kernel - Major signal path adjustments to fix races, tsleep race fixes, +more
[dragonfly.git] / sys / kern / kern_clock.c
CommitLineData
8c10bfcf
MD
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
984263bc
MD
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
c730be20 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
984263bc
MD
74 */
75
76#include "opt_ntp.h"
2b71c8f1 77#include "opt_polling.h"
b3a7093f 78#include "opt_ifpoll.h"
07522099 79#include "opt_pctrack.h"
984263bc
MD
80
81#include <sys/param.h>
82#include <sys/systm.h>
984263bc
MD
83#include <sys/callout.h>
84#include <sys/kernel.h>
f5d21610 85#include <sys/kinfo.h>
984263bc
MD
86#include <sys/proc.h>
87#include <sys/malloc.h>
88#include <sys/resourcevar.h>
89#include <sys/signalvar.h>
90#include <sys/timex.h>
91#include <sys/timepps.h>
92#include <vm/vm.h>
93#include <sys/lock.h>
94#include <vm/pmap.h>
95#include <vm/vm_map.h>
5ffd1608 96#include <vm/vm_extern.h>
984263bc 97#include <sys/sysctl.h>
684a93c4 98
2689779e 99#include <sys/thread2.h>
984263bc
MD
100
101#include <machine/cpu.h>
102#include <machine/limits.h>
103#include <machine/smp.h>
d2412a2e
MD
104#include <machine/cpufunc.h>
105#include <machine/specialreg.h>
106#include <machine/clock.h>
984263bc
MD
107
108#ifdef GPROF
109#include <sys/gmon.h>
110#endif
111
112#ifdef DEVICE_POLLING
94ebffcd 113extern void init_device_poll_pcpu(int);
3e61f60e 114#endif
984263bc 115
b3a7093f
SZ
116#ifdef IFPOLL_ENABLE
117extern void ifpoll_init_pcpu(int);
118#endif
119
07522099
MD
120#ifdef DEBUG_PCTRACK
121static void do_pctrack(struct intrframe *frame, int which);
122#endif
123
402ed7e1 124static void initclocks (void *dummy);
ba39e2e0 125SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
984263bc 126
6ad39cae
MD
127/*
128 * Some of these don't belong here, but it's easiest to concentrate them.
9eea7f0c 129 * Note that cpu_time counts in microseconds, but most userland programs
6ad39cae
MD
130 * just compare relative times against the total by delta.
131 */
9eea7f0c 132struct kinfo_cputime cputime_percpu[MAXCPU];
07522099
MD
133#ifdef DEBUG_PCTRACK
134struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
135struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
136#endif
137
9eea7f0c
HP
138#ifdef SMP
139static int
140sysctl_cputime(SYSCTL_HANDLER_ARGS)
141{
142 int cpu, error = 0;
143 size_t size = sizeof(struct kinfo_cputime);
144
145 for (cpu = 0; cpu < ncpus; ++cpu) {
146 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
147 break;
148 }
984263bc 149
9eea7f0c
HP
150 return (error);
151}
152SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
153 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
154#else
155SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
156 "CPU time statistics");
157#endif
984263bc 158
06636a8e
AHJ
159static int
160sysctl_cp_time(SYSCTL_HANDLER_ARGS)
161{
162 long cpu_states[5] = {0};
163 int cpu, error = 0;
164 size_t size = sizeof(cpu_states);
165
166 for (cpu = 0; cpu < ncpus; ++cpu) {
167 cpu_states[0] += cputime_percpu[cpu].cp_user;
168 cpu_states[1] += cputime_percpu[cpu].cp_nice;
169 cpu_states[2] += cputime_percpu[cpu].cp_sys;
170 cpu_states[3] += cputime_percpu[cpu].cp_intr;
171 cpu_states[4] += cputime_percpu[cpu].cp_idle;
172 }
173
174 error = SYSCTL_OUT(req, cpu_states, size);
175
176 return (error);
177}
178
179SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
180 sysctl_cp_time, "LU", "CPU time statistics");
181
88c4d2f6
MD
182/*
183 * boottime is used to calculate the 'real' uptime. Do not confuse this with
184 * microuptime(). microtime() is not drift compensated. The real uptime
60b2809b
MD
185 * with compensation is nanotime() - bootime. boottime is recalculated
186 * whenever the real time is set based on the compensated elapsed time
187 * in seconds (gd->gd_time_seconds).
88c4d2f6 188 *
88c4d2f6
MD
189 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
190 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
191 * the real time.
192 */
193struct timespec boottime; /* boot time (realtime) for reference only */
88c4d2f6 194time_t time_second; /* read-only 'passive' uptime in seconds */
984263bc 195
5eb5a6bc
MD
196/*
197 * basetime is used to calculate the compensated real time of day. The
198 * basetime can be modified on a per-tick basis by the adjtime(),
199 * ntp_adjtime(), and sysctl-based time correction APIs.
200 *
201 * Note that frequency corrections can also be made by adjusting
202 * gd_cpuclock_base.
203 *
204 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
205 * used on both SMP and UP systems to avoid MP races between cpu's and
206 * interrupt races on UP systems.
207 */
208#define BASETIME_ARYSIZE 16
209#define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
210static struct timespec basetime[BASETIME_ARYSIZE];
211static volatile int basetime_index;
212
213static int
214sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
215{
216 struct timespec *bt;
217 int error;
35238fa5 218 int index;
5eb5a6bc 219
35238fa5
MD
220 /*
221 * Because basetime data and index may be updated by another cpu,
222 * a load fence is required to ensure that the data we read has
223 * not been speculatively read relative to a possibly updated index.
224 */
225 index = basetime_index;
226 cpu_lfence();
227 bt = &basetime[index];
08f95c49 228 error = SYSCTL_OUT(req, bt, sizeof(*bt));
5eb5a6bc
MD
229 return (error);
230}
231
984263bc 232SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
08f95c49 233 &boottime, timespec, "System boottime");
5eb5a6bc 234SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
08f95c49 235 sysctl_get_basetime, "S,timespec", "System basetime");
984263bc 236
96d52ac8
SZ
237static void hardclock(systimer_t info, int, struct intrframe *frame);
238static void statclock(systimer_t info, int, struct intrframe *frame);
239static void schedclock(systimer_t info, int, struct intrframe *frame);
5eb5a6bc 240static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
88c4d2f6
MD
241
242int ticks; /* system master ticks at hz */
da3639ef 243int clocks_running; /* tsleep/timeout clocks operational */
88c4d2f6
MD
244int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
245int64_t nsec_acc; /* accumulator */
984263bc 246
4026c000
JS
247/* NTPD time correction fields */
248int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
249int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
250int64_t ntp_delta; /* one-time correction in nsec */
251int64_t ntp_big_delta = 1000000000;
252int32_t ntp_tick_delta; /* current adjustment rate */
253int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
48590578
JS
254time_t ntp_leap_second; /* time of next leap second */
255int ntp_leap_insert; /* whether to insert or remove a second */
4026c000 256
984263bc 257/*
88c4d2f6 258 * Finish initializing clock frequencies and start all clocks running.
984263bc 259 */
88c4d2f6
MD
260/* ARGSUSED*/
261static void
262initclocks(void *dummy)
984263bc 263{
88c4d2f6
MD
264 /*psratio = profhz / stathz;*/
265 initclocks_pcpu();
da3639ef 266 clocks_running = 1;
984263bc
MD
267}
268
88c4d2f6
MD
269/*
270 * Called on a per-cpu basis
271 */
272void
273initclocks_pcpu(void)
274{
275 struct globaldata *gd = mycpu;
984263bc 276
88c4d2f6
MD
277 crit_enter();
278 if (gd->gd_cpuid == 0) {
279 gd->gd_time_seconds = 1;
044ee7c4 280 gd->gd_cpuclock_base = sys_cputimer->count();
88c4d2f6
MD
281 } else {
282 /* XXX */
283 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
284 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
285 }
0d1dffdf 286
43adde98
SZ
287 systimer_intr_enable();
288
94ebffcd
SZ
289#ifdef DEVICE_POLLING
290 init_device_poll_pcpu(gd->gd_cpuid);
291#endif
292
b3a7093f
SZ
293#ifdef IFPOLL_ENABLE
294 ifpoll_init_pcpu(gd->gd_cpuid);
295#endif
296
0d1dffdf
MD
297 /*
298 * Use a non-queued periodic systimer to prevent multiple ticks from
299 * building up if the sysclock jumps forward (8254 gets reset). The
300 * sysclock will never jump backwards. Our time sync is based on
301 * the actual sysclock, not the ticks count.
302 */
303 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
304 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
88c4d2f6 305 /* XXX correct the frequency for scheduler / estcpu tests */
0d1dffdf 306 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
8478264a 307 NULL, ESTCPUFREQ);
88c4d2f6
MD
308 crit_exit();
309}
984263bc
MD
310
311/*
88c4d2f6
MD
312 * This sets the current real time of day. Timespecs are in seconds and
313 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
314 * instead we adjust basetime so basetime + gd_* results in the current
315 * time of day. This way the gd_* fields are guarenteed to represent
316 * a monotonically increasing 'uptime' value.
5eb5a6bc
MD
317 *
318 * When set_timeofday() is called from userland, the system call forces it
319 * onto cpu #0 since only cpu #0 can update basetime_index.
984263bc 320 */
88c4d2f6
MD
321void
322set_timeofday(struct timespec *ts)
323{
5eb5a6bc
MD
324 struct timespec *nbt;
325 int ni;
984263bc 326
88c4d2f6
MD
327 /*
328 * XXX SMP / non-atomic basetime updates
329 */
330 crit_enter();
5eb5a6bc
MD
331 ni = (basetime_index + 1) & BASETIME_ARYMASK;
332 nbt = &basetime[ni];
333 nanouptime(nbt);
334 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
335 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
336 if (nbt->tv_nsec < 0) {
337 nbt->tv_nsec += 1000000000;
338 --nbt->tv_sec;
88c4d2f6 339 }
a81931cc
MD
340
341 /*
342 * Note that basetime diverges from boottime as the clock drift is
343 * compensated for, so we cannot do away with boottime. When setting
344 * the absolute time of day the drift is 0 (for an instant) and we
345 * can simply assign boottime to basetime.
346 *
347 * Note that nanouptime() is based on gd_time_seconds which is drift
348 * compensated up to a point (it is guarenteed to remain monotonically
349 * increasing). gd_time_seconds is thus our best uptime guess and
350 * suitable for use in the boottime calculation. It is already taken
351 * into account in the basetime calculation above.
352 */
5eb5a6bc 353 boottime.tv_sec = nbt->tv_sec;
4026c000 354 ntp_delta = 0;
5eb5a6bc
MD
355
356 /*
35238fa5
MD
357 * We now have a new basetime, make sure all other cpus have it,
358 * then update the index.
5eb5a6bc 359 */
35238fa5 360 cpu_sfence();
5eb5a6bc
MD
361 basetime_index = ni;
362
88c4d2f6
MD
363 crit_exit();
364}
365
984263bc 366/*
88c4d2f6
MD
367 * Each cpu has its own hardclock, but we only increments ticks and softticks
368 * on cpu #0.
369 *
370 * NOTE! systimer! the MP lock might not be held here. We can only safely
371 * manipulate objects owned by the current cpu.
984263bc 372 */
984263bc 373static void
96d52ac8 374hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
984263bc 375{
88c4d2f6
MD
376 sysclock_t cputicks;
377 struct proc *p;
88c4d2f6 378 struct globaldata *gd = mycpu;
984263bc
MD
379
380 /*
88c4d2f6
MD
381 * Realtime updates are per-cpu. Note that timer corrections as
382 * returned by microtime() and friends make an additional adjustment
383 * using a system-wise 'basetime', but the running time is always
384 * taken from the per-cpu globaldata area. Since the same clock
385 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
386 * stay in synch.
387 *
388 * Note that we never allow info->time (aka gd->gd_hardclock.time)
fad57d0e
MD
389 * to reverse index gd_cpuclock_base, but that it is possible for
390 * it to temporarily get behind in the seconds if something in the
391 * system locks interrupts for a long period of time. Since periodic
392 * timers count events, though everything should resynch again
393 * immediately.
984263bc 394 */
88c4d2f6 395 cputicks = info->time - gd->gd_cpuclock_base;
044ee7c4 396 if (cputicks >= sys_cputimer->freq) {
88c4d2f6 397 ++gd->gd_time_seconds;
044ee7c4 398 gd->gd_cpuclock_base += sys_cputimer->freq;
88c4d2f6 399 }
984263bc
MD
400
401 /*
92b561b7
MD
402 * The system-wide ticks counter and NTP related timedelta/tickdelta
403 * adjustments only occur on cpu #0. NTP adjustments are accomplished
404 * by updating basetime.
984263bc 405 */
88c4d2f6 406 if (gd->gd_cpuid == 0) {
5eb5a6bc 407 struct timespec *nbt;
88c4d2f6
MD
408 struct timespec nts;
409 int leap;
5eb5a6bc 410 int ni;
984263bc 411
88c4d2f6 412 ++ticks;
984263bc 413
88c4d2f6
MD
414#if 0
415 if (tco->tc_poll_pps)
416 tco->tc_poll_pps(tco);
417#endif
5eb5a6bc 418
88c4d2f6 419 /*
5eb5a6bc
MD
420 * Calculate the new basetime index. We are in a critical section
421 * on cpu #0 and can safely play with basetime_index. Start
422 * with the current basetime and then make adjustments.
423 */
424 ni = (basetime_index + 1) & BASETIME_ARYMASK;
425 nbt = &basetime[ni];
426 *nbt = basetime[basetime_index];
427
428 /*
429 * Apply adjtime corrections. (adjtime() API)
430 *
431 * adjtime() only runs on cpu #0 so our critical section is
432 * sufficient to access these variables.
88c4d2f6 433 */
4026c000 434 if (ntp_delta != 0) {
5eb5a6bc 435 nbt->tv_nsec += ntp_tick_delta;
4026c000
JS
436 ntp_delta -= ntp_tick_delta;
437 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
438 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
5eb5a6bc 439 ntp_tick_delta = ntp_delta;
4026c000
JS
440 }
441 }
442
5eb5a6bc
MD
443 /*
444 * Apply permanent frequency corrections. (sysctl API)
445 */
4026c000
JS
446 if (ntp_tick_permanent != 0) {
447 ntp_tick_acc += ntp_tick_permanent;
448 if (ntp_tick_acc >= (1LL << 32)) {
5eb5a6bc 449 nbt->tv_nsec += ntp_tick_acc >> 32;
331bc6f8 450 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
4026c000 451 } else if (ntp_tick_acc <= -(1LL << 32)) {
331bc6f8 452 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
5eb5a6bc 453 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
331bc6f8 454 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
4026c000
JS
455 }
456 }
457
5eb5a6bc
MD
458 if (nbt->tv_nsec >= 1000000000) {
459 nbt->tv_sec++;
460 nbt->tv_nsec -= 1000000000;
461 } else if (nbt->tv_nsec < 0) {
462 nbt->tv_sec--;
463 nbt->tv_nsec += 1000000000;
88c4d2f6
MD
464 }
465
466 /*
5eb5a6bc 467 * Another per-tick compensation. (for ntp_adjtime() API)
88c4d2f6 468 */
5eb5a6bc 469 if (nsec_adj != 0) {
88c4d2f6
MD
470 nsec_acc += nsec_adj;
471 if (nsec_acc >= 0x100000000LL) {
5eb5a6bc 472 nbt->tv_nsec += nsec_acc >> 32;
88c4d2f6
MD
473 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
474 } else if (nsec_acc <= -0x100000000LL) {
5eb5a6bc 475 nbt->tv_nsec -= -nsec_acc >> 32;
88c4d2f6
MD
476 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
477 }
5eb5a6bc
MD
478 if (nbt->tv_nsec >= 1000000000) {
479 nbt->tv_nsec -= 1000000000;
480 ++nbt->tv_sec;
481 } else if (nbt->tv_nsec < 0) {
482 nbt->tv_nsec += 1000000000;
483 --nbt->tv_sec;
484 }
485 }
486
487 /************************************************************
488 * LEAP SECOND CORRECTION *
489 ************************************************************
490 *
491 * Taking into account all the corrections made above, figure
492 * out the new real time. If the seconds field has changed
493 * then apply any pending leap-second corrections.
494 */
495 getnanotime_nbt(nbt, &nts);
496
32040d57
MD
497 if (time_second != nts.tv_sec) {
498 /*
499 * Apply leap second (sysctl API). Adjust nts for changes
500 * so we do not have to call getnanotime_nbt again.
501 */
502 if (ntp_leap_second) {
503 if (ntp_leap_second == nts.tv_sec) {
504 if (ntp_leap_insert) {
505 nbt->tv_sec++;
506 nts.tv_sec++;
507 } else {
508 nbt->tv_sec--;
509 nts.tv_sec--;
510 }
5eb5a6bc 511 ntp_leap_second--;
32040d57 512 }
88c4d2f6 513 }
88c4d2f6 514
32040d57
MD
515 /*
516 * Apply leap second (ntp_adjtime() API), calculate a new
517 * nsec_adj field. ntp_update_second() returns nsec_adj
518 * as a per-second value but we need it as a per-tick value.
519 */
88c4d2f6 520 leap = ntp_update_second(time_second, &nsec_adj);
88c4d2f6 521 nsec_adj /= hz;
32040d57
MD
522 nbt->tv_sec += leap;
523 nts.tv_sec += leap;
524
525 /*
526 * Update the time_second 'approximate time' global.
527 */
528 time_second = nts.tv_sec;
88c4d2f6 529 }
5eb5a6bc
MD
530
531 /*
532 * Finally, our new basetime is ready to go live!
533 */
35238fa5 534 cpu_sfence();
5eb5a6bc 535 basetime_index = ni;
88c4d2f6
MD
536 }
537
538 /*
f9235b6d
MD
539 * lwkt thread scheduler fair queueing
540 */
85946b6c 541 lwkt_schedulerclock(curthread);
f9235b6d
MD
542
543 /*
92b561b7
MD
544 * softticks are handled for all cpus
545 */
546 hardclock_softtick(gd);
547
548 /*
8582ec21
MD
549 * ITimer handling is per-tick, per-cpu.
550 *
551 * We must acquire the per-process token in order for ksignal()
898e34b3
MD
552 * to be non-blocking. For the moment this requires an AST fault,
553 * the ksignal() cannot be safely issued from this hard interrupt.
554 *
555 * XXX Even the trytoken here isn't right, and itimer operation in
556 * a multi threaded environment is going to be weird at the
557 * very least.
88c4d2f6 558 */
8582ec21 559 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
3dbbd6dd 560 crit_enter_hard();
88c4d2f6 561 if (frame && CLKF_USERMODE(frame) &&
93328593 562 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
898e34b3 563 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
4643740a 564 p->p_flags |= P_SIGVTALRM;
898e34b3
MD
565 need_user_resched();
566 }
93328593 567 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
898e34b3 568 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
4643740a 569 p->p_flags |= P_SIGPROF;
898e34b3
MD
570 need_user_resched();
571 }
3dbbd6dd 572 crit_exit_hard();
8582ec21 573 lwkt_reltoken(&p->p_token);
984263bc 574 }
604e1e09 575 setdelayed();
88c4d2f6 576}
984263bc 577
88c4d2f6
MD
578/*
579 * The statistics clock typically runs at a 125Hz rate, and is intended
580 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
581 *
582 * NOTE! systimer! the MP lock might not be held here. We can only safely
583 * manipulate objects owned by the current cpu.
584 *
585 * The stats clock is responsible for grabbing a profiling sample.
586 * Most of the statistics are only used by user-level statistics programs.
587 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
588 * p->p_estcpu.
589 *
590 * Like the other clocks, the stat clock is called from what is effectively
591 * a fast interrupt, so the context should be the thread/process that got
592 * interrupted.
593 */
594static void
96d52ac8 595statclock(systimer_t info, int in_ipi, struct intrframe *frame)
88c4d2f6
MD
596{
597#ifdef GPROF
598 struct gmonparam *g;
599 int i;
984263bc 600#endif
88c4d2f6
MD
601 thread_t td;
602 struct proc *p;
603 int bump;
604 struct timeval tv;
605 struct timeval *stv;
984263bc
MD
606
607 /*
88c4d2f6 608 * How big was our timeslice relative to the last time?
984263bc 609 */
88c4d2f6
MD
610 microuptime(&tv); /* mpsafe */
611 stv = &mycpu->gd_stattv;
612 if (stv->tv_sec == 0) {
613 bump = 1;
614 } else {
615 bump = tv.tv_usec - stv->tv_usec +
616 (tv.tv_sec - stv->tv_sec) * 1000000;
617 if (bump < 0)
618 bump = 0;
619 if (bump > 1000000)
620 bump = 1000000;
621 }
622 *stv = tv;
984263bc 623
88c4d2f6
MD
624 td = curthread;
625 p = td->td_proc;
984263bc 626
88c4d2f6
MD
627 if (frame && CLKF_USERMODE(frame)) {
628 /*
629 * Came from userland, handle user time and deal with
630 * possible process.
631 */
4643740a 632 if (p && (p->p_flags & P_PROFIL))
88c4d2f6
MD
633 addupc_intr(p, CLKF_PC(frame), 1);
634 td->td_uticks += bump;
984263bc 635
88c4d2f6
MD
636 /*
637 * Charge the time as appropriate
638 */
639 if (p && p->p_nice > NZERO)
9eea7f0c 640 cpu_time.cp_nice += bump;
88c4d2f6 641 else
9eea7f0c 642 cpu_time.cp_user += bump;
88c4d2f6 643 } else {
96d52ac8
SZ
644 int intr_nest = mycpu->gd_intr_nesting_level;
645
646 if (in_ipi) {
647 /*
648 * IPI processing code will bump gd_intr_nesting_level
649 * up by one, which breaks following CLKF_INTR testing,
650 * so we substract it by one here.
651 */
652 --intr_nest;
653 }
88c4d2f6
MD
654#ifdef GPROF
655 /*
656 * Kernel statistics are just like addupc_intr, only easier.
657 */
658 g = &_gmonparam;
659 if (g->state == GMON_PROF_ON && frame) {
660 i = CLKF_PC(frame) - g->lowpc;
661 if (i < g->textsize) {
662 i /= HISTFRACTION * sizeof(*g->kcount);
663 g->kcount[i]++;
664 }
665 }
666#endif
667 /*
668 * Came from kernel mode, so we were:
669 * - handling an interrupt,
670 * - doing syscall or trap work on behalf of the current
671 * user process, or
672 * - spinning in the idle loop.
673 * Whichever it is, charge the time as appropriate.
674 * Note that we charge interrupts to the current process,
675 * regardless of whether they are ``for'' that process,
676 * so that we know how much of its real time was spent
677 * in ``non-process'' (i.e., interrupt) work.
678 *
679 * XXX assume system if frame is NULL. A NULL frame
e43a034f 680 * can occur if ipi processing is done from a crit_exit().
88c4d2f6 681 */
96d52ac8 682 if (frame && CLKF_INTR(intr_nest))
88c4d2f6
MD
683 td->td_iticks += bump;
684 else
685 td->td_sticks += bump;
686
96d52ac8 687 if (frame && CLKF_INTR(intr_nest)) {
07522099
MD
688#ifdef DEBUG_PCTRACK
689 do_pctrack(frame, PCTRACK_INT);
690#endif
9eea7f0c 691 cpu_time.cp_intr += bump;
88c4d2f6 692 } else {
07522099 693 if (td == &mycpu->gd_idlethread) {
9eea7f0c 694 cpu_time.cp_idle += bump;
07522099
MD
695 } else {
696#ifdef DEBUG_PCTRACK
697 if (frame)
698 do_pctrack(frame, PCTRACK_SYS);
699#endif
9eea7f0c 700 cpu_time.cp_sys += bump;
07522099 701 }
88c4d2f6
MD
702 }
703 }
704}
705
07522099
MD
706#ifdef DEBUG_PCTRACK
707/*
708 * Sample the PC when in the kernel or in an interrupt. User code can
709 * retrieve the information and generate a histogram or other output.
710 */
711
712static void
713do_pctrack(struct intrframe *frame, int which)
714{
715 struct kinfo_pctrack *pctrack;
716
717 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
718 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
719 (void *)CLKF_PC(frame);
720 ++pctrack->pc_index;
721}
722
723static int
724sysctl_pctrack(SYSCTL_HANDLER_ARGS)
725{
726 struct kinfo_pcheader head;
727 int error;
728 int cpu;
729 int ntrack;
730
731 head.pc_ntrack = PCTRACK_SIZE;
732 head.pc_arysize = PCTRACK_ARYSIZE;
733
734 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
735 return (error);
736
737 for (cpu = 0; cpu < ncpus; ++cpu) {
738 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
739 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
740 sizeof(struct kinfo_pctrack));
741 if (error)
742 break;
743 }
744 if (error)
745 break;
746 }
747 return (error);
748}
749SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
750 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
751
752#endif
753
88c4d2f6 754/*
dcc99b62 755 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
88c4d2f6
MD
756 * the MP lock might not be held. We can safely manipulate parts of curproc
757 * but that's about it.
dcc99b62
MD
758 *
759 * Each cpu has its own scheduler clock.
88c4d2f6
MD
760 */
761static void
96d52ac8 762schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
88c4d2f6 763{
553ea3c8 764 struct lwp *lp;
88c4d2f6
MD
765 struct rusage *ru;
766 struct vmspace *vm;
767 long rss;
768
553ea3c8 769 if ((lp = lwkt_preempted_proc()) != NULL) {
dcc99b62
MD
770 /*
771 * Account for cpu time used and hit the scheduler. Note
772 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
773 * HERE.
774 */
553ea3c8 775 ++lp->lwp_cpticks;
5681a38a
MD
776 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
777 info->time);
dcc99b62 778 }
553ea3c8 779 if ((lp = curthread->td_lwp) != NULL) {
dcc99b62
MD
780 /*
781 * Update resource usage integrals and maximums.
782 */
fde7ac71 783 if ((ru = &lp->lwp_proc->p_ru) &&
553ea3c8 784 (vm = lp->lwp_proc->p_vmspace) != NULL) {
88c4d2f6
MD
785 ru->ru_ixrss += pgtok(vm->vm_tsize);
786 ru->ru_idrss += pgtok(vm->vm_dsize);
787 ru->ru_isrss += pgtok(vm->vm_ssize);
b12defdc
MD
788 if (lwkt_trytoken(&vm->vm_map.token)) {
789 rss = pgtok(vmspace_resident_count(vm));
790 if (ru->ru_maxrss < rss)
791 ru->ru_maxrss = rss;
792 lwkt_reltoken(&vm->vm_map.token);
793 }
88c4d2f6 794 }
b68b7282 795 }
984263bc
MD
796}
797
798/*
a94976ad
MD
799 * Compute number of ticks for the specified amount of time. The
800 * return value is intended to be used in a clock interrupt timed
801 * operation and guarenteed to meet or exceed the requested time.
802 * If the representation overflows, return INT_MAX. The minimum return
803 * value is 1 ticks and the function will average the calculation up.
804 * If any value greater then 0 microseconds is supplied, a value
805 * of at least 2 will be returned to ensure that a near-term clock
806 * interrupt does not cause the timeout to occur (degenerately) early.
807 *
808 * Note that limit checks must take into account microseconds, which is
809 * done simply by using the smaller signed long maximum instead of
810 * the unsigned long maximum.
811 *
812 * If ints have 32 bits, then the maximum value for any timeout in
813 * 10ms ticks is 248 days.
984263bc
MD
814 */
815int
a94976ad 816tvtohz_high(struct timeval *tv)
984263bc 817{
a94976ad 818 int ticks;
1fd87d54 819 long sec, usec;
984263bc 820
984263bc
MD
821 sec = tv->tv_sec;
822 usec = tv->tv_usec;
823 if (usec < 0) {
824 sec--;
825 usec += 1000000;
826 }
827 if (sec < 0) {
828#ifdef DIAGNOSTIC
829 if (usec > 0) {
830 sec++;
831 usec -= 1000000;
832 }
a591f597
MD
833 kprintf("tvtohz_high: negative time difference "
834 "%ld sec %ld usec\n",
835 sec, usec);
984263bc
MD
836#endif
837 ticks = 1;
a94976ad
MD
838 } else if (sec <= INT_MAX / hz) {
839 ticks = (int)(sec * hz +
a591f597 840 ((u_long)usec + (ustick - 1)) / ustick) + 1;
a94976ad
MD
841 } else {
842 ticks = INT_MAX;
843 }
844 return (ticks);
845}
846
a591f597
MD
847int
848tstohz_high(struct timespec *ts)
849{
850 int ticks;
851 long sec, nsec;
852
853 sec = ts->tv_sec;
854 nsec = ts->tv_nsec;
855 if (nsec < 0) {
856 sec--;
857 nsec += 1000000000;
858 }
859 if (sec < 0) {
860#ifdef DIAGNOSTIC
861 if (nsec > 0) {
862 sec++;
863 nsec -= 1000000000;
864 }
865 kprintf("tstohz_high: negative time difference "
866 "%ld sec %ld nsec\n",
867 sec, nsec);
868#endif
869 ticks = 1;
870 } else if (sec <= INT_MAX / hz) {
871 ticks = (int)(sec * hz +
872 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
873 } else {
874 ticks = INT_MAX;
875 }
876 return (ticks);
877}
878
879
a94976ad
MD
880/*
881 * Compute number of ticks for the specified amount of time, erroring on
882 * the side of it being too low to ensure that sleeping the returned number
883 * of ticks will not result in a late return.
884 *
885 * The supplied timeval may not be negative and should be normalized. A
886 * return value of 0 is possible if the timeval converts to less then
887 * 1 tick.
888 *
889 * If ints have 32 bits, then the maximum value for any timeout in
890 * 10ms ticks is 248 days.
891 */
892int
893tvtohz_low(struct timeval *tv)
894{
895 int ticks;
896 long sec;
897
898 sec = tv->tv_sec;
899 if (sec <= INT_MAX / hz)
a591f597 900 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
984263bc 901 else
984263bc 902 ticks = INT_MAX;
a94976ad 903 return (ticks);
984263bc
MD
904}
905
a591f597
MD
906int
907tstohz_low(struct timespec *ts)
908{
909 int ticks;
910 long sec;
911
912 sec = ts->tv_sec;
913 if (sec <= INT_MAX / hz)
914 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
915 else
916 ticks = INT_MAX;
917 return (ticks);
918}
a94976ad 919
984263bc
MD
920/*
921 * Start profiling on a process.
922 *
923 * Kernel profiling passes proc0 which never exits and hence
924 * keeps the profile clock running constantly.
925 */
926void
88c4d2f6 927startprofclock(struct proc *p)
984263bc 928{
4643740a
MD
929 if ((p->p_flags & P_PROFIL) == 0) {
930 p->p_flags |= P_PROFIL;
88c4d2f6 931#if 0 /* XXX */
984263bc 932 if (++profprocs == 1 && stathz != 0) {
e43a034f 933 crit_enter();
6ad39cae 934 psdiv = psratio;
984263bc 935 setstatclockrate(profhz);
e43a034f 936 crit_exit();
984263bc 937 }
88c4d2f6 938#endif
984263bc
MD
939 }
940}
941
942/*
943 * Stop profiling on a process.
616516c8
MD
944 *
945 * caller must hold p->p_token
984263bc
MD
946 */
947void
88c4d2f6 948stopprofclock(struct proc *p)
984263bc 949{
4643740a
MD
950 if (p->p_flags & P_PROFIL) {
951 p->p_flags &= ~P_PROFIL;
88c4d2f6 952#if 0 /* XXX */
984263bc 953 if (--profprocs == 0 && stathz != 0) {
e43a034f 954 crit_enter();
6ad39cae 955 psdiv = 1;
984263bc 956 setstatclockrate(stathz);
e43a034f 957 crit_exit();
984263bc 958 }
984263bc 959#endif
984263bc
MD
960 }
961}
962
963/*
964 * Return information about system clocks.
965 */
966static int
967sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
968{
f5d21610 969 struct kinfo_clockinfo clkinfo;
984263bc
MD
970 /*
971 * Construct clockinfo structure.
972 */
f5d21610 973 clkinfo.ci_hz = hz;
a591f597 974 clkinfo.ci_tick = ustick;
4026c000 975 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
f5d21610
JS
976 clkinfo.ci_profhz = profhz;
977 clkinfo.ci_stathz = stathz ? stathz : hz;
984263bc
MD
978 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
979}
980
981SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
982 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
983
984263bc
MD
984/*
985 * We have eight functions for looking at the clock, four for
986 * microseconds and four for nanoseconds. For each there is fast
987 * but less precise version "get{nano|micro}[up]time" which will
988 * return a time which is up to 1/HZ previous to the call, whereas
989 * the raw version "{nano|micro}[up]time" will return a timestamp
990 * which is as precise as possible. The "up" variants return the
991 * time relative to system boot, these are well suited for time
992 * interval measurements.
88c4d2f6
MD
993 *
994 * Each cpu independantly maintains the current time of day, so all
995 * we need to do to protect ourselves from changes is to do a loop
996 * check on the seconds field changing out from under us.
fad57d0e
MD
997 *
998 * The system timer maintains a 32 bit count and due to various issues
999 * it is possible for the calculated delta to occassionally exceed
044ee7c4
MD
1000 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
1001 * multiplication can easily overflow, so we deal with the case. For
1002 * uniformity we deal with the case in the usec case too.
627531fa
MD
1003 *
1004 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
984263bc 1005 */
984263bc
MD
1006void
1007getmicrouptime(struct timeval *tvp)
1008{
88c4d2f6
MD
1009 struct globaldata *gd = mycpu;
1010 sysclock_t delta;
1011
1012 do {
1013 tvp->tv_sec = gd->gd_time_seconds;
1014 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1015 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1016
044ee7c4
MD
1017 if (delta >= sys_cputimer->freq) {
1018 tvp->tv_sec += delta / sys_cputimer->freq;
1019 delta %= sys_cputimer->freq;
fad57d0e 1020 }
044ee7c4 1021 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
88c4d2f6
MD
1022 if (tvp->tv_usec >= 1000000) {
1023 tvp->tv_usec -= 1000000;
1024 ++tvp->tv_sec;
984263bc
MD
1025 }
1026}
1027
1028void
1029getnanouptime(struct timespec *tsp)
1030{
88c4d2f6
MD
1031 struct globaldata *gd = mycpu;
1032 sysclock_t delta;
1033
1034 do {
1035 tsp->tv_sec = gd->gd_time_seconds;
1036 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1037 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1038
044ee7c4
MD
1039 if (delta >= sys_cputimer->freq) {
1040 tsp->tv_sec += delta / sys_cputimer->freq;
1041 delta %= sys_cputimer->freq;
984263bc 1042 }
044ee7c4 1043 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc
MD
1044}
1045
1046void
88c4d2f6 1047microuptime(struct timeval *tvp)
984263bc 1048{
88c4d2f6
MD
1049 struct globaldata *gd = mycpu;
1050 sysclock_t delta;
1051
1052 do {
1053 tvp->tv_sec = gd->gd_time_seconds;
044ee7c4 1054 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1055 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1056
044ee7c4
MD
1057 if (delta >= sys_cputimer->freq) {
1058 tvp->tv_sec += delta / sys_cputimer->freq;
1059 delta %= sys_cputimer->freq;
984263bc 1060 }
044ee7c4 1061 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc
MD
1062}
1063
1064void
88c4d2f6 1065nanouptime(struct timespec *tsp)
984263bc 1066{
88c4d2f6
MD
1067 struct globaldata *gd = mycpu;
1068 sysclock_t delta;
1069
1070 do {
1071 tsp->tv_sec = gd->gd_time_seconds;
044ee7c4 1072 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1073 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1074
044ee7c4
MD
1075 if (delta >= sys_cputimer->freq) {
1076 tsp->tv_sec += delta / sys_cputimer->freq;
1077 delta %= sys_cputimer->freq;
984263bc 1078 }
044ee7c4 1079 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc
MD
1080}
1081
88c4d2f6
MD
1082/*
1083 * realtime routines
1084 */
984263bc 1085void
88c4d2f6 1086getmicrotime(struct timeval *tvp)
984263bc 1087{
88c4d2f6 1088 struct globaldata *gd = mycpu;
5eb5a6bc 1089 struct timespec *bt;
88c4d2f6 1090 sysclock_t delta;
984263bc 1091
88c4d2f6
MD
1092 do {
1093 tvp->tv_sec = gd->gd_time_seconds;
1094 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1095 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1096
044ee7c4
MD
1097 if (delta >= sys_cputimer->freq) {
1098 tvp->tv_sec += delta / sys_cputimer->freq;
1099 delta %= sys_cputimer->freq;
fad57d0e 1100 }
044ee7c4 1101 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc 1102
5eb5a6bc
MD
1103 bt = &basetime[basetime_index];
1104 tvp->tv_sec += bt->tv_sec;
1105 tvp->tv_usec += bt->tv_nsec / 1000;
88c4d2f6
MD
1106 while (tvp->tv_usec >= 1000000) {
1107 tvp->tv_usec -= 1000000;
1108 ++tvp->tv_sec;
984263bc 1109 }
984263bc
MD
1110}
1111
1112void
88c4d2f6 1113getnanotime(struct timespec *tsp)
984263bc 1114{
88c4d2f6 1115 struct globaldata *gd = mycpu;
5eb5a6bc 1116 struct timespec *bt;
88c4d2f6 1117 sysclock_t delta;
984263bc 1118
88c4d2f6
MD
1119 do {
1120 tsp->tv_sec = gd->gd_time_seconds;
1121 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1122 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1123
044ee7c4
MD
1124 if (delta >= sys_cputimer->freq) {
1125 tsp->tv_sec += delta / sys_cputimer->freq;
1126 delta %= sys_cputimer->freq;
fad57d0e 1127 }
044ee7c4 1128 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc 1129
5eb5a6bc
MD
1130 bt = &basetime[basetime_index];
1131 tsp->tv_sec += bt->tv_sec;
1132 tsp->tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1133 while (tsp->tv_nsec >= 1000000000) {
1134 tsp->tv_nsec -= 1000000000;
1135 ++tsp->tv_sec;
984263bc 1136 }
984263bc
MD
1137}
1138
5eb5a6bc
MD
1139static void
1140getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1141{
1142 struct globaldata *gd = mycpu;
1143 sysclock_t delta;
1144
1145 do {
1146 tsp->tv_sec = gd->gd_time_seconds;
1147 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1148 } while (tsp->tv_sec != gd->gd_time_seconds);
1149
044ee7c4
MD
1150 if (delta >= sys_cputimer->freq) {
1151 tsp->tv_sec += delta / sys_cputimer->freq;
1152 delta %= sys_cputimer->freq;
5eb5a6bc 1153 }
044ee7c4 1154 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
5eb5a6bc
MD
1155
1156 tsp->tv_sec += nbt->tv_sec;
1157 tsp->tv_nsec += nbt->tv_nsec;
1158 while (tsp->tv_nsec >= 1000000000) {
1159 tsp->tv_nsec -= 1000000000;
1160 ++tsp->tv_sec;
1161 }
1162}
1163
1164
88c4d2f6
MD
1165void
1166microtime(struct timeval *tvp)
984263bc 1167{
88c4d2f6 1168 struct globaldata *gd = mycpu;
5eb5a6bc 1169 struct timespec *bt;
88c4d2f6 1170 sysclock_t delta;
984263bc 1171
88c4d2f6
MD
1172 do {
1173 tvp->tv_sec = gd->gd_time_seconds;
044ee7c4 1174 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1175 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1176
044ee7c4
MD
1177 if (delta >= sys_cputimer->freq) {
1178 tvp->tv_sec += delta / sys_cputimer->freq;
1179 delta %= sys_cputimer->freq;
fad57d0e 1180 }
044ee7c4 1181 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc 1182
5eb5a6bc
MD
1183 bt = &basetime[basetime_index];
1184 tvp->tv_sec += bt->tv_sec;
1185 tvp->tv_usec += bt->tv_nsec / 1000;
88c4d2f6
MD
1186 while (tvp->tv_usec >= 1000000) {
1187 tvp->tv_usec -= 1000000;
1188 ++tvp->tv_sec;
984263bc 1189 }
984263bc
MD
1190}
1191
88c4d2f6
MD
1192void
1193nanotime(struct timespec *tsp)
1194{
1195 struct globaldata *gd = mycpu;
5eb5a6bc 1196 struct timespec *bt;
88c4d2f6 1197 sysclock_t delta;
984263bc 1198
88c4d2f6
MD
1199 do {
1200 tsp->tv_sec = gd->gd_time_seconds;
044ee7c4 1201 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1202 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1203
044ee7c4
MD
1204 if (delta >= sys_cputimer->freq) {
1205 tsp->tv_sec += delta / sys_cputimer->freq;
1206 delta %= sys_cputimer->freq;
fad57d0e 1207 }
044ee7c4 1208 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc 1209
5eb5a6bc
MD
1210 bt = &basetime[basetime_index];
1211 tsp->tv_sec += bt->tv_sec;
1212 tsp->tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1213 while (tsp->tv_nsec >= 1000000000) {
1214 tsp->tv_nsec -= 1000000000;
1215 ++tsp->tv_sec;
984263bc 1216 }
984263bc
MD
1217}
1218
25b804e7
MD
1219/*
1220 * note: this is not exactly synchronized with real time. To do that we
1221 * would have to do what microtime does and check for a nanoseconds overflow.
1222 */
1223time_t
1224get_approximate_time_t(void)
1225{
1226 struct globaldata *gd = mycpu;
5eb5a6bc
MD
1227 struct timespec *bt;
1228
1229 bt = &basetime[basetime_index];
1230 return(gd->gd_time_seconds + bt->tv_sec);
25b804e7
MD
1231}
1232
984263bc
MD
1233int
1234pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1235{
1236 pps_params_t *app;
1237 struct pps_fetch_args *fapi;
1238#ifdef PPS_SYNC
1239 struct pps_kcbind_args *kapi;
1240#endif
1241
1242 switch (cmd) {
1243 case PPS_IOC_CREATE:
1244 return (0);
1245 case PPS_IOC_DESTROY:
1246 return (0);
1247 case PPS_IOC_SETPARAMS:
1248 app = (pps_params_t *)data;
1249 if (app->mode & ~pps->ppscap)
1250 return (EINVAL);
1251 pps->ppsparam = *app;
1252 return (0);
1253 case PPS_IOC_GETPARAMS:
1254 app = (pps_params_t *)data;
1255 *app = pps->ppsparam;
1256 app->api_version = PPS_API_VERS_1;
1257 return (0);
1258 case PPS_IOC_GETCAP:
1259 *(int*)data = pps->ppscap;
1260 return (0);
1261 case PPS_IOC_FETCH:
1262 fapi = (struct pps_fetch_args *)data;
1263 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1264 return (EINVAL);
1265 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1266 return (EOPNOTSUPP);
1267 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1268 fapi->pps_info_buf = pps->ppsinfo;
1269 return (0);
1270 case PPS_IOC_KCBIND:
1271#ifdef PPS_SYNC
1272 kapi = (struct pps_kcbind_args *)data;
1273 /* XXX Only root should be able to do this */
1274 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1275 return (EINVAL);
1276 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1277 return (EINVAL);
1278 if (kapi->edge & ~pps->ppscap)
1279 return (EINVAL);
1280 pps->kcmode = kapi->edge;
1281 return (0);
1282#else
1283 return (EOPNOTSUPP);
1284#endif
1285 default:
1286 return (ENOTTY);
1287 }
1288}
1289
1290void
1291pps_init(struct pps_state *pps)
1292{
1293 pps->ppscap |= PPS_TSFMT_TSPEC;
1294 if (pps->ppscap & PPS_CAPTUREASSERT)
1295 pps->ppscap |= PPS_OFFSETASSERT;
1296 if (pps->ppscap & PPS_CAPTURECLEAR)
1297 pps->ppscap |= PPS_OFFSETCLEAR;
1298}
1299
1300void
88c4d2f6 1301pps_event(struct pps_state *pps, sysclock_t count, int event)
984263bc 1302{
88c4d2f6
MD
1303 struct globaldata *gd;
1304 struct timespec *tsp;
1305 struct timespec *osp;
5eb5a6bc 1306 struct timespec *bt;
88c4d2f6
MD
1307 struct timespec ts;
1308 sysclock_t *pcount;
1309#ifdef PPS_SYNC
1310 sysclock_t tcount;
1311#endif
1312 sysclock_t delta;
1313 pps_seq_t *pseq;
1314 int foff;
1315 int fhard;
1316
1317 gd = mycpu;
984263bc
MD
1318
1319 /* Things would be easier with arrays... */
1320 if (event == PPS_CAPTUREASSERT) {
1321 tsp = &pps->ppsinfo.assert_timestamp;
1322 osp = &pps->ppsparam.assert_offset;
1323 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1324 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1325 pcount = &pps->ppscount[0];
1326 pseq = &pps->ppsinfo.assert_sequence;
1327 } else {
1328 tsp = &pps->ppsinfo.clear_timestamp;
1329 osp = &pps->ppsparam.clear_offset;
1330 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1331 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1332 pcount = &pps->ppscount[1];
1333 pseq = &pps->ppsinfo.clear_sequence;
1334 }
1335
984263bc
MD
1336 /* Nothing really happened */
1337 if (*pcount == count)
1338 return;
1339
1340 *pcount = count;
1341
88c4d2f6
MD
1342 do {
1343 ts.tv_sec = gd->gd_time_seconds;
1344 delta = count - gd->gd_cpuclock_base;
1345 } while (ts.tv_sec != gd->gd_time_seconds);
fad57d0e 1346
044ee7c4
MD
1347 if (delta >= sys_cputimer->freq) {
1348 ts.tv_sec += delta / sys_cputimer->freq;
1349 delta %= sys_cputimer->freq;
88c4d2f6 1350 }
044ee7c4 1351 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
5eb5a6bc
MD
1352 bt = &basetime[basetime_index];
1353 ts.tv_sec += bt->tv_sec;
1354 ts.tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1355 while (ts.tv_nsec >= 1000000000) {
1356 ts.tv_nsec -= 1000000000;
1357 ++ts.tv_sec;
984263bc 1358 }
984263bc
MD
1359
1360 (*pseq)++;
1361 *tsp = ts;
1362
1363 if (foff) {
1364 timespecadd(tsp, osp);
1365 if (tsp->tv_nsec < 0) {
1366 tsp->tv_nsec += 1000000000;
1367 tsp->tv_sec -= 1;
1368 }
1369 }
1370#ifdef PPS_SYNC
1371 if (fhard) {
1372 /* magic, at its best... */
1373 tcount = count - pps->ppscount[2];
1374 pps->ppscount[2] = count;
044ee7c4
MD
1375 if (tcount >= sys_cputimer->freq) {
1376 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1377 sys_cputimer->freq64_nsec *
1378 (tcount % sys_cputimer->freq)) >> 32;
fad57d0e 1379 } else {
044ee7c4 1380 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
fad57d0e 1381 }
984263bc
MD
1382 hardpps(tsp, delta);
1383 }
1384#endif
1385}
88c4d2f6 1386
d2412a2e
MD
1387/*
1388 * Return the tsc target value for a delay of (ns).
1389 *
1390 * Returns -1 if the TSC is not supported.
1391 */
1392int64_t
1393tsc_get_target(int ns)
1394{
1395#if defined(_RDTSC_SUPPORTED_)
1396 if (cpu_feature & CPUID_TSC) {
1397 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1398 }
1399#endif
1400 return(-1);
1401}
1402
1403/*
1404 * Compare the tsc against the passed target
1405 *
1406 * Returns +1 if the target has been reached
1407 * Returns 0 if the target has not yet been reached
1408 * Returns -1 if the TSC is not supported.
1409 *
1410 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1411 */
1412int
1413tsc_test_target(int64_t target)
1414{
1415#if defined(_RDTSC_SUPPORTED_)
1416 if (cpu_feature & CPUID_TSC) {
1417 if ((int64_t)(target - rdtsc()) <= 0)
1418 return(1);
1419 return(0);
1420 }
d2412a2e 1421#endif
2e537993 1422 return(-1);
d2412a2e 1423}
b12defdc
MD
1424
1425/*
1426 * Delay the specified number of nanoseconds using the tsc. This function
1427 * returns immediately if the TSC is not supported. At least one cpu_pause()
1428 * will be issued.
1429 */
1430void
1431tsc_delay(int ns)
1432{
1433 int64_t clk;
1434
1435 clk = tsc_get_target(ns);
1436 cpu_pause();
1437 while (tsc_test_target(clk) == 0)
1438 cpu_pause();
1439}