igb: Properly set RX ring in use upon enter/exit polling mode
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
CommitLineData
1f7e3916
SZ
1/*
2 * Copyright (c) 2001-2011, Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the Intel Corporation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
d0f59cad 32#include "opt_ifpoll.h"
8d6600da 33#include "opt_igb.h"
1f7e3916
SZ
34
35#include <sys/param.h>
36#include <sys/bus.h>
37#include <sys/endian.h>
38#include <sys/interrupt.h>
39#include <sys/kernel.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/proc.h>
43#include <sys/rman.h>
44#include <sys/serialize.h>
45#include <sys/serialize2.h>
46#include <sys/socket.h>
47#include <sys/sockio.h>
48#include <sys/sysctl.h>
49#include <sys/systm.h>
50
51#include <net/bpf.h>
52#include <net/ethernet.h>
53#include <net/if.h>
54#include <net/if_arp.h>
55#include <net/if_dl.h>
56#include <net/if_media.h>
57#include <net/ifq_var.h>
58#include <net/toeplitz.h>
59#include <net/toeplitz2.h>
60#include <net/vlan/if_vlan_var.h>
61#include <net/vlan/if_vlan_ether.h>
62#include <net/if_poll.h>
63
64#include <netinet/in_systm.h>
65#include <netinet/in.h>
66#include <netinet/ip.h>
67#include <netinet/tcp.h>
68#include <netinet/udp.h>
69
70#include <bus/pci/pcivar.h>
71#include <bus/pci/pcireg.h>
72
73#include <dev/netif/ig_hal/e1000_api.h>
74#include <dev/netif/ig_hal/e1000_82575.h>
75#include <dev/netif/igb/if_igb.h>
76
8d6600da
SZ
77#ifdef IGB_RSS_DEBUG
78#define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79do { \
80 if (sc->rss_debug >= lvl) \
81 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82} while (0)
83#else /* !IGB_RSS_DEBUG */
84#define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) ((void)0)
85#endif /* IGB_RSS_DEBUG */
86
1f7e3916
SZ
87#define IGB_NAME "Intel(R) PRO/1000 "
88#define IGB_DEVICE(id) \
89 { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90#define IGB_DEVICE_NULL { 0, 0, NULL }
91
92static struct igb_device {
93 uint16_t vid;
94 uint16_t did;
95 const char *desc;
96} igb_devices[] = {
97 IGB_DEVICE(82575EB_COPPER),
98 IGB_DEVICE(82575EB_FIBER_SERDES),
99 IGB_DEVICE(82575GB_QUAD_COPPER),
100 IGB_DEVICE(82576),
101 IGB_DEVICE(82576_NS),
102 IGB_DEVICE(82576_NS_SERDES),
103 IGB_DEVICE(82576_FIBER),
104 IGB_DEVICE(82576_SERDES),
105 IGB_DEVICE(82576_SERDES_QUAD),
106 IGB_DEVICE(82576_QUAD_COPPER),
107 IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 IGB_DEVICE(82576_VF),
109 IGB_DEVICE(82580_COPPER),
110 IGB_DEVICE(82580_FIBER),
111 IGB_DEVICE(82580_SERDES),
112 IGB_DEVICE(82580_SGMII),
113 IGB_DEVICE(82580_COPPER_DUAL),
114 IGB_DEVICE(82580_QUAD_FIBER),
115 IGB_DEVICE(DH89XXCC_SERDES),
116 IGB_DEVICE(DH89XXCC_SGMII),
117 IGB_DEVICE(DH89XXCC_SFP),
118 IGB_DEVICE(DH89XXCC_BACKPLANE),
119 IGB_DEVICE(I350_COPPER),
120 IGB_DEVICE(I350_FIBER),
121 IGB_DEVICE(I350_SERDES),
122 IGB_DEVICE(I350_SGMII),
123 IGB_DEVICE(I350_VF),
124
125 /* required last entry */
126 IGB_DEVICE_NULL
127};
128
129static int igb_probe(device_t);
130static int igb_attach(device_t);
131static int igb_detach(device_t);
132static int igb_shutdown(device_t);
133static int igb_suspend(device_t);
134static int igb_resume(device_t);
135
136static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137static void igb_setup_ifp(struct igb_softc *);
48faa653 138static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
23f6ffe4
SZ
139static int igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140static void igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
1f7e3916
SZ
141static void igb_add_sysctl(struct igb_softc *);
142static int igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
9c0ecdcc 143static int igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
b6220144 144static int igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
9c0ecdcc 145static void igb_set_ring_inuse(struct igb_softc *, boolean_t);
4b21dd0f 146static int igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
d0f59cad
SZ
147#ifdef IFPOLL_ENABLE
148static int igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
149static int igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
150#endif
1f7e3916
SZ
151
152static void igb_vf_init_stats(struct igb_softc *);
153static void igb_reset(struct igb_softc *);
154static void igb_update_stats_counters(struct igb_softc *);
155static void igb_update_vf_stats_counters(struct igb_softc *);
156static void igb_update_link_status(struct igb_softc *);
157static void igb_init_tx_unit(struct igb_softc *);
158static void igb_init_rx_unit(struct igb_softc *);
159
160static void igb_set_vlan(struct igb_softc *);
161static void igb_set_multi(struct igb_softc *);
162static void igb_set_promisc(struct igb_softc *);
163static void igb_disable_promisc(struct igb_softc *);
164
a619b256
SZ
165static int igb_alloc_rings(struct igb_softc *);
166static void igb_free_rings(struct igb_softc *);
1f7e3916
SZ
167static int igb_create_tx_ring(struct igb_tx_ring *);
168static int igb_create_rx_ring(struct igb_rx_ring *);
169static void igb_free_tx_ring(struct igb_tx_ring *);
170static void igb_free_rx_ring(struct igb_rx_ring *);
171static void igb_destroy_tx_ring(struct igb_tx_ring *, int);
172static void igb_destroy_rx_ring(struct igb_rx_ring *, int);
173static void igb_init_tx_ring(struct igb_tx_ring *);
174static int igb_init_rx_ring(struct igb_rx_ring *);
175static int igb_newbuf(struct igb_rx_ring *, int, boolean_t);
871c0e2b 176static int igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
b56e8196 177static void igb_rx_refresh(struct igb_rx_ring *, int);
1f7e3916
SZ
178
179static void igb_stop(struct igb_softc *);
180static void igb_init(void *);
181static int igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
182static void igb_media_status(struct ifnet *, struct ifmediareq *);
183static int igb_media_change(struct ifnet *);
184static void igb_timer(void *);
185static void igb_watchdog(struct ifnet *);
f0a26983 186static void igb_start(struct ifnet *, struct ifaltq_subque *);
d0f59cad
SZ
187#ifdef IFPOLL_ENABLE
188static void igb_npoll(struct ifnet *, struct ifpoll_info *);
189static void igb_npoll_rx(struct ifnet *, void *, int);
190static void igb_npoll_tx(struct ifnet *, void *, int);
2f00683b 191static void igb_npoll_status(struct ifnet *);
1f7e3916 192#endif
7d235eb5
SZ
193static void igb_serialize(struct ifnet *, enum ifnet_serialize);
194static void igb_deserialize(struct ifnet *, enum ifnet_serialize);
195static int igb_tryserialize(struct ifnet *, enum ifnet_serialize);
196#ifdef INVARIANTS
197static void igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
198 boolean_t);
199#endif
1f7e3916
SZ
200
201static void igb_intr(void *);
9c0ecdcc 202static void igb_intr_shared(void *);
1f7e3916
SZ
203static void igb_rxeof(struct igb_rx_ring *, int);
204static void igb_txeof(struct igb_tx_ring *);
9c0ecdcc 205static void igb_set_eitr(struct igb_softc *, int, int);
1f7e3916
SZ
206static void igb_enable_intr(struct igb_softc *);
207static void igb_disable_intr(struct igb_softc *);
f6167a56
SZ
208static void igb_init_unshared_intr(struct igb_softc *);
209static void igb_init_intr(struct igb_softc *);
210static int igb_setup_intr(struct igb_softc *);
9c0ecdcc
SZ
211static void igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
212static void igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
be922da6 213static void igb_set_intr_mask(struct igb_softc *);
3c7cc5e2
SZ
214static int igb_alloc_intr(struct igb_softc *);
215static void igb_free_intr(struct igb_softc *);
9c0ecdcc
SZ
216static void igb_teardown_intr(struct igb_softc *);
217static void igb_msix_try_alloc(struct igb_softc *);
218static void igb_msix_free(struct igb_softc *, boolean_t);
219static int igb_msix_setup(struct igb_softc *);
220static void igb_msix_teardown(struct igb_softc *, int);
221static void igb_msix_rx(void *);
222static void igb_msix_tx(void *);
223static void igb_msix_status(void *);
1f7e3916
SZ
224
225/* Management and WOL Support */
226static void igb_get_mgmt(struct igb_softc *);
227static void igb_rel_mgmt(struct igb_softc *);
228static void igb_get_hw_control(struct igb_softc *);
73a4e8ed
SZ
229static void igb_rel_hw_control(struct igb_softc *);
230static void igb_enable_wol(device_t);
1f7e3916
SZ
231
232static device_method_t igb_methods[] = {
233 /* Device interface */
234 DEVMETHOD(device_probe, igb_probe),
235 DEVMETHOD(device_attach, igb_attach),
236 DEVMETHOD(device_detach, igb_detach),
237 DEVMETHOD(device_shutdown, igb_shutdown),
238 DEVMETHOD(device_suspend, igb_suspend),
239 DEVMETHOD(device_resume, igb_resume),
240 { 0, 0 }
241};
242
243static driver_t igb_driver = {
244 "igb",
245 igb_methods,
246 sizeof(struct igb_softc),
247};
248
249static devclass_t igb_devclass;
250
251DECLARE_DUMMY_MODULE(if_igb);
252MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
253DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
254
255static int igb_rxd = IGB_DEFAULT_RXD;
256static int igb_txd = IGB_DEFAULT_TXD;
8d6600da 257static int igb_rxr = 0;
1f7e3916
SZ
258static int igb_msi_enable = 1;
259static int igb_msix_enable = 1;
260static int igb_eee_disabled = 1; /* Energy Efficient Ethernet */
261static int igb_fc_setting = e1000_fc_full;
262
263/*
264 * DMA Coalescing, only for i350 - default to off,
265 * this feature is for power savings
266 */
267static int igb_dma_coalesce = 0;
268
269TUNABLE_INT("hw.igb.rxd", &igb_rxd);
270TUNABLE_INT("hw.igb.txd", &igb_txd);
8d6600da 271TUNABLE_INT("hw.igb.rxr", &igb_rxr);
1f7e3916
SZ
272TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
273TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
274TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
275
276/* i350 specific */
277TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
278TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
279
280static __inline void
281igb_rxcsum(uint32_t staterr, struct mbuf *mp)
282{
283 /* Ignore Checksum bit is set */
284 if (staterr & E1000_RXD_STAT_IXSM)
285 return;
286
287 if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
288 E1000_RXD_STAT_IPCS)
289 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
290
291 if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
292 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
293 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
294 CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
295 mp->m_pkthdr.csum_data = htons(0xffff);
296 }
297 }
298}
299
8d6600da
SZ
300static __inline struct pktinfo *
301igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
302 uint32_t hash, uint32_t hashtype, uint32_t staterr)
303{
304 switch (hashtype) {
305 case E1000_RXDADV_RSSTYPE_IPV4_TCP:
306 pi->pi_netisr = NETISR_IP;
307 pi->pi_flags = 0;
308 pi->pi_l3proto = IPPROTO_TCP;
309 break;
310
311 case E1000_RXDADV_RSSTYPE_IPV4:
312 if (staterr & E1000_RXD_STAT_IXSM)
313 return NULL;
314
315 if ((staterr &
316 (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
317 E1000_RXD_STAT_TCPCS) {
318 pi->pi_netisr = NETISR_IP;
319 pi->pi_flags = 0;
320 pi->pi_l3proto = IPPROTO_UDP;
321 break;
322 }
323 /* FALL THROUGH */
324 default:
325 return NULL;
326 }
327
328 m->m_flags |= M_HASH;
329 m->m_pkthdr.hash = toeplitz_hash(hash);
330 return pi;
331}
332
1f7e3916
SZ
333static int
334igb_probe(device_t dev)
335{
336 const struct igb_device *d;
337 uint16_t vid, did;
338
339 vid = pci_get_vendor(dev);
340 did = pci_get_device(dev);
341
342 for (d = igb_devices; d->desc != NULL; ++d) {
343 if (vid == d->vid && did == d->did) {
344 device_set_desc(dev, d->desc);
345 return 0;
346 }
347 }
348 return ENXIO;
349}
350
351static int
352igb_attach(device_t dev)
353{
354 struct igb_softc *sc = device_get_softc(dev);
1f7e3916 355 uint16_t eeprom_data;
8d6600da 356 int error = 0, i, j, ring_max;
d0f59cad
SZ
357#ifdef IFPOLL_ENABLE
358 int offset, offset_def;
359#endif
1f7e3916
SZ
360
361#ifdef notyet
362 /* SYSCTL stuff */
363 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
364 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
365 OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
366 igb_sysctl_nvm_info, "I", "NVM Information");
1f7e3916
SZ
367 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
368 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
369 OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
370 adapter, 0, igb_set_flowcntl, "I", "Flow Control");
371#endif
372
373 callout_init_mp(&sc->timer);
9c0ecdcc 374 lwkt_serialize_init(&sc->main_serialize);
1f7e3916 375
62be5890
SZ
376 if_initname(&sc->arpcom.ac_if, device_get_name(dev),
377 device_get_unit(dev));
1f7e3916
SZ
378 sc->dev = sc->osdep.dev = dev;
379
380 /*
381 * Determine hardware and mac type
382 */
383 sc->hw.vendor_id = pci_get_vendor(dev);
384 sc->hw.device_id = pci_get_device(dev);
385 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
386 sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
387 sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
388
389 if (e1000_set_mac_type(&sc->hw))
390 return ENXIO;
391
392 /* Are we a VF device? */
393 if (sc->hw.mac.type == e1000_vfadapt ||
394 sc->hw.mac.type == e1000_vfadapt_i350)
395 sc->vf_ifp = 1;
396 else
397 sc->vf_ifp = 0;
398
9b7aa975
SZ
399 /*
400 * Configure total supported RX/TX ring count
401 */
402 switch (sc->hw.mac.type) {
403 case e1000_82575:
404 ring_max = IGB_MAX_RING_82575;
405 break;
406 case e1000_82580:
407 ring_max = IGB_MAX_RING_82580;
408 break;
409 case e1000_i350:
410 ring_max = IGB_MAX_RING_I350;
411 break;
412 case e1000_82576:
413 ring_max = IGB_MAX_RING_82576;
414 break;
415 default:
416 ring_max = IGB_MIN_RING;
417 break;
418 }
419 sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
420 sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
421#ifdef IGB_RSS_DEBUG
422 sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
423#endif
424 sc->rx_ring_inuse = sc->rx_ring_cnt;
425 sc->tx_ring_cnt = 1; /* XXX */
426
23f6ffe4
SZ
427 if (sc->hw.mac.type == e1000_82575)
428 sc->flags |= IGB_FLAG_TSO_IPLEN0;
429
1f7e3916
SZ
430 /* Enable bus mastering */
431 pci_enable_busmaster(dev);
432
433 /*
434 * Allocate IO memory
435 */
436 sc->mem_rid = PCIR_BAR(0);
437 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
438 RF_ACTIVE);
439 if (sc->mem_res == NULL) {
440 device_printf(dev, "Unable to allocate bus resource: memory\n");
441 error = ENXIO;
442 goto failed;
443 }
444 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
445 sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
446
447 sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
448
1f7e3916
SZ
449 /* Save PCI command register for Shared Code */
450 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
451 sc->hw.back = &sc->osdep;
452
1f7e3916
SZ
453 /* Do Shared Code initialization */
454 if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
455 device_printf(dev, "Setup of Shared code failed\n");
456 error = ENXIO;
457 goto failed;
458 }
459
460 e1000_get_bus_info(&sc->hw);
461
462 sc->hw.mac.autoneg = DO_AUTO_NEG;
463 sc->hw.phy.autoneg_wait_to_complete = FALSE;
464 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
465
466 /* Copper options */
467 if (sc->hw.phy.media_type == e1000_media_type_copper) {
468 sc->hw.phy.mdix = AUTO_ALL_MODES;
469 sc->hw.phy.disable_polarity_correction = FALSE;
470 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
471 }
472
473 /* Set the frame limits assuming standard ethernet sized frames. */
474 sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
1f7e3916 475
a619b256
SZ
476 /* Allocate RX/TX rings */
477 error = igb_alloc_rings(sc);
1f7e3916
SZ
478 if (error)
479 goto failed;
480
d0f59cad
SZ
481#ifdef IFPOLL_ENABLE
482 /*
483 * NPOLLING RX CPU offset
484 */
485 if (sc->rx_ring_cnt == ncpus2) {
486 offset = 0;
487 } else {
488 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
489 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
490 if (offset >= ncpus2 ||
491 offset % sc->rx_ring_cnt != 0) {
492 device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
493 offset, offset_def);
494 offset = offset_def;
495 }
496 }
497 sc->rx_npoll_off = offset;
498
499 /*
500 * NPOLLING TX CPU offset
501 */
502 offset_def = sc->rx_npoll_off;
503 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
504 if (offset >= ncpus2) {
505 device_printf(dev, "invalid npoll.txoff %d, use %d\n",
506 offset, offset_def);
507 offset = offset_def;
508 }
509 sc->tx_npoll_off = offset;
510#endif
511
3c7cc5e2
SZ
512 /* Allocate interrupt */
513 error = igb_alloc_intr(sc);
514 if (error)
a1647e40 515 goto failed;
a1647e40
SZ
516
517 /*
7d235eb5
SZ
518 * Setup serializers
519 */
7d235eb5
SZ
520 i = 0;
521 sc->serializes[i++] = &sc->main_serialize;
522
523 sc->tx_serialize = i;
524 for (j = 0; j < sc->tx_ring_cnt; ++j)
525 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
526
527 sc->rx_serialize = i;
528 for (j = 0; j < sc->rx_ring_cnt; ++j)
529 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
530
531 sc->serialize_cnt = i;
532 KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
533
1f7e3916
SZ
534 /* Allocate the appropriate stats memory */
535 if (sc->vf_ifp) {
536 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
537 M_WAITOK | M_ZERO);
538 igb_vf_init_stats(sc);
539 } else {
540 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
541 M_WAITOK | M_ZERO);
542 }
543
544 /* Allocate multicast array memory. */
545 sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
546 M_DEVBUF, M_WAITOK);
547
548 /* Some adapter-specific advanced features */
549 if (sc->hw.mac.type >= e1000_i350) {
550#ifdef notyet
551 igb_set_sysctl_value(adapter, "dma_coalesce",
552 "configure dma coalesce",
553 &adapter->dma_coalesce, igb_dma_coalesce);
554 igb_set_sysctl_value(adapter, "eee_disabled",
555 "enable Energy Efficient Ethernet",
556 &adapter->hw.dev_spec._82575.eee_disable,
557 igb_eee_disabled);
558#else
559 sc->dma_coalesce = igb_dma_coalesce;
560 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
561#endif
562 e1000_set_eee_i350(&sc->hw);
563 }
564
565 /*
566 * Start from a known state, this is important in reading the nvm and
567 * mac from that.
568 */
569 e1000_reset_hw(&sc->hw);
570
571 /* Make sure we have a good EEPROM before we read from it */
572 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
573 /*
574 * Some PCI-E parts fail the first check due to
575 * the link being in sleep state, call it again,
576 * if it fails a second time its a real issue.
577 */
578 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
579 device_printf(dev,
580 "The EEPROM Checksum Is Not Valid\n");
581 error = EIO;
582 goto failed;
583 }
584 }
585
586 /* Copy the permanent MAC address out of the EEPROM */
587 if (e1000_read_mac_addr(&sc->hw) < 0) {
588 device_printf(dev, "EEPROM read error while reading MAC"
589 " address\n");
590 error = EIO;
591 goto failed;
592 }
593 if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
594 device_printf(dev, "Invalid MAC address\n");
595 error = EIO;
596 goto failed;
597 }
598
1f7e3916
SZ
599 /* Setup OS specific network interface */
600 igb_setup_ifp(sc);
601
602 /* Add sysctl tree, must after igb_setup_ifp() */
603 igb_add_sysctl(sc);
604
605 /* Now get a good starting state */
606 igb_reset(sc);
607
608 /* Initialize statistics */
609 igb_update_stats_counters(sc);
610
611 sc->hw.mac.get_link_status = 1;
612 igb_update_link_status(sc);
613
614 /* Indicate SOL/IDER usage */
615 if (e1000_check_reset_block(&sc->hw)) {
616 device_printf(dev,
617 "PHY reset is blocked due to SOL/IDER session.\n");
618 }
619
620 /* Determine if we have to control management hardware */
396b7048
SZ
621 if (e1000_enable_mng_pass_thru(&sc->hw))
622 sc->flags |= IGB_FLAG_HAS_MGMT;
1f7e3916
SZ
623
624 /*
625 * Setup Wake-on-Lan
626 */
627 /* APME bit in EEPROM is mapped to WUC.APME */
628 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
629 if (eeprom_data)
630 sc->wol = E1000_WUFC_MAG;
631 /* XXX disable WOL */
632 sc->wol = 0;
633
634#ifdef notyet
635 /* Register for VLAN events */
636 adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
637 igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
638 adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
639 igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
640#endif
641
642#ifdef notyet
643 igb_add_hw_stats(adapter);
644#endif
645
f6167a56 646 error = igb_setup_intr(sc);
1f7e3916 647 if (error) {
1f7e3916
SZ
648 ether_ifdetach(&sc->arpcom.ac_if);
649 goto failed;
650 }
f0a26983
SZ
651
652 for (i = 0; i < sc->tx_ring_cnt; ++i) {
653 struct ifaltq_subque *ifsq =
654 ifq_get_subq(&sc->arpcom.ac_if.if_snd, i);
655 struct igb_tx_ring *txr = &sc->tx_rings[i];
656
657 ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
658 ifsq_set_priv(ifsq, txr);
659 txr->ifsq = ifsq;
660 }
0e23628a 661
1f7e3916
SZ
662 return 0;
663
664failed:
665 igb_detach(dev);
666 return error;
667}
668
669static int
670igb_detach(device_t dev)
671{
672 struct igb_softc *sc = device_get_softc(dev);
673
674 if (device_is_attached(dev)) {
675 struct ifnet *ifp = &sc->arpcom.ac_if;
676
677 ifnet_serialize_all(ifp);
678
679 igb_stop(sc);
680
681 e1000_phy_hw_reset(&sc->hw);
682
683 /* Give control back to firmware */
684 igb_rel_mgmt(sc);
685 igb_rel_hw_control(sc);
686
687 if (sc->wol) {
688 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
689 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
690 igb_enable_wol(dev);
691 }
692
9c0ecdcc 693 igb_teardown_intr(sc);
1f7e3916
SZ
694
695 ifnet_deserialize_all(ifp);
696
697 ether_ifdetach(ifp);
698 } else if (sc->mem_res != NULL) {
699 igb_rel_hw_control(sc);
700 }
701 bus_generic_detach(dev);
702
9c0ecdcc
SZ
703 if (sc->sysctl_tree != NULL)
704 sysctl_ctx_free(&sc->sysctl_ctx);
705
3c7cc5e2 706 igb_free_intr(sc);
1f7e3916 707
9c0ecdcc
SZ
708 if (sc->msix_mem_res != NULL) {
709 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
710 sc->msix_mem_res);
711 }
1f7e3916
SZ
712 if (sc->mem_res != NULL) {
713 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
714 sc->mem_res);
715 }
716
a619b256 717 igb_free_rings(sc);
1f7e3916
SZ
718
719 if (sc->mta != NULL)
720 kfree(sc->mta, M_DEVBUF);
721 if (sc->stats != NULL)
722 kfree(sc->stats, M_DEVBUF);
723
1f7e3916
SZ
724 return 0;
725}
726
727static int
728igb_shutdown(device_t dev)
729{
730 return igb_suspend(dev);
731}
732
733static int
734igb_suspend(device_t dev)
735{
736 struct igb_softc *sc = device_get_softc(dev);
737 struct ifnet *ifp = &sc->arpcom.ac_if;
738
739 ifnet_serialize_all(ifp);
740
741 igb_stop(sc);
742
743 igb_rel_mgmt(sc);
744 igb_rel_hw_control(sc);
745
746 if (sc->wol) {
747 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
748 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
749 igb_enable_wol(dev);
750 }
751
752 ifnet_deserialize_all(ifp);
753
754 return bus_generic_suspend(dev);
755}
756
757static int
758igb_resume(device_t dev)
759{
760 struct igb_softc *sc = device_get_softc(dev);
761 struct ifnet *ifp = &sc->arpcom.ac_if;
f0a26983 762 int i;
1f7e3916
SZ
763
764 ifnet_serialize_all(ifp);
765
766 igb_init(sc);
767 igb_get_mgmt(sc);
768
f0a26983
SZ
769 for (i = 0; i < sc->tx_ring_cnt; ++i)
770 ifsq_devstart(sc->tx_rings[i].ifsq);
1f7e3916
SZ
771
772 ifnet_deserialize_all(ifp);
773
774 return bus_generic_resume(dev);
775}
776
777static int
778igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
779{
780 struct igb_softc *sc = ifp->if_softc;
781 struct ifreq *ifr = (struct ifreq *)data;
782 int max_frame_size, mask, reinit;
783 int error = 0;
784
785 ASSERT_IFNET_SERIALIZED_ALL(ifp);
786
787 switch (command) {
788 case SIOCSIFMTU:
789 max_frame_size = 9234;
790 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
791 ETHER_CRC_LEN) {
792 error = EINVAL;
793 break;
794 }
795
796 ifp->if_mtu = ifr->ifr_mtu;
797 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
798 ETHER_CRC_LEN;
799
800 if (ifp->if_flags & IFF_RUNNING)
801 igb_init(sc);
802 break;
803
804 case SIOCSIFFLAGS:
805 if (ifp->if_flags & IFF_UP) {
806 if (ifp->if_flags & IFF_RUNNING) {
807 if ((ifp->if_flags ^ sc->if_flags) &
808 (IFF_PROMISC | IFF_ALLMULTI)) {
809 igb_disable_promisc(sc);
810 igb_set_promisc(sc);
811 }
812 } else {
813 igb_init(sc);
814 }
815 } else if (ifp->if_flags & IFF_RUNNING) {
816 igb_stop(sc);
817 }
818 sc->if_flags = ifp->if_flags;
819 break;
820
821 case SIOCADDMULTI:
822 case SIOCDELMULTI:
823 if (ifp->if_flags & IFF_RUNNING) {
824 igb_disable_intr(sc);
825 igb_set_multi(sc);
d0f59cad
SZ
826#ifdef IFPOLL_ENABLE
827 if (!(ifp->if_flags & IFF_NPOLLING))
1f7e3916
SZ
828#endif
829 igb_enable_intr(sc);
830 }
831 break;
832
833 case SIOCSIFMEDIA:
834 /*
835 * As the speed/duplex settings are being
836 * changed, we need toreset the PHY.
837 */
838 sc->hw.phy.reset_disable = FALSE;
839
840 /* Check SOL/IDER usage */
841 if (e1000_check_reset_block(&sc->hw)) {
842 if_printf(ifp, "Media change is "
843 "blocked due to SOL/IDER session.\n");
844 break;
845 }
846 /* FALL THROUGH */
847
848 case SIOCGIFMEDIA:
849 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
850 break;
851
852 case SIOCSIFCAP:
853 reinit = 0;
854 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
77d8cab9
SZ
855 if (mask & IFCAP_RXCSUM) {
856 ifp->if_capenable ^= IFCAP_RXCSUM;
1f7e3916
SZ
857 reinit = 1;
858 }
859 if (mask & IFCAP_VLAN_HWTAGGING) {
860 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
861 reinit = 1;
862 }
77d8cab9
SZ
863 if (mask & IFCAP_TXCSUM) {
864 ifp->if_capenable ^= IFCAP_TXCSUM;
865 if (ifp->if_capenable & IFCAP_TXCSUM)
866 ifp->if_hwassist |= IGB_CSUM_FEATURES;
867 else
868 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
869 }
23f6ffe4
SZ
870 if (mask & IFCAP_TSO) {
871 ifp->if_capenable ^= IFCAP_TSO;
872 if (ifp->if_capenable & IFCAP_TSO)
873 ifp->if_hwassist |= CSUM_TSO;
874 else
875 ifp->if_hwassist &= ~CSUM_TSO;
876 }
8d6600da
SZ
877 if (mask & IFCAP_RSS)
878 ifp->if_capenable ^= IFCAP_RSS;
1f7e3916
SZ
879 if (reinit && (ifp->if_flags & IFF_RUNNING))
880 igb_init(sc);
881 break;
882
883 default:
884 error = ether_ioctl(ifp, command, data);
885 break;
886 }
887 return error;
888}
889
890static void
891igb_init(void *xsc)
892{
893 struct igb_softc *sc = xsc;
894 struct ifnet *ifp = &sc->arpcom.ac_if;
9c0ecdcc 895 boolean_t polling;
1f7e3916
SZ
896 int i;
897
898 ASSERT_IFNET_SERIALIZED_ALL(ifp);
899
900 igb_stop(sc);
901
902 /* Get the latest mac address, User can use a LAA */
903 bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
904
905 /* Put the address into the Receive Address Array */
906 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
907
908 igb_reset(sc);
909 igb_update_link_status(sc);
910
911 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
912
1f7e3916
SZ
913 /* Configure for OS presence */
914 igb_get_mgmt(sc);
915
9c0ecdcc 916 polling = FALSE;
d0f59cad
SZ
917#ifdef IFPOLL_ENABLE
918 if (ifp->if_flags & IFF_NPOLLING)
9c0ecdcc 919 polling = TRUE;
be922da6 920#endif
9c0ecdcc
SZ
921
922 /* Configured used RX/TX rings */
923 igb_set_ring_inuse(sc, polling);
924
925 /* Initialize interrupt */
926 igb_init_intr(sc);
be922da6 927
1f7e3916 928 /* Prepare transmit descriptors and buffers */
27866bf1 929 for (i = 0; i < sc->tx_ring_cnt; ++i)
1f7e3916
SZ
930 igb_init_tx_ring(&sc->tx_rings[i]);
931 igb_init_tx_unit(sc);
932
933 /* Setup Multicast table */
934 igb_set_multi(sc);
935
936#if 0
937 /*
938 * Figure out the desired mbuf pool
939 * for doing jumbo/packetsplit
940 */
941 if (adapter->max_frame_size <= 2048)
942 adapter->rx_mbuf_sz = MCLBYTES;
943 else if (adapter->max_frame_size <= 4096)
944 adapter->rx_mbuf_sz = MJUMPAGESIZE;
945 else
946 adapter->rx_mbuf_sz = MJUM9BYTES;
1f7e3916
SZ
947#endif
948
949 /* Prepare receive descriptors and buffers */
be922da6 950 for (i = 0; i < sc->rx_ring_inuse; ++i) {
1f7e3916
SZ
951 int error;
952
953 error = igb_init_rx_ring(&sc->rx_rings[i]);
954 if (error) {
955 if_printf(ifp, "Could not setup receive structures\n");
956 igb_stop(sc);
957 return;
958 }
959 }
960 igb_init_rx_unit(sc);
961
962 /* Enable VLAN support */
963 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
964 igb_set_vlan(sc);
965
966 /* Don't lose promiscuous settings */
967 igb_set_promisc(sc);
968
1f7e3916 969 ifp->if_flags |= IFF_RUNNING;
f0a26983
SZ
970 for (i = 0; i < sc->tx_ring_cnt; ++i)
971 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1f7e3916 972
7b61c9f2
SZ
973 if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
974 sc->timer_cpuid = 0; /* XXX fixed */
975 else
976 sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
977 callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1f7e3916
SZ
978 e1000_clear_hw_cntrs_base_generic(&sc->hw);
979
9c0ecdcc 980 /* This clears any pending interrupts */
1f7e3916 981 E1000_READ_REG(&sc->hw, E1000_ICR);
9c0ecdcc 982
1f7e3916
SZ
983 /*
984 * Only enable interrupts if we are not polling, make sure
985 * they are off otherwise.
986 */
9c0ecdcc 987 if (polling) {
1f7e3916 988 igb_disable_intr(sc);
9c0ecdcc 989 } else {
1f7e3916
SZ
990 igb_enable_intr(sc);
991 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
992 }
993
994 /* Set Energy Efficient Ethernet */
995 e1000_set_eee_i350(&sc->hw);
996
997 /* Don't reset the phy next time init gets called */
998 sc->hw.phy.reset_disable = TRUE;
999}
1000
1001static void
1002igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1003{
1004 struct igb_softc *sc = ifp->if_softc;
1005 u_char fiber_type = IFM_1000_SX;
1006
1007 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1008
1009 igb_update_link_status(sc);
1010
1011 ifmr->ifm_status = IFM_AVALID;
1012 ifmr->ifm_active = IFM_ETHER;
1013
1014 if (!sc->link_active)
1015 return;
1016
1017 ifmr->ifm_status |= IFM_ACTIVE;
1018
1019 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1020 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1021 ifmr->ifm_active |= fiber_type | IFM_FDX;
1022 } else {
1023 switch (sc->link_speed) {
1024 case 10:
1025 ifmr->ifm_active |= IFM_10_T;
1026 break;
1027
1028 case 100:
1029 ifmr->ifm_active |= IFM_100_TX;
1030 break;
1031
1032 case 1000:
1033 ifmr->ifm_active |= IFM_1000_T;
1034 break;
1035 }
1036 if (sc->link_duplex == FULL_DUPLEX)
1037 ifmr->ifm_active |= IFM_FDX;
1038 else
1039 ifmr->ifm_active |= IFM_HDX;
1040 }
1041}
1042
1043static int
1044igb_media_change(struct ifnet *ifp)
1045{
1046 struct igb_softc *sc = ifp->if_softc;
1047 struct ifmedia *ifm = &sc->media;
1048
1049 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1050
1051 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1052 return EINVAL;
1053
1054 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1055 case IFM_AUTO:
1056 sc->hw.mac.autoneg = DO_AUTO_NEG;
1057 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1058 break;
1059
1060 case IFM_1000_LX:
1061 case IFM_1000_SX:
1062 case IFM_1000_T:
1063 sc->hw.mac.autoneg = DO_AUTO_NEG;
1064 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1065 break;
1066
1067 case IFM_100_TX:
1068 sc->hw.mac.autoneg = FALSE;
1069 sc->hw.phy.autoneg_advertised = 0;
1070 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1071 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1072 else
1073 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1074 break;
1075
1076 case IFM_10_T:
1077 sc->hw.mac.autoneg = FALSE;
1078 sc->hw.phy.autoneg_advertised = 0;
1079 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1080 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1081 else
1082 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1083 break;
1084
1085 default:
1086 if_printf(ifp, "Unsupported media type\n");
1087 break;
1088 }
1089
1090 igb_init(sc);
1091
1092 return 0;
1093}
1094
1095static void
1096igb_set_promisc(struct igb_softc *sc)
1097{
1098 struct ifnet *ifp = &sc->arpcom.ac_if;
1099 struct e1000_hw *hw = &sc->hw;
1100 uint32_t reg;
1101
1102 if (sc->vf_ifp) {
1103 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1104 return;
1105 }
1106
1107 reg = E1000_READ_REG(hw, E1000_RCTL);
1108 if (ifp->if_flags & IFF_PROMISC) {
1109 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1110 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1111 } else if (ifp->if_flags & IFF_ALLMULTI) {
1112 reg |= E1000_RCTL_MPE;
1113 reg &= ~E1000_RCTL_UPE;
1114 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1115 }
1116}
1117
1118static void
1119igb_disable_promisc(struct igb_softc *sc)
1120{
1121 struct e1000_hw *hw = &sc->hw;
1122 uint32_t reg;
1123
1124 if (sc->vf_ifp) {
1125 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1126 return;
1127 }
1128 reg = E1000_READ_REG(hw, E1000_RCTL);
1129 reg &= ~E1000_RCTL_UPE;
1130 reg &= ~E1000_RCTL_MPE;
1131 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1132}
1133
1134static void
1135igb_set_multi(struct igb_softc *sc)
1136{
1137 struct ifnet *ifp = &sc->arpcom.ac_if;
1138 struct ifmultiaddr *ifma;
1139 uint32_t reg_rctl = 0;
1140 uint8_t *mta;
1141 int mcnt = 0;
1142
1143 mta = sc->mta;
1144 bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1145
1146 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1147 if (ifma->ifma_addr->sa_family != AF_LINK)
1148 continue;
1149
1150 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1151 break;
1152
1153 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1154 &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1155 mcnt++;
1156 }
1157
1158 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1159 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1160 reg_rctl |= E1000_RCTL_MPE;
1161 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1162 } else {
1163 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1164 }
1165}
1166
1167static void
1168igb_timer(void *xsc)
1169{
1170 struct igb_softc *sc = xsc;
1f7e3916 1171
27dd00d6 1172 lwkt_serialize_enter(&sc->main_serialize);
1f7e3916
SZ
1173
1174 igb_update_link_status(sc);
1175 igb_update_stats_counters(sc);
1176
7b61c9f2 1177 callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1f7e3916 1178
27dd00d6 1179 lwkt_serialize_exit(&sc->main_serialize);
1f7e3916
SZ
1180}
1181
1182static void
1183igb_update_link_status(struct igb_softc *sc)
1184{
1185 struct ifnet *ifp = &sc->arpcom.ac_if;
1186 struct e1000_hw *hw = &sc->hw;
1187 uint32_t link_check, thstat, ctrl;
1188
1189 link_check = thstat = ctrl = 0;
1190
1191 /* Get the cached link value or read for real */
1192 switch (hw->phy.media_type) {
1193 case e1000_media_type_copper:
1194 if (hw->mac.get_link_status) {
1195 /* Do the work to read phy */
1196 e1000_check_for_link(hw);
1197 link_check = !hw->mac.get_link_status;
1198 } else {
1199 link_check = TRUE;
1200 }
1201 break;
1202
1203 case e1000_media_type_fiber:
1204 e1000_check_for_link(hw);
1205 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1206 break;
1207
1208 case e1000_media_type_internal_serdes:
1209 e1000_check_for_link(hw);
1210 link_check = hw->mac.serdes_has_link;
1211 break;
1212
1213 /* VF device is type_unknown */
1214 case e1000_media_type_unknown:
1215 e1000_check_for_link(hw);
1216 link_check = !hw->mac.get_link_status;
1217 /* Fall thru */
1218 default:
1219 break;
1220 }
1221
1222 /* Check for thermal downshift or shutdown */
1223 if (hw->mac.type == e1000_i350) {
1224 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1225 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1226 }
1227
1228 /* Now we check if a transition has happened */
1229 if (link_check && sc->link_active == 0) {
1230 e1000_get_speed_and_duplex(hw,
1231 &sc->link_speed, &sc->link_duplex);
1232 if (bootverbose) {
1233 if_printf(ifp, "Link is up %d Mbps %s\n",
1234 sc->link_speed,
1235 sc->link_duplex == FULL_DUPLEX ?
1236 "Full Duplex" : "Half Duplex");
1237 }
1238 sc->link_active = 1;
1239
1240 ifp->if_baudrate = sc->link_speed * 1000000;
1241 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1242 (thstat & E1000_THSTAT_LINK_THROTTLE))
1243 if_printf(ifp, "Link: thermal downshift\n");
1244 /* This can sleep */
1245 ifp->if_link_state = LINK_STATE_UP;
1246 if_link_state_change(ifp);
1247 } else if (!link_check && sc->link_active == 1) {
1248 ifp->if_baudrate = sc->link_speed = 0;
1249 sc->link_duplex = 0;
1250 if (bootverbose)
1251 if_printf(ifp, "Link is Down\n");
1252 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1253 (thstat & E1000_THSTAT_PWR_DOWN))
1254 if_printf(ifp, "Link: thermal shutdown\n");
1255 sc->link_active = 0;
1256 /* This can sleep */
1257 ifp->if_link_state = LINK_STATE_DOWN;
1258 if_link_state_change(ifp);
1259 }
1260}
1261
1262static void
1263igb_stop(struct igb_softc *sc)
1264{
1265 struct ifnet *ifp = &sc->arpcom.ac_if;
1266 int i;
1267
1268 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1269
1270 igb_disable_intr(sc);
1271
1272 callout_stop(&sc->timer);
1273
9ed293e0 1274 ifp->if_flags &= ~IFF_RUNNING;
f0a26983
SZ
1275 for (i = 0; i < sc->tx_ring_cnt; ++i)
1276 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1f7e3916
SZ
1277 ifp->if_timer = 0;
1278
1279 e1000_reset_hw(&sc->hw);
1280 E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1281
1282 e1000_led_off(&sc->hw);
1283 e1000_cleanup_led(&sc->hw);
1284
27866bf1 1285 for (i = 0; i < sc->tx_ring_cnt; ++i)
1f7e3916 1286 igb_free_tx_ring(&sc->tx_rings[i]);
27866bf1 1287 for (i = 0; i < sc->rx_ring_cnt; ++i)
1f7e3916
SZ
1288 igb_free_rx_ring(&sc->rx_rings[i]);
1289}
1290
1291static void
1292igb_reset(struct igb_softc *sc)
1293{
1294 struct ifnet *ifp = &sc->arpcom.ac_if;
1295 struct e1000_hw *hw = &sc->hw;
1296 struct e1000_fc_info *fc = &hw->fc;
1297 uint32_t pba = 0;
1298 uint16_t hwm;
1299
1300 /* Let the firmware know the OS is in control */
1301 igb_get_hw_control(sc);
1302
1303 /*
1304 * Packet Buffer Allocation (PBA)
1305 * Writing PBA sets the receive portion of the buffer
1306 * the remainder is used for the transmit buffer.
1307 */
1308 switch (hw->mac.type) {
1309 case e1000_82575:
1310 pba = E1000_PBA_32K;
1311 break;
1312
1313 case e1000_82576:
1314 case e1000_vfadapt:
1315 pba = E1000_READ_REG(hw, E1000_RXPBS);
1316 pba &= E1000_RXPBS_SIZE_MASK_82576;
1317 break;
1318
1319 case e1000_82580:
1320 case e1000_i350:
1321 case e1000_vfadapt_i350:
1322 pba = E1000_READ_REG(hw, E1000_RXPBS);
1323 pba = e1000_rxpbs_adjust_82580(pba);
1324 break;
1325 /* XXX pba = E1000_PBA_35K; */
1326
1327 default:
1328 break;
1329 }
1330
1331 /* Special needs in case of Jumbo frames */
1332 if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1333 uint32_t tx_space, min_tx, min_rx;
1334
1335 pba = E1000_READ_REG(hw, E1000_PBA);
1336 tx_space = pba >> 16;
1337 pba &= 0xffff;
1338
1339 min_tx = (sc->max_frame_size +
1340 sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1341 min_tx = roundup2(min_tx, 1024);
1342 min_tx >>= 10;
1343 min_rx = sc->max_frame_size;
1344 min_rx = roundup2(min_rx, 1024);
1345 min_rx >>= 10;
1346 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1347 pba = pba - (min_tx - tx_space);
1348 /*
1349 * if short on rx space, rx wins
1350 * and must trump tx adjustment
1351 */
1352 if (pba < min_rx)
1353 pba = min_rx;
1354 }
1355 E1000_WRITE_REG(hw, E1000_PBA, pba);
1356 }
1357
1358 /*
1359 * These parameters control the automatic generation (Tx) and
1360 * response (Rx) to Ethernet PAUSE frames.
1361 * - High water mark should allow for at least two frames to be
1362 * received after sending an XOFF.
1363 * - Low water mark works best when it is very near the high water mark.
1364 * This allows the receiver to restart by sending XON when it has
1365 * drained a bit.
1366 */
1367 hwm = min(((pba << 10) * 9 / 10),
1368 ((pba << 10) - 2 * sc->max_frame_size));
1369
1370 if (hw->mac.type < e1000_82576) {
1371 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1372 fc->low_water = fc->high_water - 8;
1373 } else {
1374 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1375 fc->low_water = fc->high_water - 16;
1376 }
1377 fc->pause_time = IGB_FC_PAUSE_TIME;
1378 fc->send_xon = TRUE;
1379
1380 /* Issue a global reset */
1381 e1000_reset_hw(hw);
1382 E1000_WRITE_REG(hw, E1000_WUC, 0);
1383
1384 if (e1000_init_hw(hw) < 0)
1385 if_printf(ifp, "Hardware Initialization Failed\n");
1386
1387 /* Setup DMA Coalescing */
1388 if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1389 uint32_t reg;
1390
1391 hwm = (pba - 4) << 10;
1392 reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1393 & E1000_DMACR_DMACTHR_MASK;
1394
1395 /* transition to L0x or L1 if available..*/
1396 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1397
1398 /* timer = +-1000 usec in 32usec intervals */
1399 reg |= (1000 >> 5);
1400 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1401
1402 /* No lower threshold */
1403 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1404
1405 /* set hwm to PBA - 2 * max frame size */
1406 E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1407
1408 /* Set the interval before transition */
1409 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1410 reg |= 0x800000FF; /* 255 usec */
1411 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1412
1413 /* free space in tx packet buffer to wake from DMA coal */
1414 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1415 (20480 - (2 * sc->max_frame_size)) >> 6);
1416
1417 /* make low power state decision controlled by DMA coal */
1418 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1419 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1420 reg | E1000_PCIEMISC_LX_DECISION);
1421 if_printf(ifp, "DMA Coalescing enabled\n");
1422 }
1423
1424 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1425 e1000_get_phy_info(hw);
1426 e1000_check_for_link(hw);
1427}
1428
1429static void
1430igb_setup_ifp(struct igb_softc *sc)
1431{
1432 struct ifnet *ifp = &sc->arpcom.ac_if;
1433
1f7e3916
SZ
1434 ifp->if_softc = sc;
1435 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
9c0ecdcc 1436 ifp->if_init = igb_init;
1f7e3916
SZ
1437 ifp->if_ioctl = igb_ioctl;
1438 ifp->if_start = igb_start;
7d235eb5
SZ
1439 ifp->if_serialize = igb_serialize;
1440 ifp->if_deserialize = igb_deserialize;
1441 ifp->if_tryserialize = igb_tryserialize;
1442#ifdef INVARIANTS
1443 ifp->if_serialize_assert = igb_serialize_assert;
1444#endif
d0f59cad
SZ
1445#ifdef IFPOLL_ENABLE
1446 ifp->if_npoll = igb_npoll;
1f7e3916
SZ
1447#endif
1448 ifp->if_watchdog = igb_watchdog;
1449
91b8700a 1450 ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1f7e3916
SZ
1451 ifq_set_ready(&ifp->if_snd);
1452
1453 ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1454
1455 ifp->if_capabilities =
23f6ffe4 1456 IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
8d6600da
SZ
1457 if (IGB_ENABLE_HWRSS(sc))
1458 ifp->if_capabilities |= IFCAP_RSS;
1f7e3916 1459 ifp->if_capenable = ifp->if_capabilities;
23f6ffe4 1460 ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1f7e3916
SZ
1461
1462 /*
1463 * Tell the upper layer(s) we support long frames
1464 */
1465 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1466
1467 /*
1468 * Specify the media types supported by this adapter and register
1469 * callbacks to update media and link information
1470 */
1471 ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1472 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1473 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1474 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1475 0, NULL);
1476 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1477 } else {
1478 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1479 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1480 0, NULL);
1481 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1482 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1483 0, NULL);
1484 if (sc->hw.phy.type != e1000_phy_ife) {
1485 ifmedia_add(&sc->media,
1486 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1487 ifmedia_add(&sc->media,
1488 IFM_ETHER | IFM_1000_T, 0, NULL);
1489 }
1490 }
1491 ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1492 ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1493}
1494
1495static void
1496igb_add_sysctl(struct igb_softc *sc)
1497{
9c0ecdcc 1498 char node[32];
8d6600da 1499 int i;
8d6600da 1500
1f7e3916
SZ
1501 sysctl_ctx_init(&sc->sysctl_ctx);
1502 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1503 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1504 device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1505 if (sc->sysctl_tree == NULL) {
1506 device_printf(sc->dev, "can't add sysctl node\n");
1507 return;
1508 }
1509
1510 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
8d6600da
SZ
1511 OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1512 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
be922da6
SZ
1513 OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1514 "# of RX rings used");
1515 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
8d6600da
SZ
1516 OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1517 "# of RX descs");
1f7e3916 1518 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
8d6600da
SZ
1519 OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1520 "# of TX descs");
1f7e3916 1521
9c0ecdcc
SZ
1522 if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1523 SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1524 SYSCTL_CHILDREN(sc->sysctl_tree),
1525 OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1526 sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1527 } else {
1528 for (i = 0; i < sc->msix_cnt; ++i) {
1529 struct igb_msix_data *msix = &sc->msix_data[i];
1530
1531 ksnprintf(node, sizeof(node), "msix%d_rate", i);
1532 SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1533 SYSCTL_CHILDREN(sc->sysctl_tree),
1534 OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1535 msix, 0, igb_sysctl_msix_rate, "I",
1536 msix->msix_rate_desc);
1537 }
1538 }
b6220144
SZ
1539
1540 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1541 OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1542 sc, 0, igb_sysctl_tx_intr_nsegs, "I",
8d6600da
SZ
1543 "# of segments per TX interrupt");
1544
89358783
SZ
1545 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1546 OID_AUTO, "tx_wreg_nsegs", CTLFLAG_RW,
1547 &sc->tx_rings[0].wreg_nsegs, 0,
871c0e2b
SZ
1548 "# of segments before write to hardare register");
1549
d0f59cad
SZ
1550#ifdef IFPOLL_ENABLE
1551 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1552 OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1553 sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1554 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1555 OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1556 sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1557#endif
1558
8d6600da
SZ
1559#ifdef IGB_RSS_DEBUG
1560 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1561 OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1562 "RSS debug level");
b56e8196 1563#endif
8d6600da 1564 for (i = 0; i < sc->rx_ring_cnt; ++i) {
b56e8196 1565#ifdef IGB_RSS_DEBUG
9c0ecdcc 1566 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
8d6600da 1567 SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
9c0ecdcc 1568 SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
8d6600da 1569 CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
8d6600da 1570#endif
b56e8196
SZ
1571 ksnprintf(node, sizeof(node), "rx%d_wreg", i);
1572 SYSCTL_ADD_INT(&sc->sysctl_ctx,
1573 SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1574 CTLFLAG_RW, &sc->rx_rings[i].rx_wreg, 0,
1575 "# of segments before write to hardare register");
1576 }
1f7e3916
SZ
1577}
1578
1579static int
a619b256 1580igb_alloc_rings(struct igb_softc *sc)
1f7e3916
SZ
1581{
1582 int error, i;
1583
1f7e3916
SZ
1584 /*
1585 * Create top level busdma tag
1586 */
1587 error = bus_dma_tag_create(NULL, 1, 0,
1588 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1589 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1590 &sc->parent_tag);
1591 if (error) {
1592 device_printf(sc->dev, "could not create top level DMA tag\n");
1593 return error;
1594 }
1595
1596 /*
1597 * Allocate TX descriptor rings and buffers
1598 */
7b269c72
SZ
1599 sc->tx_rings = kmalloc_cachealign(
1600 sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1f7e3916 1601 M_DEVBUF, M_WAITOK | M_ZERO);
27866bf1 1602 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1f7e3916
SZ
1603 struct igb_tx_ring *txr = &sc->tx_rings[i];
1604
1605 /* Set up some basics */
1606 txr->sc = sc;
1607 txr->me = i;
7d235eb5 1608 lwkt_serialize_init(&txr->tx_serialize);
1f7e3916
SZ
1609
1610 error = igb_create_tx_ring(txr);
1611 if (error)
1612 return error;
1613 }
1614
1615 /*
1616 * Allocate RX descriptor rings and buffers
1617 */
7b269c72
SZ
1618 sc->rx_rings = kmalloc_cachealign(
1619 sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1f7e3916 1620 M_DEVBUF, M_WAITOK | M_ZERO);
27866bf1 1621 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1f7e3916
SZ
1622 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1623
1624 /* Set up some basics */
1625 rxr->sc = sc;
1626 rxr->me = i;
7d235eb5 1627 lwkt_serialize_init(&rxr->rx_serialize);
1f7e3916
SZ
1628
1629 error = igb_create_rx_ring(rxr);
1630 if (error)
1631 return error;
1632 }
1633
1f7e3916
SZ
1634 return 0;
1635}
1636
1637static void
a619b256 1638igb_free_rings(struct igb_softc *sc)
1f7e3916
SZ
1639{
1640 int i;
1641
1f7e3916 1642 if (sc->tx_rings != NULL) {
91b8700a
SZ
1643 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1644 struct igb_tx_ring *txr = &sc->tx_rings[i];
1645
1646 igb_destroy_tx_ring(txr, txr->num_tx_desc);
1647 }
1f7e3916
SZ
1648 kfree(sc->tx_rings, M_DEVBUF);
1649 }
1650
1651 if (sc->rx_rings != NULL) {
91b8700a
SZ
1652 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1653 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1654
1655 igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1656 }
1f7e3916
SZ
1657 kfree(sc->rx_rings, M_DEVBUF);
1658 }
1659}
1660
1661static int
1662igb_create_tx_ring(struct igb_tx_ring *txr)
1663{
c1a8a339 1664 int tsize, error, i, ntxd;
1f7e3916
SZ
1665
1666 /*
1667 * Validate number of transmit descriptors. It must not exceed
1668 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1669 */
c1a8a339
SZ
1670 ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1671 if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1672 ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1f7e3916
SZ
1673 device_printf(txr->sc->dev,
1674 "Using %d TX descriptors instead of %d!\n",
c1a8a339 1675 IGB_DEFAULT_TXD, ntxd);
91b8700a 1676 txr->num_tx_desc = IGB_DEFAULT_TXD;
1f7e3916 1677 } else {
c1a8a339 1678 txr->num_tx_desc = ntxd;
1f7e3916
SZ
1679 }
1680
1681 /*
1682 * Allocate TX descriptor ring
1683 */
91b8700a 1684 tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1f7e3916
SZ
1685 IGB_DBA_ALIGN);
1686 txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1687 IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1688 &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1689 if (txr->txdma.dma_vaddr == NULL) {
1690 device_printf(txr->sc->dev,
1691 "Unable to allocate TX Descriptor memory\n");
1692 return ENOMEM;
1693 }
1694 txr->tx_base = txr->txdma.dma_vaddr;
1695 bzero(txr->tx_base, tsize);
1696
e2a02a4c
SZ
1697 tsize = __VM_CACHELINE_ALIGN(
1698 sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1699 txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1f7e3916
SZ
1700
1701 /*
b6220144
SZ
1702 * Allocate TX head write-back buffer
1703 */
1704 txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1705 __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1706 &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1707 if (txr->tx_hdr == NULL) {
1708 device_printf(txr->sc->dev,
1709 "Unable to allocate TX head write-back buffer\n");
1710 return ENOMEM;
1711 }
1712
1713 /*
1f7e3916
SZ
1714 * Create DMA tag for TX buffers
1715 */
1716 error = bus_dma_tag_create(txr->sc->parent_tag,
1717 1, 0, /* alignment, bounds */
1718 BUS_SPACE_MAXADDR, /* lowaddr */
1719 BUS_SPACE_MAXADDR, /* highaddr */
1720 NULL, NULL, /* filter, filterarg */
1721 IGB_TSO_SIZE, /* maxsize */
1722 IGB_MAX_SCATTER, /* nsegments */
1723 PAGE_SIZE, /* maxsegsize */
1724 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1725 BUS_DMA_ONEBPAGE, /* flags */
1726 &txr->tx_tag);
1727 if (error) {
1728 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1729 kfree(txr->tx_buf, M_DEVBUF);
1730 txr->tx_buf = NULL;
1731 return error;
1732 }
1733
1734 /*
1735 * Create DMA maps for TX buffers
1736 */
91b8700a 1737 for (i = 0; i < txr->num_tx_desc; ++i) {
1f7e3916
SZ
1738 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1739
1740 error = bus_dmamap_create(txr->tx_tag,
1741 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1742 if (error) {
1743 device_printf(txr->sc->dev,
1744 "Unable to create TX DMA map\n");
1745 igb_destroy_tx_ring(txr, i);
1746 return error;
1747 }
1748 }
b6220144
SZ
1749
1750 /*
1751 * Initialize various watermark
1752 */
1753 txr->spare_desc = IGB_TX_SPARE;
91b8700a 1754 txr->intr_nsegs = txr->num_tx_desc / 16;
871c0e2b 1755 txr->wreg_nsegs = 8;
91b8700a
SZ
1756 txr->oact_hi_desc = txr->num_tx_desc / 2;
1757 txr->oact_lo_desc = txr->num_tx_desc / 8;
b6220144
SZ
1758 if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1759 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1760 if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1761 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1762
1f7e3916
SZ
1763 return 0;
1764}
1765
1766static void
1767igb_free_tx_ring(struct igb_tx_ring *txr)
1768{
1769 int i;
1770
91b8700a 1771 for (i = 0; i < txr->num_tx_desc; ++i) {
1f7e3916
SZ
1772 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1773
1774 if (txbuf->m_head != NULL) {
1775 bus_dmamap_unload(txr->tx_tag, txbuf->map);
1776 m_freem(txbuf->m_head);
1777 txbuf->m_head = NULL;
1778 }
1779 }
1780}
1781
1782static void
1783igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1784{
1785 int i;
1786
1787 if (txr->txdma.dma_vaddr != NULL) {
1788 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1789 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1790 txr->txdma.dma_map);
1791 bus_dma_tag_destroy(txr->txdma.dma_tag);
1792 txr->txdma.dma_vaddr = NULL;
1793 }
1794
b6220144
SZ
1795 if (txr->tx_hdr != NULL) {
1796 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1797 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1798 txr->tx_hdr_dmap);
1799 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1800 txr->tx_hdr = NULL;
1801 }
1802
1f7e3916
SZ
1803 if (txr->tx_buf == NULL)
1804 return;
1805
1806 for (i = 0; i < ndesc; ++i) {
1807 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1808
1809 KKASSERT(txbuf->m_head == NULL);
1810 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1811 }
1812 bus_dma_tag_destroy(txr->tx_tag);
1813
1814 kfree(txr->tx_buf, M_DEVBUF);
1815 txr->tx_buf = NULL;
1816}
1817
1818static void
1819igb_init_tx_ring(struct igb_tx_ring *txr)
1820{
1f7e3916
SZ
1821 /* Clear the old descriptor contents */
1822 bzero(txr->tx_base,
91b8700a 1823 sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1f7e3916 1824
b6220144
SZ
1825 /* Clear TX head write-back buffer */
1826 *(txr->tx_hdr) = 0;
1827
1f7e3916
SZ
1828 /* Reset indices */
1829 txr->next_avail_desc = 0;
1830 txr->next_to_clean = 0;
b6220144 1831 txr->tx_nsegs = 0;
1f7e3916
SZ
1832
1833 /* Set number of descriptors available */
91b8700a 1834 txr->tx_avail = txr->num_tx_desc;
1f7e3916
SZ
1835}
1836
1837static void
1838igb_init_tx_unit(struct igb_softc *sc)
1839{
1840 struct e1000_hw *hw = &sc->hw;
1841 uint32_t tctl;
1842 int i;
1843
1844 /* Setup the Tx Descriptor Rings */
27866bf1 1845 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1f7e3916
SZ
1846 struct igb_tx_ring *txr = &sc->tx_rings[i];
1847 uint64_t bus_addr = txr->txdma.dma_paddr;
c3162c4e 1848 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1f7e3916 1849 uint32_t txdctl = 0;
b6220144 1850 uint32_t dca_txctrl;
1f7e3916
SZ
1851
1852 E1000_WRITE_REG(hw, E1000_TDLEN(i),
91b8700a 1853 txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1f7e3916
SZ
1854 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1855 (uint32_t)(bus_addr >> 32));
1856 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1857 (uint32_t)bus_addr);
1858
1859 /* Setup the HW Tx Head and Tail descriptor pointers */
1860 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1861 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1862
b6220144
SZ
1863 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1864 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1865 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1866
54691ff1
SZ
1867 /*
1868 * Don't set WB_on_EITR:
1869 * - 82575 does not have it
1870 * - It almost has no effect on 82576, see:
1871 * 82576 specification update errata #26
1872 * - It causes unnecessary bus traffic
1873 */
b6220144 1874 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
c3162c4e 1875 (uint32_t)(hdr_paddr >> 32));
b6220144 1876 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
c3162c4e 1877 ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
c7c6ca44
SZ
1878
1879 /*
1880 * WTHRESH is ignored by the hardware, since header
1881 * write back mode is used.
1882 */
1883 txdctl |= IGB_TX_PTHRESH;
1884 txdctl |= IGB_TX_HTHRESH << 8;
1885 txdctl |= IGB_TX_WTHRESH << 16;
1886 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1887 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1f7e3916
SZ
1888 }
1889
1890 if (sc->vf_ifp)
1891 return;
1892
1893 e1000_config_collision_dist(hw);
1894
1895 /* Program the Transmit Control Register */
1896 tctl = E1000_READ_REG(hw, E1000_TCTL);
1897 tctl &= ~E1000_TCTL_CT;
1898 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1899 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1900
1901 /* This write will effectively turn on the transmit unit. */
1902 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1903}
1904
1905static boolean_t
48faa653 1906igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1f7e3916
SZ
1907{
1908 struct e1000_adv_tx_context_desc *TXD;
1f7e3916 1909 uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1f7e3916 1910 int ehdrlen, ctxd, ip_hlen = 0;
1f7e3916
SZ
1911 boolean_t offload = TRUE;
1912
1913 if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1914 offload = FALSE;
1915
1916 vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
48faa653 1917
1f7e3916 1918 ctxd = txr->next_avail_desc;
1f7e3916
SZ
1919 TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1920
1921 /*
1922 * In advanced descriptors the vlan tag must
1923 * be placed into the context descriptor, thus
1924 * we need to be here just for that setup.
1925 */
1926 if (mp->m_flags & M_VLANTAG) {
23f6ffe4
SZ
1927 uint16_t vlantag;
1928
1f7e3916
SZ
1929 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1930 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1931 } else if (!offload) {
1932 return FALSE;
1933 }
1934
48faa653
SZ
1935 ehdrlen = mp->m_pkthdr.csum_lhlen;
1936 KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1f7e3916
SZ
1937
1938 /* Set the ether header length */
1939 vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
48faa653
SZ
1940 if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1941 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1942 ip_hlen = mp->m_pkthdr.csum_iphlen;
1943 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1f7e3916 1944 }
1f7e3916 1945 vlan_macip_lens |= ip_hlen;
1f7e3916 1946
23f6ffe4 1947 type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1f7e3916
SZ
1948 if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1949 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1950 else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1951 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1952
1953 /* 82575 needs the queue index added */
1954 if (txr->sc->hw.mac.type == e1000_82575)
1955 mss_l4len_idx = txr->me << 4;
1956
1957 /* Now copy bits into descriptor */
1958 TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1959 TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1960 TXD->seqnum_seed = htole32(0);
1961 TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1962
1f7e3916 1963 /* We've consumed the first desc, adjust counters */
91b8700a 1964 if (++ctxd == txr->num_tx_desc)
1f7e3916
SZ
1965 ctxd = 0;
1966 txr->next_avail_desc = ctxd;
1967 --txr->tx_avail;
1968
1969 return offload;
1970}
1971
1972static void
1973igb_txeof(struct igb_tx_ring *txr)
1974{
1975 struct ifnet *ifp = &txr->sc->arpcom.ac_if;
b6220144 1976 int first, hdr, avail;
1f7e3916 1977
91b8700a 1978 if (txr->tx_avail == txr->num_tx_desc)
1f7e3916
SZ
1979 return;
1980
1981 first = txr->next_to_clean;
b6220144 1982 hdr = *(txr->tx_hdr);
1f7e3916 1983
b6220144
SZ
1984 if (first == hdr)
1985 return;
1f7e3916 1986
b6220144
SZ
1987 avail = txr->tx_avail;
1988 while (first != hdr) {
1989 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1f7e3916 1990
b6220144
SZ
1991 ++avail;
1992 if (txbuf->m_head) {
1993 bus_dmamap_unload(txr->tx_tag, txbuf->map);
1994 m_freem(txbuf->m_head);
1995 txbuf->m_head = NULL;
1996 ++ifp->if_opackets;
1f7e3916 1997 }
91b8700a 1998 if (++first == txr->num_tx_desc)
b6220144 1999 first = 0;
1f7e3916
SZ
2000 }
2001 txr->next_to_clean = first;
b6220144 2002 txr->tx_avail = avail;
1f7e3916
SZ
2003
2004 /*
9ed293e0 2005 * If we have a minimum free, clear OACTIVE
1f7e3916
SZ
2006 * to tell the stack that it is OK to send packets.
2007 */
b6220144 2008 if (IGB_IS_NOT_OACTIVE(txr)) {
f0a26983 2009 ifsq_clr_oactive(txr->ifsq);
1f7e3916 2010
1f7e3916
SZ
2011 /*
2012 * We have enough TX descriptors, turn off
b6220144
SZ
2013 * the watchdog. We allow small amount of
2014 * packets (roughly intr_nsegs) pending on
2015 * the transmit ring.
1f7e3916
SZ
2016 */
2017 ifp->if_timer = 0;
1f7e3916
SZ
2018 }
2019}
2020
2021static int
2022igb_create_rx_ring(struct igb_rx_ring *rxr)
2023{
c1a8a339 2024 int rsize, i, error, nrxd;
1f7e3916
SZ
2025
2026 /*
2027 * Validate number of receive descriptors. It must not exceed
2028 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2029 */
c1a8a339
SZ
2030 nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2031 if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2032 nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
1f7e3916
SZ
2033 device_printf(rxr->sc->dev,
2034 "Using %d RX descriptors instead of %d!\n",
c1a8a339 2035 IGB_DEFAULT_RXD, nrxd);
91b8700a 2036 rxr->num_rx_desc = IGB_DEFAULT_RXD;
1f7e3916 2037 } else {
c1a8a339 2038 rxr->num_rx_desc = nrxd;
1f7e3916
SZ
2039 }
2040
2041 /*
2042 * Allocate RX descriptor ring
2043 */
91b8700a 2044 rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
1f7e3916
SZ
2045 IGB_DBA_ALIGN);
2046 rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2047 IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2048 &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2049 &rxr->rxdma.dma_paddr);
2050 if (rxr->rxdma.dma_vaddr == NULL) {
2051 device_printf(rxr->sc->dev,
2052 "Unable to allocate RxDescriptor memory\n");
2053 return ENOMEM;
2054 }
2055 rxr->rx_base = rxr->rxdma.dma_vaddr;
2056 bzero(rxr->rx_base, rsize);
2057
e2a02a4c
SZ
2058 rsize = __VM_CACHELINE_ALIGN(
2059 sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2060 rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
1f7e3916
SZ
2061
2062 /*
2063 * Create DMA tag for RX buffers
2064 */
2065 error = bus_dma_tag_create(rxr->sc->parent_tag,
2066 1, 0, /* alignment, bounds */
2067 BUS_SPACE_MAXADDR, /* lowaddr */
2068 BUS_SPACE_MAXADDR, /* highaddr */
2069 NULL, NULL, /* filter, filterarg */
2070 MCLBYTES, /* maxsize */
2071 1, /* nsegments */
2072 MCLBYTES, /* maxsegsize */
2073 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2074 &rxr->rx_tag);
2075 if (error) {
2076 device_printf(rxr->sc->dev,
2077 "Unable to create RX payload DMA tag\n");
2078 kfree(rxr->rx_buf, M_DEVBUF);
2079 rxr->rx_buf = NULL;
2080 return error;
2081 }
2082
2083 /*
2084 * Create spare DMA map for RX buffers
2085 */
2086 error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2087 &rxr->rx_sparemap);
2088 if (error) {
2089 device_printf(rxr->sc->dev,
2090 "Unable to create spare RX DMA maps\n");
2091 bus_dma_tag_destroy(rxr->rx_tag);
2092 kfree(rxr->rx_buf, M_DEVBUF);
2093 rxr->rx_buf = NULL;
2094 return error;
2095 }
2096
2097 /*
2098 * Create DMA maps for RX buffers
2099 */
91b8700a 2100 for (i = 0; i < rxr->num_rx_desc; i++) {
1f7e3916
SZ
2101 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2102
2103 error = bus_dmamap_create(rxr->rx_tag,
2104 BUS_DMA_WAITOK, &rxbuf->map);
2105 if (error) {
2106 device_printf(rxr->sc->dev,
2107 "Unable to create RX DMA maps\n");
2108 igb_destroy_rx_ring(rxr, i);
2109 return error;
2110 }
2111 }
b56e8196
SZ
2112
2113 /*
2114 * Initialize various watermark
2115 */
2116 rxr->rx_wreg = 32;
2117
1f7e3916
SZ
2118 return 0;
2119}
2120
2121static void
2122igb_free_rx_ring(struct igb_rx_ring *rxr)
2123{
2124 int i;
2125
91b8700a 2126 for (i = 0; i < rxr->num_rx_desc; ++i) {
1f7e3916
SZ
2127 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2128
2129 if (rxbuf->m_head != NULL) {
2130 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2131 m_freem(rxbuf->m_head);
2132 rxbuf->m_head = NULL;
2133 }
2134 }
2135
2136 if (rxr->fmp != NULL)
2137 m_freem(rxr->fmp);
2138 rxr->fmp = NULL;
2139 rxr->lmp = NULL;
2140}
2141
2142static void
2143igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2144{
2145 int i;
2146
2147 if (rxr->rxdma.dma_vaddr != NULL) {
2148 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2149 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2150 rxr->rxdma.dma_map);
2151 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2152 rxr->rxdma.dma_vaddr = NULL;
2153 }
2154
2155 if (rxr->rx_buf == NULL)
2156 return;
2157
2158 for (i = 0; i < ndesc; ++i) {
2159 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2160
2161 KKASSERT(rxbuf->m_head == NULL);
2162 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2163 }
2164 bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2165 bus_dma_tag_destroy(rxr->rx_tag);
2166
2167 kfree(rxr->rx_buf, M_DEVBUF);
2168 rxr->rx_buf = NULL;
2169}
2170
2171static void
2172igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2173{
2174 rxd->read.pkt_addr = htole64(rxbuf->paddr);
2175 rxd->wb.upper.status_error = 0;
2176}
2177
2178static int
2179igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2180{
2181 struct mbuf *m;
2182 bus_dma_segment_t seg;
2183 bus_dmamap_t map;
2184 struct igb_rx_buf *rxbuf;
2185 int error, nseg;
2186
2187 m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2188 if (m == NULL) {
2189 if (wait) {
2190 if_printf(&rxr->sc->arpcom.ac_if,
2191 "Unable to allocate RX mbuf\n");
2192 }
2193 return ENOBUFS;
2194 }
2195 m->m_len = m->m_pkthdr.len = MCLBYTES;
2196
2197 if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2198 m_adj(m, ETHER_ALIGN);
2199
2200 error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2201 rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2202 if (error) {
2203 m_freem(m);
2204 if (wait) {
2205 if_printf(&rxr->sc->arpcom.ac_if,
2206 "Unable to load RX mbuf\n");
2207 }
2208 return error;
2209 }
2210
2211 rxbuf = &rxr->rx_buf[i];
2212 if (rxbuf->m_head != NULL)
2213 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2214
2215 map = rxbuf->map;
2216 rxbuf->map = rxr->rx_sparemap;
2217 rxr->rx_sparemap = map;
2218
2219 rxbuf->m_head = m;
2220 rxbuf->paddr = seg.ds_addr;
2221
2222 igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2223 return 0;
2224}
2225
2226static int
2227igb_init_rx_ring(struct igb_rx_ring *rxr)
2228{
2229 int i;
2230
2231 /* Clear the ring contents */
2232 bzero(rxr->rx_base,
91b8700a 2233 rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
1f7e3916
SZ
2234
2235 /* Now replenish the ring mbufs */
91b8700a 2236 for (i = 0; i < rxr->num_rx_desc; ++i) {
1f7e3916
SZ
2237 int error;
2238
2239 error = igb_newbuf(rxr, i, TRUE);
2240 if (error)
2241 return error;
2242 }
2243
2244 /* Setup our descriptor indices */
2245 rxr->next_to_check = 0;
2246
2247 rxr->fmp = NULL;
2248 rxr->lmp = NULL;
2249 rxr->discard = FALSE;
2250
2251 return 0;
2252}
2253
2254static void
2255igb_init_rx_unit(struct igb_softc *sc)
2256{
2257 struct ifnet *ifp = &sc->arpcom.ac_if;
2258 struct e1000_hw *hw = &sc->hw;
2259 uint32_t rctl, rxcsum, srrctl = 0;
2260 int i;
2261
2262 /*
2263 * Make sure receives are disabled while setting
2264 * up the descriptor ring
2265 */
2266 rctl = E1000_READ_REG(hw, E1000_RCTL);
2267 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2268
2269#if 0
2270 /*
2271 ** Set up for header split
2272 */
2273 if (igb_header_split) {
2274 /* Use a standard mbuf for the header */
2275 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2276 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2277 } else
2278#endif
2279 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2280
2281 /*
2282 ** Set up for jumbo frames
2283 */
2284 if (ifp->if_mtu > ETHERMTU) {
2285 rctl |= E1000_RCTL_LPE;
2286#if 0
2287 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2288 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2289 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2290 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2291 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2292 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2293 }
2294 /* Set maximum packet len */
2295 psize = adapter->max_frame_size;
2296 /* are we on a vlan? */
2297 if (adapter->ifp->if_vlantrunk != NULL)
2298 psize += VLAN_TAG_SIZE;
2299 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2300#else
2301 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2302 rctl |= E1000_RCTL_SZ_2048;
2303#endif
2304 } else {
2305 rctl &= ~E1000_RCTL_LPE;
2306 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2307 rctl |= E1000_RCTL_SZ_2048;
2308 }
2309
2310 /* Setup the Base and Length of the Rx Descriptor Rings */
be922da6 2311 for (i = 0; i < sc->rx_ring_inuse; ++i) {
1f7e3916
SZ
2312 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2313 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2314 uint32_t rxdctl;
2315
2316 E1000_WRITE_REG(hw, E1000_RDLEN(i),
91b8700a 2317 rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
1f7e3916
SZ
2318 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2319 (uint32_t)(bus_addr >> 32));
2320 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2321 (uint32_t)bus_addr);
2322 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2323 /* Enable this Queue */
2324 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2325 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2326 rxdctl &= 0xFFF00000;
2327 rxdctl |= IGB_RX_PTHRESH;
2328 rxdctl |= IGB_RX_HTHRESH << 8;
54691ff1
SZ
2329 /*
2330 * Don't set WTHRESH to a value above 1 on 82576, see:
2331 * 82576 specification update errata #26
2332 */
1f7e3916
SZ
2333 rxdctl |= IGB_RX_WTHRESH << 16;
2334 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2335 }
2336
8d6600da
SZ
2337 rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2338 rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2339
1f7e3916 2340 /*
8d6600da
SZ
2341 * Receive Checksum Offload for TCP and UDP
2342 *
2343 * Checksum offloading is also enabled if multiple receive
2344 * queue is to be supported, since we need it to figure out
2345 * fragments.
1f7e3916 2346 */
8d6600da
SZ
2347 if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2348 /*
2349 * NOTE:
2350 * PCSD must be enabled to enable multiple
2351 * receive queues.
2352 */
2353 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2354 E1000_RXCSUM_PCSD;
2355 } else {
2356 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2357 E1000_RXCSUM_PCSD);
2358 }
2359 E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2360
2361 if (IGB_ENABLE_HWRSS(sc)) {
2362 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
d1218435
SZ
2363 uint32_t reta_shift;
2364 int j, r;
8d6600da
SZ
2365
2366 /*
2367 * NOTE:
2368 * When we reach here, RSS has already been disabled
2369 * in igb_stop(), so we could safely configure RSS key
2370 * and redirect table.
2371 */
2372
2373 /*
2374 * Configure RSS key
2375 */
2376 toeplitz_get_key(key, sizeof(key));
2377 for (i = 0; i < IGB_NRSSRK; ++i) {
2378 uint32_t rssrk;
2379
2380 rssrk = IGB_RSSRK_VAL(key, i);
2381 IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2382
2383 E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
1f7e3916 2384 }
1f7e3916
SZ
2385
2386 /*
8d6600da
SZ
2387 * Configure RSS redirect table in following fashion:
2388 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2389 */
2390 reta_shift = IGB_RETA_SHIFT;
2391 if (hw->mac.type == e1000_82575)
2392 reta_shift = IGB_RETA_SHIFT_82575;
8d6600da 2393
d1218435
SZ
2394 r = 0;
2395 for (j = 0; j < IGB_NRETA; ++j) {
2396 uint32_t reta = 0;
8d6600da 2397
d1218435
SZ
2398 for (i = 0; i < IGB_RETA_SIZE; ++i) {
2399 uint32_t q;
2400
be922da6 2401 q = (r % sc->rx_ring_inuse) << reta_shift;
d1218435
SZ
2402 reta |= q << (8 * i);
2403 ++r;
2404 }
2405 IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2406 E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2407 }
8d6600da
SZ
2408
2409 /*
2410 * Enable multiple receive queues.
2411 * Enable IPv4 RSS standard hash functions.
2412 * Disable RSS interrupt on 82575
2413 */
2414 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2415 E1000_MRQC_ENABLE_RSS_4Q |
2416 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2417 E1000_MRQC_RSS_FIELD_IPV4);
1f7e3916 2418 }
1f7e3916
SZ
2419
2420 /* Setup the Receive Control Register */
2421 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2422 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2423 E1000_RCTL_RDMTS_HALF |
2424 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2425 /* Strip CRC bytes. */
2426 rctl |= E1000_RCTL_SECRC;
2427 /* Make sure VLAN Filters are off */
2428 rctl &= ~E1000_RCTL_VFE;
2429 /* Don't store bad packets */
2430 rctl &= ~E1000_RCTL_SBP;
2431
2432 /* Enable Receives */
2433 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2434
2435 /*
2436 * Setup the HW Rx Head and Tail Descriptor Pointers
2437 * - needs to be after enable
2438 */
be922da6 2439 for (i = 0; i < sc->rx_ring_inuse; ++i) {
1f7e3916
SZ
2440 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2441
2442 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
91b8700a 2443 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
1f7e3916
SZ
2444 }
2445}
2446
2447static void
b56e8196
SZ
2448igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2449{
2450 if (--i < 0)
2451 i = rxr->num_rx_desc - 1;
2452 E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2453}
2454
2455static void
1f7e3916
SZ
2456igb_rxeof(struct igb_rx_ring *rxr, int count)
2457{
2458 struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2459 union e1000_adv_rx_desc *cur;
2460 uint32_t staterr;
b56e8196 2461 int i, ncoll = 0;
1f7e3916
SZ
2462
2463 i = rxr->next_to_check;
2464 cur = &rxr->rx_base[i];
2465 staterr = le32toh(cur->wb.upper.status_error);
2466
2467 if ((staterr & E1000_RXD_STAT_DD) == 0)
2468 return;
2469
2470 while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
8d6600da 2471 struct pktinfo *pi = NULL, pi0;
1f7e3916
SZ
2472 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2473 struct mbuf *m = NULL;
2474 boolean_t eop;
2475
2476 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2477 if (eop)
2478 --count;
2479
b56e8196 2480 ++ncoll;
1f7e3916
SZ
2481 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2482 !rxr->discard) {
2483 struct mbuf *mp = rxbuf->m_head;
8d6600da 2484 uint32_t hash, hashtype;
1f7e3916
SZ
2485 uint16_t vlan;
2486 int len;
2487
2488 len = le16toh(cur->wb.upper.length);
2489 if (rxr->sc->hw.mac.type == e1000_i350 &&
2490 (staterr & E1000_RXDEXT_STATERR_LB))
2491 vlan = be16toh(cur->wb.upper.vlan);
2492 else
2493 vlan = le16toh(cur->wb.upper.vlan);
2494
8d6600da
SZ
2495 hash = le32toh(cur->wb.lower.hi_dword.rss);
2496 hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2497 E1000_RXDADV_RSSTYPE_MASK;
2498
2499 IGB_RSS_DPRINTF(rxr->sc, 10,
2500 "ring%d, hash 0x%08x, hashtype %u\n",
2501 rxr->me, hash, hashtype);
2502
1f7e3916
SZ
2503 bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2504 BUS_DMASYNC_POSTREAD);
2505
2506 if (igb_newbuf(rxr, i, FALSE) != 0) {
2507 ifp->if_iqdrops++;
2508 goto discard;
2509 }
2510
2511 mp->m_len = len;
2512 if (rxr->fmp == NULL) {
2513 mp->m_pkthdr.len = len;
2514 rxr->fmp = mp;
2515 rxr->lmp = mp;
2516 } else {
2517 rxr->lmp->m_next = mp;
2518 rxr->lmp = rxr->lmp->m_next;
2519 rxr->fmp->m_pkthdr.len += len;
2520 }
2521
2522 if (eop) {
2523 m = rxr->fmp;
2524 rxr->fmp = NULL;
2525 rxr->lmp = NULL;
2526
2527 m->m_pkthdr.rcvif = ifp;
2528 ifp->if_ipackets++;
2529
2530 if (ifp->if_capenable & IFCAP_RXCSUM)
2531 igb_rxcsum(staterr, m);
2532
2533 if (staterr & E1000_RXD_STAT_VP) {
2534 m->m_pkthdr.ether_vlantag = vlan;
2535 m->m_flags |= M_VLANTAG;
2536 }
2537
1f7e3916 2538 if (ifp->if_capenable & IFCAP_RSS) {
8d6600da
SZ
2539 pi = igb_rssinfo(m, &pi0,
2540 hash, hashtype, staterr);
1f7e3916 2541 }
8d6600da
SZ
2542#ifdef IGB_RSS_DEBUG
2543 rxr->rx_packets++;
1f7e3916
SZ
2544#endif
2545 }
2546 } else {
2547 ifp->if_ierrors++;
2548discard:
2549 igb_setup_rxdesc(cur, rxbuf);
2550 if (!eop)
2551 rxr->discard = TRUE;
2552 else
2553 rxr->discard = FALSE;
2554 if (rxr->fmp != NULL) {
2555 m_freem(rxr->fmp);
2556 rxr->fmp = NULL;
2557 rxr->lmp = NULL;
2558 }
2559 m = NULL;
2560 }
2561
2562 if (m != NULL)
8d6600da 2563 ether_input_pkt(ifp, m, pi);
1f7e3916
SZ
2564
2565 /* Advance our pointers to the next descriptor. */
91b8700a 2566 if (++i == rxr->num_rx_desc)
1f7e3916
SZ
2567 i = 0;
2568
65fa7c94 2569 if (ncoll >= rxr->rx_wreg) {
b56e8196
SZ
2570 igb_rx_refresh(rxr, i);
2571 ncoll = 0;
2572 }
2573
1f7e3916
SZ
2574 cur = &rxr->rx_base[i];
2575 staterr = le32toh(cur->wb.upper.status_error);
2576 }
2577 rxr->next_to_check = i;
2578
b56e8196
SZ
2579 if (ncoll > 0)
2580 igb_rx_refresh(rxr, i);
1f7e3916
SZ
2581}
2582
2583
2584static void
2585igb_set_vlan(struct igb_softc *sc)
2586{
2587 struct e1000_hw *hw = &sc->hw;
2588 uint32_t reg;
2589#if 0
2590 struct ifnet *ifp = sc->arpcom.ac_if;
2591#endif
2592
2593 if (sc->vf_ifp) {
2594 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2595 return;
2596 }
2597
2598 reg = E1000_READ_REG(hw, E1000_CTRL);
2599 reg |= E1000_CTRL_VME;
2600 E1000_WRITE_REG(hw, E1000_CTRL, reg);
2601
2602#if 0
2603 /* Enable the Filter Table */
2604 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2605 reg = E1000_READ_REG(hw, E1000_RCTL);
2606 reg &= ~E1000_RCTL_CFIEN;
2607 reg |= E1000_RCTL_VFE;
2608 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2609 }
2610#endif
2611
2612 /* Update the frame size */
2613 E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2614 sc->max_frame_size + VLAN_TAG_SIZE);
2615
2616#if 0
2617 /* Don't bother with table if no vlans */
2618 if ((adapter->num_vlans == 0) ||
2619 ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2620 return;
2621 /*
2622 ** A soft reset zero's out the VFTA, so
2623 ** we need to repopulate it now.
2624 */
2625 for (int i = 0; i < IGB_VFTA_SIZE; i++)
2626 if (adapter->shadow_vfta[i] != 0) {
2627 if (adapter->vf_ifp)
2628 e1000_vfta_set_vf(hw,
2629 adapter->shadow_vfta[i], TRUE);
2630 else
2631 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2632 i, adapter->shadow_vfta[i]);
2633 }
2634#endif
2635}
2636
2637static void
2638igb_enable_intr(struct igb_softc *sc)
2639{
9c0ecdcc
SZ
2640 if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2641 lwkt_serialize_handler_enable(&sc->main_serialize);
2642 } else {
2643 int i;
2644
2645 for (i = 0; i < sc->msix_cnt; ++i) {
2646 lwkt_serialize_handler_enable(
2647 sc->msix_data[i].msix_serialize);
2648 }
2649 }
1f7e3916 2650
f6167a56 2651 if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
9c0ecdcc
SZ
2652 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2653 E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2654 else
2655 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
f6167a56
SZ
2656 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2657 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
1f7e3916
SZ
2658 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2659 } else {
2660 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2661 }
2662 E1000_WRITE_FLUSH(&sc->hw);
2663}
2664
2665static void
2666igb_disable_intr(struct igb_softc *sc)
2667{
f6167a56 2668 if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
1f7e3916
SZ
2669 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2670 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
f6167a56 2671 }
1f7e3916
SZ
2672 E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2673 E1000_WRITE_FLUSH(&sc->hw);
2674
9c0ecdcc
SZ
2675 if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2676 lwkt_serialize_handler_disable(&sc->main_serialize);
2677 } else {
2678 int i;
2679
2680 for (i = 0; i < sc->msix_cnt; ++i) {
2681 lwkt_serialize_handler_disable(
2682 sc->msix_data[i].msix_serialize);
2683 }
2684 }
1f7e3916
SZ
2685}
2686
2687/*
2688 * Bit of a misnomer, what this really means is
2689 * to enable OS management of the system... aka
2690 * to disable special hardware management features
2691 */
2692static void
2693igb_get_mgmt(struct igb_softc *sc)
2694{
396b7048 2695 if (sc->flags & IGB_FLAG_HAS_MGMT) {
1f7e3916
SZ
2696 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2697 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2698
2699 /* disable hardware interception of ARP */
2700 manc &= ~E1000_MANC_ARP_EN;
2701
2702 /* enable receiving management packets to the host */
2703 manc |= E1000_MANC_EN_MNG2HOST;
2704 manc2h |= 1 << 5; /* Mng Port 623 */
2705 manc2h |= 1 << 6; /* Mng Port 664 */
2706 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2707 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2708 }
2709}
2710
2711/*
2712 * Give control back to hardware management controller
2713 * if there is one.
2714 */
2715static void
2716igb_rel_mgmt(struct igb_softc *sc)
2717{
396b7048 2718 if (sc->flags & IGB_FLAG_HAS_MGMT) {
1f7e3916
SZ
2719 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2720
2721 /* Re-enable hardware interception of ARP */
2722 manc |= E1000_MANC_ARP_EN;
2723 manc &= ~E1000_MANC_EN_MNG2HOST;
2724
2725 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2726 }
2727}
2728
2729/*
2730 * Sets CTRL_EXT:DRV_LOAD bit.
2731 *
2732 * For ASF and Pass Through versions of f/w this means that
2733 * the driver is loaded.
2734 */
2735static void
2736igb_get_hw_control(struct igb_softc *sc)
2737{
2738 uint32_t ctrl_ext;
2739
2740 if (sc->vf_ifp)
2741 return;
2742
2743 /* Let firmware know the driver has taken over */
2744 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2745 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2746 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2747}
2748
2749/*
2750 * Resets CTRL_EXT:DRV_LOAD bit.
2751 *
2752 * For ASF and Pass Through versions of f/w this means that the
2753 * driver is no longer loaded.
2754 */
2755static void
2756igb_rel_hw_control(struct igb_softc *sc)
2757{
2758 uint32_t ctrl_ext;
2759
2760 if (sc->vf_ifp)
2761 return;
2762
2763 /* Let firmware taken over control of h/w */
2764 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2765 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2766 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2767}
2768
2769static int
2770igb_is_valid_ether_addr(const uint8_t *addr)
2771{
2772 uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2773
2774 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2775 return FALSE;
2776 return TRUE;
2777}
2778
2779/*
2780 * Enable PCI Wake On Lan capability
2781 */
2782static void
2783igb_enable_wol(device_t dev)
2784{
2785 uint16_t cap, status;
2786 uint8_t id;
2787
2788 /* First find the capabilities pointer*/
2789 cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2790
2791 /* Read the PM Capabilities */
2792 id = pci_read_config(dev, cap, 1);
2793 if (id != PCIY_PMG) /* Something wrong */
2794 return;
2795
2796 /*
2797 * OK, we have the power capabilities,
2798 * so now get the status register
2799 */
2800 cap += PCIR_POWER_STATUS;
2801 status = pci_read_config(dev, cap, 2);
2802 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2803 pci_write_config(dev, cap, status, 2);
2804}
2805
2806static void
2807igb_update_stats_counters(struct igb_softc *sc)
2808{
2809 struct e1000_hw *hw = &sc->hw;
2810 struct e1000_hw_stats *stats;
2811 struct ifnet *ifp = &sc->arpcom.ac_if;
2812
2813 /*
2814 * The virtual function adapter has only a
2815 * small controlled set of stats, do only
2816 * those and return.
2817 */
2818 if (sc->vf_ifp) {
2819 igb_update_vf_stats_counters(sc);
2820 return;
2821 }
2822 stats = sc->stats;
2823
2824 if (sc->hw.phy.media_type == e1000_media_type_copper ||
2825 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2826 stats->symerrs +=
2827 E1000_READ_REG(hw,E1000_SYMERRS);
2828 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2829 }
2830
2831 stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2832 stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2833 stats->scc += E1000_READ_REG(hw, E1000_SCC);
2834 stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2835
2836 stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2837 stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2838 stats->colc += E1000_READ_REG(hw, E1000_COLC);
2839 stats->dc += E1000_READ_REG(hw, E1000_DC);
2840 stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2841 stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2842 stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2843
2844 /*
2845 * For watchdog management we need to know if we have been
2846 * paused during the last interval, so capture that here.
2847 */
2848 sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2849 stats->xoffrxc += sc->pause_frames;
2850 stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2851 stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2852 stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2853 stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2854 stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2855 stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2856 stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2857 stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2858 stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2859 stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2860 stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2861 stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2862
2863 /* For the 64-bit byte counters the low dword must be read first. */
2864 /* Both registers clear on the read of the high dword */
2865
2866 stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2867 ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2868 stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2869 ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2870
2871 stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2872 stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2873 stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2874 stats->roc += E1000_READ_REG(hw, E1000_ROC);
2875 stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2876
2877 stats->tor += E1000_READ_REG(hw, E1000_TORH);
2878 stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2879
2880 stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2881 stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2882 stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2883 stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2884 stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2885 stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2886 stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2887 stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2888 stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2889 stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2890
2891 /* Interrupt Counts */
2892
2893 stats->iac += E1000_READ_REG(hw, E1000_IAC);
2894 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2895 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2896 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2897 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2898 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2899 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2900 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2901 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2902
2903 /* Host to Card Statistics */
2904
2905 stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2906 stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2907 stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2908 stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2909 stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2910 stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2911 stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2912 stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2913 ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2914 stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2915 ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2916 stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2917 stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2918 stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2919
2920 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2921 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2922 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2923 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2924 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2925 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2926
2927 ifp->if_collisions = stats->colc;
2928
2929 /* Rx Errors */
2930 ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2931 stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2932
2933 /* Tx Errors */
2934 ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2935
2936 /* Driver specific counters */
2937 sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2938 sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2939 sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2940 sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2941 sc->packet_buf_alloc_tx =
2942 ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2943 sc->packet_buf_alloc_rx =
2944 (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2945}
2946
2947static void
2948igb_vf_init_stats(struct igb_softc *sc)
2949{
2950 struct e1000_hw *hw = &sc->hw;
2951 struct e1000_vf_stats *stats;
2952
2953 stats = sc->stats;
2954 stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2955 stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2956 stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2957 stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2958 stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2959}
2960
2961static void
2962igb_update_vf_stats_counters(struct igb_softc *sc)
2963{
2964 struct e1000_hw *hw = &sc->hw;
2965 struct e1000_vf_stats *stats;
2966
2967 if (sc->link_speed == 0)
2968 return;
2969
2970 stats = sc->stats;
2971 UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2972 UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2973 UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2974 UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2975 UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2976}
2977
d0f59cad 2978#ifdef IFPOLL_ENABLE
1f7e3916
SZ
2979
2980static void
2f00683b 2981igb_npoll_status(struct ifnet *ifp)
1f7e3916
SZ
2982{
2983 struct igb_softc *sc = ifp->if_softc;
2984 uint32_t reg_icr;
2985
d0f59cad 2986 ASSERT_SERIALIZED(&sc->main_serialize);
1f7e3916 2987
d0f59cad
SZ
2988 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2989 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2990 sc->hw.mac.get_link_status = 1;
2991 igb_update_link_status(sc);
2992 }
2993}
7d235eb5 2994
d0f59cad
SZ
2995static void
2996igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
2997{
2998 struct igb_tx_ring *txr = arg;
7d235eb5 2999
d0f59cad 3000 ASSERT_SERIALIZED(&txr->tx_serialize);
1f7e3916 3001
d0f59cad 3002 igb_txeof(txr);
f0a26983
SZ
3003 if (!ifsq_is_empty(txr->ifsq))
3004 ifsq_devstart(txr->ifsq);
d0f59cad
SZ
3005}
3006
3007static void
3008igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3009{
3010 struct igb_rx_ring *rxr = arg;
3011
3012 ASSERT_SERIALIZED(&rxr->rx_serialize);
3013
3014 igb_rxeof(rxr, cycle);
3015}
3016
3017static void
3018igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3019{
3020 struct igb_softc *sc = ifp->if_softc;
f0a26983 3021 int i;
d0f59cad
SZ
3022
3023 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3024
3025 if (info) {
f0a26983 3026 int off;
d0f59cad
SZ
3027
3028 info->ifpi_status.status_func = igb_npoll_status;
3029 info->ifpi_status.serializer = &sc->main_serialize;
3030
3031 off = sc->tx_npoll_off;
f0a26983
SZ
3032 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3033 struct igb_tx_ring *txr = &sc->tx_rings[i];
3034 int idx = i + off;
3035
3036 KKASSERT(idx < ncpus2);
3037 info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3038 info->ifpi_tx[idx].arg = txr;
3039 info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3040 ifsq_set_cpuid(txr->ifsq, idx);
3041 }
d0f59cad
SZ
3042
3043 off = sc->rx_npoll_off;
3044 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3045 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3046 int idx = i + off;
3047
3048 KKASSERT(idx < ncpus2);
3049 info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3050 info->ifpi_rx[idx].arg = rxr;
3051 info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
1f7e3916 3052 }
d0f59cad
SZ
3053
3054 if (ifp->if_flags & IFF_RUNNING) {
4b21dd0f
SZ
3055 if (igb_get_rxring_inuse(sc, TRUE) ==
3056 sc->rx_ring_inuse)
d0f59cad
SZ
3057 igb_disable_intr(sc);
3058 else
3059 igb_init(sc);
3060 }
d0f59cad
SZ
3061 } else {
3062 if (ifp->if_flags & IFF_RUNNING) {
4b21dd0f
SZ
3063 if (igb_get_rxring_inuse(sc, FALSE) ==
3064 sc->rx_ring_inuse)
d0f59cad
SZ
3065 igb_enable_intr(sc);
3066 else
3067 igb_init(sc);
3068 }
f0a26983
SZ
3069
3070 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3071 struct igb_tx_ring *txr = &sc->tx_rings[i];
3072
3073 ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3074 }
1f7e3916
SZ
3075 }
3076}
3077
d0f59cad 3078#endif /* IFPOLL_ENABLE */
1f7e3916
SZ
3079
3080static void
3081igb_intr(void *xsc)
3082{
3083 struct igb_softc *sc = xsc;
3084 struct ifnet *ifp = &sc->arpcom.ac_if;
f6167a56
SZ
3085 uint32_t eicr;
3086
7d235eb5 3087 ASSERT_SERIALIZED(&sc->main_serialize);
f6167a56
SZ
3088
3089 eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3090
3091 if (eicr == 0)
3092 return;
3093
3094 if (ifp->if_flags & IFF_RUNNING) {
f0a26983 3095 struct igb_tx_ring *txr = &sc->tx_rings[0];
7d235eb5 3096 int i;
f6167a56 3097
be922da6 3098 for (i = 0; i < sc->rx_ring_inuse; ++i) {
7d235eb5
SZ
3099 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3100
3101 if (eicr & rxr->rx_intr_mask) {
3102 lwkt_serialize_enter(&rxr->rx_serialize);
3103 igb_rxeof(rxr, -1);
3104 lwkt_serialize_exit(&rxr->rx_serialize);
3105 }
3106 }
3107
7d235eb5
SZ
3108 if (eicr & txr->tx_intr_mask) {
3109 lwkt_serialize_enter(&txr->tx_serialize);
3110 igb_txeof(txr);
f0a26983
SZ
3111 if (!ifsq_is_empty(txr->ifsq))
3112 ifsq_devstart(txr->ifsq);
7d235eb5 3113 lwkt_serialize_exit(&txr->tx_serialize);
f6167a56
SZ
3114 }
3115 }
3116
3117 if (eicr & E1000_EICR_OTHER) {
3118 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3119
3120 /* Link status change */
3121 if (icr & E1000_ICR_LSC) {
3122 sc->hw.mac.get_link_status = 1;
3123 igb_update_link_status(sc);
3124 }
3125 }
3126
3127 /*
3128 * Reading EICR has the side effect to clear interrupt mask,
3129 * so all interrupts need to be enabled here.
3130 */
3131 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3132}
3133
3134static void
9c0ecdcc 3135igb_intr_shared(void *xsc)
f6167a56
SZ
3136{
3137 struct igb_softc *sc = xsc;
3138 struct ifnet *ifp = &sc->arpcom.ac_if;
1f7e3916
SZ
3139 uint32_t reg_icr;
3140
7d235eb5 3141 ASSERT_SERIALIZED(&sc->main_serialize);
1f7e3916
SZ
3142
3143 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3144
3145 /* Hot eject? */
3146 if (reg_icr == 0xffffffff)
3147 return;
3148
3149 /* Definitely not our interrupt. */
3150 if (reg_icr == 0x0)
3151 return;
3152
3153 if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3154 return;
3155
3156 if (ifp->if_flags & IFF_RUNNING) {
71b8b086
SZ
3157 if (reg_icr &
3158 (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3159 int i;
7d235eb5 3160
71b8b086
SZ
3161 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3162 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1f7e3916 3163
71b8b086
SZ
3164 lwkt_serialize_enter(&rxr->rx_serialize);
3165 igb_rxeof(rxr, -1);
3166 lwkt_serialize_exit(&rxr->rx_serialize);
3167 }
7d235eb5
SZ
3168 }
3169
71b8b086
SZ
3170 if (reg_icr & E1000_ICR_TXDW) {
3171 struct igb_tx_ring *txr = &sc->tx_rings[0];
3172
3173 lwkt_serialize_enter(&txr->tx_serialize);
3174 igb_txeof(txr);
f0a26983
SZ
3175 if (!ifsq_is_empty(txr->ifsq))
3176 ifsq_devstart(txr->ifsq);
71b8b086
SZ
3177 lwkt_serialize_exit(&txr->tx_serialize);
3178 }
1f7e3916
SZ
3179 }
3180
3181 /* Link status change */
3182 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3183 sc->hw.mac.get_link_status = 1;
3184 igb_update_link_status(sc);
3185 }
3186
3187 if (reg_icr & E1000_ICR_RXO)
3188 sc->rx_overruns++;
3189}
3190
3191static int
871c0e2b
SZ
3192igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3193 int *segs_used, int *idx)
1f7e3916
SZ
3194{
3195 bus_dma_segment_t segs[IGB_MAX_SCATTER];
3196 bus_dmamap_t map;
3197 struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3198 union e1000_adv_tx_desc *txd = NULL;
3199 struct mbuf *m_head = *m_headp;
b6220144 3200 uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
07e9f7c0 3201 int maxsegs, nsegs, i, j, error;
1f7e3916
SZ
3202 uint32_t hdrlen = 0;
3203
23f6ffe4
SZ
3204 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3205 error = igb_tso_pullup(txr, m_headp);
3206 if (error)
3207 return error;
3208 m_head = *m_headp;
3209 }
3210
1f7e3916
SZ
3211 /* Set basic descriptor constants */
3212 cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3213 cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3214 if (m_head->m_flags & M_VLANTAG)
3215 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3216
3217 /*
3218 * Map the packet for DMA.
1f7e3916 3219 */
b6220144 3220 tx_buf = &txr->tx_buf[txr->next_avail_desc];
1f7e3916
SZ
3221 tx_buf_mapped = tx_buf;
3222 map = tx_buf->map;
3223
b6220144
SZ
3224 maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3225 KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
1f7e3916
SZ
3226 if (maxsegs > IGB_MAX_SCATTER)
3227 maxsegs = IGB_MAX_SCATTER;
3228
3229 error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3230 segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3231 if (error) {
3232 if (error == ENOBUFS)
3233 txr->sc->mbuf_defrag_failed++;
3234 else
3235 txr->sc->no_tx_dma_setup++;
3236
3237 m_freem(*m_headp);
3238 *m_headp = NULL;
3239 return error;
3240 }
3241 bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3242
3243 m_head = *m_headp;
3244
1f7e3916 3245 /*
66c68b4b
SZ
3246 * Set up the TX context descriptor, if any hardware offloading is
3247 * needed. This includes CSUM, VLAN, and TSO. It will consume one
3248 * TX descriptor.
3249 *
3250 * Unlike these chips' predecessors (em/emx), TX context descriptor
3251 * will _not_ interfere TX data fetching pipelining.
1f7e3916
SZ
3252 */
3253 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
23f6ffe4
SZ
3254 igb_tso_ctx(txr, m_head, &hdrlen);
3255 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3256 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3257 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3258 txr->tx_nsegs++;
871c0e2b 3259 (*segs_used)++;
23f6ffe4 3260 } else if (igb_txcsum_ctx(txr, m_head)) {
48faa653
SZ
3261 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3262 olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
1f7e3916
SZ
3263 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3264 olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
b6220144 3265 txr->tx_nsegs++;
871c0e2b 3266 (*segs_used)++;
1f7e3916 3267 }
1f7e3916 3268
871c0e2b 3269 *segs_used += nsegs;
b6220144
SZ
3270 txr->tx_nsegs += nsegs;
3271 if (txr->tx_nsegs >= txr->intr_nsegs) {
3272 /*
3273 * Report Status (RS) is turned on every intr_nsegs
3274 * descriptors (roughly).
3275 */
3276 txr->tx_nsegs = 0;
3277 cmd_rs = E1000_ADVTXD_DCMD_RS;
3278 }
3279
1f7e3916
SZ
3280 /* Calculate payload length */
3281 olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3282 << E1000_ADVTXD_PAYLEN_SHIFT);
3283
3284 /* 82575 needs the queue index added */
3285 if (txr->sc->hw.mac.type == e1000_82575)
3286 olinfo_status |= txr->me << 4;
3287
3288 /* Set up our transmit descriptors */
3289 i = txr->next_avail_desc;
3290 for (j = 0; j < nsegs; j++) {
3291 bus_size_t seg_len;
3292 bus_addr_t seg_addr;
3293
3294 tx_buf = &txr->tx_buf[i];
3295 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3296 seg_addr = segs[j].ds_addr;
3297 seg_len = segs[j].ds_len;
3298
3299 txd->read.buffer_addr = htole64(seg_addr);
3300 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3301 txd->read.olinfo_status = htole32(olinfo_status);
91b8700a 3302 if (++i == txr->num_tx_desc)
1f7e3916
SZ
3303 i = 0;
3304 tx_buf->m_head = NULL;
1f7e3916
SZ
3305 }
3306
3307 KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3308 txr->next_avail_desc = i;
3309 txr->tx_avail -= nsegs;
3310
3311 tx_buf->m_head = m_head;
3312 tx_buf_mapped->map = tx_buf->map;
3313 tx_buf->map = map;
3314
3315 /*
b6220144 3316 * Last Descriptor of Packet needs End Of Packet (EOP)
1f7e3916 3317 */
b6220144 3318 txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
1f7e3916
SZ
3319
3320 /*
5d94c328 3321 * Defer TDT updating, until enough descrptors are setup
1f7e3916 3322 */
871c0e2b 3323 *idx = i;
1f7e3916
SZ
3324 ++txr->tx_packets;
3325
3326 return 0;
3327}
3328
3329static void
f0a26983 3330igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1f7e3916
SZ
3331{
3332 struct igb_softc *sc = ifp->if_softc;
f0a26983 3333 struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
1f7e3916 3334 struct mbuf *m_head;
871c0e2b 3335 int idx = -1, nsegs = 0;
1f7e3916 3336
f0a26983 3337 KKASSERT(txr->ifsq == ifsq);
7d235eb5 3338 ASSERT_SERIALIZED(&txr->tx_serialize);
1f7e3916 3339
f0a26983 3340 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
1f7e3916
SZ
3341 return;
3342
3343 if (!sc->link_active) {
f0a26983 3344 ifsq_purge(ifsq);
1f7e3916
SZ
3345 return;
3346 }
3347
b6220144 3348 if (!IGB_IS_NOT_OACTIVE(txr))
1f7e3916
SZ
3349 igb_txeof(txr);
3350
f0a26983 3351 while (!ifsq_is_empty(ifsq)) {
b6220144 3352 if (IGB_IS_OACTIVE(txr)) {
f0a26983 3353 ifsq_set_oactive(ifsq);
1f7e3916
SZ
3354 /* Set watchdog on */
3355 ifp->if_timer = 5;
3356 break;
3357 }
3358
f0a26983 3359 m_head = ifsq_dequeue(ifsq, NULL);
1f7e3916
SZ
3360 if (m_head == NULL)
3361 break;
3362
871c0e2b 3363 if (igb_encap(txr, &m_head, &nsegs, &idx)) {
1f7e3916
SZ
3364 ifp->if_oerrors++;
3365 continue;
3366 }
3367
871c0e2b
SZ
3368 if (nsegs >= txr->wreg_nsegs) {
3369 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3370 idx = -1;
3371 nsegs = 0;
3372 }
3373
1f7e3916
SZ
3374 /* Send a copy of the frame to the BPF listener */
3375 ETHER_BPF_MTAP(ifp, m_head);
3376 }
871c0e2b
SZ
3377 if (idx >= 0)
3378 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
1f7e3916
SZ
3379}
3380
3381static void
3382igb_watchdog(struct ifnet *ifp)
3383{
3384 struct igb_softc *sc = ifp->if_softc;
27866bf1 3385 struct igb_tx_ring *txr = &sc->tx_rings[0];
1f7e3916
SZ
3386
3387 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3388
3389 /*
3390 * If flow control has paused us since last checking
3391 * it invalidates the watchdog timing, so dont run it.
3392 */
3393 if (sc->pause_frames) {
3394 sc->pause_frames = 0;
3395 ifp->if_timer = 5;
3396 return;
3397 }
3398
3399 if_printf(ifp, "Watchdog timeout -- resetting\n");
3400 if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3401 E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3402 E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3403 if_printf(ifp, "TX(%d) desc avail = %d, "
3404 "Next TX to Clean = %d\n",
3405 txr->me, txr->tx_avail, txr->next_to_clean);
3406
3407 ifp->if_oerrors++;
3408 sc->watchdog_events++;
3409
3410 igb_init(sc);
f0a26983
SZ
3411 if (!ifsq_is_empty(txr->ifsq))
3412 ifsq_devstart(txr->ifsq);
1f7e3916
SZ
3413}
3414
3415static void
9c0ecdcc 3416igb_set_eitr(struct igb_softc *sc, int idx, int rate)
1f7e3916 3417{
9c0ecdcc 3418 uint32_t eitr = 0;
1f7e3916 3419
9c0ecdcc 3420 if (rate > 0) {
1f7e3916 3421 if (sc->hw.mac.type == e1000_82575) {
9c0ecdcc 3422 eitr = 1000000000 / 256 / rate;
1f7e3916
SZ
3423 /*
3424 * NOTE:
3425 * Document is wrong on the 2 bits left shift
3426 */
3427 } else {
9c0ecdcc 3428 eitr = 1000000 / rate;
d4beffa9
SZ
3429 eitr <<= IGB_EITR_INTVL_SHIFT;
3430 }
3431
3432 if (eitr == 0) {
3433 /* Don't disable it */
3434 eitr = 1 << IGB_EITR_INTVL_SHIFT;
3435 } else if (eitr > IGB_EITR_INTVL_MASK) {
3436 /* Don't allow it to be too large */
3437 eitr = IGB_EITR_INTVL_MASK;
1f7e3916 3438 }
1f7e3916
SZ
3439 }
3440 if (sc->hw.mac.type == e1000_82575)
9c0ecdcc 3441 eitr |= eitr << 16;
1f7e3916 3442 else
9c0ecdcc
SZ
3443 eitr |= E1000_EITR_CNT_IGNR;
3444 E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
1f7e3916
SZ
3445}
3446
3447static int
3448igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3449{
3450 struct igb_softc *sc = (void *)arg1;
3451 struct ifnet *ifp = &sc->arpcom.ac_if;
3452 int error, intr_rate;
3453
3454 intr_rate = sc->intr_rate;
3455 error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3456 if (error || req->newptr == NULL)
3457 return error;
3458 if (intr_rate < 0)
3459 return EINVAL;
3460
3461 ifnet_serialize_all(ifp);
3462
3463 sc->intr_rate = intr_rate;
3464 if (ifp->if_flags & IFF_RUNNING)
9c0ecdcc
SZ
3465 igb_set_eitr(sc, 0, sc->intr_rate);
3466
3467 if (bootverbose)
3468 if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
1f7e3916
SZ
3469
3470 ifnet_deserialize_all(ifp);
3471
9c0ecdcc
SZ
3472 return 0;
3473}
3474
3475static int
3476igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3477{
3478 struct igb_msix_data *msix = (void *)arg1;
3479 struct igb_softc *sc = msix->msix_sc;
3480 struct ifnet *ifp = &sc->arpcom.ac_if;
3481 int error, msix_rate;
3482
3483 msix_rate = msix->msix_rate;
3484 error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3485 if (error || req->newptr == NULL)
3486 return error;
3487 if (msix_rate < 0)
3488 return EINVAL;
3489
3490 lwkt_serialize_enter(msix->msix_serialize);
3491
3492 msix->msix_rate = msix_rate;
3493 if (ifp->if_flags & IFF_RUNNING)
3494 igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3495
3496 if (bootverbose) {
3497 if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3498 msix->msix_rate);
3499 }
3500
3501 lwkt_serialize_exit(msix->msix_serialize);
3502
1f7e3916
SZ
3503 return 0;
3504}
b6220144
SZ
3505
3506static int
3507igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3508{
3509 struct igb_softc *sc = (void *)arg1;
3510 struct ifnet *ifp = &sc->arpcom.ac_if;
27866bf1 3511 struct igb_tx_ring *txr = &sc->tx_rings[0];
b6220144
SZ
3512 int error, nsegs;
3513
3514 nsegs = txr->intr_nsegs;
3515 error = sysctl_handle_int(oidp, &nsegs, 0, req);
3516 if (error || req->newptr == NULL)
3517 return error;
3518 if (nsegs <= 0)
3519 return EINVAL;
3520
3521 ifnet_serialize_all(ifp);
3522
91b8700a 3523 if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
b6220144
SZ
3524 nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3525 error = EINVAL;
3526 } else {
3527 error = 0;
3528 txr->intr_nsegs = nsegs;
3529 }
3530
3531 ifnet_deserialize_all(ifp);
3532
3533 return error;
3534}
f6167a56 3535
d0f59cad
SZ
3536#ifdef IFPOLL_ENABLE
3537
3538static int
3539igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3540{
3541 struct igb_softc *sc = (void *)arg1;
3542 struct ifnet *ifp = &sc->arpcom.ac_if;
3543 int error, off;
3544
3545 off = sc->rx_npoll_off;
3546 error = sysctl_handle_int(oidp, &off, 0, req);
3547 if (error || req->newptr == NULL)
3548 return error;
3549 if (off < 0)
3550 return EINVAL;
3551
3552 ifnet_serialize_all(ifp);
3553 if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3554 error = EINVAL;
3555 } else {
3556 error = 0;
3557 sc->rx_npoll_off = off;
3558 }
3559 ifnet_deserialize_all(ifp);
3560
3561 return error;
3562}
3563
3564static int
3565igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3566{
3567 struct igb_softc *sc = (void *)arg1;
3568 struct ifnet *ifp = &sc->arpcom.ac_if;
3569 int error, off;
3570
3571 off = sc->tx_npoll_off;
3572 error = sysctl_handle_int(oidp, &off, 0, req);
3573 if (error || req->newptr == NULL)
3574 return error;
3575 if (off < 0)
3576 return EINVAL;
3577
3578 ifnet_serialize_all(ifp);
3579 if (off >= ncpus2) {
3580 error = EINVAL;
3581 } else {
3582 error = 0;
3583 sc->tx_npoll_off = off;
3584 }
3585 ifnet_deserialize_all(ifp);
3586
3587 return error;
3588}
3589
3590#endif /* IFPOLL_ENABLE */
3591
f6167a56
SZ
3592static void
3593igb_init_intr(struct igb_softc *sc)
3594{
be922da6 3595 igb_set_intr_mask(sc);
9c0ecdcc
SZ
3596
3597 if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
f6167a56 3598 igb_init_unshared_intr(sc);
9c0ecdcc
SZ
3599
3600 if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3601 igb_set_eitr(sc, 0, sc->intr_rate);
3602 } else {
3603 int i;
3604
3605 for (i = 0; i < sc->msix_cnt; ++i)
3606 igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3607 }
f6167a56
SZ
3608}
3609
3610static void
3611igb_init_unshared_intr(struct igb_softc *sc)
3612{
3613 struct e1000_hw *hw = &sc->hw;
3614 const struct igb_rx_ring *rxr;
3615 const struct igb_tx_ring *txr;
3616 uint32_t ivar, index;
3617 int i;
3618
3619 /*
3620 * Enable extended mode
3621 */
3622 if (sc->hw.mac.type != e1000_82575) {
9c0ecdcc
SZ
3623 uint32_t gpie;
3624 int ivar_max;
3625
3626 gpie = E1000_GPIE_NSICR;
3627 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3628 gpie |= E1000_GPIE_MSIX_MODE |
3629 E1000_GPIE_EIAME |
3630 E1000_GPIE_PBA;
3631 }
3632 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3633
3634 /*
3635 * Clear IVARs
3636 */
3637 switch (sc->hw.mac.type) {
3638 case e1000_82580:
3639 ivar_max = IGB_MAX_IVAR_82580;
3640 break;
3641
3642 case e1000_i350:
3643 ivar_max = IGB_MAX_IVAR_I350;
3644 break;
3645
3646 case e1000_vfadapt:
3647 case e1000_vfadapt_i350:
3648 ivar_max = IGB_MAX_IVAR_VF;
3649 break;
3650
3651 case e1000_82576:
3652 ivar_max = IGB_MAX_IVAR_82576;
3653 break;
3654
3655 default:
3656 panic("unknown mac type %d\n", sc->hw.mac.type);
3657 }
3658 for (i = 0; i < ivar_max; ++i)
3659 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3660 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
f6167a56
SZ
3661 } else {
3662 uint32_t tmp;
3663
9c0ecdcc
SZ
3664 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3665 ("82575 w/ MSI-X"));
f6167a56
SZ
3666 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3667 tmp |= E1000_CTRL_EXT_IRCA;
3668 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3669 }
3670
3671 /*
3672 * Map TX/RX interrupts to EICR
3673 */
3674 switch (sc->hw.mac.type) {
3675 case e1000_82580:
3676 case e1000_i350:
3677 case e1000_vfadapt:
3678 case e1000_vfadapt_i350:
3679 /* RX entries */
be922da6 3680 for (i = 0; i < sc->rx_ring_inuse; ++i) {
f6167a56
SZ
3681 rxr = &sc->rx_rings[i];
3682
3683 index = i >> 1;
3684 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3685
3686 if (i & 1) {
3687 ivar &= 0xff00ffff;
3688 ivar |=
3689 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3690 } else {
3691 ivar &= 0xffffff00;
3692 ivar |=
3693 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3694 }
3695 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3696 }
3697 /* TX entries */
27866bf1 3698 for (i = 0; i < sc->tx_ring_cnt; ++i) {
f6167a56
SZ
3699 txr = &sc->tx_rings[i];
3700
3701 index = i >> 1;
3702 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3703
3704 if (i & 1) {
3705 ivar &= 0x00ffffff;
3706 ivar |=
3707 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3708 } else {
3709 ivar &= 0xffff00ff;
3710 ivar |=
3711 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3712 }
3713 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3714 }
9c0ecdcc
SZ
3715 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3716 ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3717 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3718 }
f6167a56
SZ
3719 break;
3720
3721 case e1000_82576:
3722 /* RX entries */
be922da6 3723 for (i = 0; i < sc->rx_ring_inuse; ++i) {
f6167a56
SZ
3724 rxr = &sc->rx_rings[i];
3725
3726 index = i & 0x7; /* Each IVAR has two entries */
3727 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3728
3729 if (i < 8) {
3730 ivar &= 0xffffff00;
3731 ivar |=
3732 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3733 } else {
3734 ivar &= 0xff00ffff;
3735 ivar |=
3736 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3737 }
3738 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3739 }
3740 /* TX entries */
27866bf1 3741 for (i = 0; i < sc->tx_ring_cnt; ++i) {
f6167a56
SZ
3742 txr = &sc->tx_rings[i];
3743
3744 index = i & 0x7; /* Each IVAR has two entries */
3745 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3746
3747 if (i < 8) {
3748 ivar &= 0xffff00ff;
3749 ivar |=
3750 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3751 } else {
3752 ivar &= 0x00ffffff;
3753 ivar |=
3754 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3755 }
3756 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3757 }
9c0ecdcc
SZ
3758 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3759 ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3760 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3761 }
f6167a56
SZ
3762 break;
3763
3764 case e1000_82575:
3765 /*
3766 * Enable necessary interrupt bits.
3767 *
3768 * The name of the register is confusing; in addition to
3769 * configuring the first vector of MSI-X, it also configures
3770 * which bits of EICR could be set by the hardware even when
3771 * MSI or line interrupt is used; it thus controls interrupt
3772 * generation. It MUST be configured explicitly; the default
3773 * value mentioned in the datasheet is wrong: RX queue0 and
3774 * TX queue0 are NOT enabled by default.
3775 */
3776 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3777 break;
3778
3779 default:
9c0ecdcc 3780 panic("unknown mac type %d\n", sc->hw.mac.type);
f6167a56 3781 }
f6167a56
SZ
3782}
3783
3784static int
3785igb_setup_intr(struct igb_softc *sc)
3786{
9c0ecdcc 3787 int error;
f6167a56 3788
9c0ecdcc
SZ
3789 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3790 return igb_msix_setup(sc);
f6167a56 3791
f6167a56 3792 error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
9c0ecdcc 3793 (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
7d235eb5 3794 sc, &sc->intr_tag, &sc->main_serialize);
f6167a56
SZ
3795 if (error) {
3796 device_printf(sc->dev, "Failed to register interrupt handler");
3797