network code: Convert if_multiaddrs from LIST to TAILQ.
[dragonfly.git] / sys / dev / netif / vge / if_vge.c
CommitLineData
13bca4c6
SZ
1/*
2 * Copyright (c) 2004
3 * Bill Paul <wpaul@windriver.com>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $
e6b5847c 33 * $DragonFly: src/sys/dev/netif/vge/if_vge.c,v 1.9 2008/05/16 13:19:12 sephe Exp $
13bca4c6
SZ
34 */
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 * o Jumbo frame support up to 16K
50 * o Transmit and receive flow control
51 * o IPv4 checksum offload
52 * o VLAN tag insertion and stripping
53 * o TCP large send
54 * o 64-bit multicast hash table filter
55 * o 64 entry CAM filter
56 * o 16K RX FIFO and 48K TX FIFO memory
57 * o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#include "opt_polling.h"
84
85#include <sys/param.h>
86#include <sys/endian.h>
87#include <sys/systm.h>
88#include <sys/sockio.h>
89#include <sys/mbuf.h>
90#include <sys/malloc.h>
91#include <sys/module.h>
92#include <sys/kernel.h>
93#include <sys/socket.h>
94#include <sys/serialize.h>
95#include <sys/proc.h>
1f7ab7c9
MD
96#include <sys/bus.h>
97#include <sys/rman.h>
9db4b353 98#include <sys/interrupt.h>
13bca4c6
SZ
99
100#include <net/if.h>
101#include <net/if_arp.h>
102#include <net/ethernet.h>
103#include <net/if_dl.h>
104#include <net/if_media.h>
105#include <net/ifq_var.h>
106#include <net/if_types.h>
107#include <net/vlan/if_vlan_var.h>
b637f170 108#include <net/vlan/if_vlan_ether.h>
13bca4c6
SZ
109
110#include <net/bpf.h>
111
13bca4c6
SZ
112#include <dev/netif/mii_layer/mii.h>
113#include <dev/netif/mii_layer/miivar.h>
114
115#include <bus/pci/pcireg.h>
116#include <bus/pci/pcivar.h>
117#include <bus/pci/pcidevs.h>
118
119#include "miibus_if.h"
120
121#include <dev/netif/vge/if_vgereg.h>
122#include <dev/netif/vge/if_vgevar.h>
123
124#define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
125
126/*
127 * Various supported device vendors/types and their names.
128 */
129static const struct vge_type vge_devs[] = {
130 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X,
131 "VIA Networking Gigabit Ethernet" },
132 { 0, 0, NULL }
133};
134
135static int vge_probe (device_t);
136static int vge_attach (device_t);
137static int vge_detach (device_t);
138
139static int vge_encap (struct vge_softc *, struct mbuf *, int);
140
141static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int);
142static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int,
143 bus_size_t, int);
144static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int,
145 bus_size_t, int);
146static int vge_dma_alloc (device_t);
147static void vge_dma_free (struct vge_softc *);
148static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
149static int vge_rx_list_init (struct vge_softc *);
150static int vge_tx_list_init (struct vge_softc *);
151#ifdef VGE_FIXUP_RX
152static __inline void vge_fixup_rx
153 (struct mbuf *);
154#endif
155static void vge_rxeof (struct vge_softc *, int);
156static void vge_txeof (struct vge_softc *);
157static void vge_intr (void *);
158static void vge_tick (struct vge_softc *);
159static void vge_start (struct ifnet *);
160static int vge_ioctl (struct ifnet *, u_long, caddr_t,
161 struct ucred *);
162static void vge_init (void *);
163static void vge_stop (struct vge_softc *);
164static void vge_watchdog (struct ifnet *);
165static int vge_suspend (device_t);
166static int vge_resume (device_t);
167static void vge_shutdown (device_t);
168static int vge_ifmedia_upd (struct ifnet *);
169static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
170
171#ifdef VGE_EEPROM
172static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *);
173#endif
174static void vge_read_eeprom (struct vge_softc *, uint8_t *, int, int, int);
175
176static void vge_miipoll_start (struct vge_softc *);
177static void vge_miipoll_stop (struct vge_softc *);
178static int vge_miibus_readreg (device_t, int, int);
179static int vge_miibus_writereg (device_t, int, int, int);
180static void vge_miibus_statchg (device_t);
181
182static void vge_cam_clear (struct vge_softc *);
183static int vge_cam_set (struct vge_softc *, uint8_t *);
184static void vge_setmulti (struct vge_softc *);
185static void vge_reset (struct vge_softc *);
186
187#ifdef DEVICE_POLLING
188static void vge_poll(struct ifnet *, enum poll_cmd, int);
189static void vge_disable_intr(struct vge_softc *);
190#endif
191static void vge_enable_intr(struct vge_softc *, uint32_t);
192
193#define VGE_PCI_LOIO 0x10
194#define VGE_PCI_LOMEM 0x14
195
196static device_method_t vge_methods[] = {
197 /* Device interface */
198 DEVMETHOD(device_probe, vge_probe),
199 DEVMETHOD(device_attach, vge_attach),
200 DEVMETHOD(device_detach, vge_detach),
201 DEVMETHOD(device_suspend, vge_suspend),
202 DEVMETHOD(device_resume, vge_resume),
203 DEVMETHOD(device_shutdown, vge_shutdown),
204
205 /* bus interface */
206 DEVMETHOD(bus_print_child, bus_generic_print_child),
207 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
208
209 /* MII interface */
210 DEVMETHOD(miibus_readreg, vge_miibus_readreg),
211 DEVMETHOD(miibus_writereg, vge_miibus_writereg),
212 DEVMETHOD(miibus_statchg, vge_miibus_statchg),
213
214 { 0, 0 }
215};
216
217static driver_t vge_driver = {
218 "vge",
219 vge_methods,
220 sizeof(struct vge_softc)
221};
222
223static devclass_t vge_devclass;
224
225DECLARE_DUMMY_MODULE(if_vge);
226MODULE_DEPEND(if_vge, miibus, 1, 1, 1);
227DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, 0, 0);
228DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, 0, 0);
229DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
230
231#ifdef VGE_EEPROM
232/*
233 * Read a word of data stored in the EEPROM at address 'addr.'
234 */
235static void
236vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest)
237{
238 uint16_t word = 0;
239 int i;
240
241 /*
242 * Enter EEPROM embedded programming mode. In order to
243 * access the EEPROM at all, we first have to set the
244 * EELOAD bit in the CHIPCFG2 register.
245 */
246 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
247 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
248
249 /* Select the address of the word we want to read */
250 CSR_WRITE_1(sc, VGE_EEADDR, addr);
251
252 /* Issue read command */
253 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
254
255 /* Wait for the done bit to be set. */
256 for (i = 0; i < VGE_TIMEOUT; i++) {
257 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
258 break;
259 }
260 if (i == VGE_TIMEOUT) {
261 device_printf(sc->vge_dev, "EEPROM read timed out\n");
262 *dest = 0;
263 return;
264 }
265
266 /* Read the result */
267 word = CSR_READ_2(sc, VGE_EERDDAT);
268
269 /* Turn off EEPROM access mode. */
270 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272
273 *dest = word;
274}
275#endif
276
277/*
278 * Read a sequence of words from the EEPROM.
279 */
280static void
281vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap)
282{
283 int i;
284#ifdef VGE_EEPROM
285 uint16_t word = 0, *ptr;
286
287 for (i = 0; i < cnt; i++) {
288 vge_eeprom_getword(sc, off + i, &word);
289 ptr = (uint16_t *)(dest + (i * 2));
290 if (swap)
291 *ptr = ntohs(word);
292 else
293 *ptr = word;
294 }
295#else
296 for (i = 0; i < ETHER_ADDR_LEN; i++)
297 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
298#endif
299}
300
301static void
302vge_miipoll_stop(struct vge_softc *sc)
303{
304 int i;
305
306 CSR_WRITE_1(sc, VGE_MIICMD, 0);
307
308 for (i = 0; i < VGE_TIMEOUT; i++) {
309 DELAY(1);
310 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
311 break;
312 }
313 if (i == VGE_TIMEOUT)
314 if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
315}
316
317static void
318vge_miipoll_start(struct vge_softc *sc)
319{
320 int i;
321
322 /* First, make sure we're idle. */
323 CSR_WRITE_1(sc, VGE_MIICMD, 0);
324 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
325
326 for (i = 0; i < VGE_TIMEOUT; i++) {
327 DELAY(1);
328 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
329 break;
330 }
331 if (i == VGE_TIMEOUT) {
332 if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
333 return;
334 }
335
336 /* Now enable auto poll mode. */
337 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
338
339 /* And make sure it started. */
340 for (i = 0; i < VGE_TIMEOUT; i++) {
341 DELAY(1);
342 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
343 break;
344 }
345 if (i == VGE_TIMEOUT)
346 if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n");
347}
348
349static int
350vge_miibus_readreg(device_t dev, int phy, int reg)
351{
352 struct vge_softc *sc;
353 int i;
354 uint16_t rval = 0;
355
356 sc = device_get_softc(dev);
357
358 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
359 return(0);
360
361 vge_miipoll_stop(sc);
362
363 /* Specify the register we want to read. */
364 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
365
366 /* Issue read command. */
367 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
368
369 /* Wait for the read command bit to self-clear. */
370 for (i = 0; i < VGE_TIMEOUT; i++) {
371 DELAY(1);
372 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
373 break;
374 }
375 if (i == VGE_TIMEOUT)
376 if_printf(&sc->arpcom.ac_if, "MII read timed out\n");
377 else
378 rval = CSR_READ_2(sc, VGE_MIIDATA);
379
380 vge_miipoll_start(sc);
381
382 return (rval);
383}
384
385static int
386vge_miibus_writereg(device_t dev, int phy, int reg, int data)
387{
388 struct vge_softc *sc;
389 int i, rval = 0;
390
391 sc = device_get_softc(dev);
392
393 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
394 return(0);
395
396 vge_miipoll_stop(sc);
397
398 /* Specify the register we want to write. */
399 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
400
401 /* Specify the data we want to write. */
402 CSR_WRITE_2(sc, VGE_MIIDATA, data);
403
404 /* Issue write command. */
405 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
406
407 /* Wait for the write command bit to self-clear. */
408 for (i = 0; i < VGE_TIMEOUT; i++) {
409 DELAY(1);
410 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
411 break;
412 }
413 if (i == VGE_TIMEOUT) {
414 if_printf(&sc->arpcom.ac_if, "MII write timed out\n");
415 rval = EIO;
416 }
417
418 vge_miipoll_start(sc);
419
420 return (rval);
421}
422
423static void
424vge_cam_clear(struct vge_softc *sc)
425{
426 int i;
427
428 /*
429 * Turn off all the mask bits. This tells the chip
430 * that none of the entries in the CAM filter are valid.
431 * desired entries will be enabled as we fill the filter in.
432 */
433 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
434 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
435 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
436 for (i = 0; i < 8; i++)
437 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
438
439 /* Clear the VLAN filter too. */
440 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
441 for (i = 0; i < 8; i++)
442 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
443
444 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
445 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
446 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
447
448 sc->vge_camidx = 0;
449}
450
451static int
452vge_cam_set(struct vge_softc *sc, uint8_t *addr)
453{
454 int i, error = 0;
455
456 if (sc->vge_camidx == VGE_CAM_MAXADDRS)
457 return(ENOSPC);
458
459 /* Select the CAM data page. */
460 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
461 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
462
463 /* Set the filter entry we want to update and enable writing. */
464 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
465
466 /* Write the address to the CAM registers */
467 for (i = 0; i < ETHER_ADDR_LEN; i++)
468 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
469
470 /* Issue a write command. */
471 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
472
473 /* Wake for it to clear. */
474 for (i = 0; i < VGE_TIMEOUT; i++) {
475 DELAY(1);
476 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
477 break;
478 }
479 if (i == VGE_TIMEOUT) {
480 if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n");
481 error = EIO;
482 goto fail;
483 }
484
485 /* Select the CAM mask page. */
486 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
487 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
488
489 /* Set the mask bit that enables this filter. */
490 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
491 1<<(sc->vge_camidx & 7));
492
493 sc->vge_camidx++;
494
495fail:
496 /* Turn off access to CAM. */
497 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
498 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
499 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
500
501 return (error);
502}
503
504/*
505 * Program the multicast filter. We use the 64-entry CAM filter
506 * for perfect filtering. If there's more than 64 multicast addresses,
507 * we use the hash filter insted.
508 */
509static void
510vge_setmulti(struct vge_softc *sc)
511{
512 struct ifnet *ifp = &sc->arpcom.ac_if;
513 int error = 0;
514 struct ifmultiaddr *ifma;
515 uint32_t h, hashes[2] = { 0, 0 };
516
517 /* First, zot all the multicast entries. */
518 vge_cam_clear(sc);
519 CSR_WRITE_4(sc, VGE_MAR0, 0);
520 CSR_WRITE_4(sc, VGE_MAR1, 0);
521
522 /*
523 * If the user wants allmulti or promisc mode, enable reception
524 * of all multicast frames.
525 */
526 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
527 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
528 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
529 return;
530 }
531
532 /* Now program new ones */
441d34b2 533 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
13bca4c6
SZ
534 if (ifma->ifma_addr->sa_family != AF_LINK)
535 continue;
536 error = vge_cam_set(sc,
537 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
538 if (error)
539 break;
540 }
541
542 /* If there were too many addresses, use the hash filter. */
543 if (error) {
544 vge_cam_clear(sc);
545
441d34b2 546 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
13bca4c6
SZ
547 if (ifma->ifma_addr->sa_family != AF_LINK)
548 continue;
549 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
550 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
551 if (h < 32)
552 hashes[0] |= (1 << h);
553 else
554 hashes[1] |= (1 << (h - 32));
555 }
556
557 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
558 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
559 }
560}
561
562static void
563vge_reset(struct vge_softc *sc)
564{
565 int i;
566
567 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
568
569 for (i = 0; i < VGE_TIMEOUT; i++) {
570 DELAY(5);
571 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
572 break;
573 }
574
575 if (i == VGE_TIMEOUT) {
576 if_printf(&sc->arpcom.ac_if, "soft reset timed out");
577 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
578 DELAY(2000);
579 }
580
581 DELAY(5000);
582
583 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
584
585 for (i = 0; i < VGE_TIMEOUT; i++) {
586 DELAY(5);
587 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
588 break;
589 }
590 if (i == VGE_TIMEOUT) {
591 if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n");
592 return;
593 }
594
595 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
596}
597
598/*
599 * Probe for a VIA gigabit chip. Check the PCI vendor and device
600 * IDs against our list and return a device name if we find a match.
601 */
602static int
603vge_probe(device_t dev)
604{
605 const struct vge_type *t;
606 uint16_t did, vid;
607
608 did = pci_get_device(dev);
609 vid = pci_get_vendor(dev);
610 for (t = vge_devs; t->vge_name != NULL; ++t) {
611 if (vid == t->vge_vid && did == t->vge_did) {
612 device_set_desc(dev, t->vge_name);
613 return 0;
614 }
615 }
616 return (ENXIO);
617}
618
619static void
620vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
621 bus_size_t mapsize, int error)
622{
623
624 struct vge_dmaload_arg *ctx;
625 struct vge_rx_desc *d = NULL;
626
627 if (error)
628 return;
629
630 ctx = arg;
631
632 /* Signal error to caller if there's too many segments */
633 if (nseg > ctx->vge_maxsegs) {
634 ctx->vge_maxsegs = 0;
635 return;
636 }
637
638 /*
639 * Map the segment array into descriptors.
640 */
641 d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
642
643 /* If this descriptor is still owned by the chip, bail. */
644 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
645 if_printf(&ctx->sc->arpcom.ac_if,
646 "tried to map busy descriptor\n");
647 ctx->vge_maxsegs = 0;
648 return;
649 }
650
651 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
652 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
653 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
654 d->vge_sts = 0;
655 d->vge_ctl = 0;
656
657 ctx->vge_maxsegs = 1;
658}
659
660static void
661vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
662 bus_size_t mapsize, int error)
663{
664 struct vge_dmaload_arg *ctx;
665 struct vge_tx_desc *d = NULL;
666 struct vge_tx_frag *f;
667 int i = 0;
668
669 if (error)
670 return;
671
672 ctx = arg;
673
674 /* Signal error to caller if there's too many segments */
675 if (nseg > ctx->vge_maxsegs) {
676 ctx->vge_maxsegs = 0;
677 return;
678 }
679
680 /* Map the segment array into descriptors. */
681 d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
682
683 /* If this descriptor is still owned by the chip, bail. */
684 if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
685 ctx->vge_maxsegs = 0;
686 return;
687 }
688
689 for (i = 0; i < nseg; i++) {
690 f = &d->vge_frag[i];
691 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
692 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
693 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
694 }
695
696 /* Argh. This chip does not autopad short frames */
697 if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
698 f = &d->vge_frag[i];
699 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
700 ctx->vge_m0->m_pkthdr.len));
701 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
702 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
703 ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
704 i++;
705 }
706
707 /*
708 * When telling the chip how many segments there are, we
709 * must use nsegs + 1 instead of just nsegs. Darned if I
710 * know why.
711 */
712 i++;
713
714 d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
715 d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
716
717 if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
718 d->vge_ctl |= VGE_TDCTL_JUMBO;
719
720 ctx->vge_maxsegs = nseg;
721}
722
723/*
724 * Map a single buffer address.
725 */
726
727static void
728vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
729{
730 if (error)
731 return;
732
733 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
734 *((bus_addr_t *)arg) = segs->ds_addr;
735}
736
737static int
738vge_dma_alloc(device_t dev)
739{
740 struct vge_softc *sc = device_get_softc(dev);
741 int error, nseg, i, tx_pos = 0, rx_pos = 0;
742
743 /*
744 * Allocate the parent bus DMA tag appropriate for PCI.
745 */
746#define VGE_NSEG_NEW 32
747 error = bus_dma_tag_create(NULL, /* parent */
748 1, 0, /* alignment, boundary */
749 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
750 BUS_SPACE_MAXADDR, /* highaddr */
751 NULL, NULL, /* filter, filterarg */
752 MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */
753 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
754 BUS_DMA_ALLOCNOW, /* flags */
755 &sc->vge_parent_tag);
756 if (error) {
757 device_printf(dev, "can't create parent dma tag\n");
758 return error;
759 }
760
761 /*
762 * Allocate map for RX mbufs.
763 */
764 nseg = 32;
765 error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
766 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
767 NULL, NULL,
768 MCLBYTES * nseg, nseg, MCLBYTES,
769 BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag);
770 if (error) {
771 device_printf(dev, "could not allocate mbuf dma tag\n");
772 return error;
773 }
774
775 /*
776 * Allocate map for TX descriptor list.
777 */
778 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
779 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
780 NULL, NULL,
781 VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
782 BUS_DMA_ALLOCNOW,
783 &sc->vge_ldata.vge_tx_list_tag);
784 if (error) {
785 device_printf(dev, "could not allocate tx list dma tag\n");
786 return error;
787 }
788
789 /* Allocate DMA'able memory for the TX ring */
790 error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
791 (void **)&sc->vge_ldata.vge_tx_list,
792 BUS_DMA_WAITOK | BUS_DMA_ZERO,
793 &sc->vge_ldata.vge_tx_list_map);
794 if (error) {
795 device_printf(dev, "could not allocate tx list dma memory\n");
796 return error;
797 }
798
799 /* Load the map for the TX ring. */
800 error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
801 sc->vge_ldata.vge_tx_list_map,
802 sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ,
803 vge_dma_map_addr,
804 &sc->vge_ldata.vge_tx_list_addr,
805 BUS_DMA_WAITOK);
806 if (error) {
807 device_printf(dev, "could not load tx list\n");
808 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
809 sc->vge_ldata.vge_tx_list,
810 sc->vge_ldata.vge_tx_list_map);
811 sc->vge_ldata.vge_tx_list = NULL;
812 return error;
813 }
814
815 /* Create DMA maps for TX buffers */
816 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
817 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
818 &sc->vge_ldata.vge_tx_dmamap[i]);
819 if (error) {
820 device_printf(dev, "can't create DMA map for TX\n");
821 tx_pos = i;
822 goto map_fail;
823 }
824 }
825 tx_pos = VGE_TX_DESC_CNT;
826
827 /*
828 * Allocate map for RX descriptor list.
829 */
830 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
831 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
832 NULL, NULL,
833 VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
834 BUS_DMA_ALLOCNOW,
835 &sc->vge_ldata.vge_rx_list_tag);
836 if (error) {
837 device_printf(dev, "could not allocate rx list dma tag\n");
838 return error;
839 }
840
841 /* Allocate DMA'able memory for the RX ring */
842 error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
843 (void **)&sc->vge_ldata.vge_rx_list,
844 BUS_DMA_WAITOK | BUS_DMA_ZERO,
845 &sc->vge_ldata.vge_rx_list_map);
846 if (error) {
847 device_printf(dev, "could not allocate rx list dma memory\n");
848 return error;
849 }
850
851 /* Load the map for the RX ring. */
852 error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
853 sc->vge_ldata.vge_rx_list_map,
854 sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ,
855 vge_dma_map_addr,
856 &sc->vge_ldata.vge_rx_list_addr,
857 BUS_DMA_WAITOK);
858 if (error) {
859 device_printf(dev, "could not load rx list\n");
860 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
861 sc->vge_ldata.vge_rx_list,
862 sc->vge_ldata.vge_rx_list_map);
863 sc->vge_ldata.vge_rx_list = NULL;
864 return error;
865 }
866
867 /* Create DMA maps for RX buffers */
868 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
869 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
870 &sc->vge_ldata.vge_rx_dmamap[i]);
871 if (error) {
872 device_printf(dev, "can't create DMA map for RX\n");
873 rx_pos = i;
874 goto map_fail;
875 }
876 }
877 return (0);
878
879map_fail:
880 for (i = 0; i < tx_pos; ++i) {
881 error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
882 sc->vge_ldata.vge_tx_dmamap[i]);
883 }
884 for (i = 0; i < rx_pos; ++i) {
885 error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
886 sc->vge_ldata.vge_rx_dmamap[i]);
887 }
888 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
889 sc->vge_ldata.vge_mtag = NULL;
890
891 return error;
892}
893
894static void
895vge_dma_free(struct vge_softc *sc)
896{
897 /* Unload and free the RX DMA ring memory and map */
898 if (sc->vge_ldata.vge_rx_list_tag) {
899 bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
900 sc->vge_ldata.vge_rx_list_map);
901 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
902 sc->vge_ldata.vge_rx_list,
903 sc->vge_ldata.vge_rx_list_map);
904 }
905
906 if (sc->vge_ldata.vge_rx_list_tag)
907 bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
908
909 /* Unload and free the TX DMA ring memory and map */
910 if (sc->vge_ldata.vge_tx_list_tag) {
911 bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
912 sc->vge_ldata.vge_tx_list_map);
913 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
914 sc->vge_ldata.vge_tx_list,
915 sc->vge_ldata.vge_tx_list_map);
916 }
917
918 if (sc->vge_ldata.vge_tx_list_tag)
919 bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
920
921 /* Destroy all the RX and TX buffer maps */
922 if (sc->vge_ldata.vge_mtag) {
923 int i;
924
925 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
926 bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
927 sc->vge_ldata.vge_tx_dmamap[i]);
928 }
929 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
930 bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
931 sc->vge_ldata.vge_rx_dmamap[i]);
932 }
933 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
934 }
935
936 if (sc->vge_parent_tag)
937 bus_dma_tag_destroy(sc->vge_parent_tag);
938}
939
940/*
941 * Attach the interface. Allocate softc structures, do ifmedia
942 * setup and ethernet/BPF attach.
943 */
944static int
945vge_attach(device_t dev)
946{
947 uint8_t eaddr[ETHER_ADDR_LEN];
948 struct vge_softc *sc;
949 struct ifnet *ifp;
950 int error = 0;
951
952 sc = device_get_softc(dev);
953 ifp = &sc->arpcom.ac_if;
954
955 /* Initialize if_xname early, so if_printf() can be used */
956 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
957
958 /*
959 * Map control/status registers.
960 */
961 pci_enable_busmaster(dev);
962
963 sc->vge_res_rid = VGE_PCI_LOMEM;
964 sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
965 &sc->vge_res_rid, RF_ACTIVE);
966 if (sc->vge_res == NULL) {
967 device_printf(dev, "couldn't map ports/memory\n");
968 return ENXIO;
969 }
970
971 sc->vge_btag = rman_get_bustag(sc->vge_res);
972 sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
973
974 /* Allocate interrupt */
975 sc->vge_irq_rid = 0;
976 sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid,
977 RF_SHAREABLE | RF_ACTIVE);
978 if (sc->vge_irq == NULL) {
979 device_printf(dev, "couldn't map interrupt\n");
980 error = ENXIO;
981 goto fail;
982 }
983
984 /* Reset the adapter. */
985 vge_reset(sc);
986
987 /*
988 * Get station address from the EEPROM.
989 */
990 vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0);
991
992 /* Allocate DMA related stuffs */
993 error = vge_dma_alloc(dev);
994 if (error)
995 goto fail;
996
997 /* Do MII setup */
998 error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd,
999 vge_ifmedia_sts);
1000 if (error) {
1001 device_printf(dev, "MII without any phy!\n");
1002 goto fail;
1003 }
1004
1005 ifp->if_softc = sc;
1006 ifp->if_mtu = ETHERMTU;
1007 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1008 ifp->if_init = vge_init;
1009 ifp->if_start = vge_start;
1010 ifp->if_watchdog = vge_watchdog;
1011 ifp->if_ioctl = vge_ioctl;
1012#ifdef DEVICE_POLLING
1013 ifp->if_poll = vge_poll;
1014#endif
1015 ifp->if_hwassist = VGE_CSUM_FEATURES;
1016 ifp->if_capabilities = IFCAP_VLAN_MTU |
1017 IFCAP_HWCSUM |
1018 IFCAP_VLAN_HWTAGGING;
1019 ifp->if_capenable = ifp->if_capabilities;
1020 ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
1021 ifq_set_ready(&ifp->if_snd);
1022
1023 /*
1024 * Call MI attach routine.
1025 */
1026 ether_ifattach(ifp, eaddr, NULL);
1027
1028 /* Hook interrupt last to avoid having to lock softc */
1029 error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc,
1030 &sc->vge_intrhand, ifp->if_serializer);
1031 if (error) {
1032 device_printf(dev, "couldn't set up irq\n");
1033 ether_ifdetach(ifp);
1034 goto fail;
1035 }
1036
9db4b353
SZ
1037 ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->vge_irq));
1038 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1039
13bca4c6
SZ
1040 return 0;
1041fail:
1042 vge_detach(dev);
1043 return error;
1044}
1045
1046/*
1047 * Shutdown hardware and free up resources. This can be called any
1048 * time after the mutex has been initialized. It is called in both
1049 * the error case in attach and the normal detach case so it needs
1050 * to be careful about only freeing resources that have actually been
1051 * allocated.
1052 */
1053static int
1054vge_detach(device_t dev)
1055{
1056 struct vge_softc *sc = device_get_softc(dev);
1057 struct ifnet *ifp = &sc->arpcom.ac_if;
1058
1059 /* These should only be active if attach succeeded */
1060 if (device_is_attached(dev)) {
1061 lwkt_serialize_enter(ifp->if_serializer);
1062
1063 vge_stop(sc);
1064 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1065 /*
1066 * Force off the IFF_UP flag here, in case someone
1067 * still had a BPF descriptor attached to this
1068 * interface. If they do, ether_ifattach() will cause
1069 * the BPF code to try and clear the promisc mode
1070 * flag, which will bubble down to vge_ioctl(),
1071 * which will try to call vge_init() again. This will
1072 * turn the NIC back on and restart the MII ticker,
1073 * which will panic the system when the kernel tries
1074 * to invoke the vge_tick() function that isn't there
1075 * anymore.
1076 */
1077 ifp->if_flags &= ~IFF_UP;
1078
1079 lwkt_serialize_exit(ifp->if_serializer);
1080
1081 ether_ifdetach(ifp);
1082 }
1083
1084 if (sc->vge_miibus)
1085 device_delete_child(dev, sc->vge_miibus);
1086 bus_generic_detach(dev);
1087
1088 if (sc->vge_irq) {
1089 bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid,
1090 sc->vge_irq);
1091 }
1092
1093 if (sc->vge_res) {
1094 bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid,
1095 sc->vge_res);
1096 }
1097
1098 vge_dma_free(sc);
1099 return (0);
1100}
1101
1102static int
1103vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1104{
1105 struct vge_dmaload_arg arg;
1106 struct mbuf *n = NULL;
1107 int i, error;
1108
1109 if (m == NULL) {
1110 n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1111 if (n == NULL)
1112 return (ENOBUFS);
1113 m = n;
1114 } else {
1115 m->m_data = m->m_ext.ext_buf;
1116 }
1117
1118
1119#ifdef VGE_FIXUP_RX
1120 /*
1121 * This is part of an evil trick to deal with non-x86 platforms.
1122 * The VIA chip requires RX buffers to be aligned on 32-bit
1123 * boundaries, but that will hose non-x86 machines. To get around
1124 * this, we leave some empty space at the start of each buffer
1125 * and for non-x86 hosts, we copy the buffer back two bytes
1126 * to achieve word alignment. This is slightly more efficient
1127 * than allocating a new buffer, copying the contents, and
1128 * discarding the old buffer.
1129 */
1130 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1131 m_adj(m, VGE_ETHER_ALIGN);
1132#else
1133 m->m_len = m->m_pkthdr.len = MCLBYTES;
1134#endif
1135
1136 arg.sc = sc;
1137 arg.vge_idx = idx;
1138 arg.vge_maxsegs = 1;
1139 arg.vge_flags = 0;
1140
1141 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1142 sc->vge_ldata.vge_rx_dmamap[idx], m,
1143 vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT);
1144 if (error || arg.vge_maxsegs != 1) {
1145 if (n != NULL)
1146 m_freem(n);
1147 return (ENOMEM);
1148 }
1149
1150 /*
1151 * Note: the manual fails to document the fact that for
1152 * proper opration, the driver needs to replentish the RX
1153 * DMA ring 4 descriptors at a time (rather than one at a
1154 * time, like most chips). We can allocate the new buffers
1155 * but we should not set the OWN bits until we're ready
1156 * to hand back 4 of them in one shot.
1157 */
1158
1159#define VGE_RXCHUNK 4
1160 sc->vge_rx_consumed++;
1161 if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1162 for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
1163 sc->vge_ldata.vge_rx_list[i].vge_sts |=
1164 htole32(VGE_RDSTS_OWN);
1165 }
1166 sc->vge_rx_consumed = 0;
1167 }
1168
1169 sc->vge_ldata.vge_rx_mbuf[idx] = m;
1170
1171 bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1172 sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD);
1173
1174 return (0);
1175}
1176
1177static int
7b9f668c 1178vge_tx_list_init(struct vge_softc *sc)
13bca4c6
SZ
1179{
1180 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1181 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1182 (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1183
1184 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1185 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1186 sc->vge_ldata.vge_tx_prodidx = 0;
1187 sc->vge_ldata.vge_tx_considx = 0;
1188 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1189
1190 return (0);
1191}
1192
1193static int
1194vge_rx_list_init(struct vge_softc *sc)
1195{
1196 int i;
1197
1198 bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1199 bzero(&sc->vge_ldata.vge_rx_mbuf,
1200 VGE_RX_DESC_CNT * sizeof(struct mbuf *));
1201
1202 sc->vge_rx_consumed = 0;
1203
1204 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1205 if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1206 return (ENOBUFS);
1207 }
1208
1209 /* Flush the RX descriptors */
1210 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1211 sc->vge_ldata.vge_rx_list_map,
1212 BUS_DMASYNC_PREWRITE);
1213
1214 sc->vge_ldata.vge_rx_prodidx = 0;
1215 sc->vge_rx_consumed = 0;
1216 sc->vge_head = sc->vge_tail = NULL;
1217 return (0);
1218}
1219
1220#ifdef VGE_FIXUP_RX
1221static __inline void
1222vge_fixup_rx(struct mbuf *m)
1223{
1224 uint16_t *src, *dst;
1225 int i;
1226
1227 src = mtod(m, uint16_t *);
1228 dst = src - 1;
1229
1230 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1231 *dst++ = *src++;
1232
1233 m->m_data -= ETHER_ALIGN;
1234}
1235#endif
1236
1237/*
1238 * RX handler. We support the reception of jumbo frames that have
1239 * been fragmented across multiple 2K mbuf cluster buffers.
1240 */
1241static void
1242vge_rxeof(struct vge_softc *sc, int count)
1243{
1244 struct ifnet *ifp = &sc->arpcom.ac_if;
1245 struct mbuf *m;
1246 int i, total_len, lim = 0;
1247 struct vge_rx_desc *cur_rx;
1248 uint32_t rxstat, rxctl;
1249
1250 ASSERT_SERIALIZED(ifp->if_serializer);
1251
1252 i = sc->vge_ldata.vge_rx_prodidx;
1253
1254 /* Invalidate the descriptor memory */
1255
1256 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1257 sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD);
1258
1259 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1260#ifdef DEVICE_POLLING
1261 if (count >= 0 && count-- == 0)
1262 break;
1263#endif
1264
1265 cur_rx = &sc->vge_ldata.vge_rx_list[i];
1266 m = sc->vge_ldata.vge_rx_mbuf[i];
1267 total_len = VGE_RXBYTES(cur_rx);
1268 rxstat = le32toh(cur_rx->vge_sts);
1269 rxctl = le32toh(cur_rx->vge_ctl);
1270
1271 /* Invalidate the RX mbuf and unload its map */
1272 bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1273 sc->vge_ldata.vge_rx_dmamap[i],
1274 BUS_DMASYNC_POSTWRITE);
1275 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1276 sc->vge_ldata.vge_rx_dmamap[i]);
1277
1278 /*
1279 * If the 'start of frame' bit is set, this indicates
1280 * either the first fragment in a multi-fragment receive,
1281 * or an intermediate fragment. Either way, we want to
1282 * accumulate the buffers.
1283 */
1284 if (rxstat & VGE_RXPKT_SOF) {
1285 m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1286 if (sc->vge_head == NULL) {
1287 sc->vge_head = sc->vge_tail = m;
1288 } else {
1289 m->m_flags &= ~M_PKTHDR;
1290 sc->vge_tail->m_next = m;
1291 sc->vge_tail = m;
1292 }
1293 vge_newbuf(sc, i, NULL);
1294 VGE_RX_DESC_INC(i);
1295 continue;
1296 }
1297
1298 /*
1299 * Bad/error frames will have the RXOK bit cleared.
1300 * However, there's one error case we want to allow:
1301 * if a VLAN tagged frame arrives and the chip can't
1302 * match it against the CAM filter, it considers this
1303 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1304 * We don't want to drop the frame though: our VLAN
1305 * filtering is done in software.
1306 */
1307 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) &&
1308 !(rxstat & VGE_RDSTS_CSUMERR)) {
1309 ifp->if_ierrors++;
1310 /*
1311 * If this is part of a multi-fragment packet,
1312 * discard all the pieces.
1313 */
1314 if (sc->vge_head != NULL) {
1315 m_freem(sc->vge_head);
1316 sc->vge_head = sc->vge_tail = NULL;
1317 }
1318 vge_newbuf(sc, i, m);
1319 VGE_RX_DESC_INC(i);
1320 continue;
1321 }
1322
1323 /*
1324 * If allocating a replacement mbuf fails,
1325 * reload the current one.
1326 */
1327 if (vge_newbuf(sc, i, NULL)) {
1328 ifp->if_ierrors++;
1329 if (sc->vge_head != NULL) {
1330 m_freem(sc->vge_head);
1331 sc->vge_head = sc->vge_tail = NULL;
1332 }
1333 vge_newbuf(sc, i, m);
1334 VGE_RX_DESC_INC(i);
1335 continue;
1336 }
1337
1338 VGE_RX_DESC_INC(i);
1339
1340 if (sc->vge_head != NULL) {
1341 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1342 /*
1343 * Special case: if there's 4 bytes or less
1344 * in this buffer, the mbuf can be discarded:
1345 * the last 4 bytes is the CRC, which we don't
1346 * care about anyway.
1347 */
1348 if (m->m_len <= ETHER_CRC_LEN) {
1349 sc->vge_tail->m_len -=
1350 (ETHER_CRC_LEN - m->m_len);
1351 m_freem(m);
1352 } else {
1353 m->m_len -= ETHER_CRC_LEN;
1354 m->m_flags &= ~M_PKTHDR;
1355 sc->vge_tail->m_next = m;
1356 }
1357 m = sc->vge_head;
1358 sc->vge_head = sc->vge_tail = NULL;
1359 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1360 } else {
1361 m->m_pkthdr.len = m->m_len =
1362 (total_len - ETHER_CRC_LEN);
1363 }
1364
1365#ifdef VGE_FIXUP_RX
1366 vge_fixup_rx(m);
1367#endif
1368 ifp->if_ipackets++;
1369 m->m_pkthdr.rcvif = ifp;
1370
1371 /* Do RX checksumming if enabled */
1372 if (ifp->if_capenable & IFCAP_RXCSUM) {
1373 /* Check IP header checksum */
1374 if (rxctl & VGE_RDCTL_IPPKT)
1375 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1376 if (rxctl & VGE_RDCTL_IPCSUMOK)
1377 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1378
1379 /* Check TCP/UDP checksum */
1380 if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1381 rxctl & VGE_RDCTL_PROTOCSUMOK) {
1382 m->m_pkthdr.csum_flags |=
fbb35ef0
SZ
1383 CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1384 CSUM_FRAG_NOT_CHECKED;
13bca4c6
SZ
1385 m->m_pkthdr.csum_data = 0xffff;
1386 }
1387 }
1388
e6b5847c
SZ
1389 if (rxstat & VGE_RDSTS_VTAG) {
1390 m->m_flags |= M_VLANTAG;
1391 m->m_pkthdr.ether_vlantag =
1392 ntohs((rxctl & VGE_RDCTL_VLANID));
1393 }
1394 ifp->if_input(ifp, m);
13bca4c6
SZ
1395
1396 lim++;
1397 if (lim == VGE_RX_DESC_CNT)
1398 break;
1399 }
1400
1401 /* Flush the RX DMA ring */
1402 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1403 sc->vge_ldata.vge_rx_list_map,
1404 BUS_DMASYNC_PREWRITE);
1405
1406 sc->vge_ldata.vge_rx_prodidx = i;
1407 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1408}
1409
1410static void
1411vge_txeof(struct vge_softc *sc)
1412{
1413 struct ifnet *ifp = &sc->arpcom.ac_if;
1414 uint32_t txstat;
1415 int idx;
1416
1417 idx = sc->vge_ldata.vge_tx_considx;
1418
1419 /* Invalidate the TX descriptor list */
1420
1421 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1422 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD);
1423
1424 while (idx != sc->vge_ldata.vge_tx_prodidx) {
1425
1426 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1427 if (txstat & VGE_TDSTS_OWN)
1428 break;
1429
1430 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1431 sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1432 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1433 sc->vge_ldata.vge_tx_dmamap[idx]);
1434 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1435 ifp->if_collisions++;
1436 if (txstat & VGE_TDSTS_TXERR)
1437 ifp->if_oerrors++;
1438 else
1439 ifp->if_opackets++;
1440
1441 sc->vge_ldata.vge_tx_free++;
1442 VGE_TX_DESC_INC(idx);
1443 }
1444
1445 /* No changes made to the TX ring, so no flush needed */
1446 if (idx != sc->vge_ldata.vge_tx_considx) {
1447 sc->vge_ldata.vge_tx_considx = idx;
1448 ifp->if_flags &= ~IFF_OACTIVE;
1449 ifp->if_timer = 0;
1450 }
1451
1452 /*
1453 * If not all descriptors have been released reaped yet,
1454 * reload the timer so that we will eventually get another
1455 * interrupt that will cause us to re-enter this routine.
1456 * This is done in case the transmitter has gone idle.
1457 */
1458 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1459 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1460}
1461
1462static void
1463vge_tick(struct vge_softc *sc)
1464{
1465 struct ifnet *ifp = &sc->arpcom.ac_if;
1466 struct mii_data *mii;
1467
1468 mii = device_get_softc(sc->vge_miibus);
1469
1470 mii_tick(mii);
1471 if (sc->vge_link) {
f3e7c70d 1472 if (!(mii->mii_media_status & IFM_ACTIVE))
13bca4c6 1473 sc->vge_link = 0;
13bca4c6
SZ
1474 } else {
1475 if (mii->mii_media_status & IFM_ACTIVE &&
1476 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1477 sc->vge_link = 1;
13bca4c6 1478 if (!ifq_is_empty(&ifp->if_snd))
9db4b353 1479 if_devstart(ifp);
13bca4c6
SZ
1480 }
1481 }
1482}
1483
1484#ifdef DEVICE_POLLING
1485static void
1486vge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1487{
1488 struct vge_softc *sc = ifp->if_softc;
1489
1490 sc->rxcycles = count;
1491
1492 switch (cmd) {
1493 case POLL_REGISTER:
1494 vge_disable_intr(sc);
1495 break;
1496 case POLL_DEREGISTER:
1497 vge_enable_intr(sc, 0xffffffff);
1498 break;
1499 case POLL_ONLY:
1500 case POLL_AND_CHECK_STATUS:
1501 vge_rxeof(sc, count);
1502 vge_txeof(sc);
1503
1504 if (!ifq_is_empty(&ifp->if_snd))
9db4b353 1505 if_devstart(ifp);
13bca4c6
SZ
1506
1507 /* XXX copy & paste from vge_intr */
1508 if (cmd == POLL_AND_CHECK_STATUS) {
1509 uint32_t status = 0;
1510
1511 status = CSR_READ_4(sc, VGE_ISR);
1512 if (status == 0xffffffff)
1513 break;
1514
1515 if (status)
1516 CSR_WRITE_4(sc, VGE_ISR, status);
1517
1518 if (status & (VGE_ISR_TXDMA_STALL |
1519 VGE_ISR_RXDMA_STALL))
1520 vge_init(sc);
1521
1522 if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1523 ifp->if_ierrors++;
1524 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1525 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1526 }
1527 }
1528 break;
1529 }
1530
1531}
1532#endif /* DEVICE_POLLING */
1533
1534static void
1535vge_intr(void *arg)
1536{
1537 struct vge_softc *sc = arg;
1538 struct ifnet *ifp = &sc->arpcom.ac_if;
1539 uint32_t status;
1540
1541 if (sc->suspended || !(ifp->if_flags & IFF_UP))
1542 return;
1543
1544 /* Disable interrupts */
1545 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1546
1547 for (;;) {
1548 status = CSR_READ_4(sc, VGE_ISR);
1549 /* If the card has gone away the read returns 0xffff. */
1550 if (status == 0xFFFFFFFF)
1551 break;
1552
1553 if (status)
1554 CSR_WRITE_4(sc, VGE_ISR, status);
1555
1556 if ((status & VGE_INTRS) == 0)
1557 break;
1558
1559 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1560 vge_rxeof(sc, -1);
1561
1562 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1563 vge_rxeof(sc, -1);
1564 ifp->if_ierrors++;
1565 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1566 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1567 }
1568
1569 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1570 vge_txeof(sc);
1571
1572 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1573 vge_init(sc);
1574
1575 if (status & VGE_ISR_LINKSTS)
1576 vge_tick(sc);
1577 }
1578
1579 /* Re-enable interrupts */
1580 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1581
1582 if (!ifq_is_empty(&ifp->if_snd))
9db4b353 1583 if_devstart(ifp);
13bca4c6
SZ
1584}
1585
1586static int
1587vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1588{
1589 struct vge_dmaload_arg arg;
1590 bus_dmamap_t map;
1591 int error;
1592
1593 arg.vge_flags = 0;
1594
1595 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1596 arg.vge_flags |= VGE_TDCTL_IPCSUM;
1597 if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1598 arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1599 if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1600 arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1601
1602 arg.sc = sc;
1603 arg.vge_idx = idx;
1604 arg.vge_m0 = m_head;
1605 arg.vge_maxsegs = VGE_TX_FRAGS;
1606
1607 map = sc->vge_ldata.vge_tx_dmamap[idx];
1608 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head,
1609 vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1610 if (error && error != EFBIG) {
1611 if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n",
1612 error);
1613 goto fail;
1614 }
1615
1616 /* Too many segments to map, coalesce into a single mbuf */
1617 if (error || arg.vge_maxsegs == 0) {
1618 struct mbuf *m_new;
1619
1620 m_new = m_defrag(m_head, MB_DONTWAIT);
1621 if (m_new == NULL) {
1622 error = ENOBUFS;
1623 goto fail;
1624 } else {
1625 m_head = m_new;
1626 }
1627
1628 arg.sc = sc;
1629 arg.vge_m0 = m_head;
1630 arg.vge_idx = idx;
1631 arg.vge_maxsegs = 1;
1632
1633 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1634 m_head, vge_dma_map_tx_desc, &arg,
1635 BUS_DMA_NOWAIT);
1636 if (error) {
1637 if_printf(&sc->arpcom.ac_if,
1638 "can't map mbuf (error %d)\n", error);
1639 goto fail;
1640 }
1641 }
1642
1643 sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1644 sc->vge_ldata.vge_tx_free--;
1645
1646 /*
1647 * Set up hardware VLAN tagging.
1648 */
83790f85
SZ
1649 if (m_head->m_flags & M_VLANTAG) {
1650 sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1651 htole32(htons(m_head->m_pkthdr.ether_vlantag) |
1652 VGE_TDCTL_VTAG);
13bca4c6
SZ
1653 }
1654
1655 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1656 return (0);
1657
1658fail:
1659 m_freem(m_head);
1660 return error;
1661}
1662
1663/*
1664 * Main transmit routine.
1665 */
1666
1667static void
1668vge_start(struct ifnet *ifp)
1669{
1670 struct vge_softc *sc = ifp->if_softc;
1671 struct mbuf *m_head = NULL;
1672 int idx, pidx = 0;
1673
1674 ASSERT_SERIALIZED(ifp->if_serializer);
1675
9db4b353
SZ
1676 if (!sc->vge_link) {
1677 ifq_purge(&ifp->if_snd);
13bca4c6 1678 return;
9db4b353 1679 }
13bca4c6 1680
9db4b353 1681 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
13bca4c6
SZ
1682 return;
1683
1684 idx = sc->vge_ldata.vge_tx_prodidx;
1685
1686 pidx = idx - 1;
1687 if (pidx < 0)
1688 pidx = VGE_TX_DESC_CNT - 1;
1689
1690 while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
13bca4c6
SZ
1691 if (sc->vge_ldata.vge_tx_free <= 2) {
1692 ifp->if_flags |= IFF_OACTIVE;
1693 break;
1694 }
1695
9db4b353
SZ
1696 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1697 if (m_head == NULL)
1698 break;
13bca4c6
SZ
1699
1700 if (vge_encap(sc, m_head, idx)) {
1701 /* If vge_encap() failed, it will free m_head for us */
1702 ifp->if_flags |= IFF_OACTIVE;
1703 break;
1704 }
1705
1706 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1707 htole16(VGE_TXDESC_Q);
1708
1709 pidx = idx;
1710 VGE_TX_DESC_INC(idx);
1711
1712 /*
1713 * If there's a BPF listener, bounce a copy of this frame
1714 * to him.
1715 */
b637f170 1716 ETHER_BPF_MTAP(ifp, m_head);
13bca4c6
SZ
1717 }
1718
1719 if (idx == sc->vge_ldata.vge_tx_prodidx)
1720 return;
1721
1722 /* Flush the TX descriptors */
1723 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1724 sc->vge_ldata.vge_tx_list_map,
1725 BUS_DMASYNC_PREWRITE);
1726
1727 /* Issue a transmit command. */
1728 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1729
1730 sc->vge_ldata.vge_tx_prodidx = idx;
1731
1732 /*
1733 * Use the countdown timer for interrupt moderation.
1734 * 'TX done' interrupts are disabled. Instead, we reset the
1735 * countdown timer, which will begin counting until it hits
1736 * the value in the SSTIMER register, and then trigger an
1737 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1738 * the timer count is reloaded. Only when the transmitter
1739 * is idle will the timer hit 0 and an interrupt fire.
1740 */
1741 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1742
1743 /*
1744 * Set a timeout in case the chip goes out to lunch.
1745 */
1746 ifp->if_timer = 5;
1747}
1748
1749static void
1750vge_init(void *xsc)
1751{
1752 struct vge_softc *sc = xsc;
1753 struct ifnet *ifp = &sc->arpcom.ac_if;
1754 struct mii_data *mii;
1755 int i;
1756
1757 ASSERT_SERIALIZED(ifp->if_serializer);
1758
1759 mii = device_get_softc(sc->vge_miibus);
1760
1761 /*
1762 * Cancel pending I/O and free all RX/TX buffers.
1763 */
1764 vge_stop(sc);
1765 vge_reset(sc);
1766
1767 /*
1768 * Initialize the RX and TX descriptors and mbufs.
1769 */
1770 vge_rx_list_init(sc);
1771 vge_tx_list_init(sc);
1772
1773 /* Set our station address */
1774 for (i = 0; i < ETHER_ADDR_LEN; i++)
1775 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]);
1776
1777 /*
1778 * Set receive FIFO threshold. Also allow transmission and
1779 * reception of VLAN tagged frames.
1780 */
1781 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1782 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1783
1784 /* Set DMA burst length */
1785 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1786 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1787
1788 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1789
1790 /* Set collision backoff algorithm */
1791 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1792 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1793 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1794
1795 /* Disable LPSEL field in priority resolution */
1796 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1797
1798 /*
1799 * Load the addresses of the DMA queues into the chip.
1800 * Note that we only use one transmit queue.
1801 */
1802 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1803 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1804 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1805
1806 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1807 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1808 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1809 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1810
1811 /* Enable and wake up the RX descriptor queue */
1812 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1813 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1814
1815 /* Enable the TX descriptor queue */
1816 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1817
1818 /* Set up the receive filter -- allow large frames for VLANs. */
1819 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1820
1821 /* If we want promiscuous mode, set the allframes bit. */
1822 if (ifp->if_flags & IFF_PROMISC)
1823 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1824
1825 /* Set capture broadcast bit to capture broadcast frames. */
1826 if (ifp->if_flags & IFF_BROADCAST)
1827 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1828
1829 /* Set multicast bit to capture multicast frames. */
1830 if (ifp->if_flags & IFF_MULTICAST)
1831 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1832
1833 /* Init the cam filter. */
1834 vge_cam_clear(sc);
1835
1836 /* Init the multicast filter. */
1837 vge_setmulti(sc);
1838
1839 /* Enable flow control */
1840
1841 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1842
1843 /* Enable jumbo frame reception (if desired) */
1844
1845 /* Start the MAC. */
1846 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1847 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1848 CSR_WRITE_1(sc, VGE_CRS0,
1849 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1850
1851 /*
1852 * Configure one-shot timer for microsecond
1853 * resulution and load it for 500 usecs.
1854 */
1855 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1856 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1857
1858 /*
1859 * Configure interrupt moderation for receive. Enable
1860 * the holdoff counter and load it, and set the RX
1861 * suppression count to the number of descriptors we
1862 * want to allow before triggering an interrupt.
1863 * The holdoff timer is in units of 20 usecs.
1864 */
1865
1866#ifdef notyet
1867 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1868 /* Select the interrupt holdoff timer page. */
1869 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1870 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1871 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1872
1873 /* Enable use of the holdoff timer. */
1874 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1875 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1876
1877 /* Select the RX suppression threshold page. */
1878 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1879 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1880 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1881
1882 /* Restore the page select bits. */
1883 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1884 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1885#endif
1886
1887#ifdef DEVICE_POLLING
1888 /* Disable intr if polling(4) is enabled */
1889 if (ifp->if_flags & IFF_POLLING)
1890 vge_disable_intr(sc);
1891 else
1892#endif
1893 vge_enable_intr(sc, 0);
1894
1895 mii_mediachg(mii);
1896
1897 ifp->if_flags |= IFF_RUNNING;
1898 ifp->if_flags &= ~IFF_OACTIVE;
1899
1900 sc->vge_if_flags = 0;
1901 sc->vge_link = 0;
1902}
1903
1904/*
1905 * Set media options.
1906 */
1907static int
1908vge_ifmedia_upd(struct ifnet *ifp)
1909{
1910 struct vge_softc *sc = ifp->if_softc;
1911 struct mii_data *mii = device_get_softc(sc->vge_miibus);
1912
1913 mii_mediachg(mii);
1914
1915 return (0);
1916}
1917
1918/*
1919 * Report current media status.
1920 */
1921static void
1922vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1923{
1924 struct vge_softc *sc = ifp->if_softc;
1925 struct mii_data *mii = device_get_softc(sc->vge_miibus);
1926
1927 mii_pollstat(mii);
1928 ifmr->ifm_active = mii->mii_media_active;
1929 ifmr->ifm_status = mii->mii_media_status;
1930}
1931
1932static void
1933vge_miibus_statchg(device_t dev)
1934{
1935 struct vge_softc *sc;
1936 struct mii_data *mii;
1937 struct ifmedia_entry *ife;
1938
1939 sc = device_get_softc(dev);
1940 mii = device_get_softc(sc->vge_miibus);
1941 ife = mii->mii_media.ifm_cur;
1942
1943 /*
1944 * If the user manually selects a media mode, we need to turn
1945 * on the forced MAC mode bit in the DIAGCTL register. If the
1946 * user happens to choose a full duplex mode, we also need to
1947 * set the 'force full duplex' bit. This applies only to
1948 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1949 * mode is disabled, and in 1000baseT mode, full duplex is
1950 * always implied, so we turn on the forced mode bit but leave
1951 * the FDX bit cleared.
1952 */
1953
1954 switch (IFM_SUBTYPE(ife->ifm_media)) {
1955 case IFM_AUTO:
1956 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1957 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1958 break;
1959 case IFM_1000_T:
1960 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1961 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1962 break;
1963 case IFM_100_TX:
1964 case IFM_10_T:
1965 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1966 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1967 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1968 else
1969 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1970 break;
1971 default:
1972 device_printf(dev, "unknown media type: %x\n",
1973 IFM_SUBTYPE(ife->ifm_media));
1974 break;
1975 }
1976}
1977
1978static int
1979vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1980{
1981 struct vge_softc *sc = ifp->if_softc;
1982 struct ifreq *ifr = (struct ifreq *)data;
1983 struct mii_data *mii;
1984 int error = 0;
1985
1986 switch (command) {
1987 case SIOCSIFMTU:
1988 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
1989 error = EINVAL;
1990 ifp->if_mtu = ifr->ifr_mtu;
1991 break;
1992 case SIOCSIFFLAGS:
1993 if (ifp->if_flags & IFF_UP) {
1994 if ((ifp->if_flags & IFF_RUNNING) &&
1995 (ifp->if_flags & IFF_PROMISC) &&
1996 !(sc->vge_if_flags & IFF_PROMISC)) {
1997 CSR_SETBIT_1(sc, VGE_RXCTL,
1998 VGE_RXCTL_RX_PROMISC);
1999 vge_setmulti(sc);
2000 } else if ((ifp->if_flags & IFF_RUNNING) &&
2001 !(ifp->if_flags & IFF_PROMISC) &&
2002 (sc->vge_if_flags & IFF_PROMISC)) {
2003 CSR_CLRBIT_1(sc, VGE_RXCTL,
2004 VGE_RXCTL_RX_PROMISC);
2005 vge_setmulti(sc);
2006 } else {
2007 vge_init(sc);
2008 }
2009 } else {
2010 if (ifp->if_flags & IFF_RUNNING)
2011 vge_stop(sc);
2012 }
2013 sc->vge_if_flags = ifp->if_flags;
2014 break;
2015 case SIOCADDMULTI:
2016 case SIOCDELMULTI:
2017 vge_setmulti(sc);
2018 break;
2019 case SIOCGIFMEDIA:
2020 case SIOCSIFMEDIA:
2021 mii = device_get_softc(sc->vge_miibus);
2022 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2023 break;
2024 case SIOCSIFCAP:
2025 {
2026 uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2027
2028 if (mask & IFCAP_HWCSUM) {
2029 ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2030 if (ifp->if_capenable & IFCAP_TXCSUM)
2031 ifp->if_hwassist = VGE_CSUM_FEATURES;
2032 else
2033 ifp->if_hwassist = 0;
2034 if (ifp->if_flags & IFF_RUNNING)
2035 vge_init(sc);
2036 }
2037 }
2038 break;
2039 default:
2040 error = ether_ioctl(ifp, command, data);
2041 break;
2042 }
2043 return (error);
2044}
2045
2046static void
2047vge_watchdog(struct ifnet *ifp)
2048{
2049 struct vge_softc *sc = ifp->if_softc;
2050
2051 if_printf(ifp, "watchdog timeout\n");
2052 ifp->if_oerrors++;
2053
2054 vge_txeof(sc);
2055 vge_rxeof(sc, -1);
2056
2057 vge_init(sc);
2058}
2059
2060/*
2061 * Stop the adapter and free any mbufs allocated to the
2062 * RX and TX lists.
2063 */
2064static void
2065vge_stop(struct vge_softc *sc)
2066{
2067 struct ifnet *ifp = &sc->arpcom.ac_if;
2068 int i;
2069
2070 ASSERT_SERIALIZED(ifp->if_serializer);
2071
2072 ifp->if_timer = 0;
2073
2074 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2075
2076 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2077 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2078 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2079 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2080 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2081 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2082
2083 if (sc->vge_head != NULL) {
2084 m_freem(sc->vge_head);
2085 sc->vge_head = sc->vge_tail = NULL;
2086 }
2087
2088 /* Free the TX list buffers. */
2089 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2090 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2091 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2092 sc->vge_ldata.vge_tx_dmamap[i]);
2093 m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2094 sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2095 }
2096 }
2097
2098 /* Free the RX list buffers. */
2099 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2100 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2101 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2102 sc->vge_ldata.vge_rx_dmamap[i]);
2103 m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2104 sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2105 }
2106 }
2107}
2108
2109/*
2110 * Device suspend routine. Stop the interface and save some PCI
2111 * settings in case the BIOS doesn't restore them properly on
2112 * resume.
2113 */
2114static int
2115vge_suspend(device_t dev)
2116{
2117 struct vge_softc *sc = device_get_softc(dev);
2118 struct ifnet *ifp = &sc->arpcom.ac_if;
2119
2120 lwkt_serialize_enter(ifp->if_serializer);
2121 vge_stop(sc);
2122 sc->suspended = 1;
2123 lwkt_serialize_exit(ifp->if_serializer);
2124
2125 return (0);
2126}
2127
2128/*
2129 * Device resume routine. Restore some PCI settings in case the BIOS
2130 * doesn't, re-enable busmastering, and restart the interface if
2131 * appropriate.
2132 */
2133static int
2134vge_resume(device_t dev)
2135{
2136 struct vge_softc *sc = device_get_softc(dev);
2137 struct ifnet *ifp = &sc->arpcom.ac_if;
2138
2139 /* reenable busmastering */
2140 pci_enable_busmaster(dev);
2141 pci_enable_io(dev, SYS_RES_MEMORY);
2142
2143 lwkt_serialize_enter(ifp->if_serializer);
2144 /* reinitialize interface if necessary */
2145 if (ifp->if_flags & IFF_UP)
2146 vge_init(sc);
2147
2148 sc->suspended = 0;
2149 lwkt_serialize_exit(ifp->if_serializer);
2150
2151 return (0);
2152}
2153
2154/*
2155 * Stop all chip I/O so that the kernel's probe routines don't
2156 * get confused by errant DMAs when rebooting.
2157 */
2158static void
2159vge_shutdown(device_t dev)
2160{
2161 struct vge_softc *sc = device_get_softc(dev);
2162 struct ifnet *ifp = &sc->arpcom.ac_if;
2163
2164 lwkt_serialize_enter(ifp->if_serializer);
2165 vge_stop(sc);
2166 lwkt_serialize_exit(ifp->if_serializer);
2167}
2168
2169static void
2170vge_enable_intr(struct vge_softc *sc, uint32_t isr)
2171{
2172 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2173 CSR_WRITE_4(sc, VGE_ISR, isr);
2174 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2175}
2176
2177#ifdef DEVICE_POLLING
2178static void
2179vge_disable_intr(struct vge_softc *sc)
2180{
2181 CSR_WRITE_4(sc, VGE_IMR, 0);
2182 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2183}
2184#endif