kernel - Major signal path adjustments to fix races, tsleep race fixes, +more
[dragonfly.git] / sys / platform / vkernel64 / x86_64 / cpu_regs.c
CommitLineData
da673940
JG
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (C) 1994, David Greenman
4 * Copyright (c) 1982, 1987, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
da673940
JG
40 */
41
da673940
JG
42#include "opt_compat.h"
43#include "opt_ddb.h"
44#include "opt_directio.h"
45#include "opt_inet.h"
46#include "opt_ipx.h"
47#include "opt_msgbuf.h"
48#include "opt_swap.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/sysproto.h>
53#include <sys/signalvar.h>
54#include <sys/kernel.h>
55#include <sys/linker.h>
56#include <sys/malloc.h>
57#include <sys/proc.h>
58#include <sys/buf.h>
59#include <sys/reboot.h>
60#include <sys/mbuf.h>
61#include <sys/msgbuf.h>
62#include <sys/sysent.h>
63#include <sys/sysctl.h>
64#include <sys/vmmeter.h>
65#include <sys/bus.h>
66#include <sys/upcall.h>
67#include <sys/usched.h>
68#include <sys/reg.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72#include <sys/lock.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_object.h>
75#include <vm/vm_page.h>
76#include <vm/vm_map.h>
77#include <vm/vm_pager.h>
78#include <vm/vm_extern.h>
79
80#include <sys/thread2.h>
0e6594a8 81#include <sys/mplock2.h>
da673940
JG
82
83#include <sys/user.h>
84#include <sys/exec.h>
85#include <sys/cons.h>
86
87#include <ddb/ddb.h>
88
89#include <machine/cpu.h>
90#include <machine/clock.h>
91#include <machine/specialreg.h>
92#include <machine/md_var.h>
93#include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
94#include <machine/globaldata.h> /* CPU_prvspace */
95#include <machine/smp.h>
96#ifdef PERFMON
97#include <machine/perfmon.h>
98#endif
99#include <machine/cputypes.h>
100
101#include <bus/isa/rtc.h>
102#include <sys/random.h>
103#include <sys/ptrace.h>
104#include <machine/sigframe.h>
105#include <unistd.h> /* umtx_* functions */
b68e846f 106#include <pthread.h> /* pthread_yield() */
da673940
JG
107
108extern void dblfault_handler (void);
109
110#ifndef CPU_DISABLE_SSE
111static void set_fpregs_xmm (struct save87 *, struct savexmm *);
112static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
113#endif /* CPU_DISABLE_SSE */
114#ifdef DIRECTIO
115extern void ffs_rawread_setup(void);
116#endif /* DIRECTIO */
117
118#ifdef SMP
119int64_t tsc_offsets[MAXCPU];
120#else
121int64_t tsc_offsets[1];
122#endif
123
124#if defined(SWTCH_OPTIM_STATS)
125extern int swtch_optim_stats;
126SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
127 CTLFLAG_RD, &swtch_optim_stats, 0, "");
128SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
129 CTLFLAG_RD, &tlb_flush_count, 0, "");
130#endif
131
132static int
133sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
134{
39d69dae
AH
135 u_long pmem = ctob(physmem);
136
137 int error = sysctl_handle_long(oidp, &pmem, 0, req);
da673940
JG
138 return (error);
139}
140
39d69dae 141SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
9b9532a0 142 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
da673940
JG
143
144static int
145sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
146{
147 /* JG */
148 int error = sysctl_handle_int(oidp, 0,
149 ctob((int)Maxmem - vmstats.v_wire_count), req);
150 return (error);
151}
152
153SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
154 0, 0, sysctl_hw_usermem, "IU", "");
155
156SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
157
158#if 0
159
160static int
161sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
162{
163 int error;
164
165 /* Unwind the buffer, so that it's linear (possibly starting with
166 * some initial nulls).
167 */
168 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
169 msgbufp->msg_size-msgbufp->msg_bufr,req);
170 if(error) return(error);
171 if(msgbufp->msg_bufr>0) {
172 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
173 msgbufp->msg_bufr,req);
174 }
175 return(error);
176}
177
178SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
179 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
180
181static int msgbuf_clear;
182
183static int
184sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
185{
186 int error;
187 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
188 req);
189 if (!error && req->newptr) {
190 /* Clear the buffer and reset write pointer */
191 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
192 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
193 msgbuf_clear=0;
194 }
195 return (error);
196}
197
198SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
199 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
200 "Clear kernel message buffer");
201
202#endif
203
204/*
205 * Send an interrupt to process.
206 *
207 * Stack is set up to allow sigcode stored
208 * at top to call routine, followed by kcall
209 * to sigreturn routine below. After sigreturn
210 * resets the signal mask, the stack, and the
211 * frame pointer, it returns to the user
212 * specified pc, psl.
213 */
214void
215sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
216{
217 struct lwp *lp = curthread->td_lwp;
218 struct proc *p = lp->lwp_proc;
219 struct trapframe *regs;
220 struct sigacts *psp = p->p_sigacts;
221 struct sigframe sf, *sfp;
222 int oonstack;
223 char *sp;
224
225 regs = lp->lwp_md.md_regs;
226 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
227
228 /* Save user context */
229 bzero(&sf, sizeof(struct sigframe));
230 sf.sf_uc.uc_sigmask = *mask;
231 sf.sf_uc.uc_stack = lp->lwp_sigstk;
232 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
233 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
234 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
235
236 /* Make the size of the saved context visible to userland */
237 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
238
da673940 239 /* Allocate and validate space for the signal handler context. */
4643740a 240 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
da673940
JG
241 SIGISMEMBER(psp->ps_sigonstack, sig)) {
242 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
243 sizeof(struct sigframe));
244 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
245 } else {
246 /* We take red zone into account */
247 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
248 }
249
250 /* Align to 16 bytes */
251 sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
252
253 /* Translate the signal is appropriate */
254 if (p->p_sysent->sv_sigtbl) {
255 if (sig <= p->p_sysent->sv_sigsize)
256 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
257 }
258
259 /*
260 * Build the argument list for the signal handler.
261 *
262 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
263 */
264 regs->tf_rdi = sig; /* argument 1 */
265 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
266
267 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
268 /*
269 * Signal handler installed with SA_SIGINFO.
270 *
271 * action(signo, siginfo, ucontext)
272 */
273 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
274 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
275 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
276
277 /* fill siginfo structure */
278 sf.sf_si.si_signo = sig;
279 sf.sf_si.si_code = code;
280 sf.sf_si.si_addr = (void *)regs->tf_err;
281 } else {
282 /*
283 * Old FreeBSD-style arguments.
284 *
285 * handler (signo, code, [uc], addr)
286 */
287 regs->tf_rsi = (register_t)code; /* argument 2 */
288 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
289 sf.sf_ahu.sf_handler = catcher;
290 }
291
292#if 0
293 /*
294 * If we're a vm86 process, we want to save the segment registers.
295 * We also change eflags to be our emulated eflags, not the actual
296 * eflags.
297 */
298 if (regs->tf_eflags & PSL_VM) {
299 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
300 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
301
302 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
303 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
304 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
305 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
306
307 if (vm86->vm86_has_vme == 0)
308 sf.sf_uc.uc_mcontext.mc_eflags =
309 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
310 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
311
312 /*
313 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
314 * syscalls made by the signal handler. This just avoids
315 * wasting time for our lazy fixup of such faults. PSL_NT
316 * does nothing in vm86 mode, but vm86 programs can set it
317 * almost legitimately in probes for old cpu types.
318 */
319 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
320 }
321#endif
322
323 /*
324 * Save the FPU state and reinit the FP unit
325 */
326 npxpush(&sf.sf_uc.uc_mcontext);
327
328 /*
329 * Copy the sigframe out to the user's stack.
330 */
331 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
332 /*
333 * Something is wrong with the stack pointer.
334 * ...Kill the process.
335 */
336 sigexit(lp, SIGILL);
337 }
338
339 regs->tf_rsp = (register_t)sfp;
340 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
341
342 /*
343 * i386 abi specifies that the direction flag must be cleared
344 * on function entry
345 */
346 regs->tf_rflags &= ~(PSL_T|PSL_D);
347
348 /*
349 * 64 bit mode has a code and stack selector but
350 * no data or extra selector. %fs and %gs are not
351 * stored in-context.
352 */
353 regs->tf_cs = _ucodesel;
354 regs->tf_ss = _udatasel;
355}
356
357/*
358 * Sanitize the trapframe for a virtual kernel passing control to a custom
359 * VM context. Remove any items that would otherwise create a privilage
360 * issue.
361 *
362 * XXX at the moment we allow userland to set the resume flag. Is this a
363 * bad idea?
364 */
365int
366cpu_sanitize_frame(struct trapframe *frame)
367{
368 frame->tf_cs = _ucodesel;
369 frame->tf_ss = _udatasel;
370 /* XXX VM (8086) mode not supported? */
371 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
372 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
373
374 return(0);
375}
376
377/*
378 * Sanitize the tls so loading the descriptor does not blow up
a76ca9b9 379 * on us. For x86_64 we don't have to do anything.
da673940
JG
380 */
381int
382cpu_sanitize_tls(struct savetls *tls)
383{
384 return(0);
385}
386
387/*
388 * sigreturn(ucontext_t *sigcntxp)
389 *
390 * System call to cleanup state after a signal
391 * has been taken. Reset signal mask and
392 * stack state from context left by sendsig (above).
393 * Return to previous pc and psl as specified by
394 * context left by sendsig. Check carefully to
395 * make sure that the user has not modified the
396 * state to gain improper privileges.
397 */
398#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
399#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
400
401int
402sys_sigreturn(struct sigreturn_args *uap)
403{
404 struct lwp *lp = curthread->td_lwp;
da673940
JG
405 struct trapframe *regs;
406 ucontext_t uc;
407 ucontext_t *ucp;
408 register_t rflags;
409 int cs;
410 int error;
411
412 /*
413 * We have to copy the information into kernel space so userland
414 * can't modify it while we are sniffing it.
415 */
416 regs = lp->lwp_md.md_regs;
417 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
418 if (error)
419 return (error);
420 ucp = &uc;
421 rflags = ucp->uc_mcontext.mc_rflags;
422
423 /* VM (8086) mode not supported */
424 rflags &= ~PSL_VM_UNSUPP;
425
426#if 0
427 if (eflags & PSL_VM) {
428 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
429 struct vm86_kernel *vm86;
430
431 /*
432 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
433 * set up the vm86 area, and we can't enter vm86 mode.
434 */
435 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
436 return (EINVAL);
437 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
438 if (vm86->vm86_inited == 0)
439 return (EINVAL);
440
441 /* go back to user mode if both flags are set */
442 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
443 trapsignal(lp->lwp_proc, SIGBUS, 0);
444
445 if (vm86->vm86_has_vme) {
446 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
447 (eflags & VME_USERCHANGE) | PSL_VM;
448 } else {
449 vm86->vm86_eflags = eflags; /* save VIF, VIP */
450 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
451 }
452 bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
453 tf->tf_eflags = eflags;
454 tf->tf_vm86_ds = tf->tf_ds;
455 tf->tf_vm86_es = tf->tf_es;
456 tf->tf_vm86_fs = tf->tf_fs;
457 tf->tf_vm86_gs = tf->tf_gs;
458 tf->tf_ds = _udatasel;
459 tf->tf_es = _udatasel;
460#if 0
461 tf->tf_fs = _udatasel;
462 tf->tf_gs = _udatasel;
463#endif
464 } else
465#endif
466 {
467 /*
468 * Don't allow users to change privileged or reserved flags.
469 */
470 /*
471 * XXX do allow users to change the privileged flag PSL_RF.
472 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
473 * should sometimes set it there too. tf_eflags is kept in
474 * the signal context during signal handling and there is no
475 * other place to remember it, so the PSL_RF bit may be
476 * corrupted by the signal handler without us knowing.
477 * Corruption of the PSL_RF bit at worst causes one more or
478 * one less debugger trap, so allowing it is fairly harmless.
479 */
480 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
481 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
482 return(EINVAL);
483 }
484
485 /*
486 * Don't allow users to load a valid privileged %cs. Let the
487 * hardware check for invalid selectors, excess privilege in
488 * other selectors, invalid %eip's and invalid %esp's.
489 */
490 cs = ucp->uc_mcontext.mc_cs;
491 if (!CS_SECURE(cs)) {
492 kprintf("sigreturn: cs = 0x%x\n", cs);
493 trapsignal(lp, SIGBUS, T_PROTFLT);
494 return(EINVAL);
495 }
496 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
497 }
498
499 /*
500 * Restore the FPU state from the frame
501 */
502 npxpop(&ucp->uc_mcontext);
503
da673940
JG
504 if (ucp->uc_mcontext.mc_onstack & 1)
505 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
506 else
507 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
508
509 lp->lwp_sigmask = ucp->uc_sigmask;
510 SIG_CANTMASK(lp->lwp_sigmask);
511 return(EJUSTRETURN);
512}
513
514/*
515 * Stack frame on entry to function. %rax will contain the function vector,
516 * %rcx will contain the function data. flags, rcx, and rax will have
517 * already been pushed on the stack.
518 */
519struct upc_frame {
520 register_t rax;
521 register_t rcx;
522 register_t rdx;
523 register_t flags;
524 register_t oldip;
525};
526
527void
528sendupcall(struct vmupcall *vu, int morepending)
529{
530 struct lwp *lp = curthread->td_lwp;
531 struct trapframe *regs;
532 struct upcall upcall;
533 struct upc_frame upc_frame;
534 int crit_count = 0;
535
536 /*
537 * If we are a virtual kernel running an emulated user process
538 * context, switch back to the virtual kernel context before
539 * trying to post the signal.
540 */
541 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
542 lp->lwp_md.md_regs->tf_trapno = 0;
543 vkernel_trap(lp, lp->lwp_md.md_regs);
544 }
545
546 /*
547 * Get the upcall data structure
548 */
549 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
550 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
551 ) {
552 vu->vu_pending = 0;
553 kprintf("bad upcall address\n");
554 return;
555 }
556
557 /*
558 * If the data structure is already marked pending or has a critical
559 * section count, mark the data structure as pending and return
560 * without doing an upcall. vu_pending is left set.
561 */
562 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
563 if (upcall.upc_pending < vu->vu_pending) {
564 upcall.upc_pending = vu->vu_pending;
565 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
566 sizeof(upcall.upc_pending));
567 }
568 return;
569 }
570
571 /*
572 * We can run this upcall now, clear vu_pending.
573 *
574 * Bump our critical section count and set or clear the
575 * user pending flag depending on whether more upcalls are
576 * pending. The user will be responsible for calling
577 * upc_dispatch(-1) to process remaining upcalls.
578 */
579 vu->vu_pending = 0;
580 upcall.upc_pending = morepending;
f9235b6d 581 ++crit_count;
da673940
JG
582 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
583 sizeof(upcall.upc_pending));
584 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
585 sizeof(int));
586
587 /*
588 * Construct a stack frame and issue the upcall
589 */
590 regs = lp->lwp_md.md_regs;
591 upc_frame.rax = regs->tf_rax;
592 upc_frame.rcx = regs->tf_rcx;
593 upc_frame.rdx = regs->tf_rdx;
594 upc_frame.flags = regs->tf_rflags;
595 upc_frame.oldip = regs->tf_rip;
596 if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
597 sizeof(upc_frame)) != 0) {
598 kprintf("bad stack on upcall\n");
599 } else {
600 regs->tf_rax = (register_t)vu->vu_func;
601 regs->tf_rcx = (register_t)vu->vu_data;
602 regs->tf_rdx = (register_t)lp->lwp_upcall;
603 regs->tf_rip = (register_t)vu->vu_ctx;
604 regs->tf_rsp -= sizeof(upc_frame);
605 }
606}
607
608/*
609 * fetchupcall occurs in the context of a system call, which means that
610 * we have to return EJUSTRETURN in order to prevent eax and edx from
611 * being overwritten by the syscall return value.
612 *
613 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
614 * and the function pointer in %eax.
615 */
616int
617fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
618{
619 struct upc_frame upc_frame;
620 struct lwp *lp = curthread->td_lwp;
621 struct trapframe *regs;
622 int error;
623 struct upcall upcall;
624 int crit_count;
625
626 regs = lp->lwp_md.md_regs;
627
628 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
629 if (error == 0) {
630 if (vu) {
631 /*
632 * This jumps us to the next ready context.
633 */
634 vu->vu_pending = 0;
635 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
636 crit_count = 0;
637 if (error == 0)
638 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
f9235b6d 639 ++crit_count;
da673940
JG
640 if (error == 0)
641 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
642 regs->tf_rax = (register_t)vu->vu_func;
643 regs->tf_rcx = (register_t)vu->vu_data;
644 regs->tf_rdx = (register_t)lp->lwp_upcall;
645 regs->tf_rip = (register_t)vu->vu_ctx;
646 regs->tf_rsp = (register_t)rsp;
647 } else {
648 /*
649 * This returns us to the originally interrupted code.
650 */
651 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
652 regs->tf_rax = upc_frame.rax;
653 regs->tf_rcx = upc_frame.rcx;
654 regs->tf_rdx = upc_frame.rdx;
655 regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
656 (upc_frame.flags & PSL_USERCHANGE);
657 regs->tf_rip = upc_frame.oldip;
658 regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
659 }
660 }
661 if (error == 0)
662 error = EJUSTRETURN;
663 return(error);
664}
665
666/*
667 * cpu_idle() represents the idle LWKT. You cannot return from this function
668 * (unless you want to blow things up!). Instead we look for runnable threads
669 * and loop or halt as appropriate. Giant is not held on entry to the thread.
670 *
671 * The main loop is entered with a critical section held, we must release
672 * the critical section before doing anything else. lwkt_switch() will
673 * check for pending interrupts due to entering and exiting its own
674 * critical section.
675 *
676 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
b12defdc 677 * to wake a HLTed cpu up.
da673940
JG
678 */
679static int cpu_idle_hlt = 1;
680static int cpu_idle_hltcnt;
681static int cpu_idle_spincnt;
682SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
683 &cpu_idle_hlt, 0, "Idle loop HLT enable");
684SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
685 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
686SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
687 &cpu_idle_spincnt, 0, "Idle loop entry spins");
688
689void
690cpu_idle(void)
691{
692 struct thread *td = curthread;
693 struct mdglobaldata *gd = mdcpu;
c5724852 694 int reqflags;
da673940
JG
695
696 crit_exit();
f9235b6d 697 KKASSERT(td->td_critcount == 0);
da673940 698 cpu_enable_intr();
da0b0e8b 699
da673940
JG
700 for (;;) {
701 /*
702 * See if there are any LWKTs ready to go.
703 */
704 lwkt_switch();
705
706 /*
707 * The idle loop halts only if no threads are scheduleable
b12defdc 708 * and no signals have occured.
da673940 709 */
cbdd23b1
MD
710 if (cpu_idle_hlt &&
711 (td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
da673940 712 splz();
cbdd23b1 713 if ((td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
da673940
JG
714#ifdef DEBUGIDLE
715 struct timeval tv1, tv2;
716 gettimeofday(&tv1, NULL);
717#endif
c5724852 718 reqflags = gd->mi.gd_reqflags &
cbdd23b1 719 ~RQF_IDLECHECK_WK_MASK;
da0b0e8b 720 KKASSERT(gd->mi.gd_processing_ipiq == 0);
c5724852
MD
721 umtx_sleep(&gd->mi.gd_reqflags, reqflags,
722 1000000);
da673940
JG
723#ifdef DEBUGIDLE
724 gettimeofday(&tv2, NULL);
725 if (tv2.tv_usec - tv1.tv_usec +
726 (tv2.tv_sec - tv1.tv_sec) * 1000000
727 > 500000) {
728 kprintf("cpu %d idlelock %08x %08x\n",
729 gd->mi.gd_cpuid,
f9235b6d 730 gd->mi.gd_reqflags,
da673940
JG
731 gd->gd_fpending);
732 }
733#endif
734 }
da673940
JG
735 ++cpu_idle_hltcnt;
736 } else {
da673940
JG
737 splz();
738#ifdef SMP
da673940 739 __asm __volatile("pause");
da673940
JG
740#endif
741 ++cpu_idle_spincnt;
742 }
743 }
744}
745
746#ifdef SMP
747
748/*
da673940
JG
749 * Called by the spinlock code with or without a critical section held
750 * when a spinlock is found to be seriously constested.
751 *
752 * We need to enter a critical section to prevent signals from recursing
753 * into pthreads.
754 */
755void
756cpu_spinlock_contested(void)
757{
b68e846f 758 cpu_pause();
da673940
JG
759}
760
761#endif
762
763/*
764 * Clear registers on exec
765 */
766void
767exec_setregs(u_long entry, u_long stack, u_long ps_strings)
768{
769 struct thread *td = curthread;
770 struct lwp *lp = td->td_lwp;
771 struct pcb *pcb = td->td_pcb;
772 struct trapframe *regs = lp->lwp_md.md_regs;
773
774 /* was i386_user_cleanup() in NetBSD */
775 user_ldt_free(pcb);
776
777 bzero((char *)regs, sizeof(struct trapframe));
778 regs->tf_rip = entry;
779 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
780 regs->tf_rdi = stack; /* argv */
781 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
782 regs->tf_ss = _udatasel;
783 regs->tf_cs = _ucodesel;
784 regs->tf_rbx = ps_strings;
785
786 /*
787 * Reset the hardware debug registers if they were in use.
788 * They won't have any meaning for the newly exec'd process.
789 */
790 if (pcb->pcb_flags & PCB_DBREGS) {
791 pcb->pcb_dr0 = 0;
792 pcb->pcb_dr1 = 0;
793 pcb->pcb_dr2 = 0;
794 pcb->pcb_dr3 = 0;
795 pcb->pcb_dr6 = 0;
796 pcb->pcb_dr7 = 0; /* JG set bit 10? */
797 if (pcb == td->td_pcb) {
798 /*
799 * Clear the debug registers on the running
800 * CPU, otherwise they will end up affecting
801 * the next process we switch to.
802 */
803 reset_dbregs();
804 }
805 pcb->pcb_flags &= ~PCB_DBREGS;
806 }
807
808 /*
809 * Initialize the math emulator (if any) for the current process.
810 * Actually, just clear the bit that says that the emulator has
811 * been initialized. Initialization is delayed until the process
812 * traps to the emulator (if it is done at all) mainly because
813 * emulators don't provide an entry point for initialization.
814 */
815 pcb->pcb_flags &= ~FP_SOFTFP;
816
817 /*
818 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
819 * gd_npxthread. Otherwise a preemptive interrupt thread
820 * may panic in npxdna().
821 */
822 crit_enter();
823#if 0
824 load_cr0(rcr0() | CR0_MP);
825#endif
826
827 /*
828 * NOTE: The MSR values must be correct so we can return to
829 * userland. gd_user_fs/gs must be correct so the switch
830 * code knows what the current MSR values are.
831 */
832 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
833 pcb->pcb_gsbase = 0;
834 /* Initialize the npx (if any) for the current process. */
835 npxinit(__INITIAL_NPXCW__);
836 crit_exit();
837
838 /*
839 * note: linux emulator needs edx to be 0x0 on entry, which is
840 * handled in execve simply by setting the 64 bit syscall
841 * return value to 0.
842 */
843}
844
845void
846cpu_setregs(void)
847{
848#if 0
849 unsigned int cr0;
850
851 cr0 = rcr0();
852 cr0 |= CR0_NE; /* Done by npxinit() */
853 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
854 cr0 |= CR0_WP | CR0_AM;
855 load_cr0(cr0);
856 load_gs(_udatasel);
857#endif
858}
859
860static int
861sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
862{
863 int error;
864 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
865 req);
866 if (!error && req->newptr)
867 resettodr();
868 return (error);
869}
870
871SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
872 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
873
874extern u_long bootdev; /* not a cdev_t - encoding is different */
875SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
876 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
877
878/*
879 * Initialize 386 and configure to run kernel
880 */
881
882/*
883 * Initialize segments & interrupt table
884 */
885
886extern struct user *proc0paddr;
887
888#if 0
889
890extern inthand_t
891 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
892 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
893 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
894 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
895 IDTVEC(xmm), IDTVEC(dblfault),
896 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
897#endif
898
899#ifdef DEBUG_INTERRUPTS
900extern inthand_t *Xrsvdary[256];
901#endif
902
903int
904ptrace_set_pc(struct lwp *lp, unsigned long addr)
905{
906 lp->lwp_md.md_regs->tf_rip = addr;
907 return (0);
908}
909
910int
911ptrace_single_step(struct lwp *lp)
912{
913 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
914 return (0);
915}
916
917int
918fill_regs(struct lwp *lp, struct reg *regs)
919{
da673940
JG
920 struct trapframe *tp;
921
922 tp = lp->lwp_md.md_regs;
923 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
da673940
JG
924 return (0);
925}
926
927int
928set_regs(struct lwp *lp, struct reg *regs)
929{
da673940
JG
930 struct trapframe *tp;
931
932 tp = lp->lwp_md.md_regs;
933 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
934 !CS_SECURE(regs->r_cs))
935 return (EINVAL);
936 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
da673940
JG
937 return (0);
938}
939
940#ifndef CPU_DISABLE_SSE
941static void
942fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
943{
944 struct env87 *penv_87 = &sv_87->sv_env;
945 struct envxmm *penv_xmm = &sv_xmm->sv_env;
946 int i;
947
948 /* FPU control/status */
949 penv_87->en_cw = penv_xmm->en_cw;
950 penv_87->en_sw = penv_xmm->en_sw;
951 penv_87->en_tw = penv_xmm->en_tw;
952 penv_87->en_fip = penv_xmm->en_fip;
953 penv_87->en_fcs = penv_xmm->en_fcs;
954 penv_87->en_opcode = penv_xmm->en_opcode;
955 penv_87->en_foo = penv_xmm->en_foo;
956 penv_87->en_fos = penv_xmm->en_fos;
957
958 /* FPU registers */
959 for (i = 0; i < 8; ++i)
960 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
da673940
JG
961}
962
963static void
964set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
965{
966 struct env87 *penv_87 = &sv_87->sv_env;
967 struct envxmm *penv_xmm = &sv_xmm->sv_env;
968 int i;
969
970 /* FPU control/status */
971 penv_xmm->en_cw = penv_87->en_cw;
972 penv_xmm->en_sw = penv_87->en_sw;
973 penv_xmm->en_tw = penv_87->en_tw;
974 penv_xmm->en_fip = penv_87->en_fip;
975 penv_xmm->en_fcs = penv_87->en_fcs;
976 penv_xmm->en_opcode = penv_87->en_opcode;
977 penv_xmm->en_foo = penv_87->en_foo;
978 penv_xmm->en_fos = penv_87->en_fos;
979
980 /* FPU registers */
981 for (i = 0; i < 8; ++i)
982 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
da673940
JG
983}
984#endif /* CPU_DISABLE_SSE */
985
986int
987fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
988{
989#ifndef CPU_DISABLE_SSE
990 if (cpu_fxsr) {
991 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
992 (struct save87 *)fpregs);
993 return (0);
994 }
995#endif /* CPU_DISABLE_SSE */
996 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
997 return (0);
998}
999
1000int
1001set_fpregs(struct lwp *lp, struct fpreg *fpregs)
1002{
1003#ifndef CPU_DISABLE_SSE
1004 if (cpu_fxsr) {
1005 set_fpregs_xmm((struct save87 *)fpregs,
1006 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
1007 return (0);
1008 }
1009#endif /* CPU_DISABLE_SSE */
1010 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
1011 return (0);
1012}
1013
1014int
1015fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
1016{
1017 return (ENOSYS);
1018}
1019
1020int
1021set_dbregs(struct lwp *lp, struct dbreg *dbregs)
1022{
1023 return (ENOSYS);
1024}
1025
1026#if 0
1027/*
1028 * Return > 0 if a hardware breakpoint has been hit, and the
1029 * breakpoint was in user space. Return 0, otherwise.
1030 */
1031int
1032user_dbreg_trap(void)
1033{
1034 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
1035 u_int32_t bp; /* breakpoint bits extracted from dr6 */
1036 int nbp; /* number of breakpoints that triggered */
1037 caddr_t addr[4]; /* breakpoint addresses */
1038 int i;
1039
1040 dr7 = rdr7();
1041 if ((dr7 & 0x000000ff) == 0) {
1042 /*
1043 * all GE and LE bits in the dr7 register are zero,
1044 * thus the trap couldn't have been caused by the
1045 * hardware debug registers
1046 */
1047 return 0;
1048 }
1049
1050 nbp = 0;
1051 dr6 = rdr6();
1052 bp = dr6 & 0x0000000f;
1053
1054 if (!bp) {
1055 /*
1056 * None of the breakpoint bits are set meaning this
1057 * trap was not caused by any of the debug registers
1058 */
1059 return 0;
1060 }
1061
1062 /*
1063 * at least one of the breakpoints were hit, check to see
1064 * which ones and if any of them are user space addresses
1065 */
1066
1067 if (bp & 0x01) {
1068 addr[nbp++] = (caddr_t)rdr0();
1069 }
1070 if (bp & 0x02) {
1071 addr[nbp++] = (caddr_t)rdr1();
1072 }
1073 if (bp & 0x04) {
1074 addr[nbp++] = (caddr_t)rdr2();
1075 }
1076 if (bp & 0x08) {
1077 addr[nbp++] = (caddr_t)rdr3();
1078 }
1079
1080 for (i=0; i<nbp; i++) {
1081 if (addr[i] <
1082 (caddr_t)VM_MAX_USER_ADDRESS) {
1083 /*
1084 * addr[i] is in user space
1085 */
1086 return nbp;
1087 }
1088 }
1089
1090 /*
1091 * None of the breakpoints are in user space.
1092 */
1093 return 0;
1094}
1095
1096#endif
1097
1098void
1099identcpu(void)
1100{
1101 int regs[4];
1102
1103 do_cpuid(1, regs);
1104 cpu_feature = regs[3];
1105}
1106
1107
1108#ifndef DDB
1109void
1110Debugger(const char *msg)
1111{
1112 kprintf("Debugger(\"%s\") called.\n", msg);
1113}
1114#endif /* no DDB */