Switch from OpenSSL 0.9.7d to 0.9.7e.
[dragonfly.git] / secure / lib / libcrypto / man / BN_add.3
CommitLineData
74dab6c2
JR
1.rn '' }`
2''' $RCSfile$$Revision$$Date$
3'''
4''' $Log$
5'''
6.de Sh
984263bc
MD
7.br
8.if t .Sp
9.ne 5
10.PP
11\fB\\$1\fR
12.PP
13..
74dab6c2 14.de Sp
984263bc
MD
15.if t .sp .5v
16.if n .sp
17..
74dab6c2 18.de Ip
984263bc
MD
19.br
20.ie \\n(.$>=3 .ne \\$3
21.el .ne 3
22.IP "\\$1" \\$2
23..
74dab6c2 24.de Vb
984263bc
MD
25.ft CW
26.nf
27.ne \\$1
28..
74dab6c2 29.de Ve
984263bc
MD
30.ft R
31
32.fi
33..
74dab6c2
JR
34'''
35'''
36''' Set up \*(-- to give an unbreakable dash;
37''' string Tr holds user defined translation string.
38''' Bell System Logo is used as a dummy character.
39'''
984263bc 40.tr \(*W-|\(bv\*(Tr
984263bc 41.ie n \{\
74dab6c2
JR
42.ds -- \(*W-
43.ds PI pi
44.if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
45.if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
46.ds L" ""
47.ds R" ""
48''' \*(M", \*(S", \*(N" and \*(T" are the equivalent of
49''' \*(L" and \*(R", except that they are used on ".xx" lines,
50''' such as .IP and .SH, which do another additional levels of
51''' double-quote interpretation
52.ds M" """
53.ds S" """
54.ds N" """""
55.ds T" """""
56.ds L' '
57.ds R' '
58.ds M' '
59.ds S' '
60.ds N' '
61.ds T' '
984263bc
MD
62'br\}
63.el\{\
74dab6c2
JR
64.ds -- \(em\|
65.tr \*(Tr
66.ds L" ``
67.ds R" ''
68.ds M" ``
69.ds S" ''
70.ds N" ``
71.ds T" ''
72.ds L' `
73.ds R' '
74.ds M' `
75.ds S' '
76.ds N' `
77.ds T' '
78.ds PI \(*p
984263bc 79'br\}
74dab6c2
JR
80.\" If the F register is turned on, we'll generate
81.\" index entries out stderr for the following things:
82.\" TH Title
83.\" SH Header
84.\" Sh Subsection
85.\" Ip Item
86.\" X<> Xref (embedded
87.\" Of course, you have to process the output yourself
88.\" in some meaninful fashion.
89.if \nF \{
90.de IX
91.tm Index:\\$1\t\\n%\t"\\$2"
984263bc 92..
74dab6c2
JR
93.nr % 0
94.rr F
984263bc 95.\}
74dab6c2
JR
96.TH BN_add 3 "0.9.7d" "2/Sep/2004" "OpenSSL"
97.UC
98.if n .hy 0
984263bc 99.if n .na
74dab6c2
JR
100.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
101.de CQ \" put $1 in typewriter font
102.ft CW
103'if n "\c
104'if t \\&\\$1\c
105'if n \\&\\$1\c
106'if n \&"
107\\&\\$2 \\$3 \\$4 \\$5 \\$6 \\$7
108'.ft R
109..
110.\" @(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2
111. \" AM - accent mark definitions
984263bc 112.bd B 3
74dab6c2 113. \" fudge factors for nroff and troff
984263bc 114.if n \{\
74dab6c2
JR
115. ds #H 0
116. ds #V .8m
117. ds #F .3m
118. ds #[ \f1
119. ds #] \fP
984263bc
MD
120.\}
121.if t \{\
74dab6c2
JR
122. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
123. ds #V .6m
124. ds #F 0
125. ds #[ \&
126. ds #] \&
984263bc 127.\}
74dab6c2 128. \" simple accents for nroff and troff
984263bc 129.if n \{\
74dab6c2
JR
130. ds ' \&
131. ds ` \&
132. ds ^ \&
133. ds , \&
134. ds ~ ~
135. ds ? ?
136. ds ! !
137. ds /
138. ds q
984263bc
MD
139.\}
140.if t \{\
74dab6c2
JR
141. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
142. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
143. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
144. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
145. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
146. ds ? \s-2c\h'-\w'c'u*7/10'\u\h'\*(#H'\zi\d\s+2\h'\w'c'u*8/10'
147. ds ! \s-2\(or\s+2\h'-\w'\(or'u'\v'-.8m'.\v'.8m'
148. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
149. ds q o\h'-\w'o'u*8/10'\s-4\v'.4m'\z\(*i\v'-.4m'\s+4\h'\w'o'u*8/10'
984263bc 150.\}
74dab6c2 151. \" troff and (daisy-wheel) nroff accents
984263bc
MD
152.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
153.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
74dab6c2
JR
154.ds v \\k:\h'-(\\n(.wu*9/10-\*(#H)'\v'-\*(#V'\*(#[\s-4v\s0\v'\*(#V'\h'|\\n:u'\*(#]
155.ds _ \\k:\h'-(\\n(.wu*9/10-\*(#H+(\*(#F*2/3))'\v'-.4m'\z\(hy\v'.4m'\h'|\\n:u'
156.ds . \\k:\h'-(\\n(.wu*8/10)'\v'\*(#V*4/10'\z.\v'-\*(#V*4/10'\h'|\\n:u'
157.ds 3 \*(#[\v'.2m'\s-2\&3\s0\v'-.2m'\*(#]
984263bc
MD
158.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
159.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
160.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
161.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
162.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
163.ds ae a\h'-(\w'a'u*4/10)'e
164.ds Ae A\h'-(\w'A'u*4/10)'E
74dab6c2
JR
165.ds oe o\h'-(\w'o'u*4/10)'e
166.ds Oe O\h'-(\w'O'u*4/10)'E
167. \" corrections for vroff
984263bc
MD
168.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
169.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
74dab6c2 170. \" for low resolution devices (crt and lpr)
984263bc
MD
171.if \n(.H>23 .if \n(.V>19 \
172\{\
74dab6c2
JR
173. ds : e
174. ds 8 ss
175. ds v \h'-1'\o'\(aa\(ga'
176. ds _ \h'-1'^
177. ds . \h'-1'.
178. ds 3 3
179. ds o a
180. ds d- d\h'-1'\(ga
181. ds D- D\h'-1'\(hy
182. ds th \o'bp'
183. ds Th \o'LP'
184. ds ae ae
185. ds Ae AE
186. ds oe oe
187. ds Oe OE
984263bc
MD
188.\}
189.rm #[ #] #H #V #F C
984263bc
MD
190.SH "NAME"
191BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
192BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd \-
193arithmetic operations on BIGNUMs
194.SH "SYNOPSIS"
74dab6c2 195.PP
984263bc
MD
196.Vb 1
197\& #include <openssl/bn.h>
198.Ve
199.Vb 1
200\& int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
201.Ve
202.Vb 1
203\& int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
204.Ve
205.Vb 1
206\& int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
207.Ve
208.Vb 1
209\& int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
210.Ve
211.Vb 2
212\& int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
213\& BN_CTX *ctx);
214.Ve
215.Vb 1
216\& int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
217.Ve
218.Vb 1
219\& int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
220.Ve
221.Vb 2
222\& int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
223\& BN_CTX *ctx);
224.Ve
225.Vb 2
226\& int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
227\& BN_CTX *ctx);
228.Ve
229.Vb 2
230\& int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
231\& BN_CTX *ctx);
232.Ve
233.Vb 1
234\& int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
235.Ve
236.Vb 1
237\& int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
238.Ve
239.Vb 2
240\& int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
241\& const BIGNUM *m, BN_CTX *ctx);
242.Ve
243.Vb 1
244\& int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
245.Ve
246.SH "DESCRIPTION"
74dab6c2
JR
247\fIBN_add()\fR adds \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CWr=a+b\fR).
248\fIr\fR may be the same \fBBIGNUM\fR as \fIa\fR or \fIb\fR.
984263bc 249.PP
74dab6c2 250\fIBN_sub()\fR subtracts \fIb\fR from \fIa\fR and places the result in \fIr\fR (\f(CWr=a-b\fR).
984263bc 251.PP
74dab6c2
JR
252\fIBN_mul()\fR multiplies \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CWr=a*b\fR).
253\fIr\fR may be the same \fBBIGNUM\fR as \fIa\fR or \fIb\fR.
984263bc
MD
254For multiplication by powers of 2, use BN_lshift(3).
255.PP
74dab6c2
JR
256\fIBN_sqr()\fR takes the square of \fIa\fR and places the result in \fIr\fR
257(\f(CWr=a^2\fR). \fIr\fR and \fIa\fR may be the same \fBBIGNUM\fR.
258This function is faster than \fIBN_mul\fR\|(r,a,a).
984263bc 259.PP
74dab6c2
JR
260\fIBN_div()\fR divides \fIa\fR by \fId\fR and places the result in \fIdv\fR and the
261remainder in \fIrem\fR (\f(CWdv=a/d, rem=a%d\fR). Either of \fIdv\fR and \fIrem\fR may
262be \fBNULL\fR, in which case the respective value is not returned.
984263bc
MD
263The result is rounded towards zero; thus if \fIa\fR is negative, the
264remainder will be zero or negative.
265For division by powers of 2, use \fIBN_rshift\fR\|(3).
266.PP
74dab6c2 267\fIBN_mod()\fR corresponds to \fIBN_div()\fR with \fIdv\fR set to \fBNULL\fR.
984263bc 268.PP
74dab6c2 269\fIBN_nnmod()\fR reduces \fIa\fR modulo \fIm\fR and places the non-negative
984263bc
MD
270remainder in \fIr\fR.
271.PP
74dab6c2 272\fIBN_mod_add()\fR adds \fIa\fR to \fIb\fR modulo \fIm\fR and places the non-negative
984263bc
MD
273result in \fIr\fR.
274.PP
74dab6c2 275\fIBN_mod_sub()\fR subtracts \fIb\fR from \fIa\fR modulo \fIm\fR and places the
984263bc
MD
276non-negative result in \fIr\fR.
277.PP
74dab6c2
JR
278\fIBN_mod_mul()\fR multiplies \fIa\fR by \fIb\fR and finds the non-negative
279remainder respective to modulus \fIm\fR (\f(CWr=(a*b) mod m\fR). \fIr\fR may be
280the same \fBBIGNUM\fR as \fIa\fR or \fIb\fR. For more efficient algorithms for
984263bc
MD
281repeated computations using the same modulus, see
282BN_mod_mul_montgomery(3) and
283BN_mod_mul_reciprocal(3).
284.PP
74dab6c2 285\fIBN_mod_sqr()\fR takes the square of \fIa\fR modulo \fBm\fR and places the
984263bc
MD
286result in \fIr\fR.
287.PP
74dab6c2
JR
288\fIBN_exp()\fR raises \fIa\fR to the \fIp\fR\-th power and places the result in \fIr\fR
289(\f(CWr=a^p\fR). This function is faster than repeated applications of
290\fIBN_mul()\fR.
984263bc 291.PP
74dab6c2
JR
292\fIBN_mod_exp()\fR computes \fIa\fR to the \fIp\fR\-th power modulo \fIm\fR (\f(CWr=a^p %
293m\fR). This function uses less time and space than \fIBN_exp()\fR.
984263bc 294.PP
74dab6c2
JR
295\fIBN_gcd()\fR computes the greatest common divisor of \fIa\fR and \fIb\fR and
296places the result in \fIr\fR. \fIr\fR may be the same \fBBIGNUM\fR as \fIa\fR or
297\fIb\fR.
984263bc 298.PP
74dab6c2 299For all functions, \fIctx\fR is a previously allocated \fBBN_CTX\fR used for
984263bc
MD
300temporary variables; see BN_CTX_new(3).
301.PP
74dab6c2 302Unless noted otherwise, the result \fBBIGNUM\fR must be different from
984263bc
MD
303the arguments.
304.SH "RETURN VALUES"
984263bc 305For all functions, 1 is returned for success, 0 on error. The return
74dab6c2 306value should always be checked (e.g., \f(CWif (!BN_add(r,a,b)) goto err;\fR).
984263bc
MD
307The error codes can be obtained by ERR_get_error(3).
308.SH "SEE ALSO"
984263bc
MD
309bn(3), ERR_get_error(3), BN_CTX_new(3),
310BN_add_word(3), BN_set_bit(3)
311.SH "HISTORY"
74dab6c2
JR
312\fIBN_add()\fR, \fIBN_sub()\fR, \fIBN_sqr()\fR, \fIBN_div()\fR, \fIBN_mod()\fR, \fIBN_mod_mul()\fR,
313\fIBN_mod_exp()\fR and \fIBN_gcd()\fR are available in all versions of SSLeay and
984263bc
MD
314OpenSSL. The \fIctx\fR argument to \fIBN_mul()\fR was added in SSLeay
3150.9.1b. \fIBN_exp()\fR appeared in SSLeay 0.9.0.
74dab6c2 316\fIBN_nnmod()\fR, \fIBN_mod_add()\fR, \fIBN_mod_sub()\fR, and \fIBN_mod_sqr()\fR were added in
984263bc 317OpenSSL 0.9.7.
74dab6c2
JR
318
319.rn }` ''
320.IX Title "BN_add 3"
321.IX Name "BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
322BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd - arithmetic operations on BIGNUMs"
323
324.IX Header "NAME"
325
326.IX Header "SYNOPSIS"
327
328.IX Header "DESCRIPTION"
329
330.IX Header "RETURN VALUES"
331
332.IX Header "SEE ALSO"
333
334.IX Header "HISTORY"
335