlock, td);
984263bc 766 } else {
41a01a4d 767 lwkt_reltoken(&vlock);
984263bc
MD
768 }
769
770#ifdef INVARIANTS
771 {
772 int s;
773
774 if (vp->v_data)
775 panic("cleaned vnode isn't");
776 s = splbio();
777 if (vp->v_numoutput)
778 panic("Clean vnode has pending I/O's");
779 splx(s);
780 }
781#endif
782 vp->v_flag = 0;
783 vp->v_lastw = 0;
784 vp->v_lasta = 0;
785 vp->v_cstart = 0;
786 vp->v_clen = 0;
787 vp->v_socket = 0;
788 vp->v_writecount = 0; /* XXX */
3446c007 789 lockreinit(&vp->v_lock, 0, "vnode", lktimeout, lkflags);
984263bc 790 } else {
3446c007
MD
791 /*
792 * A brand-new vnode (we could use malloc() here I think) XXX
793 */
41a01a4d
MD
794 lwkt_reltoken(&ilock);
795 vp = zalloc(vnode_zone);
796 bzero(vp, sizeof(*vp));
797 vp->v_interlock = lwkt_token_pool_get(vp);
798 lwkt_token_init(&vp->v_pollinfo.vpi_token);
3446c007 799 lockinit(&vp->v_lock, 0, "vnode", lktimeout, lkflags);
984263bc 800 cache_purge(vp);
7ea21ed1 801 TAILQ_INIT(&vp->v_namecache);
984263bc
MD
802 numvnodes++;
803 }
804
805 TAILQ_INIT(&vp->v_cleanblkhd);
806 TAILQ_INIT(&vp->v_dirtyblkhd);
807 vp->v_type = VNON;
808 vp->v_tag = tag;
0961aa92 809 vp->v_ops = ops;
984263bc
MD
810 *vpp = vp;
811 vp->v_usecount = 1;
da6efd2c 812 vp->v_data = NULL;
984263bc
MD
813 splx(s);
814
da6efd2c
MD
815 /*
816 * Placing the vnode on the mount point's queue makes it visible.
817 * We had better already have a ref on it.
818 */
819 insmntque(vp, mp);
820
3b568787 821 vfs_object_create(vp, td);
984263bc
MD
822 return (0);
823}
824
825/*
826 * Move a vnode from one mount queue to another.
827 */
828static void
dd98570a 829insmntque(struct vnode *vp, struct mount *mp)
984263bc 830{
41a01a4d 831 lwkt_tokref ilock;
984263bc 832
41a01a4d 833 lwkt_gettoken(&ilock, &mntvnode_token);
984263bc
MD
834 /*
835 * Delete from old mount point vnode list, if on one.
836 */
837 if (vp->v_mount != NULL) {
838 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
839 ("bad mount point vnode list size"));
840 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
841 vp->v_mount->mnt_nvnodelistsize--;
842 }
843 /*
844 * Insert into list of vnodes for the new mount point, if available.
845 */
846 if ((vp->v_mount = mp) == NULL) {
41a01a4d 847 lwkt_reltoken(&ilock);
984263bc
MD
848 return;
849 }
850 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
851 mp->mnt_nvnodelistsize++;
41a01a4d 852 lwkt_reltoken(&ilock);
984263bc
MD
853}
854
855/*
856 * Update outstanding I/O count and do wakeup if requested.
857 */
858void
dd98570a 859vwakeup(struct buf *bp)
984263bc 860{
1fd87d54 861 struct vnode *vp;
984263bc
MD
862
863 bp->b_flags &= ~B_WRITEINPROG;
864 if ((vp = bp->b_vp)) {
865 vp->v_numoutput--;
866 if (vp->v_numoutput < 0)
867 panic("vwakeup: neg numoutput");
868 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
869 vp->v_flag &= ~VBWAIT;
870 wakeup((caddr_t) &vp->v_numoutput);
871 }
872 }
873}
874
875/*
876 * Flush out and invalidate all buffers associated with a vnode.
877 * Called with the underlying object locked.
878 */
879int
3b568787
MD
880vinvalbuf(struct vnode *vp, int flags, struct thread *td,
881 int slpflag, int slptimeo)
984263bc 882{
1fd87d54 883 struct buf *bp;
984263bc
MD
884 struct buf *nbp, *blist;
885 int s, error;
886 vm_object_t object;
41a01a4d 887 lwkt_tokref vlock;
984263bc
MD
888
889 if (flags & V_SAVE) {
890 s = splbio();
891 while (vp->v_numoutput) {
892 vp->v_flag |= VBWAIT;
893 error = tsleep((caddr_t)&vp->v_numoutput,
377d4740 894 slpflag, "vinvlbuf", slptimeo);
984263bc
MD
895 if (error) {
896 splx(s);
897 return (error);
898 }
899 }
900 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
901 splx(s);
3b568787 902 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
984263bc
MD
903 return (error);
904 s = splbio();
905 if (vp->v_numoutput > 0 ||
906 !TAILQ_EMPTY(&vp->v_dirtyblkhd))
907 panic("vinvalbuf: dirty bufs");
908 }
909 splx(s);
910 }
911 s = splbio();
912 for (;;) {
913 blist = TAILQ_FIRST(&vp->v_cleanblkhd);
914 if (!blist)
915 blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
916 if (!blist)
917 break;
918
919 for (bp = blist; bp; bp = nbp) {
920 nbp = TAILQ_NEXT(bp, b_vnbufs);
921 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
922 error = BUF_TIMELOCK(bp,
923 LK_EXCLUSIVE | LK_SLEEPFAIL,
924 "vinvalbuf", slpflag, slptimeo);
925 if (error == ENOLCK)
926 break;
927 splx(s);
928 return (error);
929 }
930 /*
931 * XXX Since there are no node locks for NFS, I
932 * believe there is a slight chance that a delayed
933 * write will occur while sleeping just above, so
934 * check for it. Note that vfs_bio_awrite expects
935 * buffers to reside on a queue, while VOP_BWRITE and
936 * brelse do not.
937 */
938 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
939 (flags & V_SAVE)) {
940
941 if (bp->b_vp == vp) {
942 if (bp->b_flags & B_CLUSTEROK) {
943 BUF_UNLOCK(bp);
944 vfs_bio_awrite(bp);
945 } else {
946 bremfree(bp);
947 bp->b_flags |= B_ASYNC;
948 VOP_BWRITE(bp->b_vp, bp);
949 }
950 } else {
951 bremfree(bp);
952 (void) VOP_BWRITE(bp->b_vp, bp);
953 }
954 break;
955 }
956 bremfree(bp);
957 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
958 bp->b_flags &= ~B_ASYNC;
959 brelse(bp);
960 }
961 }
962
963 /*
964 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
965 * have write I/O in-progress but if there is a VM object then the
966 * VM object can also have read-I/O in-progress.
967 */
968 do {
969 while (vp->v_numoutput > 0) {
970 vp->v_flag |= VBWAIT;
377d4740 971 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
984263bc
MD
972 }
973 if (VOP_GETVOBJECT(vp, &object) == 0) {
974 while (object->paging_in_progress)
975 vm_object_pip_sleep(object, "vnvlbx");
976 }
977 } while (vp->v_numoutput > 0);
978
979 splx(s);
980
981 /*
982 * Destroy the copy in the VM cache, too.
983 */
41a01a4d 984 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
985 if (VOP_GETVOBJECT(vp, &object) == 0) {
986 vm_object_page_remove(object, 0, 0,
987 (flags & V_SAVE) ? TRUE : FALSE);
988 }
41a01a4d 989 lwkt_reltoken(&vlock);
984263bc
MD
990
991 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
992 panic("vinvalbuf: flush failed");
993 return (0);
994}
995
996/*
997 * Truncate a file's buffer and pages to a specified length. This
998 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
999 * sync activity.
1000 */
1001int
3b568787 1002vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
984263bc 1003{
dadab5e9 1004 struct buf *bp;
984263bc
MD
1005 struct buf *nbp;
1006 int s, anyfreed;
1007 int trunclbn;
1008
1009 /*
1010 * Round up to the *next* lbn.
1011 */
1012 trunclbn = (length + blksize - 1) / blksize;
1013
1014 s = splbio();
1015restart:
1016 anyfreed = 1;
1017 for (;anyfreed;) {
1018 anyfreed = 0;
1019 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1020 nbp = TAILQ_NEXT(bp, b_vnbufs);
1021 if (bp->b_lblkno >= trunclbn) {
1022 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1023 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1024 goto restart;
1025 } else {
1026 bremfree(bp);
1027 bp->b_flags |= (B_INVAL | B_RELBUF);
1028 bp->b_flags &= ~B_ASYNC;
1029 brelse(bp);
1030 anyfreed = 1;
1031 }
1032 if (nbp &&
1033 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1034 (nbp->b_vp != vp) ||
1035 (nbp->b_flags & B_DELWRI))) {
1036 goto restart;
1037 }
1038 }
1039 }
1040
1041 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1042 nbp = TAILQ_NEXT(bp, b_vnbufs);
1043 if (bp->b_lblkno >= trunclbn) {
1044 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1045 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1046 goto restart;
1047 } else {
1048 bremfree(bp);
1049 bp->b_flags |= (B_INVAL | B_RELBUF);
1050 bp->b_flags &= ~B_ASYNC;
1051 brelse(bp);
1052 anyfreed = 1;
1053 }
1054 if (nbp &&
1055 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1056 (nbp->b_vp != vp) ||
1057 (nbp->b_flags & B_DELWRI) == 0)) {
1058 goto restart;
1059 }
1060 }
1061 }
1062 }
1063
1064 if (length > 0) {
1065restartsync:
1066 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1067 nbp = TAILQ_NEXT(bp, b_vnbufs);
1068 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1069 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1070 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1071 goto restart;
1072 } else {
1073 bremfree(bp);
1074 if (bp->b_vp == vp) {
1075 bp->b_flags |= B_ASYNC;
1076 } else {
1077 bp->b_flags &= ~B_ASYNC;
1078 }
1079 VOP_BWRITE(bp->b_vp, bp);
1080 }
1081 goto restartsync;
1082 }
1083
1084 }
1085 }
1086
1087 while (vp->v_numoutput > 0) {
1088 vp->v_flag |= VBWAIT;
377d4740 1089 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
984263bc
MD
1090 }
1091
1092 splx(s);
1093
1094 vnode_pager_setsize(vp, length);
1095
1096 return (0);
1097}
1098
1099/*
1100 * Associate a buffer with a vnode.
1101 */
1102void
dd98570a 1103bgetvp(struct vnode *vp, struct buf *bp)
984263bc
MD
1104{
1105 int s;
1106
1107 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1108
1109 vhold(vp);
1110 bp->b_vp = vp;
1111 bp->b_dev = vn_todev(vp);
1112 /*
1113 * Insert onto list for new vnode.
1114 */
1115 s = splbio();
1116 bp->b_xflags |= BX_VNCLEAN;
1117 bp->b_xflags &= ~BX_VNDIRTY;
1118 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1119 splx(s);
1120}
1121
1122/*
1123 * Disassociate a buffer from a vnode.
1124 */
1125void
dd98570a 1126brelvp(struct buf *bp)
984263bc
MD
1127{
1128 struct vnode *vp;
1129 struct buflists *listheadp;
1130 int s;
1131
1132 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1133
1134 /*
1135 * Delete from old vnode list, if on one.
1136 */
1137 vp = bp->b_vp;
1138 s = splbio();
1139 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1140 if (bp->b_xflags & BX_VNDIRTY)
1141 listheadp = &vp->v_dirtyblkhd;
1142 else
1143 listheadp = &vp->v_cleanblkhd;
1144 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1145 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1146 }
1147 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1148 vp->v_flag &= ~VONWORKLST;
1149 LIST_REMOVE(vp, v_synclist);
1150 }
1151 splx(s);
1152 bp->b_vp = (struct vnode *) 0;
1153 vdrop(vp);
1154}
1155
1156/*
1157 * The workitem queue.
1158 *
1159 * It is useful to delay writes of file data and filesystem metadata
1160 * for tens of seconds so that quickly created and deleted files need
1161 * not waste disk bandwidth being created and removed. To realize this,
1162 * we append vnodes to a "workitem" queue. When running with a soft
1163 * updates implementation, most pending metadata dependencies should
1164 * not wait for more than a few seconds. Thus, mounted on block devices
1165 * are delayed only about a half the time that file data is delayed.
1166 * Similarly, directory updates are more critical, so are only delayed
1167 * about a third the time that file data is delayed. Thus, there are
1168 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1169 * one each second (driven off the filesystem syncer process). The
1170 * syncer_delayno variable indicates the next queue that is to be processed.
1171 * Items that need to be processed soon are placed in this queue:
1172 *
1173 * syncer_workitem_pending[syncer_delayno]
1174 *
1175 * A delay of fifteen seconds is done by placing the request fifteen
1176 * entries later in the queue:
1177 *
1178 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1179 *
1180 */
1181
1182/*
1183 * Add an item to the syncer work queue.
1184 */
1185static void
1186vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1187{
1188 int s, slot;
1189
1190 s = splbio();
1191
1192 if (vp->v_flag & VONWORKLST) {
1193 LIST_REMOVE(vp, v_synclist);
1194 }
1195
1196 if (delay > syncer_maxdelay - 2)
1197 delay = syncer_maxdelay - 2;
1198 slot = (syncer_delayno + delay) & syncer_mask;
1199
1200 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1201 vp->v_flag |= VONWORKLST;
1202 splx(s);
1203}
1204
bc6dffab 1205struct thread *updatethread;
402ed7e1 1206static void sched_sync (void);
984263bc
MD
1207static struct kproc_desc up_kp = {
1208 "syncer",
1209 sched_sync,
bc6dffab 1210 &updatethread
984263bc
MD
1211};
1212SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1213
1214/*
1215 * System filesystem synchronizer daemon.
1216 */
1217void
1218sched_sync(void)
1219{
1220 struct synclist *slp;
1221 struct vnode *vp;
1222 long starttime;
1223 int s;
0cfcada1 1224 struct thread *td = curthread;
984263bc 1225
bc6dffab 1226 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
984263bc
MD
1227 SHUTDOWN_PRI_LAST);
1228
1229 for (;;) {
0cfcada1 1230 kproc_suspend_loop();
984263bc
MD
1231
1232 starttime = time_second;
1233
1234 /*
1235 * Push files whose dirty time has expired. Be careful
1236 * of interrupt race on slp queue.
1237 */
1238 s = splbio();
1239 slp = &syncer_workitem_pending[syncer_delayno];
1240 syncer_delayno += 1;
1241 if (syncer_delayno == syncer_maxdelay)
1242 syncer_delayno = 0;
1243 splx(s);
1244
1245 while ((vp = LIST_FIRST(slp)) != NULL) {
1246 if (VOP_ISLOCKED(vp, NULL) == 0) {
41a01a4d 1247 vn_lock(vp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
3b568787 1248 (void) VOP_FSYNC(vp, MNT_LAZY, td);
41a01a4d 1249 VOP_UNLOCK(vp, NULL, 0, td);
984263bc
MD
1250 }
1251 s = splbio();
1252 if (LIST_FIRST(slp) == vp) {
1253 /*
1254 * Note: v_tag VT_VFS vps can remain on the
1255 * worklist too with no dirty blocks, but
1256 * since sync_fsync() moves it to a different
1257 * slot we are safe.
1258 */
1259 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1260 !vn_isdisk(vp, NULL))
1261 panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1262 /*
1263 * Put us back on the worklist. The worklist
1264 * routine will remove us from our current
1265 * position and then add us back in at a later
1266 * position.
1267 */
1268 vn_syncer_add_to_worklist(vp, syncdelay);
1269 }
1270 splx(s);
1271 }
1272
1273 /*
1274 * Do soft update processing.
1275 */
1276 if (bioops.io_sync)
1277 (*bioops.io_sync)(NULL);
1278
1279 /*
1280 * The variable rushjob allows the kernel to speed up the
1281 * processing of the filesystem syncer process. A rushjob
1282 * value of N tells the filesystem syncer to process the next
1283 * N seconds worth of work on its queue ASAP. Currently rushjob
1284 * is used by the soft update code to speed up the filesystem
1285 * syncer process when the incore state is getting so far
1286 * ahead of the disk that the kernel memory pool is being
1287 * threatened with exhaustion.
1288 */
1289 if (rushjob > 0) {
1290 rushjob -= 1;
1291 continue;
1292 }
1293 /*
1294 * If it has taken us less than a second to process the
1295 * current work, then wait. Otherwise start right over
1296 * again. We can still lose time if any single round
1297 * takes more than two seconds, but it does not really
1298 * matter as we are just trying to generally pace the
1299 * filesystem activity.
1300 */
1301 if (time_second == starttime)
377d4740 1302 tsleep(&lbolt, 0, "syncer", 0);
984263bc
MD
1303 }
1304}
1305
1306/*
1307 * Request the syncer daemon to speed up its work.
1308 * We never push it to speed up more than half of its
1309 * normal turn time, otherwise it could take over the cpu.
f5865223
MD
1310 *
1311 * YYY wchan field protected by the BGL.
984263bc
MD
1312 */
1313int
dd98570a 1314speedup_syncer(void)
984263bc 1315{
f5865223
MD
1316 crit_enter();
1317 if (updatethread->td_wchan == &lbolt) { /* YYY */
1318 unsleep(updatethread);
1319 lwkt_schedule(updatethread);
1320 }
1321 crit_exit();
984263bc
MD
1322 if (rushjob < syncdelay / 2) {
1323 rushjob += 1;
1324 stat_rush_requests += 1;
1325 return (1);
1326 }
1327 return(0);
1328}
1329
1330/*
1331 * Associate a p-buffer with a vnode.
1332 *
1333 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1334 * with the buffer. i.e. the bp has not been linked into the vnode or
1335 * ref-counted.
1336 */
1337void
dd98570a 1338pbgetvp(struct vnode *vp, struct buf *bp)
984263bc 1339{
984263bc
MD
1340 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1341
1342 bp->b_vp = vp;
1343 bp->b_flags |= B_PAGING;
1344 bp->b_dev = vn_todev(vp);
1345}
1346
1347/*
1348 * Disassociate a p-buffer from a vnode.
1349 */
1350void
dd98570a 1351pbrelvp(struct buf *bp)
984263bc 1352{
984263bc
MD
1353 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1354
1355 /* XXX REMOVE ME */
1356 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1357 panic(
1358 "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1359 bp,
1360 (int)bp->b_flags
1361 );
1362 }
1363 bp->b_vp = (struct vnode *) 0;
1364 bp->b_flags &= ~B_PAGING;
1365}
1366
1367void
dd98570a 1368pbreassignbuf(struct buf *bp, struct vnode *newvp)
984263bc
MD
1369{
1370 if ((bp->b_flags & B_PAGING) == 0) {
1371 panic(
1372 "pbreassignbuf() on non phys bp %p",
1373 bp
1374 );
1375 }
1376 bp->b_vp = newvp;
1377}
1378
1379/*
1380 * Reassign a buffer from one vnode to another.
1381 * Used to assign file specific control information
1382 * (indirect blocks) to the vnode to which they belong.
1383 */
1384void
dd98570a 1385reassignbuf(struct buf *bp, struct vnode *newvp)
984263bc
MD
1386{
1387 struct buflists *listheadp;
1388 int delay;
1389 int s;
1390
1391 if (newvp == NULL) {
1392 printf("reassignbuf: NULL");
1393 return;
1394 }
1395 ++reassignbufcalls;
1396
1397 /*
1398 * B_PAGING flagged buffers cannot be reassigned because their vp
1399 * is not fully linked in.
1400 */
1401 if (bp->b_flags & B_PAGING)
1402 panic("cannot reassign paging buffer");
1403
1404 s = splbio();
1405 /*
1406 * Delete from old vnode list, if on one.
1407 */
1408 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1409 if (bp->b_xflags & BX_VNDIRTY)
1410 listheadp = &bp->b_vp->v_dirtyblkhd;
1411 else
1412 listheadp = &bp->b_vp->v_cleanblkhd;
1413 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1414 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1415 if (bp->b_vp != newvp) {
1416 vdrop(bp->b_vp);
1417 bp->b_vp = NULL; /* for clarification */
1418 }
1419 }
1420 /*
1421 * If dirty, put on list of dirty buffers; otherwise insert onto list
1422 * of clean buffers.
1423 */
1424 if (bp->b_flags & B_DELWRI) {
1425 struct buf *tbp;
1426
1427 listheadp = &newvp->v_dirtyblkhd;
1428 if ((newvp->v_flag & VONWORKLST) == 0) {
1429 switch (newvp->v_type) {
1430 case VDIR:
1431 delay = dirdelay;
1432 break;
1433 case VCHR:
1434 case VBLK:
e4c9c0c8
MD
1435 if (newvp->v_rdev &&
1436 newvp->v_rdev->si_mountpoint != NULL) {
984263bc
MD
1437 delay = metadelay;
1438 break;
1439 }
1440 /* fall through */
1441 default:
1442 delay = filedelay;
1443 }
1444 vn_syncer_add_to_worklist(newvp, delay);
1445 }
1446 bp->b_xflags |= BX_VNDIRTY;
1447 tbp = TAILQ_FIRST(listheadp);
1448 if (tbp == NULL ||
1449 bp->b_lblkno == 0 ||
1450 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1451 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1452 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1453 ++reassignbufsortgood;
1454 } else if (bp->b_lblkno < 0) {
1455 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1456 ++reassignbufsortgood;
1457 } else if (reassignbufmethod == 1) {
1458 /*
1459 * New sorting algorithm, only handle sequential case,
1460 * otherwise append to end (but before metadata)
1461 */
1462 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1463 (tbp->b_xflags & BX_VNDIRTY)) {
1464 /*
1465 * Found the best place to insert the buffer
1466 */
1467 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1468 ++reassignbufsortgood;
1469 } else {
1470 /*
1471 * Missed, append to end, but before meta-data.
1472 * We know that the head buffer in the list is
1473 * not meta-data due to prior conditionals.
1474 *
1475 * Indirect effects: NFS second stage write
1476 * tends to wind up here, giving maximum
1477 * distance between the unstable write and the
1478 * commit rpc.
1479 */
1480 tbp = TAILQ_LAST(listheadp, buflists);
1481 while (tbp && tbp->b_lblkno < 0)
1482 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1483 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1484 ++reassignbufsortbad;
1485 }
1486 } else {
1487 /*
1488 * Old sorting algorithm, scan queue and insert
1489 */
1490 struct buf *ttbp;
1491 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1492 (ttbp->b_lblkno < bp->b_lblkno)) {
1493 ++reassignbufloops;
1494 tbp = ttbp;
1495 }
1496 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1497 }
1498 } else {
1499 bp->b_xflags |= BX_VNCLEAN;
1500 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1501 if ((newvp->v_flag & VONWORKLST) &&
1502 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1503 newvp->v_flag &= ~VONWORKLST;
1504 LIST_REMOVE(newvp, v_synclist);
1505 }
1506 }
1507 if (bp->b_vp != newvp) {
1508 bp->b_vp = newvp;
1509 vhold(bp->b_vp);
1510 }
1511 splx(s);
1512}
1513
1514/*
1515 * Create a vnode for a block device.
1516 * Used for mounting the root file system.
1517 */
1518int
e4c9c0c8 1519bdevvp(dev_t dev, struct vnode **vpp)
984263bc 1520{
1fd87d54 1521 struct vnode *vp;
984263bc
MD
1522 struct vnode *nvp;
1523 int error;
1524
1525 if (dev == NODEV) {
1526 *vpp = NULLVP;
1527 return (ENXIO);
1528 }
3446c007 1529 error = getnewvnode(VT_NON, NULL, spec_vnode_vops, &nvp, 0, 0);
984263bc
MD
1530 if (error) {
1531 *vpp = NULLVP;
1532 return (error);
1533 }
1534 vp = nvp;
e4c9c0c8
MD
1535 vp->v_type = VCHR;
1536 vp->v_udev = dev->si_udev;
984263bc
MD
1537 *vpp = vp;
1538 return (0);
1539}
1540
e4c9c0c8
MD
1541int
1542v_associate_rdev(struct vnode *vp, dev_t dev)
984263bc 1543{
e4c9c0c8 1544 lwkt_tokref ilock;
984263bc 1545
e4c9c0c8
MD
1546 if (dev == NULL || dev == NODEV)
1547 return(ENXIO);
1548 if (dev_is_good(dev) == 0)
1549 return(ENXIO);
1550 KKASSERT(vp->v_rdev == NULL);
1551 if (dev_ref_debug)
1552 printf("Z1");
1553 vp->v_rdev = reference_dev(dev);
1554 lwkt_gettoken(&ilock, &spechash_token);
1555 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1556 lwkt_reltoken(&ilock);
1557 return(0);
984263bc
MD
1558}
1559
1560void
e4c9c0c8 1561v_release_rdev(struct vnode *vp)
984263bc 1562{
41a01a4d 1563 lwkt_tokref ilock;
e4c9c0c8 1564 dev_t dev;
984263bc 1565
e4c9c0c8
MD
1566 if ((dev = vp->v_rdev) != NULL) {
1567 lwkt_gettoken(&ilock, &spechash_token);
1568 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1fbb5fc0
MD
1569 if (dev_ref_debug && vp->v_opencount != 0) {
1570 printf("releasing rdev with non-0 "
1571 "v_opencount(%d) (revoked?)\n",
1572 vp->v_opencount);
1573 }
e4c9c0c8 1574 vp->v_rdev = NULL;
1fbb5fc0 1575 vp->v_opencount = 0;
e4c9c0c8
MD
1576 release_dev(dev);
1577 lwkt_reltoken(&ilock);
1578 }
1579}
984263bc 1580
e4c9c0c8
MD
1581/*
1582 * Add a vnode to the alias list hung off the dev_t. We only associate
1583 * the device number with the vnode. The actual device is not associated
1584 * until the vnode is opened (usually in spec_open()), and will be
1585 * disassociated on last close.
1586 */
1587void
1588addaliasu(struct vnode *nvp, udev_t nvp_udev)
1589{
1590 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1591 panic("addaliasu on non-special vnode");
1592 nvp->v_udev = nvp_udev;
984263bc
MD
1593}
1594
1595/*
1596 * Grab a particular vnode from the free list, increment its
1597 * reference count and lock it. The vnode lock bit is set if the
1598 * vnode is being eliminated in vgone. The process is awakened
1599 * when the transition is completed, and an error returned to
1600 * indicate that the vnode is no longer usable (possibly having
1601 * been changed to a new file system type).
41a01a4d
MD
1602 *
1603 * This code is very sensitive. We are depending on the vnode interlock
1604 * to be maintained through to the vn_lock() call, which means that we
1605 * cannot block which means that we cannot call vbusy() until after vn_lock().
1606 * If the interlock is not maintained, the VXLOCK check will not properly
1607 * interlock against a vclean()'s LK_DRAIN operation on the lock.
984263bc
MD
1608 */
1609int
41a01a4d 1610vget(struct vnode *vp, lwkt_tokref_t vlock, int flags, thread_t td)
984263bc
MD
1611{
1612 int error;
41a01a4d
MD
1613 lwkt_tokref vvlock;
1614
1615 /*
1616 * We need the interlock to safely modify the v_ fields. ZZZ it is
1617 * only legal to pass (1) the vnode's interlock and (2) only pass
1618 * NULL w/o LK_INTERLOCK if the vnode is *ALREADY* referenced or
1619 * held.
1620 */
1621 if ((flags & LK_INTERLOCK) == 0) {
1622 lwkt_gettoken(&vvlock, vp->v_interlock);
1623 vlock = &vvlock;
1624 }
984263bc
MD
1625
1626 /*
1627 * If the vnode is in the process of being cleaned out for
1628 * another use, we wait for the cleaning to finish and then
1629 * return failure. Cleaning is determined by checking that
41a01a4d
MD
1630 * the VXLOCK flag is set. It is possible for the vnode to be
1631 * self-referenced during the cleaning operation.
984263bc 1632 */
984263bc 1633 if (vp->v_flag & VXLOCK) {
41a01a4d 1634 if (vp->v_vxthread == curthread) {
984263bc
MD
1635#if 0
1636 /* this can now occur in normal operation */
1637 log(LOG_INFO, "VXLOCK interlock avoided\n");
1638#endif
1639 } else {
1640 vp->v_flag |= VXWANT;
41a01a4d 1641 lwkt_reltoken(vlock);
377d4740 1642 tsleep((caddr_t)vp, 0, "vget", 0);
984263bc
MD
1643 return (ENOENT);
1644 }
1645 }
1646
2811dfbd 1647 /*
41a01a4d
MD
1648 * Bump v_usecount to prevent the vnode from being recycled. The
1649 * usecount needs to be bumped before we successfully get our lock.
2811dfbd 1650 */
41a01a4d 1651 vp->v_usecount++;
984263bc 1652 if (flags & LK_TYPE_MASK) {
41a01a4d 1653 if ((error = vn_lock(vp, vlock, flags | LK_INTERLOCK, td)) != 0) {
984263bc
MD
1654 /*
1655 * must expand vrele here because we do not want
1656 * to call VOP_INACTIVE if the reference count
1657 * drops back to zero since it was never really
1658 * active. We must remove it from the free list
1659 * before sleeping so that multiple processes do
1660 * not try to recycle it.
1661 */
41a01a4d 1662 lwkt_gettokref(vlock);
984263bc 1663 vp->v_usecount--;
41a01a4d
MD
1664 vmaybefree(vp);
1665 lwkt_reltoken(vlock);
984263bc
MD
1666 }
1667 return (error);
1668 }
41a01a4d
MD
1669 if (VSHOULDBUSY(vp))
1670 vbusy(vp); /* interlock must be held on call */
1671 lwkt_reltoken(vlock);
984263bc
MD
1672 return (0);
1673}
1674
1675void
1676vref(struct vnode *vp)
1677{
5d28270e
MD
1678 crit_enter(); /* YYY use crit section for moment / BGL protected */
1679 vp->v_usecount++;
1680 crit_exit();
984263bc
MD
1681}
1682
1683/*
1684 * Vnode put/release.
1685 * If count drops to zero, call inactive routine and return to freelist.
1686 */
1687void
dadab5e9 1688vrele(struct vnode *vp)
984263bc 1689{
dadab5e9 1690 struct thread *td = curthread; /* XXX */
41a01a4d 1691 lwkt_tokref vlock;
984263bc 1692
5d28270e
MD
1693 KASSERT(vp != NULL && vp->v_usecount >= 0,
1694 ("vrele: null vp or <=0 v_usecount"));
984263bc 1695
41a01a4d 1696 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1697
1698 if (vp->v_usecount > 1) {
984263bc 1699 vp->v_usecount--;
41a01a4d 1700 lwkt_reltoken(&vlock);
984263bc
MD
1701 return;
1702 }
1703
1704 if (vp->v_usecount == 1) {
1705 vp->v_usecount--;
1706 /*
41a01a4d
MD
1707 * We must call VOP_INACTIVE with the node locked and the
1708 * usecount 0. If we are doing a vpu, the node is already
1709 * locked, but, in the case of vrele, we must explicitly lock
1710 * the vnode before calling VOP_INACTIVE.
984263bc
MD
1711 */
1712
41a01a4d 1713 if (vn_lock(vp, NULL, LK_EXCLUSIVE, td) == 0)
dadab5e9 1714 VOP_INACTIVE(vp, td);
41a01a4d
MD
1715 vmaybefree(vp);
1716 lwkt_reltoken(&vlock);
984263bc
MD
1717 } else {
1718#ifdef DIAGNOSTIC
1719 vprint("vrele: negative ref count", vp);
984263bc 1720#endif
41a01a4d 1721 lwkt_reltoken(&vlock);
984263bc
MD
1722 panic("vrele: negative ref cnt");
1723 }
1724}
1725
1726void
dadab5e9 1727vput(struct vnode *vp)
984263bc 1728{
dadab5e9 1729 struct thread *td = curthread; /* XXX */
41a01a4d 1730 lwkt_tokref vlock;
984263bc
MD
1731
1732 KASSERT(vp != NULL, ("vput: null vp"));
1733
41a01a4d 1734 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1735
1736 if (vp->v_usecount > 1) {
1737 vp->v_usecount--;
41a01a4d 1738 VOP_UNLOCK(vp, &vlock, LK_INTERLOCK, td);
984263bc
MD
1739 return;
1740 }
1741
1742 if (vp->v_usecount == 1) {
1743 vp->v_usecount--;
1744 /*
1745 * We must call VOP_INACTIVE with the node locked.
1746 * If we are doing a vpu, the node is already locked,
1747 * so we just need to release the vnode mutex.
1748 */
dadab5e9 1749 VOP_INACTIVE(vp, td);
41a01a4d
MD
1750 vmaybefree(vp);
1751 lwkt_reltoken(&vlock);
984263bc
MD
1752 } else {
1753#ifdef DIAGNOSTIC
1754 vprint("vput: negative ref count", vp);
1755#endif
41a01a4d 1756 lwkt_reltoken(&vlock);
984263bc
MD
1757 panic("vput: negative ref cnt");
1758 }
1759}
1760
1761/*
41a01a4d
MD
1762 * Somebody doesn't want the vnode recycled. ZZZ vnode interlock should
1763 * be held but isn't.
984263bc
MD
1764 */
1765void
dd98570a 1766vhold(struct vnode *vp)
984263bc
MD
1767{
1768 int s;
1769
1770 s = splbio();
1771 vp->v_holdcnt++;
1772 if (VSHOULDBUSY(vp))
41a01a4d 1773 vbusy(vp); /* interlock must be held on call */
984263bc
MD
1774 splx(s);
1775}
1776
1777/*
1778 * One less who cares about this vnode.
1779 */
1780void
dd98570a 1781vdrop(struct vnode *vp)
984263bc 1782{
41a01a4d 1783 lwkt_tokref vlock;
984263bc 1784
41a01a4d 1785 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc
MD
1786 if (vp->v_holdcnt <= 0)
1787 panic("vdrop: holdcnt");
1788 vp->v_holdcnt--;
41a01a4d
MD
1789 vmaybefree(vp);
1790 lwkt_reltoken(&vlock);
1791}
1792
1793int
1794vmntvnodescan(
1795 struct mount *mp,
1796 int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
dd98570a
MD
1797 int (*slowfunc)(struct mount *mp, struct vnode *vp,
1798 lwkt_tokref_t vlock, void *data),
41a01a4d
MD
1799 void *data
1800) {
1801 lwkt_tokref ilock;
1802 lwkt_tokref vlock;
1803 struct vnode *pvp;
1804 struct vnode *vp;
1805 int r = 0;
1806
1807 /*
1808 * Scan the vnodes on the mount's vnode list. Use a placemarker
1809 */
1810 pvp = zalloc(vnode_zone);
1811 pvp->v_flag |= VPLACEMARKER;
1812
1813 lwkt_gettoken(&ilock, &mntvnode_token);
1814 TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1815
1816 while ((vp = TAILQ_NEXT(pvp, v_nmntvnodes)) != NULL) {
1817 /*
1818 * Move the placemarker and skip other placemarkers we
1819 * encounter. The nothing can get in our way so the
1820 * mount point on the vp must be valid.
1821 */
1822 TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1823 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, pvp, v_nmntvnodes);
1824 if (vp->v_flag & VPLACEMARKER)
1825 continue;
1826 KKASSERT(vp->v_mount == mp);
1827
1828 /*
1829 * Quick test
1830 */
1831 if (fastfunc) {
1832 if ((r = fastfunc(mp, vp, data)) < 0)
1833 continue;
1834 if (r)
1835 break;
1836 }
1837
1838 /*
1839 * Get the vnodes interlock and make sure it is still on the
1840 * mount list. Skip it if it has moved (we may encounter it
1841 * later). Then do the with-interlock test. The callback
1842 * is responsible for releasing the vnode interlock.
1843 *
1844 * The interlock is type-stable.
1845 */
1846 if (slowfunc) {
1847 lwkt_gettoken(&vlock, vp->v_interlock);
1848 if (vp != TAILQ_PREV(pvp, vnodelst, v_nmntvnodes)) {
1849 printf("vmntvnodescan (debug info only): f=%p vp=%p vnode ripped out from under us\n", slowfunc, vp);
1850 lwkt_reltoken(&vlock);
1851 continue;
1852 }
1853 if ((r = slowfunc(mp, vp, &vlock, data)) != 0) {
1854 KKASSERT(lwkt_havetokref(&vlock) == 0);
1855 break;
1856 }
1857 KKASSERT(lwkt_havetokref(&vlock) == 0);
1858 }
1859 }
1860 TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1861 zfree(vnode_zone, pvp);
1862 lwkt_reltoken(&ilock);
1863 return(r);
984263bc
MD
1864}
1865
1866/*
1867 * Remove any vnodes in the vnode table belonging to mount point mp.
1868 *
1869 * If FORCECLOSE is not specified, there should not be any active ones,
1870 * return error if any are found (nb: this is a user error, not a
1871 * system error). If FORCECLOSE is specified, detach any active vnodes
1872 * that are found.
1873 *
1874 * If WRITECLOSE is set, only flush out regular file vnodes open for
1875 * writing.
1876 *
1877 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1878 *
1879 * `rootrefs' specifies the base reference count for the root vnode
1880 * of this filesystem. The root vnode is considered busy if its
1881 * v_usecount exceeds this value. On a successful return, vflush()
1882 * will call vrele() on the root vnode exactly rootrefs times.
1883 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1884 * be zero.
1885 */
1886#ifdef DIAGNOSTIC
1887static int busyprt = 0; /* print out busy vnodes */
1888SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1889#endif
1890
dd98570a
MD
1891static int vflush_scan(struct mount *mp, struct vnode *vp,
1892 lwkt_tokref_t vlock, void *data);
41a01a4d
MD
1893
1894struct vflush_info {
1895 int flags;
1896 int busy;
1897 thread_t td;
1898};
1899
984263bc 1900int
dd98570a 1901vflush(struct mount *mp, int rootrefs, int flags)
984263bc 1902{
dadab5e9 1903 struct thread *td = curthread; /* XXX */
41a01a4d
MD
1904 struct vnode *rootvp = NULL;
1905 int error;
1906 lwkt_tokref vlock;
1907 struct vflush_info vflush_info;
984263bc
MD
1908
1909 if (rootrefs > 0) {
1910 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1911 ("vflush: bad args"));
1912 /*
1913 * Get the filesystem root vnode. We can vput() it
1914 * immediately, since with rootrefs > 0, it won't go away.
1915 */
1916 if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1917 return (error);
1918 vput(rootvp);
1919 }
984263bc 1920
41a01a4d
MD
1921 vflush_info.busy = 0;
1922 vflush_info.flags = flags;
1923 vflush_info.td = td;
1924 vmntvnodescan(mp, NULL, vflush_scan, &vflush_info);
984263bc 1925
984263bc
MD
1926 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1927 /*
1928 * If just the root vnode is busy, and if its refcount
1929 * is equal to `rootrefs', then go ahead and kill it.
1930 */
41a01a4d
MD
1931 lwkt_gettoken(&vlock, rootvp->v_interlock);
1932 KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
984263bc 1933 KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
41a01a4d
MD
1934 if (vflush_info.busy == 1 && rootvp->v_usecount == rootrefs) {
1935 vgonel(rootvp, &vlock, td);
1936 vflush_info.busy = 0;
1937 } else {
1938 lwkt_reltoken(&vlock);
1939 }
984263bc 1940 }
41a01a4d 1941 if (vflush_info.busy)
984263bc
MD
1942 return (EBUSY);
1943 for (; rootrefs > 0; rootrefs--)
1944 vrele(rootvp);
1945 return (0);
1946}
1947
1948/*
41a01a4d 1949 * The scan callback is made with an interlocked vnode.
984263bc 1950 */
41a01a4d 1951static int
dd98570a
MD
1952vflush_scan(struct mount *mp, struct vnode *vp,
1953 lwkt_tokref_t vlock, void *data)
984263bc 1954{
41a01a4d
MD
1955 struct vflush_info *info = data;
1956 struct vattr vattr;
984263bc 1957
41a01a4d
MD
1958 /*
1959 * Skip over a vnodes marked VSYSTEM.
1960 */
1961 if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1962 lwkt_reltoken(vlock);
1963 return(0);
1964 }
1965
1966 /*
1967 * If WRITECLOSE is set, flush out unlinked but still open
1968 * files (even if open only for reading) and regular file
1969 * vnodes open for writing.
1970 */
1971 if ((info->flags & WRITECLOSE) &&
1972 (vp->v_type == VNON ||
1973 (VOP_GETATTR(vp, &vattr, info->td) == 0 &&
1974 vattr.va_nlink > 0)) &&
1975 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1976 lwkt_reltoken(vlock);
1977 return(0);
1978 }
1979
1980 /*
1981 * With v_usecount == 0, all we need to do is clear out the
1982 * vnode data structures and we are done.
1983 */
1984 if (vp->v_usecount == 0) {
1985 vgonel(vp, vlock, info->td);
1986 return(0);
1987 }
1988
1989 /*
1990 * If FORCECLOSE is set, forcibly close the vnode. For block
1991 * or character devices, revert to an anonymous device. For
1992 * all other files, just kill them.
1993 */
1994 if (info->flags & FORCECLOSE) {
1995 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1996 vgonel(vp, vlock, info->td);
1997 } else {
1998 vclean(vp, vlock, 0, info->td);
0961aa92 1999 vp->v_ops = spec_vnode_vops;
41a01a4d
MD
2000 insmntque(vp, (struct mount *) 0);
2001 }
2002 return(0);
984263bc 2003 }
41a01a4d
MD
2004#ifdef DIAGNOSTIC
2005 if (busyprt)
2006 vprint("vflush: busy vnode", vp);
984263bc 2007#endif
41a01a4d
MD
2008 lwkt_reltoken(vlock);
2009 ++info->busy;
2010 return(0);
984263bc
MD
2011}
2012
2013/*
2014 * Disassociate the underlying file system from a vnode.
2015 */
2016static void
41a01a4d 2017vclean(struct vnode *vp, lwkt_tokref_t vlock, int flags, struct thread *td)
984263bc
MD
2018{
2019 int active;
2020
2021 /*
2022 * Check to see if the vnode is in use. If so we have to reference it
2023 * before we clean it out so that its count cannot fall to zero and
2024 * generate a race against ourselves to recycle it.
2025 */
2026 if ((active = vp->v_usecount))
2027 vp->v_usecount++;
2028
2029 /*
2030 * Prevent the vnode from being recycled or brought into use while we
2031 * clean it out.
2032 */
2033 if (vp->v_flag & VXLOCK)
2034 panic("vclean: deadlock");
2035 vp->v_flag |= VXLOCK;
41a01a4d
MD
2036 vp->v_vxthread = curthread;
2037
984263bc
MD
2038 /*
2039 * Even if the count is zero, the VOP_INACTIVE routine may still
2040 * have the object locked while it cleans it out. The VOP_LOCK
2041 * ensures that the VOP_INACTIVE routine is done with its work.
2042 * For active vnodes, it ensures that no other activity can
2043 * occur while the underlying object is being cleaned out.
41a01a4d
MD
2044 *
2045 * NOTE: we continue to hold the vnode interlock through to the
2046 * end of vclean().
984263bc 2047 */
41a01a4d 2048 VOP_LOCK(vp, NULL, LK_DRAIN, td);
984263bc
MD
2049
2050 /*
2051 * Clean out any buffers associated with the vnode.
2052 */
3b568787 2053 vinvalbuf(vp, V_SAVE, td, 0, 0);
984263bc
MD
2054 VOP_DESTROYVOBJECT(vp);
2055
2056 /*
2057 * If purging an active vnode, it must be closed and
2058 * deactivated before being reclaimed. Note that the
2059 * VOP_INACTIVE will unlock the vnode.
2060 */
2061 if (active) {
2062 if (flags & DOCLOSE)
3b568787 2063 VOP_CLOSE(vp, FNONBLOCK, td);
dadab5e9 2064 VOP_INACTIVE(vp, td);
984263bc
MD
2065 } else {
2066 /*
2067 * Any other processes trying to obtain this lock must first
2068 * wait for VXLOCK to clear, then call the new lock operation.
2069 */
41a01a4d 2070 VOP_UNLOCK(vp, NULL, 0, td);
984263bc
MD
2071 }
2072 /*
2073 * Reclaim the vnode.
2074 */
dadab5e9 2075 if (VOP_RECLAIM(vp, td))
984263bc
MD
2076 panic("vclean: cannot reclaim");
2077
2078 if (active) {
2079 /*
2080 * Inline copy of vrele() since VOP_INACTIVE
2081 * has already been called.
2082 */
984263bc
MD
2083 if (--vp->v_usecount <= 0) {
2084#ifdef DIAGNOSTIC
2085 if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2086 vprint("vclean: bad ref count", vp);
2087 panic("vclean: ref cnt");
2088 }
2089#endif
2090 vfree(vp);
2091 }
984263bc
MD
2092 }
2093
2094 cache_purge(vp);
41a01a4d 2095 vmaybefree(vp);
984263bc
MD
2096
2097 /*
2098 * Done with purge, notify sleepers of the grim news.
2099 */
0961aa92 2100 vp->v_ops = dead_vnode_vops;
984263bc
MD
2101 vn_pollgone(vp);
2102 vp->v_tag = VT_NON;
2103 vp->v_flag &= ~VXLOCK;
41a01a4d 2104 vp->v_vxthread = NULL;
984263bc
MD
2105 if (vp->v_flag & VXWANT) {
2106 vp->v_flag &= ~VXWANT;
2107 wakeup((caddr_t) vp);
2108 }
41a01a4d 2109 lwkt_reltoken(vlock);
984263bc
MD
2110}
2111
2112/*
2113 * Eliminate all activity associated with the requested vnode
2114 * and with all vnodes aliased to the requested vnode.
dd98570a
MD
2115 *
2116 * revoke { struct vnode *a_vp, int a_flags }
984263bc
MD
2117 */
2118int
2d3e977e 2119vop_stdrevoke(struct vop_revoke_args *ap)
984263bc
MD
2120{
2121 struct vnode *vp, *vq;
41a01a4d 2122 lwkt_tokref ilock;
984263bc
MD
2123 dev_t dev;
2124
2125 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2126
2127 vp = ap->a_vp;
2128 /*
2129 * If a vgone (or vclean) is already in progress,
2130 * wait until it is done and return.
2131 */
2132 if (vp->v_flag & VXLOCK) {
2133 vp->v_flag |= VXWANT;
41a01a4d 2134 /*lwkt_reltoken(vlock); ZZZ */
377d4740 2135 tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
984263bc
MD
2136 return (0);
2137 }
e4c9c0c8
MD
2138
2139 /*
2140 * If the vnode has a device association, scrap all vnodes associated
2141 * with the device. Don't let the device disappear on us while we
2142 * are scrapping the vnodes.
2143 */
2144 if (vp->v_type != VCHR && vp->v_type != VBLK)
2145 return(0);
2146 if ((dev = vp->v_rdev) == NULL) {
2147 if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
2148 return(0);
2149 }
2150 reference_dev(dev);
984263bc 2151 for (;;) {
41a01a4d 2152 lwkt_gettoken(&ilock, &spechash_token);
984263bc 2153 vq = SLIST_FIRST(&dev->si_hlist);
41a01a4d 2154 lwkt_reltoken(&ilock);
e4c9c0c8 2155 if (vq == NULL)
984263bc
MD
2156 break;
2157 vgone(vq);
2158 }
e4c9c0c8 2159 release_dev(dev);
984263bc
MD
2160 return (0);
2161}
2162
2163/*
2164 * Recycle an unused vnode to the front of the free list.
2165 * Release the passed interlock if the vnode will be recycled.
2166 */
2167int
41a01a4d 2168vrecycle(struct vnode *vp, lwkt_tokref_t inter_lkp, struct thread *td)
984263bc 2169{
41a01a4d
MD
2170 lwkt_tokref vlock;
2171
2172 lwkt_gettoken(&vlock, vp->v_interlock);
984263bc 2173 if (vp->v_usecount == 0) {
41a01a4d 2174 if (inter_lkp)
8a8d5d85 2175 lwkt_reltoken(inter_lkp);
41a01a4d 2176 vgonel(vp, &vlock, td);
984263bc
MD
2177 return (1);
2178 }
41a01a4d 2179 lwkt_reltoken(&vlock);
984263bc
MD
2180 return (0);
2181}
2182
2183/*
2184 * Eliminate all activity associated with a vnode
2185 * in preparation for reuse.
2186 */
2187void
dadab5e9 2188vgone(struct vnode *vp)
984263bc 2189{
dadab5e9 2190 struct thread *td = curthread; /* XXX */
41a01a4d 2191 lwkt_tokref vlock;
984263bc 2192
41a01a4d
MD
2193 lwkt_gettoken(&vlock, vp->v_interlock);
2194 vgonel(vp, &vlock, td);
984263bc
MD
2195}
2196
2197/*
2198 * vgone, with the vp interlock held.
2199 */
2200void
41a01a4d 2201vgonel(struct vnode *vp, lwkt_tokref_t vlock, struct thread *td)
984263bc 2202{
41a01a4d 2203 lwkt_tokref ilock;
984263bc
MD
2204 int s;
2205
2206 /*
2207 * If a vgone (or vclean) is already in progress,
2208 * wait until it is done and return.
2209 */
2210 if (vp->v_flag & VXLOCK) {
2211 vp->v_flag |= VXWANT;
41a01a4d 2212 lwkt_reltoken(vlock);
377d4740 2213 tsleep((caddr_t)vp, 0, "vgone", 0);
984263bc
MD
2214 return;
2215 }
2216
2217 /*
2218 * Clean out the filesystem specific data.
2219 */
41a01a4d
MD
2220 vclean(vp, vlock, DOCLOSE, td);
2221 lwkt_gettokref(vlock);
984263bc
MD
2222
2223 /*
2224 * Delete from old mount point vnode list, if on one.
2225 */
2226 if (vp->v_mount != NULL)
2227 insmntque(vp, (struct mount *)0);
dd98570a 2228
984263bc
MD
2229 /*
2230 * If special device, remove it from special device alias list
1fbb5fc0
MD
2231 * if it is on one. This should normally only occur if a vnode is
2232 * being revoked as the device should otherwise have been released
2233 * naturally.
984263bc
MD
2234 */
2235 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
e4c9c0c8 2236 v_release_rdev(vp);
984263bc
MD
2237 }
2238
2239 /*
2240 * If it is on the freelist and not already at the head,
2241 * move it to the head of the list. The test of the
2242 * VDOOMED flag and the reference count of zero is because
2243 * it will be removed from the free list by getnewvnode,
2244 * but will not have its reference count incremented until
2245 * after calling vgone. If the reference count were
2246 * incremented first, vgone would (incorrectly) try to
2247 * close the previous instance of the underlying object.
2248 */
2249 if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2250 s = splbio();
41a01a4d 2251 lwkt_gettoken(&ilock, &vnode_free_list_token);
984263bc
MD
2252 if (vp->v_flag & VFREE)
2253 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2254 else
2255 freevnodes++;
2256 vp->v_flag |= VFREE;
2257 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
41a01a4d 2258 lwkt_reltoken(&ilock);
984263bc
MD
2259 splx(s);
2260 }
984263bc 2261 vp->v_type = VBAD;
41a01a4d 2262 lwkt_reltoken(vlock);
984263bc
MD
2263}
2264
2265/*
2266 * Lookup a vnode by device number.
2267 */
2268int
dd98570a 2269vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
984263bc 2270{
41a01a4d 2271 lwkt_tokref ilock;
984263bc
MD
2272 struct vnode *vp;
2273
41a01a4d 2274 lwkt_gettoken(&ilock, &spechash_token);
984263bc
MD
2275 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2276 if (type == vp->v_type) {
2277 *vpp = vp;
41a01a4d 2278 lwkt_reltoken(&ilock);
984263bc
MD
2279 return (1);
2280 }
2281 }
41a01a4d 2282 lwkt_reltoken(&ilock);
984263bc
MD
2283 return (0);
2284}
2285
2286/*
e4c9c0c8
MD
2287 * Calculate the total number of references to a special device. This
2288 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
2289 * an overloaded field. Since udev2dev can now return NODEV, we have
2290 * to check for a NULL v_rdev.
984263bc
MD
2291 */
2292int
e4c9c0c8 2293count_dev(dev_t dev)
984263bc 2294{
41a01a4d 2295 lwkt_tokref ilock;
e4c9c0c8
MD
2296 struct vnode *vp;
2297 int count = 0;
984263bc 2298
e4c9c0c8
MD
2299 if (SLIST_FIRST(&dev->si_hlist)) {
2300 lwkt_gettoken(&ilock, &spechash_token);
2301 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2302 count += vp->v_usecount;
2303 }
2304 lwkt_reltoken(&ilock);
2305 }
2306 return(count);
984263bc
MD
2307}
2308
984263bc 2309int
e4c9c0c8 2310count_udev(udev_t udev)
984263bc 2311{
e4c9c0c8 2312 dev_t dev;
984263bc 2313
e4c9c0c8
MD
2314 if ((dev = udev2dev(udev, 0)) == NODEV)
2315 return(0);
2316 return(count_dev(dev));
2317}
2318
2319int
2320vcount(struct vnode *vp)
2321{
2322 if (vp->v_rdev == NULL)
2323 return(0);
2324 return(count_dev(vp->v_rdev));
984263bc
MD
2325}
2326
2327/*
2328 * Print out a description of a vnode.
2329 */
2330static char *typename[] =
2331{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2332
2333void
dd98570a 2334vprint(char *label, struct vnode *vp)
984263bc
MD
2335{
2336 char buf[96];
2337
2338 if (label != NULL)
2339 printf("%s: %p: ", label, (void *)vp);
2340 else
2341 printf("%p: ", (void *)vp);
2342 printf("type %s, usecount %d, writecount %d, refcount %d,",
2343 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2344 vp->v_holdcnt);
2345 buf[0] = '\0';
2346 if (vp->v_flag & VROOT)
2347 strcat(buf, "|VROOT");
2348 if (vp->v_flag & VTEXT)
2349 strcat(buf, "|VTEXT");
2350 if (vp->v_flag & VSYSTEM)
2351 strcat(buf, "|VSYSTEM");
2352 if (vp->v_flag & VXLOCK)
2353 strcat(buf, "|VXLOCK");
2354 if (vp->v_flag & VXWANT)
2355 strcat(buf, "|VXWANT");
2356 if (vp->v_flag & VBWAIT)
2357 strcat(buf, "|VBWAIT");
2358 if (vp->v_flag & VDOOMED)
2359 strcat(buf, "|VDOOMED");
2360 if (vp->v_flag & VFREE)
2361 strcat(buf, "|VFREE");
2362 if (vp->v_flag & VOBJBUF)
2363 strcat(buf, "|VOBJBUF");
2364 if (buf[0] != '\0')
2365 printf(" flags (%s)", &buf[1]);
2366 if (vp->v_data == NULL) {
2367 printf("\n");
2368 } else {
2369 printf("\n\t");
2370 VOP_PRINT(vp);
2371 }
2372}
2373
2374#ifdef DDB
2375#include <ddb/ddb.h>
2376/*
2377 * List all of the locked vnodes in the system.
2378 * Called when debugging the kernel.
2379 */
2380DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2381{
dadab5e9 2382 struct thread *td = curthread; /* XXX */
41a01a4d 2383 lwkt_tokref ilock;
984263bc
MD
2384 struct mount *mp, *nmp;
2385 struct vnode *vp;
2386
2387 printf("Locked vnodes\n");
41a01a4d 2388 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 2389 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 2390 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
984263bc
MD
2391 nmp = TAILQ_NEXT(mp, mnt_list);
2392 continue;
2393 }
2394 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2395 if (VOP_ISLOCKED(vp, NULL))
2396 vprint((char *)0, vp);
2397 }
41a01a4d 2398 lwkt_gettokref(&ilock);
984263bc 2399 nmp = TAILQ_NEXT(mp, mnt_list);
dadab5e9 2400 vfs_unbusy(mp, td);
984263bc 2401 }
41a01a4d 2402 lwkt_reltoken(&ilock);
984263bc
MD
2403}
2404#endif
2405
2406/*
2407 * Top level filesystem related information gathering.
2408 */
402ed7e1 2409static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
984263bc
MD
2410
2411static int
2412vfs_sysctl(SYSCTL_HANDLER_ARGS)
2413{
2414 int *name = (int *)arg1 - 1; /* XXX */
2415 u_int namelen = arg2 + 1; /* XXX */
2416 struct vfsconf *vfsp;
2417
2418#if 1 || defined(COMPAT_PRELITE2)
2419 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2420 if (namelen == 1)
2421 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2422#endif
2423
2424#ifdef notyet
2425 /* all sysctl names at this level are at least name and field */
2426 if (namelen < 2)
2427 return (ENOTDIR); /* overloaded */
2428 if (name[0] != VFS_GENERIC) {
2429 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2430 if (vfsp->vfc_typenum == name[0])
2431 break;
2432 if (vfsp == NULL)
2433 return (EOPNOTSUPP);
2434 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2435 oldp, oldlenp, newp, newlen, p));
2436 }
2437#endif
2438 switch (name[1]) {
2439 case VFS_MAXTYPENUM:
2440 if (namelen != 2)
2441 return (ENOTDIR);
2442 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2443 case VFS_CONF:
2444 if (namelen != 3)
2445 return (ENOTDIR); /* overloaded */
2446 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2447 if (vfsp->vfc_typenum == name[2])
2448 break;
2449 if (vfsp == NULL)
2450 return (EOPNOTSUPP);
2451 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2452 }
2453 return (EOPNOTSUPP);
2454}
2455
2456SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2457 "Generic filesystem");
2458
2459#if 1 || defined(COMPAT_PRELITE2)
2460
2461static int
2462sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2463{
2464 int error;
2465 struct vfsconf *vfsp;
2466 struct ovfsconf ovfs;
2467
2468 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2469 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
2470 strcpy(ovfs.vfc_name, vfsp->vfc_name);
2471 ovfs.vfc_index = vfsp->vfc_typenum;
2472 ovfs.vfc_refcount = vfsp->vfc_refcount;
2473 ovfs.vfc_flags = vfsp->vfc_flags;
2474 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2475 if (error)
2476 return error;
2477 }
2478 return 0;
2479}
2480
2481#endif /* 1 || COMPAT_PRELITE2 */
2482
2483#if 0
2484#define KINFO_VNODESLOP 10
2485/*
2486 * Dump vnode list (via sysctl).
2487 * Copyout address of vnode followed by vnode.
2488 */
2489/* ARGSUSED */
2490static int
2491sysctl_vnode(SYSCTL_HANDLER_ARGS)
2492{
2493 struct proc *p = curproc; /* XXX */
2494 struct mount *mp, *nmp;
2495 struct vnode *nvp, *vp;
41a01a4d
MD
2496 lwkt_tokref ilock;
2497 lwkt_tokref jlock;
984263bc
MD
2498 int error;
2499
2500#define VPTRSZ sizeof (struct vnode *)
2501#define VNODESZ sizeof (struct vnode)
2502
2503 req->lock = 0;
2504 if (!req->oldptr) /* Make an estimate */
2505 return (SYSCTL_OUT(req, 0,
2506 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2507
41a01a4d 2508 lwkt_gettoken(&ilock, &mountlist_token);
984263bc 2509 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
41a01a4d 2510 if (vfs_busy(mp, LK_NOWAIT, &ilock, p)) {
984263bc
MD
2511 nmp = TAILQ_NEXT(mp, mnt_list);
2512 continue;
2513 }
41a01a4d 2514 lwkt_gettoken(&jlock, &mntvnode_token);
984263bc 2515again:
984263bc
MD
2516 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2517 vp != NULL;
2518 vp = nvp) {
2519 /*
2520 * Check that the vp is still associated with
2521 * this filesystem. RACE: could have been
2522 * recycled onto the same filesystem.
2523 */
41a01a4d 2524 if (vp->v_mount != mp)
984263bc 2525 goto again;
984263bc 2526 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
984263bc 2527 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
41a01a4d
MD
2528 (error = SYSCTL_OUT(req, vp, VNODESZ))) {
2529 lwkt_reltoken(&jlock);
984263bc 2530 return (error);
41a01a4d 2531 }
984263bc 2532 }
41a01a4d
MD
2533 lwkt_reltoken(&jlock);
2534 lwkt_gettokref(&ilock);
2535 nmp = TAILQ_NEXT(mp, mnt_list); /* ZZZ */
984263bc
MD
2536 vfs_unbusy(mp, p);
2537 }
41a01a4d 2538 lwkt_reltoken(&ilock);
984263bc
MD
2539
2540 return (0);
2541}
2542#endif
2543
2544/*
2545 * XXX
2546 * Exporting the vnode list on large systems causes them to crash.
2547 * Exporting the vnode list on medium systems causes sysctl to coredump.
2548 */
2549#if 0
2550SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2551 0, 0, sysctl_vnode, "S,vnode", "");
2552#endif
2553
2554/*
2555 * Check to see if a filesystem is mounted on a block device.
2556 */
2557int
e4c9c0c8 2558vfs_mountedon(struct vnode *vp)
984263bc 2559{
e4c9c0c8 2560 dev_t dev;
984263bc 2561
e4c9c0c8
MD
2562 if ((dev = vp->v_rdev) == NULL)
2563 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
2564 if (dev != NODEV && dev->si_mountpoint)
984263bc
MD
2565 return (EBUSY);
2566 return (0);
2567}
2568
2569/*
2570 * Unmount all filesystems. The list is traversed in reverse order
2571 * of mounting to avoid dependencies.
2572 */
2573void
dd98570a 2574vfs_unmountall(void)
984263bc
MD
2575{
2576 struct mount *mp;
dadab5e9 2577 struct thread *td = curthread;
984263bc
MD
2578 int error;
2579
dadab5e9
MD
2580 if (td->td_proc == NULL)
2581 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
2582
984263bc
MD
2583 /*
2584 * Since this only runs when rebooting, it is not interlocked.
2585 */
2586 while(!TAILQ_EMPTY(&mountlist)) {
2587 mp = TAILQ_LAST(&mountlist, mntlist);
dadab5e9 2588 error = dounmount(mp, MNT_FORCE, td);
984263bc
MD
2589 if (error) {
2590 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2591 printf("unmount of %s failed (",
2592 mp->mnt_stat.f_mntonname);
2593 if (error == EBUSY)
2594 printf("BUSY)\n");
2595 else
2596 printf("%d)\n", error);
2597 } else {
2598 /* The unmount has removed mp from the mountlist */
2599 }
2600 }
2601}
2602
2603/*
2604 * Build hash lists of net addresses and hang them off the mount point.
2605 * Called by ufs_mount() to set up the lists of export addresses.
2606 */
2607static int
dd98570a
MD
2608vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2609 struct export_args *argp)
984263bc 2610{
1fd87d54
RG
2611 struct netcred *np;
2612 struct radix_node_head *rnh;
2613 int i;
984263bc
MD
2614 struct radix_node *rn;
2615 struct sockaddr *saddr, *smask = 0;
2616 struct domain *dom;
2617 int error;
2618
2619 if (argp->ex_addrlen == 0) {
2620 if (mp->mnt_flag & MNT_DEFEXPORTED)
2621 return (EPERM);
2622 np = &nep->ne_defexported;
2623 np->netc_exflags = argp->ex_flags;
2624 np->netc_anon = argp->ex_anon;
2625 np->netc_anon.cr_ref = 1;
2626 mp->mnt_flag |= MNT_DEFEXPORTED;
2627 return (0);
2628 }
2629
0260ddf9
MD
2630 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2631 return (EINVAL);
2632 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
984263bc
MD
2633 return (EINVAL);
2634
2635 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2636 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2637 bzero((caddr_t) np, i);
2638 saddr = (struct sockaddr *) (np + 1);
2639 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2640 goto out;
2641 if (saddr->sa_len > argp->ex_addrlen)
2642 saddr->sa_len = argp->ex_addrlen;
2643 if (argp->ex_masklen) {
dd98570a
MD
2644 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2645 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
984263bc
MD
2646 if (error)
2647 goto out;
2648 if (smask->sa_len > argp->ex_masklen)
2649 smask->sa_len = argp->ex_masklen;
2650 }
2651 i = saddr->sa_family;
2652 if ((rnh = nep->ne_rtable[i]) == 0) {
2653 /*
2654 * Seems silly to initialize every AF when most are not used,
2655 * do so on demand here
2656 */
2657 for (dom = domains; dom; dom = dom->dom_next)
2658 if (dom->dom_family == i && dom->dom_rtattach) {
2659 dom->dom_rtattach((void **) &nep->ne_rtable[i],
2660 dom->dom_rtoffset);
2661 break;
2662 }
2663 if ((rnh = nep->ne_rtable[i]) == 0) {
2664 error = ENOBUFS;
2665 goto out;
2666 }
2667 }
2668 rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2669 np->netc_rnodes);
2670 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
2671 error = EPERM;
2672 goto out;
2673 }
2674 np->netc_exflags = argp->ex_flags;
2675 np->netc_anon = argp->ex_anon;
2676 np->netc_anon.cr_ref = 1;
2677 return (0);
2678out:
2679 free(np, M_NETADDR);
2680 return (error);
2681}
2682
2683/* ARGSUSED */
2684static int
dd98570a 2685vfs_free_netcred(struct radix_node *rn, void *w)
984263bc 2686{
1fd87d54 2687 struct radix_node_head *rnh = (struct radix_node_head *) w;
984263bc
MD
2688
2689 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2690 free((caddr_t) rn, M_NETADDR);
2691 return (0);
2692}
2693
2694/*
2695 * Free the net address hash lists that are hanging off the mount points.
2696 */
2697static void
dd98570a 2698vfs_free_addrlist(struct netexport *nep)
984263bc 2699{
1fd87d54
RG
2700 int i;
2701 struct radix_node_head *rnh;
984263bc
MD
2702
2703 for (i = 0; i <= AF_MAX; i++)
2704 if ((rnh = nep->ne_rtable[i])) {
2705 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2706 (caddr_t) rnh);
2707 free((caddr_t) rnh, M_RTABLE);
2708 nep->ne_rtable[i] = 0;
2709 }
2710}
2711
2712int
dd98570a 2713vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
984263bc
MD
2714{
2715 int error;
2716
2717 if (argp->ex_flags & MNT_DELEXPORT) {
2718 if (mp->mnt_flag & MNT_EXPUBLIC) {
2719 vfs_setpublicfs(NULL, NULL, NULL);
2720 mp->mnt_flag &= ~MNT_EXPUBLIC;
2721 }
2722 vfs_free_addrlist(nep);
2723 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2724 }
2725 if (argp->ex_flags & MNT_EXPORTED) {
2726 if (argp->ex_flags & MNT_EXPUBLIC) {
2727 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2728 return (error);
2729 mp->mnt_flag |= MNT_EXPUBLIC;
2730 }
2731 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2732 return (error);
2733 mp->mnt_flag |= MNT_EXPORTED;
2734 }
2735 return (0);
2736}
2737
2738
2739/*
2740 * Set the publicly exported filesystem (WebNFS). Currently, only
2741 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2742 */
2743int
dd98570a
MD
2744vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2745 struct export_args *argp)
984263bc
MD
2746{
2747 int error;
2748 struct vnode *rvp;
2749 char *cp;
2750
2751 /*
2752 * mp == NULL -> invalidate the current info, the FS is
2753 * no longer exported. May be called from either vfs_export
2754 * or unmount, so check if it hasn't already been done.
2755 */
2756 if (mp == NULL) {
2757 if (nfs_pub.np_valid) {
2758 nfs_pub.np_valid = 0;
2759 if (nfs_pub.np_index != NULL) {
2760 FREE(nfs_pub.np_index, M_TEMP);
2761 nfs_pub.np_index = NULL;
2762 }
2763 }
2764 return (0);
2765 }
2766
2767 /*
2768 * Only one allowed at a time.
2769 */
2770 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2771 return (EBUSY);
2772
2773 /*
2774 * Get real filehandle for root of exported FS.
2775 */
2776 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2777 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2778
2779 if ((error = VFS_ROOT(mp, &rvp)))
2780 return (error);
2781
2782 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2783 return (error);
2784
2785 vput(rvp);
2786
2787 /*
2788 * If an indexfile was specified, pull it in.
2789 */
2790 if (argp->ex_indexfile != NULL) {
2791 MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2792 M_WAITOK);
2793 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2794 MAXNAMLEN, (size_t *)0);
2795 if (!error) {
2796 /*
2797 * Check for illegal filenames.
2798 */
2799 for (cp = nfs_pub.np_index; *cp; cp++) {
2800 if (*cp == '/') {
2801 error = EINVAL;
2802 break;
2803 }
2804 }
2805 }
2806 if (error) {
2807 FREE(nfs_pub.np_index, M_TEMP);
2808 return (error);
2809 }
2810 }
2811
2812 nfs_pub.np_mount = mp;
2813 nfs_pub.np_valid = 1;
2814 return (0);
2815}
2816
2817struct netcred *
dd98570a
MD
2818vfs_export_lookup(struct mount *mp, struct netexport *nep,
2819 struct sockaddr *nam)
984263bc 2820{
1fd87d54
RG
2821 struct netcred *np;
2822 struct radix_node_head *rnh;
984263bc
MD
2823 struct sockaddr *saddr;
2824
2825 np = NULL;
2826 if (mp->mnt_flag & MNT_EXPORTED) {
2827 /*
2828 * Lookup in the export list first.
2829 */
2830 if (nam != NULL) {
2831 saddr = nam;
2832 rnh = nep->ne_rtable[saddr->sa_family];
2833 if (rnh != NULL) {
2834 np = (struct netcred *)
2835 (*rnh->rnh_matchaddr)((caddr_t)saddr,
2836 rnh);
2837 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2838 np = NULL;
2839 }
2840 }
2841 /*
2842 * If no address match, use the default if it exists.
2843 */
2844 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2845 np = &nep->ne_defexported;
2846 }
2847 return (np);
2848}
2849
2850/*
41a01a4d
MD
2851 * perform msync on all vnodes under a mount point. The mount point must
2852 * be locked. This code is also responsible for lazy-freeing unreferenced
2853 * vnodes whos VM objects no longer contain pages.
2854 *
2855 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
984263bc 2856 */
41a01a4d
MD
2857static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2858static int vfs_msync_scan2(struct mount *mp, struct vnode *vp,
dd98570a 2859 lwkt_tokref_t vlock, void *data);
41a01a4d 2860
984263bc
MD
2861void
2862vfs_msync(struct mount *mp, int flags)
2863{
41a01a4d
MD
2864 vmntvnodescan(mp, vfs_msync_scan1, vfs_msync_scan2, (void *)flags);
2865}
984263bc 2866
41a01a4d
MD
2867/*
2868 * scan1 is a fast pre-check. There could be hundreds of thousands of
2869 * vnodes, we cannot afford to do anything heavy weight until we have a
2870 * fairly good indication that there is work to do.
2871 */
2872static
2873int
2874vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2875{
2876 int flags = (int)data;
984263bc 2877
41a01a4d
MD
2878 if ((vp->v_flag & VXLOCK) == 0) {
2879 if (VSHOULDFREE(vp))
2880 return(0);
2881 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2882 (vp->v_flag & VOBJDIRTY) &&
984263bc 2883 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
41a01a4d
MD
2884 return(0);
2885 }
2886 }
2887 return(-1);
2888}
2889
2890static
2891int
dd98570a
MD
2892vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2893 lwkt_tokref_t vlock, void *data)
41a01a4d
MD
2894{
2895 vm_object_t obj;
2896 int error;
2897 int flags = (int)data;
2898
2899 if (vp->v_flag & VXLOCK)
2900 return(0);
2901
2902 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2903 (vp->v_flag & VOBJDIRTY) &&
2904 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2905 error = vget(vp, vlock, LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ | LK_INTERLOCK, curthread);
2906 if (error == 0) {
2907 if (VOP_GETVOBJECT(vp, &obj) == 0) {
2908 vm_object_page_clean(obj, 0, 0,
2909 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
984263bc 2910 }
41a01a4d 2911 vput(vp);
984263bc 2912 }
41a01a4d 2913 return(0);
984263bc 2914 }
41a01a4d
MD
2915 vmaybefree(vp);
2916 lwkt_reltoken(vlock);
2917 return(0);
984263bc
MD
2918}
2919
2920/*
2921 * Create the VM object needed for VMIO and mmap support. This
2922 * is done for all VREG files in the system. Some filesystems might
2923 * afford the additional metadata buffering capability of the
2924 * VMIO code by making the device node be VMIO mode also.
2925 *
2926 * vp must be locked when vfs_object_create is called.
2927 */
2928int
3b568787 2929vfs_object_create(struct vnode *vp, struct thread *td)
984263bc 2930{
3b568787 2931 return (VOP_CREATEVOBJECT(vp, td));
984263bc
MD
2932}
2933
41a01a4d
MD
2934/*
2935 * NOTE: the vnode interlock must be held during the call. We have to recheck
2936 * the VFREE flag since the vnode may have been removed from the free list
2937 * while we were blocked on vnode_free_list_token. The use or hold count
2938 * must have already been bumped by the caller.
2939 */
2940static void
2941vbusy(struct vnode *vp)
984263bc 2942{
41a01a4d 2943 lwkt_tokref ilock;
984263bc 2944
41a01a4d
MD
2945 lwkt_gettoken(&ilock, &vnode_free_list_token);
2946 if ((vp->v_flag & VFREE) != 0) {
2947 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2948 freevnodes--;
2949 vp->v_flag &= ~(VFREE|VAGE);
984263bc 2950 }
41a01a4d 2951 lwkt_reltoken(&ilock);
984263bc
MD
2952}
2953
41a01a4d
MD
2954/*
2955 * NOTE: the vnode interlock must be held during the call. The use or hold
2956 * count must have already been bumped by the caller. We use a VINFREE to
2957 * interlock against other calls to vfree() which might occur while we
2958 * are blocked. The vnode cannot be reused until it has actually been
2959 * placed on the free list, so there are no other races even though the
2960 * use and hold counts are 0.
2961 */
2962static void
2963vfree(struct vnode *vp)
984263bc 2964{
41a01a4d 2965 lwkt_tokref ilock;
984263bc 2966
41a01a4d
MD
2967 if ((vp->v_flag & VINFREE) == 0) {
2968 vp->v_flag |= VINFREE;
2969 lwkt_gettoken(&ilock, &vnode_free_list_token); /* can block */
2970 KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2971 if (vp->v_flag & VAGE) {
2972 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2973 } else {
2974 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2975 }
2976 freevnodes++;
2977 vp->v_flag &= ~(VAGE|VINFREE);
2978 vp->v_flag |= VFREE;
2979 lwkt_reltoken(&ilock); /* can block */
2980 }
984263bc
MD
2981}
2982
41a01a4d 2983
984263bc
MD
2984/*
2985 * Record a process's interest in events which might happen to
2986 * a vnode. Because poll uses the historic select-style interface
2987 * internally, this routine serves as both the ``check for any
2988 * pending events'' and the ``record my interest in future events''
2989 * functions. (These are done together, while the lock is held,
2990 * to avoid race conditions.)
2991 */
2992int
dadab5e9 2993vn_pollrecord(struct vnode *vp, struct thread *td, int events)
984263bc 2994{
41a01a4d
MD
2995 lwkt_tokref ilock;
2996
2997 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
2998 if (vp->v_pollinfo.vpi_revents & events) {
2999 /*
3000 * This leaves events we are not interested
3001 * in available for the other process which
3002 * which presumably had requested them
3003 * (otherwise they would never have been
3004 * recorded).
3005 */
3006 events &= vp->v_pollinfo.vpi_revents;
3007 vp->v_pollinfo.vpi_revents &= ~events;
3008
41a01a4d 3009 lwkt_reltoken(&ilock);
984263bc
MD
3010 return events;
3011 }
3012 vp->v_pollinfo.vpi_events |= events;
dadab5e9 3013 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
41a01a4d 3014 lwkt_reltoken(&ilock);
984263bc
MD
3015 return 0;
3016}
3017
3018/*
3019 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
3020 * it is possible for us to miss an event due to race conditions, but
3021 * that condition is expected to be rare, so for the moment it is the
3022 * preferred interface.
3023 */
3024void
dd98570a 3025vn_pollevent(struct vnode *vp, int events)
984263bc 3026{
41a01a4d
MD
3027 lwkt_tokref ilock;
3028
3029 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
3030 if (vp->v_pollinfo.vpi_events & events) {
3031 /*
3032 * We clear vpi_events so that we don't
3033 * call selwakeup() twice if two events are
3034 * posted before the polling process(es) is
3035 * awakened. This also ensures that we take at
3036 * most one selwakeup() if the polling process
3037 * is no longer interested. However, it does
3038 * mean that only one event can be noticed at
3039 * a time. (Perhaps we should only clear those
3040 * event bits which we note?) XXX
3041 */
3042 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
3043 vp->v_pollinfo.vpi_revents |= events;
3044 selwakeup(&vp->v_pollinfo.vpi_selinfo);
3045 }
41a01a4d 3046 lwkt_reltoken(&ilock);
984263bc
MD
3047}
3048
3049/*
3050 * Wake up anyone polling on vp because it is being revoked.
3051 * This depends on dead_poll() returning POLLHUP for correct
3052 * behavior.
3053 */
3054void
dd98570a 3055vn_pollgone(struct vnode *vp)
984263bc 3056{
41a01a4d
MD
3057 lwkt_tokref ilock;
3058
3059 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
984263bc
MD
3060 if (vp->v_pollinfo.vpi_events) {
3061 vp->v_pollinfo.vpi_events = 0;
3062 selwakeup(&vp->v_pollinfo.vpi_selinfo);
3063 }
41a01a4d 3064 lwkt_reltoken(&ilock);
984263bc
MD
3065}
3066
3067
3068
3069/*
3070 * Routine to create and manage a filesystem syncer vnode.
3071 */
402ed7e1
RG
3072#define sync_close ((int (*) (struct vop_close_args *))nullop)
3073static int sync_fsync (struct vop_fsync_args *);
3074static int sync_inactive (struct vop_inactive_args *);
3075static int sync_reclaim (struct vop_reclaim_args *);
3446c007
MD
3076#define sync_lock ((int (*) (struct vop_lock_args *))vop_stdlock)
3077#define sync_unlock ((int (*) (struct vop_unlock_args *))vop_stdunlock)
402ed7e1 3078static int sync_print (struct vop_print_args *);
3446c007 3079#define sync_islocked ((int(*) (struct vop_islocked_args *))vop_stdislocked)
984263bc 3080
2d3e977e 3081static struct vop_ops *sync_vnode_vops;
984263bc 3082static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2d3e977e
MD
3083 { &vop_default_desc, vop_eopnotsupp },
3084 { &vop_close_desc, (void *) sync_close }, /* close */
3085 { &vop_fsync_desc, (void *) sync_fsync }, /* fsync */
3086 { &vop_inactive_desc, (void *) sync_inactive }, /* inactive */
3087 { &vop_reclaim_desc, (void *) sync_reclaim }, /* reclaim */
3088 { &vop_lock_desc, (void *) sync_lock }, /* lock */
3089 { &vop_unlock_desc, (void *) sync_unlock }, /* unlock */
3090 { &vop_print_desc, (void *) sync_print }, /* print */
3091 { &vop_islocked_desc, (void *) sync_islocked }, /* islocked */
984263bc
MD
3092 { NULL, NULL }
3093};
0961aa92 3094
984263bc 3095static struct vnodeopv_desc sync_vnodeop_opv_desc =
2d3e977e 3096 { &sync_vnode_vops, sync_vnodeop_entries };
984263bc
MD
3097
3098VNODEOP_SET(sync_vnodeop_opv_desc);
3099
3100/*
3101 * Create a new filesystem syncer vnode for the specified mount point.
41a01a4d
MD
3102 * This vnode is placed on the worklist and is responsible for sync'ing
3103 * the filesystem.
3104 *
3105 * NOTE: read-only mounts are also placed on the worklist. The filesystem
3106 * sync code is also responsible for cleaning up vnodes.
984263bc
MD
3107 */
3108int
41a01a4d 3109vfs_allocate_syncvnode(struct mount *mp)
984263bc
MD
3110{
3111 struct vnode *vp;
3112 static long start, incr, next;
3113 int error;
3114
3115 /* Allocate a new vnode */
3446c007
MD
3116 error = getnewvnode(VT_VFS, mp, sync_vnode_vops, &vp, 0, 0);
3117 if (error) {
984263bc
MD
3118 mp->mnt_syncer = NULL;
3119 return (error);
3120 }
3121 vp->v_type = VNON;
3122 /*
3123 * Place the vnode onto the syncer worklist. We attempt to
3124 * scatter them about on the list so that they will go off
3125 * at evenly distributed times even if all the filesystems
3126 * are mounted at once.
3127 */
3128 next += incr;
3129 if (next == 0 || next > syncer_maxdelay) {
3130 start /= 2;
3131 incr /= 2;
3132 if (start == 0) {
3133 start = syncer_maxdelay / 2;
3134 incr = syncer_maxdelay;
3135 }
3136 next = start;
3137 }
3138 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3139 mp->mnt_syncer = vp;
3140 return (0);
3141}
3142
3143/*
3144 * Do a lazy sync of the filesystem.
dd98570a
MD
3145 *
3146 * sync_fsync { struct vnode *a_vp, struct ucred *a_cred, int a_waitfor,
3147 * struct thread *a_td }
984263bc
MD
3148 */
3149static int
dd98570a 3150sync_fsync(struct vop_fsync_args *ap)
984263bc
MD
3151{
3152 struct vnode *syncvp = ap->a_vp;
3153 struct mount *mp = syncvp->v_mount;
dadab5e9 3154 struct thread *td = ap->a_td;
41a01a4d 3155 lwkt_tokref ilock;
984263bc
MD
3156 int asyncflag;
3157
3158 /*
3159 * We only need to do something if this is a lazy evaluation.
3160 */
3161 if (ap->a_waitfor != MNT_LAZY)
3162 return (0);
3163
3164 /*
3165 * Move ourselves to the back of the sync list.
3166 */
3167 vn_syncer_add_to_worklist(syncvp, syncdelay);
3168
3169 /*
3170 * Walk the list of vnodes pushing all that are dirty and
41a01a4d
MD
3171 * not already on the sync list, and freeing vnodes which have
3172 * no refs and whos VM objects are empty. vfs_msync() handles
3173 * the VM issues and must be called whether the mount is readonly
3174 * or not.
984263bc 3175 */
41a01a4d
MD
3176 lwkt_gettoken(&ilock, &mountlist_token);
3177 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &ilock, td) != 0) {
3178 lwkt_reltoken(&ilock);
984263bc
MD
3179 return (0);
3180 }
41a01a4d
MD
3181 if (mp->mnt_flag & MNT_RDONLY) {
3182 vfs_msync(mp, MNT_NOWAIT);
3183 } else {
3184 asyncflag = mp->mnt_flag & MNT_ASYNC;
3185 mp->mnt_flag &= ~MNT_ASYNC; /* ZZZ hack */
3186 vfs_msync(mp, MNT_NOWAIT);
3187 VFS_SYNC(mp, MNT_LAZY, td);
3188 if (asyncflag)
3189 mp->mnt_flag |= MNT_ASYNC;
3190 }
dadab5e9 3191 vfs_unbusy(mp, td);
984263bc
MD
3192 return (0);
3193}
3194
3195/*
3196 * The syncer vnode is no referenced.
dd98570a
MD
3197 *
3198 * sync_inactive { struct vnode *a_vp, struct proc *a_p }
984263bc
MD
3199 */
3200static int
dd98570a 3201sync_inactive(struct vop_inactive_args *ap)
984263bc 3202{
3446c007 3203 VOP_UNLOCK(ap->a_vp, NULL, 0, ap->a_td);
984263bc
MD
3204 vgone(ap->a_vp);
3205 return (0);
3206}
3207
3208/*
3209 * The syncer vnode is no longer needed and is being decommissioned.
3210 *
3211 * Modifications to the worklist must be protected at splbio().
dd98570a
MD
3212 *
3213 * sync_reclaim { struct vnode *a_vp }
984263bc
MD
3214 */
3215static int
dd98570a 3216sync_reclaim(struct vop_reclaim_args *ap)
984263bc
MD
3217{
3218 struct vnode *vp = ap->a_vp;
3219 int s;
3220
3221 s = splbio();
3222 vp->v_mount->mnt_syncer = NULL;
3223 if (vp->v_flag & VONWORKLST) {
3224 LIST_REMOVE(vp, v_synclist);
3225 vp->v_flag &= ~VONWORKLST;
3226 }
3227 splx(s);
3228
3229 return (0);
3230}
3231
3232/*
3233 * Print out a syncer vnode.
dd98570a
MD
3234 *
3235 * sync_print { struct vnode *a_vp }
984263bc
MD
3236 */
3237static int
dd98570a 3238sync_print(struct vop_print_args *ap)
984263bc
MD
3239{
3240 struct vnode *vp = ap->a_vp;
3241
3242 printf("syncer vnode");
3446c007 3243 lockmgr_printinfo(&vp->v_lock);
984263bc
MD
3244 printf("\n");
3245 return (0);
3246}
3247
3248/*
e4c9c0c8
MD
3249 * extract the dev_t from a VBLK or VCHR. The vnode must have been opened
3250 * (or v_rdev might be NULL).
984263bc
MD
3251 */
3252dev_t
e4c9c0c8 3253vn_todev(struct vnode *vp)
984263bc
MD
3254{
3255 if (vp->v_type != VBLK && vp->v_type != VCHR)
3256 return (NODEV);
e4c9c0c8 3257 KKASSERT(vp->v_rdev != NULL);
984263bc
MD
3258 return (vp->v_rdev);
3259}
3260
3261/*
e4c9c0c8
MD
3262 * Check if vnode represents a disk device. The vnode does not need to be
3263 * opened.
984263bc
MD
3264 */
3265int
e4c9c0c8 3266vn_isdisk(struct vnode *vp, int *errp)
984263bc 3267{
e4c9c0c8
MD
3268 dev_t dev;
3269
984263bc
MD
3270 if (vp->v_type != VBLK && vp->v_type != VCHR) {
3271 if (errp != NULL)
3272 *errp = ENOTBLK;
3273 return (0);
3274 }
e4c9c0c8
MD
3275
3276 if ((dev = vp->v_rdev) == NULL)
3277 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
3278 if (dev == NULL || dev == NODEV) {
984263bc
MD
3279 if (errp != NULL)
3280 *errp = ENXIO;
3281 return (0);
3282 }
e4c9c0c8 3283 if (dev_is_good(dev) == 0) {
984263bc
MD
3284 if (errp != NULL)
3285 *errp = ENXIO;
3286 return (0);
3287 }
e4c9c0c8 3288 if ((dev_dflags(dev) & D_DISK) == 0) {
984263bc
MD
3289 if (errp != NULL)
3290 *errp = ENOTBLK;
3291 return (0);
3292 }
3293 if (errp != NULL)
3294 *errp = 0;
3295 return (1);
3296}
3297
3298void
dd98570a 3299NDFREE(struct nameidata *ndp, const uint flags)
984263bc
MD
3300{
3301 if (!(flags & NDF_NO_FREE_PNBUF) &&
2b69e610 3302 (ndp->ni_cnd.cn_flags & CNP_HASBUF)) {
984263bc 3303 zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2b69e610 3304 ndp->ni_cnd.cn_flags &= ~CNP_HASBUF;
984263bc 3305 }
bc0c094e
MD
3306 if (!(flags & NDF_NO_DNCP_RELE) &&
3307 (ndp->ni_cnd.cn_flags & CNP_WANTDNCP) &&
3308 ndp->ni_dncp) {
3309 cache_drop(ndp->ni_dncp);
3310 ndp->ni_dncp = NULL;
3311 }
3312 if (!(flags & NDF_NO_NCP_RELE) &&
3313 (ndp->ni_cnd.cn_flags & CNP_WANTNCP) &&
3314 ndp->ni_ncp) {
3315 cache_drop(ndp->ni_ncp);
3316 ndp->ni_ncp = NULL;
3317 }
984263bc 3318 if (!(flags & NDF_NO_DVP_UNLOCK) &&
2b69e610 3319 (ndp->ni_cnd.cn_flags & CNP_LOCKPARENT) &&
bc0c094e 3320 ndp->ni_dvp != ndp->ni_vp) {
41a01a4d 3321 VOP_UNLOCK(ndp->ni_dvp, NULL, 0, ndp->ni_cnd.cn_td);
bc0c094e 3322 }
984263bc 3323 if (!(flags & NDF_NO_DVP_RELE) &&
2b69e610 3324 (ndp->ni_cnd.cn_flags & (CNP_LOCKPARENT|CNP_WANTPARENT))) {
984263bc
MD
3325 vrele(ndp->ni_dvp);
3326 ndp->ni_dvp = NULL;
3327 }
3328 if (!(flags & NDF_NO_VP_UNLOCK) &&
bc0c094e 3329 (ndp->ni_cnd.cn_flags & CNP_LOCKLEAF) && ndp->ni_vp) {
41a01a4d 3330 VOP_UNLOCK(ndp->ni_vp, NULL, 0, ndp->ni_cnd.cn_td);
bc0c094e 3331 }
984263bc
MD
3332 if (!(flags & NDF_NO_VP_RELE) &&
3333 ndp->ni_vp) {
3334 vrele(ndp->ni_vp);
3335 ndp->ni_vp = NULL;
3336 }
3337 if (!(flags & NDF_NO_STARTDIR_RELE) &&
2b69e610 3338 (ndp->ni_cnd.cn_flags & CNP_SAVESTART)) {
984263bc
MD
3339 vrele(ndp->ni_startdir);
3340 ndp->ni_startdir = NULL;
3341 }
3342}
bc0c094e 3343
4f322a84
EN
3344#ifdef DEBUG_VFS_LOCKS
3345
3346void
3347assert_vop_locked(struct vnode *vp, const char *str)
3348{
4f322a84
EN
3349 if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
3350 panic("%s: %p is not locked shared but should be", str, vp);
3351 }
3352}
3353
3354void
3355assert_vop_unlocked(struct vnode *vp, const char *str)
3356{
4f322a84
EN
3357 if (vp && IS_LOCKING_VFS(vp)) {
3358 if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
3359 panic("%s: %p is locked but should not be", str, vp);
3360 }
3361 }
3362}
3363
3364#endif