kernel - Revert last commit for a better upcoming fix
[dragonfly.git] / sys / netinet / tcp_subr.c
CommitLineData
984263bc 1/*
66d6c637
JH
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
f23061d4 4 *
66d6c637
JH
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
f23061d4 7 *
66d6c637
JH
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
f23061d4 19 *
66d6c637
JH
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
66d6c637 34/*
984263bc
MD
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
67 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
14572273 68 * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
984263bc
MD
69 */
70
71#include "opt_compat.h"
b1992928 72#include "opt_inet.h"
984263bc
MD
73#include "opt_inet6.h"
74#include "opt_ipsec.h"
75#include "opt_tcpdebug.h"
76
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/callout.h>
80#include <sys/kernel.h>
81#include <sys/sysctl.h>
82#include <sys/malloc.h>
dd2b0fb4 83#include <sys/mpipe.h>
984263bc
MD
84#include <sys/mbuf.h>
85#ifdef INET6
86#include <sys/domain.h>
87#endif
88#include <sys/proc.h>
895c1f85 89#include <sys/priv.h>
984263bc
MD
90#include <sys/socket.h>
91#include <sys/socketvar.h>
92#include <sys/protosw.h>
93#include <sys/random.h>
3f9db7f8 94#include <sys/in_cksum.h>
c7afbe76 95#include <sys/ktr.h>
984263bc 96
984263bc
MD
97#include <net/route.h>
98#include <net/if.h>
0ddb6032 99#include <net/netisr.h>
984263bc 100
707ad4ed 101#define _IP_VHL
984263bc
MD
102#include <netinet/in.h>
103#include <netinet/in_systm.h>
104#include <netinet/ip.h>
984263bc 105#include <netinet/ip6.h>
984263bc 106#include <netinet/in_pcb.h>
984263bc 107#include <netinet6/in6_pcb.h>
984263bc
MD
108#include <netinet/in_var.h>
109#include <netinet/ip_var.h>
984263bc 110#include <netinet6/ip6_var.h>
7d448528
JH
111#include <netinet/ip_icmp.h>
112#ifdef INET6
113#include <netinet/icmp6.h>
114#endif
984263bc
MD
115#include <netinet/tcp.h>
116#include <netinet/tcp_fsm.h>
117#include <netinet/tcp_seq.h>
118#include <netinet/tcp_timer.h>
a48c5dd5 119#include <netinet/tcp_timer2.h>
984263bc 120#include <netinet/tcp_var.h>
984263bc 121#include <netinet6/tcp6_var.h>
984263bc
MD
122#include <netinet/tcpip.h>
123#ifdef TCPDEBUG
124#include <netinet/tcp_debug.h>
125#endif
126#include <netinet6/ip6protosw.h>
127
128#ifdef IPSEC
129#include <netinet6/ipsec.h>
b1992928 130#include <netproto/key/key.h>
984263bc
MD
131#ifdef INET6
132#include <netinet6/ipsec6.h>
133#endif
707ad4ed 134#endif
984263bc
MD
135
136#ifdef FAST_IPSEC
bf844ffa 137#include <netproto/ipsec/ipsec.h>
984263bc 138#ifdef INET6
bf844ffa 139#include <netproto/ipsec/ipsec6.h>
984263bc
MD
140#endif
141#define IPSEC
707ad4ed 142#endif
984263bc 143
984263bc 144#include <sys/md5.h>
d2e9e54c
MD
145#include <machine/smp.h>
146
684a93c4
MD
147#include <sys/msgport2.h>
148#include <sys/mplock2.h>
4599cf19
MD
149#include <net/netmsg2.h>
150
c7afbe76
MD
151#if !defined(KTR_TCP)
152#define KTR_TCP KTR_ALL
153#endif
154KTR_INFO_MASTER(tcp);
c3c96e44 155/*
c7afbe76
MD
156KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
157KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
158KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
c3c96e44 159*/
c7afbe76
MD
160#define logtcp(name) KTR_LOG(tcp_ ## name)
161
2b1ce38a
MD
162struct inpcbinfo tcbinfo[MAXCPU];
163struct tcpcbackqhead tcpcbackq[MAXCPU];
164
0ce0603e 165static struct lwkt_token tcp_port_token =
a3c18566 166 LWKT_TOKEN_INITIALIZER(tcp_port_token);
0ce0603e 167
707ad4ed 168int tcp_mssdflt = TCP_MSS;
f23061d4 169SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
707ad4ed 170 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
984263bc
MD
171
172#ifdef INET6
707ad4ed
JH
173int tcp_v6mssdflt = TCP6_MSS;
174SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
175 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
984263bc
MD
176#endif
177
5b0b9fa5
PA
178/*
179 * Minimum MSS we accept and use. This prevents DoS attacks where
180 * we are forced to a ridiculous low MSS like 20 and send hundreds
181 * of packets instead of one. The effect scales with the available
182 * bandwidth and quickly saturates the CPU and network interface
183 * with packet generation and sending. Set to zero to disable MINMSS
184 * checking. This setting prevents us from sending too small packets.
185 */
186int tcp_minmss = TCP_MINMSS;
187SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
188 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
5b0b9fa5 189
984263bc 190#if 0
707ad4ed 191static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
f23061d4 192SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
707ad4ed 193 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
984263bc
MD
194#endif
195
707ad4ed 196int tcp_do_rfc1323 = 1;
f23061d4 197SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
707ad4ed 198 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
984263bc 199
707ad4ed 200static int tcp_tcbhashsize = 0;
984263bc 201SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
707ad4ed 202 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
984263bc 203
707ad4ed 204static int do_tcpdrain = 1;
984263bc
MD
205SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
206 "Enable tcp_drain routine for extra help when low on mbufs");
207
707ad4ed 208static int icmp_may_rst = 1;
f23061d4 209SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
984263bc
MD
210 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
211
707ad4ed 212static int tcp_isn_reseed_interval = 0;
984263bc
MD
213SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
214 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
215
216/*
d66b98eb
MD
217 * TCP bandwidth limiting sysctls. The inflight limiter is now turned on
218 * by default, but with generous values which should allow maximal
219 * bandwidth. In particular, the slop defaults to 50 (5 packets).
220 *
221 * The reason for doing this is that the limiter is the only mechanism we
222 * have which seems to do a really good job preventing receiver RX rings
223 * on network interfaces from getting blown out. Even though GigE/10GigE
224 * is supposed to flow control it looks like either it doesn't actually
225 * do it or Open Source drivers do not properly enable it.
226 *
227 * People using the limiter to reduce bottlenecks on slower WAN connections
228 * should set the slop to 20 (2 packets).
984263bc 229 */
d66b98eb 230static int tcp_inflight_enable = 1;
984263bc
MD
231SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
232 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
233
707ad4ed 234static int tcp_inflight_debug = 0;
984263bc
MD
235SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
236 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
237
707ad4ed 238static int tcp_inflight_min = 6144;
984263bc 239SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
707ad4ed 240 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
984263bc 241
707ad4ed 242static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
984263bc 243SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
707ad4ed 244 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
984263bc 245
d66b98eb 246static int tcp_inflight_stab = 50;
984263bc 247SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
d66b98eb 248 &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
984263bc 249
dd2b0fb4
MD
250static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
251static struct malloc_pipe tcptemp_mpipe;
252
c3c96e44 253static void tcp_willblock(void);
707ad4ed 254static void tcp_notify (struct inpcb *, int);
984263bc 255
5f7ab76b 256struct tcp_stats tcpstats_percpu[MAXCPU];
2b57d013
MD
257#ifdef SMP
258static int
259sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
260{
707ad4ed 261 int cpu, error = 0;
2b57d013 262
707ad4ed 263 for (cpu = 0; cpu < ncpus; ++cpu) {
5f7ab76b 264 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
707ad4ed 265 sizeof(struct tcp_stats))))
2b57d013 266 break;
5f7ab76b 267 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
707ad4ed 268 sizeof(struct tcp_stats))))
2b57d013
MD
269 break;
270 }
271
272 return (error);
273}
707ad4ed
JH
274SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
275 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
276#else
2b57d013 277SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
707ad4ed 278 &tcpstat, tcp_stats, "TCP statistics");
2b57d013
MD
279#endif
280
984263bc
MD
281/*
282 * Target size of TCP PCB hash tables. Must be a power of two.
283 *
284 * Note that this can be overridden by the kernel environment
285 * variable net.inet.tcp.tcbhashsize
286 */
287#ifndef TCBHASHSIZE
707ad4ed 288#define TCBHASHSIZE 512
984263bc
MD
289#endif
290
291/*
292 * This is the actual shape of what we allocate using the zone
293 * allocator. Doing it this way allows us to protect both structures
294 * using the same generation count, and also eliminates the overhead
295 * of allocating tcpcbs separately. By hiding the structure here,
296 * we avoid changing most of the rest of the code (although it needs
297 * to be changed, eventually, for greater efficiency).
298 */
299#define ALIGNMENT 32
300#define ALIGNM1 (ALIGNMENT - 1)
301struct inp_tp {
302 union {
303 struct inpcb inp;
304 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
305 } inp_tp_u;
306 struct tcpcb tcb;
a48c5dd5
SZ
307 struct tcp_callout inp_tp_rexmt;
308 struct tcp_callout inp_tp_persist;
309 struct tcp_callout inp_tp_keep;
310 struct tcp_callout inp_tp_2msl;
311 struct tcp_callout inp_tp_delack;
0f758523 312 struct netmsg_tcp_timer inp_tp_timermsg;
984263bc
MD
313};
314#undef ALIGNMENT
315#undef ALIGNM1
316
317/*
318 * Tcp initialization
319 */
320void
f3f70f0d 321tcp_init(void)
984263bc 322{
0ce0603e 323 struct inpcbporthead *porthashbase;
85095f20 324 struct inpcbinfo *ticb;
0ce0603e 325 u_long porthashmask;
984263bc 326 int hashsize = TCBHASHSIZE;
d371a63a 327 int cpu;
bf82f9b7 328
d2e9e54c
MD
329 /*
330 * note: tcptemp is used for keepalives, and it is ok for an
331 * allocation to fail so do not specify MPF_INT.
332 */
dd2b0fb4 333 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
fdec03d6 334 25, -1, 0, NULL, NULL, NULL);
dd2b0fb4 335
984263bc
MD
336 tcp_delacktime = TCPTV_DELACK;
337 tcp_keepinit = TCPTV_KEEP_INIT;
338 tcp_keepidle = TCPTV_KEEP_IDLE;
339 tcp_keepintvl = TCPTV_KEEPINTVL;
340 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
341 tcp_msl = TCPTV_MSL;
342 tcp_rexmit_min = TCPTV_MIN;
343 tcp_rexmit_slop = TCPTV_CPU_VAR;
344
984263bc
MD
345 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
346 if (!powerof2(hashsize)) {
a6ec04bc 347 kprintf("WARNING: TCB hash size not a power of 2\n");
984263bc
MD
348 hashsize = 512; /* safe default */
349 }
350 tcp_tcbhashsize = hashsize;
0ce0603e 351 porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
d371a63a
JH
352
353 for (cpu = 0; cpu < ncpus2; cpu++) {
85095f20
MD
354 ticb = &tcbinfo[cpu];
355 in_pcbinfo_init(ticb);
356 ticb->cpu = cpu;
357 ticb->hashbase = hashinit(hashsize, M_PCB,
358 &ticb->hashmask);
0ce0603e
MD
359 ticb->porthashbase = porthashbase;
360 ticb->porthashmask = porthashmask;
361 ticb->porttoken = &tcp_port_token;
362#if 0
85095f20
MD
363 ticb->porthashbase = hashinit(hashsize, M_PCB,
364 &ticb->porthashmask);
0ce0603e 365#endif
85095f20
MD
366 ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
367 &ticb->wildcardhashmask);
368 ticb->ipi_size = sizeof(struct inp_tp);
2b1ce38a 369 TAILQ_INIT(&tcpcbackq[cpu]);
d371a63a 370 }
3edf7c37
RG
371
372 tcp_reass_maxseg = nmbclusters / 16;
707ad4ed 373 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
3edf7c37 374
984263bc 375#ifdef INET6
707ad4ed
JH
376#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
377#else
378#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
379#endif
984263bc
MD
380 if (max_protohdr < TCP_MINPROTOHDR)
381 max_protohdr = TCP_MINPROTOHDR;
382 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
383 panic("tcp_init");
384#undef TCP_MINPROTOHDR
385
2b57d013 386 /*
5f7ab76b 387 * Initialize TCP statistics counters for each CPU.
2b57d013
MD
388 */
389#ifdef SMP
390 for (cpu = 0; cpu < ncpus; ++cpu) {
5f7ab76b 391 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
2b57d013
MD
392 }
393#else
394 bzero(&tcpstat, sizeof(struct tcp_stats));
395#endif
396
984263bc 397 syncache_init();
c3c96e44 398 netisr_register_rollup(tcp_willblock);
2b1ce38a
MD
399}
400
401static void
c3c96e44 402tcp_willblock(void)
2b1ce38a
MD
403{
404 struct tcpcb *tp;
405 int cpu = mycpu->gd_cpuid;
406
407 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
408 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
409 tp->t_flags &= ~TF_ONOUTPUTQ;
410 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
411 tcp_output(tp);
412 }
413}
414
984263bc
MD
415/*
416 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
417 * tcp_template used to store this data in mbufs, but we now recopy it out
418 * of the tcpcb each time to conserve mbufs.
419 */
420void
707ad4ed 421tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
984263bc
MD
422{
423 struct inpcb *inp = tp->t_inpcb;
424 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
425
426#ifdef INET6
707ad4ed 427 if (inp->inp_vflag & INP_IPV6) {
984263bc
MD
428 struct ip6_hdr *ip6;
429
430 ip6 = (struct ip6_hdr *)ip_ptr;
431 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
432 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
433 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
434 (IPV6_VERSION & IPV6_VERSION_MASK);
435 ip6->ip6_nxt = IPPROTO_TCP;
436 ip6->ip6_plen = sizeof(struct tcphdr);
437 ip6->ip6_src = inp->in6p_laddr;
438 ip6->ip6_dst = inp->in6p_faddr;
439 tcp_hdr->th_sum = 0;
440 } else
441#endif
442 {
707ad4ed
JH
443 struct ip *ip = (struct ip *) ip_ptr;
444
445 ip->ip_vhl = IP_VHL_BORING;
446 ip->ip_tos = 0;
447 ip->ip_len = 0;
448 ip->ip_id = 0;
449 ip->ip_off = 0;
450 ip->ip_ttl = 0;
451 ip->ip_sum = 0;
452 ip->ip_p = IPPROTO_TCP;
453 ip->ip_src = inp->inp_laddr;
454 ip->ip_dst = inp->inp_faddr;
455 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
456 ip->ip_dst.s_addr,
457 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
984263bc
MD
458 }
459
460 tcp_hdr->th_sport = inp->inp_lport;
461 tcp_hdr->th_dport = inp->inp_fport;
462 tcp_hdr->th_seq = 0;
463 tcp_hdr->th_ack = 0;
464 tcp_hdr->th_x2 = 0;
465 tcp_hdr->th_off = 5;
466 tcp_hdr->th_flags = 0;
467 tcp_hdr->th_win = 0;
468 tcp_hdr->th_urp = 0;
469}
470
471/*
472 * Create template to be used to send tcp packets on a connection.
473 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
474 * use for this function is in keepalives, which use tcp_respond.
475 */
476struct tcptemp *
707ad4ed 477tcp_maketemplate(struct tcpcb *tp)
984263bc 478{
dd2b0fb4 479 struct tcptemp *tmp;
984263bc 480
dd2b0fb4 481 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
707ad4ed 482 return (NULL);
f23061d4 483 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
dd2b0fb4
MD
484 return (tmp);
485}
984263bc 486
dd2b0fb4
MD
487void
488tcp_freetemplate(struct tcptemp *tmp)
489{
490 mpipe_free(&tcptemp_mpipe, tmp);
984263bc
MD
491}
492
493/*
494 * Send a single message to the TCP at address specified by
707ad4ed 495 * the given TCP/IP header. If m == NULL, then we make a copy
984263bc
MD
496 * of the tcpiphdr at ti and send directly to the addressed host.
497 * This is used to force keep alive messages out using the TCP
498 * template for a connection. If flags are given then we send
499 * a message back to the TCP which originated the * segment ti,
500 * and discard the mbuf containing it and any other attached mbufs.
501 *
502 * In any case the ack and sequence number of the transmitted
503 * segment are as specified by the parameters.
504 *
505 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
506 */
507void
707ad4ed
JH
508tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
509 tcp_seq ack, tcp_seq seq, int flags)
984263bc 510{
2256ba69 511 int tlen;
984263bc 512 int win = 0;
707ad4ed 513 struct route *ro = NULL;
984263bc 514 struct route sro;
707ad4ed 515 struct ip *ip = ipgen;
984263bc 516 struct tcphdr *nth;
984263bc 517 int ipflags = 0;
707ad4ed
JH
518 struct route_in6 *ro6 = NULL;
519 struct route_in6 sro6;
520 struct ip6_hdr *ip6 = ipgen;
5a0e5b43 521 boolean_t use_tmpro = TRUE;
984263bc 522#ifdef INET6
707ad4ed
JH
523 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
524#else
525 const boolean_t isipv6 = FALSE;
526#endif
984263bc 527
707ad4ed 528 if (tp != NULL) {
984263bc 529 if (!(flags & TH_RST)) {
6d49aa6f 530 win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
46e92930
MD
531 if (win < 0)
532 win = 0;
984263bc
MD
533 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
534 win = (long)TCP_MAXWIN << tp->rcv_scale;
535 }
5a0e5b43
SZ
536 /*
537 * Don't use the route cache of a listen socket,
538 * it is not MPSAFE; use temporary route cache.
539 */
540 if (tp->t_state != TCPS_LISTEN) {
541 if (isipv6)
542 ro6 = &tp->t_inpcb->in6p_route;
543 else
544 ro = &tp->t_inpcb->inp_route;
545 use_tmpro = FALSE;
546 }
547 }
548 if (use_tmpro) {
984263bc
MD
549 if (isipv6) {
550 ro6 = &sro6;
551 bzero(ro6, sizeof *ro6);
707ad4ed
JH
552 } else {
553 ro = &sro;
554 bzero(ro, sizeof *ro);
555 }
984263bc 556 }
707ad4ed 557 if (m == NULL) {
74f1caca 558 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
984263bc
MD
559 if (m == NULL)
560 return;
561 tlen = 0;
562 m->m_data += max_linkhdr;
984263bc 563 if (isipv6) {
707ad4ed 564 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
984263bc
MD
565 ip6 = mtod(m, struct ip6_hdr *);
566 nth = (struct tcphdr *)(ip6 + 1);
707ad4ed
JH
567 } else {
568 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
569 ip = mtod(m, struct ip *);
570 nth = (struct tcphdr *)(ip + 1);
571 }
572 bcopy(th, nth, sizeof(struct tcphdr));
984263bc
MD
573 flags = TH_ACK;
574 } else {
575 m_freem(m->m_next);
707ad4ed 576 m->m_next = NULL;
984263bc
MD
577 m->m_data = (caddr_t)ipgen;
578 /* m_len is set later */
579 tlen = 0;
707ad4ed 580#define xchg(a, b, type) { type t; t = a; a = b; b = t; }
984263bc
MD
581 if (isipv6) {
582 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
583 nth = (struct tcphdr *)(ip6 + 1);
707ad4ed
JH
584 } else {
585 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
586 nth = (struct tcphdr *)(ip + 1);
587 }
984263bc
MD
588 if (th != nth) {
589 /*
590 * this is usually a case when an extension header
591 * exists between the IPv6 header and the
592 * TCP header.
593 */
594 nth->th_sport = th->th_sport;
595 nth->th_dport = th->th_dport;
596 }
597 xchg(nth->th_dport, nth->th_sport, n_short);
598#undef xchg
599 }
984263bc
MD
600 if (isipv6) {
601 ip6->ip6_flow = 0;
602 ip6->ip6_vfc = IPV6_VERSION;
603 ip6->ip6_nxt = IPPROTO_TCP;
707ad4ed
JH
604 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
605 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
606 } else {
607 tlen += sizeof(struct tcpiphdr);
608 ip->ip_len = tlen;
609 ip->ip_ttl = ip_defttl;
610 }
984263bc
MD
611 m->m_len = tlen;
612 m->m_pkthdr.len = tlen;
2038fb68 613 m->m_pkthdr.rcvif = NULL;
984263bc
MD
614 nth->th_seq = htonl(seq);
615 nth->th_ack = htonl(ack);
616 nth->th_x2 = 0;
707ad4ed 617 nth->th_off = sizeof(struct tcphdr) >> 2;
984263bc 618 nth->th_flags = flags;
707ad4ed 619 if (tp != NULL)
984263bc
MD
620 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
621 else
622 nth->th_win = htons((u_short)win);
623 nth->th_urp = 0;
984263bc
MD
624 if (isipv6) {
625 nth->th_sum = 0;
626 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
627 sizeof(struct ip6_hdr),
628 tlen - sizeof(struct ip6_hdr));
629 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
707ad4ed 630 (ro6 && ro6->ro_rt) ?
f23061d4 631 ro6->ro_rt->rt_ifp : NULL);
707ad4ed
JH
632 } else {
633 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
634 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
635 m->m_pkthdr.csum_flags = CSUM_TCP;
636 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
637 }
984263bc
MD
638#ifdef TCPDEBUG
639 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
640 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
641#endif
984263bc 642 if (isipv6) {
f23061d4
JH
643 ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
644 tp ? tp->t_inpcb : NULL);
707ad4ed 645 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
984263bc
MD
646 RTFREE(ro6->ro_rt);
647 ro6->ro_rt = NULL;
648 }
707ad4ed 649 } else {
1dbb3516 650 ipflags |= IP_DEBUGROUTE;
f23061d4 651 ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
707ad4ed
JH
652 if ((ro == &sro) && (ro->ro_rt != NULL)) {
653 RTFREE(ro->ro_rt);
654 ro->ro_rt = NULL;
655 }
984263bc 656 }
984263bc
MD
657}
658
659/*
660 * Create a new TCP control block, making an
661 * empty reassembly queue and hooking it to the argument
662 * protocol control block. The `inp' parameter must have
663 * come from the zone allocator set up in tcp_init().
664 */
665struct tcpcb *
707ad4ed 666tcp_newtcpcb(struct inpcb *inp)
984263bc
MD
667{
668 struct inp_tp *it;
2256ba69 669 struct tcpcb *tp;
984263bc 670#ifdef INET6
707ad4ed
JH
671 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
672#else
673 const boolean_t isipv6 = FALSE;
674#endif
984263bc
MD
675
676 it = (struct inp_tp *)inp;
677 tp = &it->tcb;
707ad4ed 678 bzero(tp, sizeof(struct tcpcb));
984263bc 679 LIST_INIT(&tp->t_segq);
707ad4ed 680 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
984263bc
MD
681
682 /* Set up our timeouts. */
a48c5dd5
SZ
683 tp->tt_rexmt = &it->inp_tp_rexmt;
684 tp->tt_persist = &it->inp_tp_persist;
685 tp->tt_keep = &it->inp_tp_keep;
686 tp->tt_2msl = &it->inp_tp_2msl;
687 tp->tt_delack = &it->inp_tp_delack;
688 tcp_inittimers(tp);
984263bc 689
3db1c8a3
SZ
690 /*
691 * Zero out timer message. We don't create it here,
692 * since the current CPU may not be the owner of this
693 * inpcb.
694 */
0f758523 695 tp->tt_msg = &it->inp_tp_timermsg;
3db1c8a3 696 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
0f758523 697
984263bc 698 if (tcp_do_rfc1323)
707ad4ed 699 tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
984263bc 700 tp->t_inpcb = inp; /* XXX */
eb594563 701 tp->t_state = TCPS_CLOSED;
984263bc
MD
702 /*
703 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
704 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
705 * reasonable initial retransmit time.
706 */
707 tp->t_srtt = TCPTV_SRTTBASE;
707ad4ed
JH
708 tp->t_rttvar =
709 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
984263bc
MD
710 tp->t_rttmin = tcp_rexmit_min;
711 tp->t_rxtcur = TCPTV_RTOBASE;
712 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
713 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
714 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
715 tp->t_rcvtime = ticks;
707ad4ed 716 /*
984263bc
MD
717 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
718 * because the socket may be bound to an IPv6 wildcard address,
719 * which may match an IPv4-mapped IPv6 address.
720 */
721 inp->inp_ip_ttl = ip_defttl;
f23061d4 722 inp->inp_ppcb = tp;
91489f6b 723 tcp_sack_tcpcb_init(tp);
984263bc
MD
724 return (tp); /* XXX */
725}
726
727/*
707ad4ed
JH
728 * Drop a TCP connection, reporting the specified error.
729 * If connection is synchronized, then send a RST to peer.
984263bc
MD
730 */
731struct tcpcb *
71f385dc 732tcp_drop(struct tcpcb *tp, int error)
984263bc
MD
733{
734 struct socket *so = tp->t_inpcb->inp_socket;
735
736 if (TCPS_HAVERCVDSYN(tp->t_state)) {
737 tp->t_state = TCPS_CLOSED;
f23061d4 738 tcp_output(tp);
984263bc
MD
739 tcpstat.tcps_drops++;
740 } else
741 tcpstat.tcps_conndrops++;
71f385dc
MD
742 if (error == ETIMEDOUT && tp->t_softerror)
743 error = tp->t_softerror;
744 so->so_error = error;
984263bc
MD
745 return (tcp_close(tp));
746}
747
8affadf8 748#ifdef SMP
eb594563 749
8affadf8 750struct netmsg_remwildcard {
002c1265 751 struct netmsg_base base;
8affadf8
JH
752 struct inpcb *nm_inp;
753 struct inpcbinfo *nm_pcbinfo;
eb594563
MD
754#if defined(INET6)
755 int nm_isinet6;
756#else
757 int nm_unused01;
758#endif
8affadf8
JH
759};
760
eb594563
MD
761/*
762 * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
763 * inp can be detached. We do this by cycling through the cpus, ending up
764 * on the cpu controlling the inp last and then doing the disconnect.
765 */
4599cf19 766static void
002c1265 767in_pcbremwildcardhash_handler(netmsg_t msg)
8affadf8 768{
002c1265 769 struct netmsg_remwildcard *nmsg = (struct netmsg_remwildcard *)msg;
eb594563 770 int cpu;
8affadf8 771
002c1265 772 cpu = nmsg->nm_pcbinfo->cpu;
eb594563 773
002c1265 774 if (cpu == nmsg->nm_inp->inp_pcbinfo->cpu) {
eb594563
MD
775 /* note: detach removes any wildcard hash entry */
776#ifdef INET6
002c1265
MD
777 if (nmsg->nm_isinet6)
778 in6_pcbdetach(nmsg->nm_inp);
eb594563
MD
779 else
780#endif
002c1265
MD
781 in_pcbdetach(nmsg->nm_inp);
782 lwkt_replymsg(&nmsg->base.lmsg, 0);
eb594563 783 } else {
002c1265 784 in_pcbremwildcardhash_oncpu(nmsg->nm_inp, nmsg->nm_pcbinfo);
eb594563 785 cpu = (cpu + 1) % ncpus2;
002c1265
MD
786 nmsg->nm_pcbinfo = &tcbinfo[cpu];
787 lwkt_forwardmsg(cpu_portfn(cpu), &nmsg->base.lmsg);
eb594563 788 }
8affadf8 789}
eb594563 790
8affadf8
JH
791#endif
792
984263bc
MD
793/*
794 * Close a TCP control block:
795 * discard all space held by the tcp
796 * discard internet protocol block
797 * wake up any sleepers
798 */
799struct tcpcb *
707ad4ed 800tcp_close(struct tcpcb *tp)
984263bc 801{
2256ba69 802 struct tseg_qent *q;
984263bc
MD
803 struct inpcb *inp = tp->t_inpcb;
804 struct socket *so = inp->inp_socket;
2256ba69 805 struct rtentry *rt;
707ad4ed 806 boolean_t dosavessthresh;
8affadf8
JH
807#ifdef SMP
808 int cpu;
809#endif
707ad4ed
JH
810#ifdef INET6
811 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
eb594563 812 boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
707ad4ed
JH
813#else
814 const boolean_t isipv6 = FALSE;
815#endif
984263bc 816
eb594563
MD
817 /*
818 * The tp is not instantly destroyed in the wildcard case. Setting
819 * the state to TCPS_TERMINATING will prevent the TCP stack from
820 * messing with it, though it should be noted that this change may
821 * not take effect on other cpus until we have chained the wildcard
822 * hash removal.
823 *
824 * XXX we currently depend on the BGL to synchronize the tp->t_state
825 * update and prevent other tcp protocol threads from accepting new
826 * connections on the listen socket we might be trying to close down.
827 */
828 KKASSERT(tp->t_state != TCPS_TERMINATING);
829 tp->t_state = TCPS_TERMINATING;
830
984263bc
MD
831 /*
832 * Make sure that all of our timers are stopped before we
2d42d2b0 833 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
697aadcd
SZ
834 * timers are never used. If timer message is never created
835 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
984263bc 836 */
697aadcd 837 if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
2d42d2b0
SZ
838 tcp_callout_stop(tp, tp->tt_rexmt);
839 tcp_callout_stop(tp, tp->tt_persist);
840 tcp_callout_stop(tp, tp->tt_keep);
841 tcp_callout_stop(tp, tp->tt_2msl);
842 tcp_callout_stop(tp, tp->tt_delack);
843 }
984263bc 844
2b1ce38a
MD
845 if (tp->t_flags & TF_ONOUTPUTQ) {
846 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
847 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
848 tp->t_flags &= ~TF_ONOUTPUTQ;
849 }
850
984263bc
MD
851 /*
852 * If we got enough samples through the srtt filter,
853 * save the rtt and rttvar in the routing entry.
854 * 'Enough' is arbitrarily defined as the 16 samples.
855 * 16 samples is enough for the srtt filter to converge
856 * to within 5% of the correct value; fewer samples and
857 * we could save a very bogus rtt.
858 *
859 * Don't update the default route's characteristics and don't
860 * update anything that the user "locked".
861 */
862 if (tp->t_rttupdated >= 16) {
2256ba69 863 u_long i = 0;
707ad4ed 864
984263bc
MD
865 if (isipv6) {
866 struct sockaddr_in6 *sin6;
867
868 if ((rt = inp->in6p_route.ro_rt) == NULL)
869 goto no_valid_rt;
870 sin6 = (struct sockaddr_in6 *)rt_key(rt);
871 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
872 goto no_valid_rt;
707ad4ed
JH
873 } else
874 if ((rt = inp->inp_route.ro_rt) == NULL ||
875 ((struct sockaddr_in *)rt_key(rt))->
876 sin_addr.s_addr == INADDR_ANY)
877 goto no_valid_rt;
878
879 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
880 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
984263bc
MD
881 if (rt->rt_rmx.rmx_rtt && i)
882 /*
883 * filter this update to half the old & half
884 * the new values, converting scale.
885 * See route.h and tcp_var.h for a
886 * description of the scaling constants.
887 */
888 rt->rt_rmx.rmx_rtt =
889 (rt->rt_rmx.rmx_rtt + i) / 2;
890 else
891 rt->rt_rmx.rmx_rtt = i;
892 tcpstat.tcps_cachedrtt++;
893 }
707ad4ed 894 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
984263bc
MD
895 i = tp->t_rttvar *
896 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
897 if (rt->rt_rmx.rmx_rttvar && i)
898 rt->rt_rmx.rmx_rttvar =
899 (rt->rt_rmx.rmx_rttvar + i) / 2;
900 else
901 rt->rt_rmx.rmx_rttvar = i;
902 tcpstat.tcps_cachedrttvar++;
903 }
904 /*
905 * The old comment here said:
906 * update the pipelimit (ssthresh) if it has been updated
907 * already or if a pipesize was specified & the threshhold
908 * got below half the pipesize. I.e., wait for bad news
909 * before we start updating, then update on both good
910 * and bad news.
911 *
912 * But we want to save the ssthresh even if no pipesize is
913 * specified explicitly in the route, because such
914 * connections still have an implicit pipesize specified
915 * by the global tcp_sendspace. In the absence of a reliable
916 * way to calculate the pipesize, it will have to do.
917 */
918 i = tp->snd_ssthresh;
919 if (rt->rt_rmx.rmx_sendpipe != 0)
707ad4ed 920 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
984263bc 921 else
6d49aa6f 922 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
707ad4ed
JH
923 if (dosavessthresh ||
924 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
925 (rt->rt_rmx.rmx_ssthresh != 0))) {
984263bc
MD
926 /*
927 * convert the limit from user data bytes to
928 * packets then to packet data bytes.
929 */
930 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
931 if (i < 2)
932 i = 2;
707ad4ed
JH
933 i *= tp->t_maxseg +
934 (isipv6 ?
935 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
936 sizeof(struct tcpiphdr));
984263bc
MD
937 if (rt->rt_rmx.rmx_ssthresh)
938 rt->rt_rmx.rmx_ssthresh =
939 (rt->rt_rmx.rmx_ssthresh + i) / 2;
940 else
941 rt->rt_rmx.rmx_ssthresh = i;
942 tcpstat.tcps_cachedssthresh++;
943 }
944 }
707ad4ed
JH
945
946no_valid_rt:
984263bc
MD
947 /* free the reassembly queue, if any */
948 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
949 LIST_REMOVE(q, tqe_q);
950 m_freem(q->tqe_m);
951 FREE(q, M_TSEGQ);
2d23a8be 952 atomic_add_int(&tcp_reass_qsize, -1);
984263bc 953 }
4617a559 954 /* throw away SACK blocks in scoreboard*/
91489f6b
JH
955 if (TCP_DO_SACK(tp))
956 tcp_sack_cleanup(&tp->scb);
eb594563 957
4617a559 958 inp->inp_ppcb = NULL;
984263bc 959 soisdisconnected(so);
4617a559
MD
960 /* note: pcb detached later on */
961
0f758523 962 tcp_destroy_timermsg(tp);
e5fe3477
MD
963 if (tp->t_flags & TF_SYNCACHE)
964 syncache_destroy(tp);
0f758523 965
eb594563
MD
966 /*
967 * Discard the inp. In the SMP case a wildcard inp's hash (created
968 * by a listen socket or an INADDR_ANY udp socket) is replicated
969 * for each protocol thread and must be removed in the context of
970 * that thread. This is accomplished by chaining the message
971 * through the cpus.
972 *
973 * If the inp is not wildcarded we simply detach, which will remove
974 * the any hashes still present for this inp.
975 */
8affadf8 976#ifdef SMP
1e019813 977 if (inp->inp_flags & INP_WILDCARD_MP) {
002c1265 978 struct netmsg_remwildcard *nmsg;
1e019813 979
eb594563 980 cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
002c1265
MD
981 nmsg = kmalloc(sizeof(struct netmsg_remwildcard),
982 M_LWKTMSG, M_INTWAIT);
983 netmsg_init(&nmsg->base, NULL, &netisr_afree_rport,
48e7b118 984 0, in_pcbremwildcardhash_handler);
eb594563 985#ifdef INET6
002c1265 986 nmsg->nm_isinet6 = isafinet6;
8affadf8 987#endif
002c1265
MD
988 nmsg->nm_inp = inp;
989 nmsg->nm_pcbinfo = &tcbinfo[cpu];
990 lwkt_sendmsg(cpu_portfn(cpu), &nmsg->base.lmsg);
f23061d4 991 } else
eb594563
MD
992#endif
993 {
994 /* note: detach removes any wildcard hash entry */
984263bc 995#ifdef INET6
eb594563
MD
996 if (isafinet6)
997 in6_pcbdetach(inp);
998 else
707ad4ed 999#endif
eb594563
MD
1000 in_pcbdetach(inp);
1001 }
984263bc 1002 tcpstat.tcps_closed++;
707ad4ed 1003 return (NULL);
984263bc
MD
1004}
1005
3f48f9c5
JH
1006static __inline void
1007tcp_drain_oncpu(struct inpcbhead *head)
984263bc 1008{
2d23a8be 1009 struct inpcb *marker;
d371a63a
JH
1010 struct inpcb *inpb;
1011 struct tcpcb *tcpb;
1012 struct tseg_qent *te;
3f48f9c5 1013
2d23a8be
MD
1014 /*
1015 * Allows us to block while running the list
1016 */
1017 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1018 marker->inp_flags |= INP_PLACEMARKER;
1019 LIST_INSERT_HEAD(head, marker, inp_list);
1020
1021 while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1022 if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1023 (tcpb = intotcpcb(inpb)) != NULL &&
1024 (te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1025 LIST_REMOVE(te, tqe_q);
1026 m_freem(te->tqe_m);
1027 FREE(te, M_TSEGQ);
1028 atomic_add_int(&tcp_reass_qsize, -1);
1029 /* retry */
1030 } else {
1031 LIST_REMOVE(marker, inp_list);
1032 LIST_INSERT_AFTER(inpb, marker, inp_list);
3f48f9c5
JH
1033 }
1034 }
2d23a8be
MD
1035 LIST_REMOVE(marker, inp_list);
1036 kfree(marker, M_TEMP);
3f48f9c5
JH
1037}
1038
0ddb6032
JH
1039#ifdef SMP
1040struct netmsg_tcp_drain {
002c1265 1041 struct netmsg_base base;
0ddb6032
JH
1042 struct inpcbhead *nm_head;
1043};
1044
4599cf19 1045static void
002c1265 1046tcp_drain_handler(netmsg_t msg)
0ddb6032 1047{
002c1265 1048 struct netmsg_tcp_drain *nm = (void *)msg;
0ddb6032
JH
1049
1050 tcp_drain_oncpu(nm->nm_head);
002c1265 1051 lwkt_replymsg(&nm->base.lmsg, 0);
0ddb6032
JH
1052}
1053#endif
1054
3f48f9c5 1055void
f3f70f0d 1056tcp_drain(void)
3f48f9c5 1057{
93c8e032 1058#ifdef SMP
d371a63a 1059 int cpu;
93c8e032 1060#endif
d371a63a
JH
1061
1062 if (!do_tcpdrain)
1063 return;
984263bc
MD
1064
1065 /*
1066 * Walk the tcpbs, if existing, and flush the reassembly queue,
1067 * if there is one...
1068 * XXX: The "Net/3" implementation doesn't imply that the TCP
707ad4ed
JH
1069 * reassembly queue should be flushed, but in a situation
1070 * where we're really low on mbufs, this is potentially
1071 * useful.
984263bc 1072 */
3f48f9c5 1073#ifdef SMP
d371a63a 1074 for (cpu = 0; cpu < ncpus2; cpu++) {
002c1265 1075 struct netmsg_tcp_drain *nm;
3f48f9c5 1076
0ddb6032 1077 if (cpu == mycpu->gd_cpuid) {
d2e9e54c 1078 tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
3f48f9c5 1079 } else {
002c1265
MD
1080 nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1081 M_LWKTMSG, M_NOWAIT);
1082 if (nm == NULL)
3f48f9c5 1083 continue;
002c1265 1084 netmsg_init(&nm->base, NULL, &netisr_afree_rport,
48e7b118 1085 0, tcp_drain_handler);
002c1265
MD
1086 nm->nm_head = &tcbinfo[cpu].pcblisthead;
1087 lwkt_sendmsg(cpu_portfn(cpu), &nm->base.lmsg);
984263bc 1088 }
984263bc 1089 }
3f48f9c5 1090#else
d2e9e54c 1091 tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
3f48f9c5 1092#endif
984263bc
MD
1093}
1094
1095/*
1096 * Notify a tcp user of an asynchronous error;
1097 * store error as soft error, but wake up user
1098 * (for now, won't do anything until can select for soft error).
1099 *
1100 * Do not wake up user since there currently is no mechanism for
1101 * reporting soft errors (yet - a kqueue filter may be added).
1102 */
1103static void
707ad4ed 1104tcp_notify(struct inpcb *inp, int error)
984263bc 1105{
707ad4ed 1106 struct tcpcb *tp = intotcpcb(inp);
984263bc
MD
1107
1108 /*
1109 * Ignore some errors if we are hooked up.
1110 * If connection hasn't completed, has retransmitted several times,
1111 * and receives a second error, give up now. This is better
1112 * than waiting a long time to establish a connection that
1113 * can never complete.
1114 */
1115 if (tp->t_state == TCPS_ESTABLISHED &&
1116 (error == EHOSTUNREACH || error == ENETUNREACH ||
1117 error == EHOSTDOWN)) {
1118 return;
1119 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1120 tp->t_softerror)
1121 tcp_drop(tp, error);
1122 else
1123 tp->t_softerror = error;
1124#if 0
f23061d4 1125 wakeup(&so->so_timeo);
984263bc
MD
1126 sorwakeup(so);
1127 sowwakeup(so);
1128#endif
1129}
1130
1131static int
1132tcp_pcblist(SYSCTL_HANDLER_ARGS)
1133{
d2e9e54c
MD
1134 int error, i, n;
1135 struct inpcb *marker;
1136 struct inpcb *inp;
d2e9e54c
MD
1137 globaldata_t gd;
1138 int origcpu, ccpu;
1139
1140 error = 0;
1141 n = 0;
984263bc
MD
1142
1143 /*
1144 * The process of preparing the TCB list is too time-consuming and
1145 * resource-intensive to repeat twice on every request.
1146 */
707ad4ed 1147 if (req->oldptr == NULL) {
d2e9e54c
MD
1148 for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1149 gd = globaldata_find(ccpu);
1150 n += tcbinfo[gd->gd_cpuid].ipi_count;
1151 }
8d7c364e 1152 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
707ad4ed 1153 return (0);
984263bc
MD
1154 }
1155
707ad4ed
JH
1156 if (req->newptr != NULL)
1157 return (EPERM);
984263bc 1158
efda3bd0 1159 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
d2e9e54c
MD
1160 marker->inp_flags |= INP_PLACEMARKER;
1161
984263bc 1162 /*
d2e9e54c 1163 * OK, now we're committed to doing something. Run the inpcb list
f23061d4 1164 * for each cpu in the system and construct the output. Use a
d2e9e54c
MD
1165 * list placemarker to deal with list changes occuring during
1166 * copyout blockages (but otherwise depend on being on the correct
1167 * cpu to avoid races).
984263bc 1168 */
d2e9e54c
MD
1169 origcpu = mycpu->gd_cpuid;
1170 for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1171 globaldata_t rgd;
1172 caddr_t inp_ppcb;
1173 struct xtcpcb xt;
1174 int cpu_id;
1175
1176 cpu_id = (origcpu + ccpu) % ncpus;
da23a592 1177 if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
d2e9e54c
MD
1178 continue;
1179 rgd = globaldata_find(cpu_id);
1180 lwkt_setcpu_self(rgd);
1181
d2e9e54c
MD
1182 n = tcbinfo[cpu_id].ipi_count;
1183
d2e9e54c
MD
1184 LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1185 i = 0;
1186 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1187 /*
1188 * process a snapshot of pcbs, ignoring placemarkers
1189 * and using our own to allow SYSCTL_OUT to block.
1190 */
1191 LIST_REMOVE(marker, inp_list);
1192 LIST_INSERT_AFTER(inp, marker, inp_list);
707ad4ed 1193
d2e9e54c
MD
1194 if (inp->inp_flags & INP_PLACEMARKER)
1195 continue;
d2e9e54c
MD
1196 if (prison_xinpcb(req->td, inp))
1197 continue;
984263bc 1198
984263bc 1199 xt.xt_len = sizeof xt;
984263bc
MD
1200 bcopy(inp, &xt.xt_inp, sizeof *inp);
1201 inp_ppcb = inp->inp_ppcb;
1202 if (inp_ppcb != NULL)
1203 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1204 else
707ad4ed 1205 bzero(&xt.xt_tp, sizeof xt.xt_tp);
984263bc
MD
1206 if (inp->inp_socket)
1207 sotoxsocket(inp->inp_socket, &xt.xt_socket);
d2e9e54c
MD
1208 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1209 break;
1210 ++i;
1211 }
1212 LIST_REMOVE(marker, inp_list);
1213 if (error == 0 && i < n) {
0c3c561c
JH
1214 bzero(&xt, sizeof xt);
1215 xt.xt_len = sizeof xt;
d2e9e54c 1216 while (i < n) {
f23061d4 1217 error = SYSCTL_OUT(req, &xt, sizeof xt);
d2e9e54c
MD
1218 if (error)
1219 break;
1220 ++i;
1221 }
1222 }
984263bc 1223 }
d2e9e54c
MD
1224
1225 /*
1226 * Make sure we are on the same cpu we were on originally, since
1227 * higher level callers expect this. Also don't pollute caches with
1228 * migrated userland data by (eventually) returning to userland
1229 * on a different cpu.
1230 */
1231 lwkt_setcpu_self(globaldata_find(origcpu));
efda3bd0 1232 kfree(marker, M_TEMP);
707ad4ed 1233 return (error);
984263bc
MD
1234}
1235
1236SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1237 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1238
1239static int
1240tcp_getcred(SYSCTL_HANDLER_ARGS)
1241{
1242 struct sockaddr_in addrs[2];
1243 struct inpcb *inp;
d371a63a 1244 int cpu;
1cae611f 1245 int error;
984263bc 1246
895c1f85 1247 error = priv_check(req->td, PRIV_ROOT);
707ad4ed 1248 if (error != 0)
984263bc 1249 return (error);
707ad4ed
JH
1250 error = SYSCTL_IN(req, addrs, sizeof addrs);
1251 if (error != 0)
984263bc 1252 return (error);
1cae611f 1253 crit_enter();
d371a63a
JH
1254 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1255 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1256 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1257 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
984263bc
MD
1258 if (inp == NULL || inp->inp_socket == NULL) {
1259 error = ENOENT;
1260 goto out;
1261 }
1262 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1263out:
1cae611f 1264 crit_exit();
984263bc
MD
1265 return (error);
1266}
1267
707ad4ed 1268SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
984263bc
MD
1269 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1270
1271#ifdef INET6
1272static int
1273tcp6_getcred(SYSCTL_HANDLER_ARGS)
1274{
1275 struct sockaddr_in6 addrs[2];
1276 struct inpcb *inp;
1cae611f 1277 int error;
707ad4ed 1278 boolean_t mapped = FALSE;
984263bc 1279
895c1f85 1280 error = priv_check(req->td, PRIV_ROOT);
707ad4ed 1281 if (error != 0)
984263bc 1282 return (error);
707ad4ed
JH
1283 error = SYSCTL_IN(req, addrs, sizeof addrs);
1284 if (error != 0)
984263bc
MD
1285 return (error);
1286 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1287 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
707ad4ed 1288 mapped = TRUE;
984263bc
MD
1289 else
1290 return (EINVAL);
1291 }
1cae611f 1292 crit_enter();
707ad4ed 1293 if (mapped) {
d371a63a
JH
1294 inp = in_pcblookup_hash(&tcbinfo[0],
1295 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1296 addrs[1].sin6_port,
1297 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1298 addrs[0].sin6_port,
1299 0, NULL);
1300 } else {
1301 inp = in6_pcblookup_hash(&tcbinfo[0],
1302 &addrs[1].sin6_addr, addrs[1].sin6_port,
1303 &addrs[0].sin6_addr, addrs[0].sin6_port,
1304 0, NULL);
1305 }
984263bc
MD
1306 if (inp == NULL || inp->inp_socket == NULL) {
1307 error = ENOENT;
1308 goto out;
1309 }
707ad4ed 1310 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
984263bc 1311out:
1cae611f 1312 crit_exit();
984263bc
MD
1313 return (error);
1314}
1315
707ad4ed 1316SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
984263bc
MD
1317 0, 0,
1318 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1319#endif
1320
14572273 1321struct netmsg_tcp_notify {
002c1265 1322 struct netmsg_base base;
14572273
SZ
1323 void (*nm_notify)(struct inpcb *, int);
1324 struct in_addr nm_faddr;
1325 int nm_arg;
1326};
1327
1328static void
002c1265 1329tcp_notifyall_oncpu(netmsg_t msg)
14572273 1330{
002c1265 1331 struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
14572273
SZ
1332 int nextcpu;
1333
002c1265
MD
1334 in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1335 nm->nm_arg, nm->nm_notify);
14572273
SZ
1336
1337 nextcpu = mycpuid + 1;
1338 if (nextcpu < ncpus2)
002c1265 1339 lwkt_forwardmsg(cpu_portfn(nextcpu), &nm->base.lmsg);
14572273 1340 else
002c1265 1341 lwkt_replymsg(&nm->base.lmsg, 0);
14572273
SZ
1342}
1343
984263bc 1344void
002c1265 1345tcp_ctlinput(netmsg_t msg)
984263bc 1346{
002c1265
MD
1347 int cmd = msg->ctlinput.nm_cmd;
1348 struct sockaddr *sa = msg->ctlinput.nm_arg;
1349 struct ip *ip = msg->ctlinput.nm_extra;
984263bc
MD
1350 struct tcphdr *th;
1351 struct in_addr faddr;
1352 struct inpcb *inp;
1353 struct tcpcb *tp;
707ad4ed 1354 void (*notify)(struct inpcb *, int) = tcp_notify;
7d448528 1355 tcp_seq icmpseq;
1cae611f 1356 int arg, cpu;
7d448528
JH
1357
1358 if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
002c1265 1359 goto done;
7d448528 1360 }
984263bc
MD
1361
1362 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1363 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
002c1265 1364 goto done;
984263bc 1365
7d448528
JH
1366 arg = inetctlerrmap[cmd];
1367 if (cmd == PRC_QUENCH) {
984263bc 1368 notify = tcp_quench;
7d448528
JH
1369 } else if (icmp_may_rst &&
1370 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1371 cmd == PRC_UNREACH_PORT ||
1372 cmd == PRC_TIMXCEED_INTRANS) &&
1373 ip != NULL) {
984263bc 1374 notify = tcp_drop_syn_sent;
7d448528
JH
1375 } else if (cmd == PRC_MSGSIZE) {
1376 struct icmp *icmp = (struct icmp *)
1377 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1378
1379 arg = ntohs(icmp->icmp_nextmtu);
984263bc 1380 notify = tcp_mtudisc;
7d448528 1381 } else if (PRC_IS_REDIRECT(cmd)) {
707ad4ed 1382 ip = NULL;
984263bc 1383 notify = in_rtchange;
7d448528 1384 } else if (cmd == PRC_HOSTDEAD) {
707ad4ed 1385 ip = NULL;
7d448528
JH
1386 }
1387
707ad4ed 1388 if (ip != NULL) {
1cae611f 1389 crit_enter();
707ad4ed
JH
1390 th = (struct tcphdr *)((caddr_t)ip +
1391 (IP_VHL_HL(ip->ip_vhl) << 2));
d371a63a 1392 cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
707ad4ed 1393 ip->ip_src.s_addr, th->th_sport);
d371a63a 1394 inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
707ad4ed
JH
1395 ip->ip_src, th->th_sport, 0, NULL);
1396 if ((inp != NULL) && (inp->inp_socket != NULL)) {
7d448528 1397 icmpseq = htonl(th->th_seq);
984263bc 1398 tp = intotcpcb(inp);
7d448528
JH
1399 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1400 SEQ_LT(icmpseq, tp->snd_max))
1401 (*notify)(inp, arg);
984263bc
MD
1402 } else {
1403 struct in_conninfo inc;
1404
1405 inc.inc_fport = th->th_dport;
1406 inc.inc_lport = th->th_sport;
1407 inc.inc_faddr = faddr;
1408 inc.inc_laddr = ip->ip_src;
1409#ifdef INET6
1410 inc.inc_isipv6 = 0;
1411#endif
1412 syncache_unreach(&inc, th);
1413 }
1cae611f 1414 crit_exit();
d371a63a 1415 } else {
002c1265 1416 struct netmsg_tcp_notify *nm;
14572273
SZ
1417
1418 KKASSERT(&curthread->td_msgport == cpu_portfn(0));
002c1265
MD
1419 nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1420 netmsg_init(&nm->base, NULL, &netisr_afree_rport,
48e7b118 1421 0, tcp_notifyall_oncpu);
002c1265
MD
1422 nm->nm_faddr = faddr;
1423 nm->nm_arg = arg;
1424 nm->nm_notify = notify;
14572273 1425
002c1265 1426 lwkt_sendmsg(cpu_portfn(0), &nm->base.lmsg);
d371a63a 1427 }
002c1265
MD
1428done:
1429 lwkt_replymsg(&msg->lmsg, 0);
984263bc
MD
1430}
1431
1432#ifdef INET6
002c1265 1433
984263bc 1434void
002c1265 1435tcp6_ctlinput(netmsg_t msg)
984263bc 1436{
002c1265
MD
1437 int cmd = msg->ctlinput.nm_cmd;
1438 struct sockaddr *sa = msg->ctlinput.nm_arg;
1439 void *d = msg->ctlinput.nm_extra;
984263bc 1440 struct tcphdr th;
42a7fc75 1441 void (*notify) (struct inpcb *, int) = tcp_notify;
984263bc
MD
1442 struct ip6_hdr *ip6;
1443 struct mbuf *m;
1444 struct ip6ctlparam *ip6cp = NULL;
1445 const struct sockaddr_in6 *sa6_src = NULL;
1446 int off;
1447 struct tcp_portonly {
1448 u_int16_t th_sport;
1449 u_int16_t th_dport;
1450 } *thp;
7d448528 1451 int arg;
984263bc
MD
1452
1453 if (sa->sa_family != AF_INET6 ||
002c1265
MD
1454 sa->sa_len != sizeof(struct sockaddr_in6)) {
1455 goto out;
1456 }
984263bc 1457
7d448528 1458 arg = 0;
984263bc
MD
1459 if (cmd == PRC_QUENCH)
1460 notify = tcp_quench;
7d448528
JH
1461 else if (cmd == PRC_MSGSIZE) {
1462 struct ip6ctlparam *ip6cp = d;
1463 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1464
1465 arg = ntohl(icmp6->icmp6_mtu);
984263bc 1466 notify = tcp_mtudisc;
7d448528
JH
1467 } else if (!PRC_IS_REDIRECT(cmd) &&
1468 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
002c1265 1469 goto out;
7d448528 1470 }
984263bc
MD
1471
1472 /* if the parameter is from icmp6, decode it. */
1473 if (d != NULL) {
1474 ip6cp = (struct ip6ctlparam *)d;
1475 m = ip6cp->ip6c_m;
1476 ip6 = ip6cp->ip6c_ip6;
1477 off = ip6cp->ip6c_off;
1478 sa6_src = ip6cp->ip6c_src;
1479 } else {
1480 m = NULL;
1481 ip6 = NULL;
1482 off = 0; /* fool gcc */
1483 sa6_src = &sa6_any;
1484 }
1485
707ad4ed 1486 if (ip6 != NULL) {
984263bc
MD
1487 struct in_conninfo inc;
1488 /*
1489 * XXX: We assume that when IPV6 is non NULL,
1490 * M and OFF are valid.
1491 */
1492
1493 /* check if we can safely examine src and dst ports */
707ad4ed 1494 if (m->m_pkthdr.len < off + sizeof *thp)
002c1265 1495 goto out;
984263bc 1496
707ad4ed
JH
1497 bzero(&th, sizeof th);
1498 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
984263bc 1499
d2e9e54c 1500 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
984263bc 1501 (struct sockaddr *)ip6cp->ip6c_src,
7d448528 1502 th.th_sport, cmd, arg, notify);
984263bc
MD
1503
1504 inc.inc_fport = th.th_dport;
1505 inc.inc_lport = th.th_sport;
1506 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1507 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1508 inc.inc_isipv6 = 1;
1509 syncache_unreach(&inc, &th);
002c1265 1510 } else {
d2e9e54c 1511 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
7d448528 1512 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
002c1265
MD
1513 }
1514out:
1515 lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
984263bc 1516}
002c1265 1517
707ad4ed 1518#endif
984263bc
MD
1519
1520/*
1521 * Following is where TCP initial sequence number generation occurs.
1522 *
1523 * There are two places where we must use initial sequence numbers:
1524 * 1. In SYN-ACK packets.
1525 * 2. In SYN packets.
1526 *
1527 * All ISNs for SYN-ACK packets are generated by the syncache. See
1528 * tcp_syncache.c for details.
1529 *
1530 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1531 * depends on this property. In addition, these ISNs should be
1532 * unguessable so as to prevent connection hijacking. To satisfy
1533 * the requirements of this situation, the algorithm outlined in
1534 * RFC 1948 is used to generate sequence numbers.
1535 *
1536 * Implementation details:
1537 *
1538 * Time is based off the system timer, and is corrected so that it
1539 * increases by one megabyte per second. This allows for proper
1540 * recycling on high speed LANs while still leaving over an hour
1541 * before rollover.
1542 *
1543 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1544 * between seeding of isn_secret. This is normally set to zero,
1545 * as reseeding should not be necessary.
1546 *
1547 */
1548
707ad4ed 1549#define ISN_BYTES_PER_SECOND 1048576
984263bc
MD
1550
1551u_char isn_secret[32];
1552int isn_last_reseed;
1553MD5_CTX isn_ctx;
1554
1555tcp_seq
707ad4ed 1556tcp_new_isn(struct tcpcb *tp)
984263bc
MD
1557{
1558 u_int32_t md5_buffer[4];
1559 tcp_seq new_isn;
1560
1561 /* Seed if this is the first use, reseed if requested. */
1562 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1563 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1564 < (u_int)ticks))) {
707ad4ed 1565 read_random_unlimited(&isn_secret, sizeof isn_secret);
984263bc
MD
1566 isn_last_reseed = ticks;
1567 }
707ad4ed 1568
984263bc
MD
1569 /* Compute the md5 hash and return the ISN. */
1570 MD5Init(&isn_ctx);
707ad4ed
JH
1571 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1572 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
984263bc 1573#ifdef INET6
707ad4ed 1574 if (tp->t_inpcb->inp_vflag & INP_IPV6) {
984263bc
MD
1575 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1576 sizeof(struct in6_addr));
1577 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1578 sizeof(struct in6_addr));
1579 } else
1580#endif
1581 {
1582 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1583 sizeof(struct in_addr));
1584 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1585 sizeof(struct in_addr));
1586 }
1587 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1588 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1589 new_isn = (tcp_seq) md5_buffer[0];
1590 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
707ad4ed 1591 return (new_isn);
984263bc
MD
1592}
1593
1594/*
1595 * When a source quench is received, close congestion window
1596 * to one segment. We will gradually open it again as we proceed.
1597 */
1598void
71f385dc 1599tcp_quench(struct inpcb *inp, int error)
984263bc
MD
1600{
1601 struct tcpcb *tp = intotcpcb(inp);
1602
8acdb67c 1603 if (tp != NULL) {
984263bc 1604 tp->snd_cwnd = tp->t_maxseg;
8acdb67c
JH
1605 tp->snd_wacked = 0;
1606 }
984263bc
MD
1607}
1608
1609/*
1610 * When a specific ICMP unreachable message is received and the
1611 * connection state is SYN-SENT, drop the connection. This behavior
1612 * is controlled by the icmp_may_rst sysctl.
1613 */
1614void
71f385dc 1615tcp_drop_syn_sent(struct inpcb *inp, int error)
984263bc
MD
1616{
1617 struct tcpcb *tp = intotcpcb(inp);
1618
707ad4ed 1619 if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
71f385dc 1620 tcp_drop(tp, error);
984263bc
MD
1621}
1622
1623/*
7d448528 1624 * When a `need fragmentation' ICMP is received, update our idea of the MSS
984263bc
MD
1625 * based on the new value in the route. Also nudge TCP to send something,
1626 * since we know the packet we just sent was dropped.
1627 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1628 */
1629void
7d448528 1630tcp_mtudisc(struct inpcb *inp, int mtu)
984263bc
MD
1631{
1632 struct tcpcb *tp = intotcpcb(inp);
1633 struct rtentry *rt;
984263bc 1634 struct socket *so = inp->inp_socket;
7d448528 1635 int maxopd, mss;
984263bc 1636#ifdef INET6
707ad4ed
JH
1637 boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1638#else
1639 const boolean_t isipv6 = FALSE;
1640#endif
984263bc 1641
7d448528
JH
1642 if (tp == NULL)
1643 return;
1644
1645 /*
1646 * If no MTU is provided in the ICMP message, use the
1647 * next lower likely value, as specified in RFC 1191.
1648 */
1649 if (mtu == 0) {
1650 int oldmtu;
1651
1652 oldmtu = tp->t_maxopd +
1653 (isipv6 ?
1654 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1655 sizeof(struct tcpiphdr));
1656 mtu = ip_next_mtu(oldmtu, 0);
1657 }
1658
1659 if (isipv6)
1660 rt = tcp_rtlookup6(&inp->inp_inc);
1661 else
1662 rt = tcp_rtlookup(&inp->inp_inc);
1663 if (rt != NULL) {
7d448528
JH
1664 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1665 mtu = rt->rt_rmx.rmx_mtu;
1666
1667 maxopd = mtu -
1668 (isipv6 ?
1669 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1670 sizeof(struct tcpiphdr));
1671
984263bc 1672 /*
7d448528 1673 * XXX - The following conditional probably violates the TCP
984263bc
MD
1674 * spec. The problem is that, since we don't know the
1675 * other end's MSS, we are supposed to use a conservative
1676 * default. But, if we do that, then MTU discovery will
1677 * never actually take place, because the conservative
1678 * default is much less than the MTUs typically seen
1679 * on the Internet today. For the moment, we'll sweep
1680 * this under the carpet.
1681 *
1682 * The conservative default might not actually be a problem
1683 * if the only case this occurs is when sending an initial
1684 * SYN with options and data to a host we've never talked
1685 * to before. Then, they will reply with an MSS value which
1686 * will get recorded and the new parameters should get
1687 * recomputed. For Further Study.
1688 */
27b8aee3
AE
1689 if (rt->rt_rmx.rmx_mssopt && rt->rt_rmx.rmx_mssopt < maxopd)
1690 maxopd = rt->rt_rmx.rmx_mssopt;
7d448528
JH
1691 } else
1692 maxopd = mtu -
1693 (isipv6 ?
1694 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1695 sizeof(struct tcpiphdr));
1696
1697 if (tp->t_maxopd <= maxopd)
1698 return;
1699 tp->t_maxopd = maxopd;
1700
1701 mss = maxopd;
1702 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1703 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1704 mss -= TCPOLEN_TSTAMP_APPA;
1705
7d448528
JH
1706 /* round down to multiple of MCLBYTES */
1707#if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1708 if (mss > MCLBYTES)
1709 mss &= ~(MCLBYTES - 1);
984263bc 1710#else
7d448528
JH
1711 if (mss > MCLBYTES)
1712 mss = (mss / MCLBYTES) * MCLBYTES;
984263bc 1713#endif
984263bc 1714
6d49aa6f
MD
1715 if (so->so_snd.ssb_hiwat < mss)
1716 mss = so->so_snd.ssb_hiwat;
984263bc 1717
7d448528
JH
1718 tp->t_maxseg = mss;
1719 tp->t_rtttime = 0;
1720 tp->snd_nxt = tp->snd_una;
1721 tcp_output(tp);
1722 tcpstat.tcps_mturesent++;
984263bc
MD
1723}
1724
1725/*
1726 * Look-up the routing entry to the peer of this inpcb. If no route
1727 * is found and it cannot be allocated the return NULL. This routine
1728 * is called by TCP routines that access the rmx structure and by tcp_mss
1729 * to get the interface MTU.
1730 */
1731struct rtentry *
707ad4ed 1732tcp_rtlookup(struct in_conninfo *inc)
984263bc 1733{
f23061d4 1734 struct route *ro = &inc->inc_route;
984263bc 1735
f23061d4 1736 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
984263bc
MD
1737 /* No route yet, so try to acquire one */
1738 if (inc->inc_faddr.s_addr != INADDR_ANY) {
88fcebeb
MD
1739 /*
1740 * unused portions of the structure MUST be zero'd
1741 * out because rtalloc() treats it as opaque data
1742 */
1743 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
984263bc
MD
1744 ro->ro_dst.sa_family = AF_INET;
1745 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1746 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1747 inc->inc_faddr;
1748 rtalloc(ro);
984263bc
MD
1749 }
1750 }
f23061d4 1751 return (ro->ro_rt);
984263bc
MD
1752}
1753
1754#ifdef INET6
1755struct rtentry *
707ad4ed 1756tcp_rtlookup6(struct in_conninfo *inc)
984263bc 1757{
f23061d4 1758 struct route_in6 *ro6 = &inc->inc6_route;
984263bc 1759
f23061d4 1760 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
984263bc
MD
1761 /* No route yet, so try to acquire one */
1762 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
88fcebeb
MD
1763 /*
1764 * unused portions of the structure MUST be zero'd
1765 * out because rtalloc() treats it as opaque data
1766 */
1767 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
984263bc
MD
1768 ro6->ro_dst.sin6_family = AF_INET6;
1769 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1770 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1771 rtalloc((struct route *)ro6);
984263bc
MD
1772 }
1773 }
f23061d4 1774 return (ro6->ro_rt);
984263bc 1775}
707ad4ed 1776#endif
984263bc
MD
1777
1778#ifdef IPSEC
1779/* compute ESP/AH header size for TCP, including outer IP header. */
1780size_t
707ad4ed 1781ipsec_hdrsiz_tcp(struct tcpcb *tp)
984263bc
MD
1782{
1783 struct inpcb *inp;
1784 struct mbuf *m;
1785 size_t hdrsiz;
1786 struct ip *ip;
984263bc
MD
1787 struct tcphdr *th;
1788
1789 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
707ad4ed 1790 return (0);
74f1caca 1791 MGETHDR(m, MB_DONTWAIT, MT_DATA);
984263bc 1792 if (!m)
707ad4ed 1793 return (0);
984263bc
MD
1794
1795#ifdef INET6
707ad4ed
JH
1796 if (inp->inp_vflag & INP_IPV6) {
1797 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1798
984263bc
MD
1799 th = (struct tcphdr *)(ip6 + 1);
1800 m->m_pkthdr.len = m->m_len =
707ad4ed 1801 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
984263bc
MD
1802 tcp_fillheaders(tp, ip6, th);
1803 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1804 } else
707ad4ed
JH
1805#endif
1806 {
1807 ip = mtod(m, struct ip *);
1808 th = (struct tcphdr *)(ip + 1);
1809 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1810 tcp_fillheaders(tp, ip, th);
1811 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1812 }
984263bc
MD
1813
1814 m_free(m);
707ad4ed 1815 return (hdrsiz);
984263bc 1816}
707ad4ed 1817#endif
984263bc 1818
984263bc
MD
1819/*
1820 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1821 *
1822 * This code attempts to calculate the bandwidth-delay product as a
1823 * means of determining the optimal window size to maximize bandwidth,
1824 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1825 * routers. This code also does a fairly good job keeping RTTs in check
1826 * across slow links like modems. We implement an algorithm which is very
1827 * similar (but not meant to be) TCP/Vegas. The code operates on the
1828 * transmitter side of a TCP connection and so only effects the transmit
1829 * side of the connection.
1830 *
1831 * BACKGROUND: TCP makes no provision for the management of buffer space
f23061d4 1832 * at the end points or at the intermediate routers and switches. A TCP
984263bc
MD
1833 * stream, whether using NewReno or not, will eventually buffer as
1834 * many packets as it is able and the only reason this typically works is
1835 * due to the fairly small default buffers made available for a connection
1836 * (typicaly 16K or 32K). As machines use larger windows and/or window
1837 * scaling it is now fairly easy for even a single TCP connection to blow-out
f23061d4 1838 * all available buffer space not only on the local interface, but on
984263bc
MD
1839 * intermediate routers and switches as well. NewReno makes a misguided
1840 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1841 * then backing off, then steadily increasing the window again until another
1842 * failure occurs, ad-infinitum. This results in terrible oscillation that
1843 * is only made worse as network loads increase and the idea of intentionally
1844 * blowing out network buffers is, frankly, a terrible way to manage network
1845 * resources.
1846 *
1847 * It is far better to limit the transmit window prior to the failure
1848 * condition being achieved. There are two general ways to do this: First
1849 * you can 'scan' through different transmit window sizes and locate the
1850 * point where the RTT stops increasing, indicating that you have filled the
1851 * pipe, then scan backwards until you note that RTT stops decreasing, then
1852 * repeat ad-infinitum. This method works in principle but has severe
1853 * implementation issues due to RTT variances, timer granularity, and
1854 * instability in the algorithm which can lead to many false positives and
1855 * create oscillations as well as interact badly with other TCP streams
1856 * implementing the same algorithm.
1857 *
1858 * The second method is to limit the window to the bandwidth delay product
1859 * of the link. This is the method we implement. RTT variances and our
f23061d4 1860 * own manipulation of the congestion window, bwnd, can potentially
984263bc
MD
1861 * destabilize the algorithm. For this reason we have to stabilize the
1862 * elements used to calculate the window. We do this by using the minimum
1863 * observed RTT, the long term average of the observed bandwidth, and
1864 * by adding two segments worth of slop. It isn't perfect but it is able
1865 * to react to changing conditions and gives us a very stable basis on
1866 * which to extend the algorithm.
1867 */
1868void
1869tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1870{
1871 u_long bw;
1872 u_long bwnd;
1873 int save_ticks;
421de19e 1874 int delta_ticks;
984263bc
MD
1875
1876 /*
1877 * If inflight_enable is disabled in the middle of a tcp connection,
1878 * make sure snd_bwnd is effectively disabled.
1879 */
707ad4ed 1880 if (!tcp_inflight_enable) {
984263bc
MD
1881 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1882 tp->snd_bandwidth = 0;
1883 return;
1884 }
1885
421de19e
MD
1886 /*
1887 * Validate the delta time. If a connection is new or has been idle
1888 * a long time we have to reset the bandwidth calculator.
1889 */
1890 save_ticks = ticks;
1891 delta_ticks = save_ticks - tp->t_bw_rtttime;
1892 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1893 tp->t_bw_rtttime = ticks;
1894 tp->t_bw_rtseq = ack_seq;
1895 if (tp->snd_bandwidth == 0)
1896 tp->snd_bandwidth = tcp_inflight_min;
1897 return;
1898 }
1899 if (delta_ticks == 0)
1900 return;
1901
1902 /*
1903 * Sanity check, plus ignore pure window update acks.
1904 */
1905 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1906 return;
1907
984263bc
MD
1908 /*
1909 * Figure out the bandwidth. Due to the tick granularity this
1910 * is a very rough number and it MUST be averaged over a fairly
1911 * long period of time. XXX we need to take into account a link
1912 * that is not using all available bandwidth, but for now our
1913 * slop will ramp us up if this case occurs and the bandwidth later
1914 * increases.
984263bc 1915 */
421de19e 1916 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
984263bc
MD
1917 tp->t_bw_rtttime = save_ticks;
1918 tp->t_bw_rtseq = ack_seq;
984263bc
MD
1919 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1920
1921 tp->snd_bandwidth = bw;
1922
1923 /*
1924 * Calculate the semi-static bandwidth delay product, plus two maximal
1925 * segments. The additional slop puts us squarely in the sweet
1926 * spot and also handles the bandwidth run-up case. Without the
1927 * slop we could be locking ourselves into a lower bandwidth.
1928 *
1929 * Situations Handled:
1930 * (1) Prevents over-queueing of packets on LANs, especially on
1931 * high speed LANs, allowing larger TCP buffers to be
f23061d4 1932 * specified, and also does a good job preventing
984263bc
MD
1933 * over-queueing of packets over choke points like modems
1934 * (at least for the transmit side).
1935 *
1936 * (2) Is able to handle changing network loads (bandwidth
1937 * drops so bwnd drops, bandwidth increases so bwnd
1938 * increases).
1939 *
1940 * (3) Theoretically should stabilize in the face of multiple
1941 * connections implementing the same algorithm (this may need
1942 * a little work).
1943 *
f23061d4 1944 * (4) Stability value (defaults to 20 = 2 maximal packets) can
984263bc
MD
1945 * be adjusted with a sysctl but typically only needs to be on
1946 * very slow connections. A value no smaller then 5 should
1947 * be used, but only reduce this default if you have no other
1948 * choice.
1949 */
707ad4ed
JH
1950
1951#define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
1952 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1953 tcp_inflight_stab * (int)tp->t_maxseg / 10;
984263bc
MD
1954#undef USERTT
1955
1956 if (tcp_inflight_debug > 0) {
1957 static int ltime;
1958 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1959 ltime = ticks;
a6ec04bc 1960 kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
707ad4ed 1961 tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
984263bc
MD
1962 }
1963 }
1964 if ((long)bwnd < tcp_inflight_min)
1965 bwnd = tcp_inflight_min;
1966 if (bwnd > tcp_inflight_max)
1967 bwnd = tcp_inflight_max;
1968 if ((long)bwnd < tp->t_maxseg * 2)
1969 bwnd = tp->t_maxseg * 2;
1970 tp->snd_bwnd = bwnd;
1971}
b1992928
MD
1972
1973#ifdef TCP_SIGNATURE
1974/*
1975 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1976 *
1977 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1978 * When called from tcp_input(), we can be sure that th_sum has been
1979 * zeroed out and verified already.
1980 *
1981 * Return 0 if successful, otherwise return -1.
1982 *
1983 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1984 * search with the destination IP address, and a 'magic SPI' to be
1985 * determined by the application. This is hardcoded elsewhere to 1179
1986 * right now. Another branch of this code exists which uses the SPD to
1987 * specify per-application flows but it is unstable.
1988 */
1989int
1990tcpsignature_compute(
1991 struct mbuf *m, /* mbuf chain */
1992 int len, /* length of TCP data */
1993 int optlen, /* length of TCP options */
1994 u_char *buf, /* storage for MD5 digest */
1995 u_int direction) /* direction of flow */
1996{
1997 struct ippseudo ippseudo;
1998 MD5_CTX ctx;
1999 int doff;
2000 struct ip *ip;
2001 struct ipovly *ipovly;
2002 struct secasvar *sav;
2003 struct tcphdr *th;
2004#ifdef INET6
2005 struct ip6_hdr *ip6;
2006 struct in6_addr in6;
2007 uint32_t plen;
2008 uint16_t nhdr;
2009#endif /* INET6 */
2010 u_short savecsum;
2011
2012 KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2013 KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2014 /*
2015 * Extract the destination from the IP header in the mbuf.
2016 */
2017 ip = mtod(m, struct ip *);
2018#ifdef INET6
2019 ip6 = NULL; /* Make the compiler happy. */
2020#endif /* INET6 */
2021 /*
2022 * Look up an SADB entry which matches the address found in
2023 * the segment.
2024 */
2025 switch (IP_VHL_V(ip->ip_vhl)) {
2026 case IPVERSION:
2027 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2028 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2029 break;
2030#ifdef INET6
2031 case (IPV6_VERSION >> 4):
2032 ip6 = mtod(m, struct ip6_hdr *);
2033 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2034 IPPROTO_TCP, htonl(TCP_SIG_SPI));
2035 break;
2036#endif /* INET6 */
2037 default:
2038 return (EINVAL);
2039 /* NOTREACHED */
2040 break;
2041 }
2042 if (sav == NULL) {
2043 kprintf("%s: SADB lookup failed\n", __func__);
2044 return (EINVAL);
2045 }
2046 MD5Init(&ctx);
2047
2048 /*
2049 * Step 1: Update MD5 hash with IP pseudo-header.
2050 *
2051 * XXX The ippseudo header MUST be digested in network byte order,
2052 * or else we'll fail the regression test. Assume all fields we've
2053 * been doing arithmetic on have been in host byte order.
2054 * XXX One cannot depend on ipovly->ih_len here. When called from
2055 * tcp_output(), the underlying ip_len member has not yet been set.
2056 */
2057 switch (IP_VHL_V(ip->ip_vhl)) {
2058 case IPVERSION:
2059 ipovly = (struct ipovly *)ip;
2060 ippseudo.ippseudo_src = ipovly->ih_src;
2061 ippseudo.ippseudo_dst = ipovly->ih_dst;
2062 ippseudo.ippseudo_pad = 0;
2063 ippseudo.ippseudo_p = IPPROTO_TCP;
2064 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2065 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2066 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2067 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2068 break;
2069#ifdef INET6
2070 /*
2071 * RFC 2385, 2.0 Proposal
2072 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2073 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2074 * extended next header value (to form 32 bits), and 32-bit segment
2075 * length.
2076 * Note: Upper-Layer Packet Length comes before Next Header.
2077 */
2078 case (IPV6_VERSION >> 4):
2079 in6 = ip6->ip6_src;
2080 in6_clearscope(&in6);
2081 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2082 in6 = ip6->ip6_dst;
2083 in6_clearscope(&in6);
2084 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2085 plen = htonl(len + sizeof(struct tcphdr) + optlen);
2086 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2087 nhdr = 0;
2088 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2089 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2090 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2091 nhdr = IPPROTO_TCP;
2092 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2093 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2094 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2095 break;
2096#endif /* INET6 */
2097 default:
2098 return (EINVAL);
2099 /* NOTREACHED */
2100 break;
2101 }
2102 /*
2103 * Step 2: Update MD5 hash with TCP header, excluding options.
2104 * The TCP checksum must be set to zero.
2105 */
2106 savecsum = th->th_sum;
2107 th->th_sum = 0;
2108 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2109 th->th_sum = savecsum;
2110 /*
2111 * Step 3: Update MD5 hash with TCP segment data.
2112 * Use m_apply() to avoid an early m_pullup().
2113 */
2114 if (len > 0)
2115 m_apply(m, doff, len, tcpsignature_apply, &ctx);
2116 /*
2117 * Step 4: Update MD5 hash with shared secret.
2118 */
2119 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2120 MD5Final(buf, &ctx);
2121 key_sa_recordxfer(sav, m);
2122 key_freesav(sav);
2123 return (0);
2124}
2125
2126int
2127tcpsignature_apply(void *fstate, void *data, unsigned int len)
2128{
2129
2130 MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2131 return (0);
2132}
2133#endif /* TCP_SIGNATURE */