ig_hal/em/emx: Add I219 (Skylake) support
[dragonfly.git] / sys / dev / netif / ig_hal / e1000_api.c
CommitLineData
9c80d176
SZ
1/******************************************************************************
2
4765c386 3 Copyright (c) 2001-2014, Intel Corporation
9c80d176
SZ
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
379ebbe7 33/*$FreeBSD:$*/
9c80d176
SZ
34
35#include "e1000_api.h"
36
37/**
38 * e1000_init_mac_params - Initialize MAC function pointers
39 * @hw: pointer to the HW structure
40 *
41 * This function initializes the function pointers for the MAC
42 * set of functions. Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46 s32 ret_val = E1000_SUCCESS;
47
48 if (hw->mac.ops.init_params) {
49 ret_val = hw->mac.ops.init_params(hw);
50 if (ret_val) {
51 DEBUGOUT("MAC Initialization Error\n");
52 goto out;
53 }
54 } else {
55 DEBUGOUT("mac.init_mac_params was NULL\n");
56 ret_val = -E1000_ERR_CONFIG;
57 }
58
59out:
60 return ret_val;
61}
62
63/**
64 * e1000_init_nvm_params - Initialize NVM function pointers
65 * @hw: pointer to the HW structure
66 *
67 * This function initializes the function pointers for the NVM
68 * set of functions. Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72 s32 ret_val = E1000_SUCCESS;
73
74 if (hw->nvm.ops.init_params) {
75 ret_val = hw->nvm.ops.init_params(hw);
76 if (ret_val) {
77 DEBUGOUT("NVM Initialization Error\n");
78 goto out;
79 }
80 } else {
81 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 ret_val = -E1000_ERR_CONFIG;
83 }
84
85out:
86 return ret_val;
87}
88
89/**
90 * e1000_init_phy_params - Initialize PHY function pointers
91 * @hw: pointer to the HW structure
92 *
93 * This function initializes the function pointers for the PHY
94 * set of functions. Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98 s32 ret_val = E1000_SUCCESS;
99
100 if (hw->phy.ops.init_params) {
101 ret_val = hw->phy.ops.init_params(hw);
102 if (ret_val) {
103 DEBUGOUT("PHY Initialization Error\n");
104 goto out;
105 }
106 } else {
107 DEBUGOUT("phy.init_phy_params was NULL\n");
108 ret_val = -E1000_ERR_CONFIG;
109 }
110
111out:
112 return ret_val;
113}
114
62583d18
SZ
115/**
116 * e1000_init_mbx_params - Initialize mailbox function pointers
117 * @hw: pointer to the HW structure
118 *
119 * This function initializes the function pointers for the PHY
120 * set of functions. Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124 s32 ret_val = E1000_SUCCESS;
125
126 if (hw->mbx.ops.init_params) {
127 ret_val = hw->mbx.ops.init_params(hw);
128 if (ret_val) {
129 DEBUGOUT("Mailbox Initialization Error\n");
130 goto out;
131 }
132 } else {
133 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 ret_val = -E1000_ERR_CONFIG;
135 }
136
137out:
138 return ret_val;
139}
140
9c80d176
SZ
141/**
142 * e1000_set_mac_type - Sets MAC type
143 * @hw: pointer to the HW structure
144 *
145 * This function sets the mac type of the adapter based on the
146 * device ID stored in the hw structure.
147 * MUST BE FIRST FUNCTION CALLED (explicitly or through
148 * e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152 struct e1000_mac_info *mac = &hw->mac;
153 s32 ret_val = E1000_SUCCESS;
154
155 DEBUGFUNC("e1000_set_mac_type");
156
157 switch (hw->device_id) {
6a5a645e 158#ifndef NO_82542_SUPPORT
9c80d176
SZ
159 case E1000_DEV_ID_82542:
160 mac->type = e1000_82542;
161 break;
6a5a645e 162#endif
9c80d176
SZ
163 case E1000_DEV_ID_82543GC_FIBER:
164 case E1000_DEV_ID_82543GC_COPPER:
165 mac->type = e1000_82543;
166 break;
167 case E1000_DEV_ID_82544EI_COPPER:
168 case E1000_DEV_ID_82544EI_FIBER:
169 case E1000_DEV_ID_82544GC_COPPER:
170 case E1000_DEV_ID_82544GC_LOM:
171 mac->type = e1000_82544;
172 break;
173 case E1000_DEV_ID_82540EM:
174 case E1000_DEV_ID_82540EM_LOM:
175 case E1000_DEV_ID_82540EP:
176 case E1000_DEV_ID_82540EP_LOM:
177 case E1000_DEV_ID_82540EP_LP:
178 mac->type = e1000_82540;
179 break;
180 case E1000_DEV_ID_82545EM_COPPER:
181 case E1000_DEV_ID_82545EM_FIBER:
182 mac->type = e1000_82545;
183 break;
184 case E1000_DEV_ID_82545GM_COPPER:
185 case E1000_DEV_ID_82545GM_FIBER:
186 case E1000_DEV_ID_82545GM_SERDES:
187 mac->type = e1000_82545_rev_3;
188 break;
189 case E1000_DEV_ID_82546EB_COPPER:
190 case E1000_DEV_ID_82546EB_FIBER:
191 case E1000_DEV_ID_82546EB_QUAD_COPPER:
192 mac->type = e1000_82546;
193 break;
194 case E1000_DEV_ID_82546GB_COPPER:
195 case E1000_DEV_ID_82546GB_FIBER:
196 case E1000_DEV_ID_82546GB_SERDES:
197 case E1000_DEV_ID_82546GB_PCIE:
198 case E1000_DEV_ID_82546GB_QUAD_COPPER:
199 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
200 mac->type = e1000_82546_rev_3;
201 break;
202 case E1000_DEV_ID_82541EI:
203 case E1000_DEV_ID_82541EI_MOBILE:
204 case E1000_DEV_ID_82541ER_LOM:
205 mac->type = e1000_82541;
206 break;
207 case E1000_DEV_ID_82541ER:
208 case E1000_DEV_ID_82541GI:
209 case E1000_DEV_ID_82541GI_LF:
210 case E1000_DEV_ID_82541GI_MOBILE:
211 mac->type = e1000_82541_rev_2;
212 break;
213 case E1000_DEV_ID_82547EI:
214 case E1000_DEV_ID_82547EI_MOBILE:
215 mac->type = e1000_82547;
216 break;
217 case E1000_DEV_ID_82547GI:
218 mac->type = e1000_82547_rev_2;
219 break;
220 case E1000_DEV_ID_82571EB_COPPER:
221 case E1000_DEV_ID_82571EB_FIBER:
222 case E1000_DEV_ID_82571EB_SERDES:
223 case E1000_DEV_ID_82571EB_SERDES_DUAL:
224 case E1000_DEV_ID_82571EB_SERDES_QUAD:
225 case E1000_DEV_ID_82571EB_QUAD_COPPER:
226 case E1000_DEV_ID_82571PT_QUAD_COPPER:
227 case E1000_DEV_ID_82571EB_QUAD_FIBER:
228 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4be59a01 229 case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
9c80d176
SZ
230 mac->type = e1000_82571;
231 break;
232 case E1000_DEV_ID_82572EI:
233 case E1000_DEV_ID_82572EI_COPPER:
234 case E1000_DEV_ID_82572EI_FIBER:
235 case E1000_DEV_ID_82572EI_SERDES:
236 mac->type = e1000_82572;
237 break;
238 case E1000_DEV_ID_82573E:
239 case E1000_DEV_ID_82573E_IAMT:
240 case E1000_DEV_ID_82573L:
241 mac->type = e1000_82573;
242 break;
243 case E1000_DEV_ID_82574L:
6a5a645e 244 case E1000_DEV_ID_82574LA:
9c80d176
SZ
245 mac->type = e1000_82574;
246 break;
6a5a645e
SZ
247 case E1000_DEV_ID_82583V:
248 mac->type = e1000_82583;
249 break;
9c80d176
SZ
250 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
251 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
252 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
253 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
254 mac->type = e1000_80003es2lan;
255 break;
256 case E1000_DEV_ID_ICH8_IFE:
257 case E1000_DEV_ID_ICH8_IFE_GT:
258 case E1000_DEV_ID_ICH8_IFE_G:
259 case E1000_DEV_ID_ICH8_IGP_M:
260 case E1000_DEV_ID_ICH8_IGP_M_AMT:
261 case E1000_DEV_ID_ICH8_IGP_AMT:
262 case E1000_DEV_ID_ICH8_IGP_C:
6a5a645e 263 case E1000_DEV_ID_ICH8_82567V_3:
9c80d176
SZ
264 mac->type = e1000_ich8lan;
265 break;
266 case E1000_DEV_ID_ICH9_IFE:
267 case E1000_DEV_ID_ICH9_IFE_GT:
268 case E1000_DEV_ID_ICH9_IFE_G:
269 case E1000_DEV_ID_ICH9_IGP_M:
270 case E1000_DEV_ID_ICH9_IGP_M_AMT:
271 case E1000_DEV_ID_ICH9_IGP_M_V:
272 case E1000_DEV_ID_ICH9_IGP_AMT:
273 case E1000_DEV_ID_ICH9_BM:
274 case E1000_DEV_ID_ICH9_IGP_C:
275 case E1000_DEV_ID_ICH10_R_BM_LM:
276 case E1000_DEV_ID_ICH10_R_BM_LF:
277 case E1000_DEV_ID_ICH10_R_BM_V:
278 mac->type = e1000_ich9lan;
279 break;
280 case E1000_DEV_ID_ICH10_D_BM_LM:
281 case E1000_DEV_ID_ICH10_D_BM_LF:
6a5a645e 282 case E1000_DEV_ID_ICH10_D_BM_V:
9c80d176
SZ
283 mac->type = e1000_ich10lan;
284 break;
6a5a645e
SZ
285 case E1000_DEV_ID_PCH_D_HV_DM:
286 case E1000_DEV_ID_PCH_D_HV_DC:
287 case E1000_DEV_ID_PCH_M_HV_LM:
288 case E1000_DEV_ID_PCH_M_HV_LC:
289 mac->type = e1000_pchlan;
9c80d176 290 break;
6a5a645e
SZ
291 case E1000_DEV_ID_PCH2_LV_LM:
292 case E1000_DEV_ID_PCH2_LV_V:
293 mac->type = e1000_pch2lan;
9c80d176 294 break;
379ebbe7
SZ
295 case E1000_DEV_ID_PCH_LPT_I217_LM:
296 case E1000_DEV_ID_PCH_LPT_I217_V:
297 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
298 case E1000_DEV_ID_PCH_LPTLP_I218_V:
4765c386
MN
299 case E1000_DEV_ID_PCH_I218_LM2:
300 case E1000_DEV_ID_PCH_I218_V2:
301 case E1000_DEV_ID_PCH_I218_LM3:
302 case E1000_DEV_ID_PCH_I218_V3:
379ebbe7
SZ
303 mac->type = e1000_pch_lpt;
304 break;
524ce499
SZ
305 case E1000_DEV_ID_PCH_SPT_I219_LM:
306 case E1000_DEV_ID_PCH_SPT_I219_V:
307 case E1000_DEV_ID_PCH_SPT_I219_LM2:
308 case E1000_DEV_ID_PCH_SPT_I219_V2:
309 mac->type = e1000_pch_spt;
310 break;
62583d18
SZ
311 case E1000_DEV_ID_82575EB_COPPER:
312 case E1000_DEV_ID_82575EB_FIBER_SERDES:
313 case E1000_DEV_ID_82575GB_QUAD_COPPER:
314 mac->type = e1000_82575;
315 break;
316 case E1000_DEV_ID_82576:
317 case E1000_DEV_ID_82576_FIBER:
318 case E1000_DEV_ID_82576_SERDES:
319 case E1000_DEV_ID_82576_QUAD_COPPER:
320 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
321 case E1000_DEV_ID_82576_NS:
322 case E1000_DEV_ID_82576_NS_SERDES:
323 case E1000_DEV_ID_82576_SERDES_QUAD:
324 mac->type = e1000_82576;
325 break;
326 case E1000_DEV_ID_82580_COPPER:
327 case E1000_DEV_ID_82580_FIBER:
328 case E1000_DEV_ID_82580_SERDES:
329 case E1000_DEV_ID_82580_SGMII:
330 case E1000_DEV_ID_82580_COPPER_DUAL:
331 case E1000_DEV_ID_82580_QUAD_FIBER:
332 case E1000_DEV_ID_DH89XXCC_SGMII:
333 case E1000_DEV_ID_DH89XXCC_SERDES:
334 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
335 case E1000_DEV_ID_DH89XXCC_SFP:
336 mac->type = e1000_82580;
337 break;
338 case E1000_DEV_ID_I350_COPPER:
339 case E1000_DEV_ID_I350_FIBER:
340 case E1000_DEV_ID_I350_SERDES:
341 case E1000_DEV_ID_I350_SGMII:
342 case E1000_DEV_ID_I350_DA4:
343 mac->type = e1000_i350;
344 break;
379ebbe7
SZ
345 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
346 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
4be59a01
SZ
347 case E1000_DEV_ID_I210_COPPER:
348 case E1000_DEV_ID_I210_COPPER_OEM1:
349 case E1000_DEV_ID_I210_COPPER_IT:
350 case E1000_DEV_ID_I210_FIBER:
351 case E1000_DEV_ID_I210_SERDES:
352 case E1000_DEV_ID_I210_SGMII:
353 mac->type = e1000_i210;
354 break;
355 case E1000_DEV_ID_I211_COPPER:
356 mac->type = e1000_i211;
357 break;
62583d18 358 case E1000_DEV_ID_82576_VF:
379ebbe7 359 case E1000_DEV_ID_82576_VF_HV:
62583d18
SZ
360 mac->type = e1000_vfadapt;
361 break;
362 case E1000_DEV_ID_I350_VF:
379ebbe7 363 case E1000_DEV_ID_I350_VF_HV:
62583d18
SZ
364 mac->type = e1000_vfadapt_i350;
365 break;
4be59a01 366
379ebbe7
SZ
367 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
368 case E1000_DEV_ID_I354_SGMII:
ba0123e0 369 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
379ebbe7
SZ
370 mac->type = e1000_i354;
371 break;
9c80d176
SZ
372 default:
373 /* Should never have loaded on this device */
374 ret_val = -E1000_ERR_MAC_INIT;
375 break;
376 }
377
378 return ret_val;
379}
380
381/**
382 * e1000_setup_init_funcs - Initializes function pointers
383 * @hw: pointer to the HW structure
384 * @init_device: TRUE will initialize the rest of the function pointers
4be59a01
SZ
385 * getting the device ready for use. FALSE will only set
386 * MAC type and the function pointers for the other init
387 * functions. Passing FALSE will not generate any hardware
388 * reads or writes.
9c80d176
SZ
389 *
390 * This function must be called by a driver in order to use the rest
391 * of the 'shared' code files. Called by drivers only.
392 **/
393s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
394{
395 s32 ret_val;
396
397 /* Can't do much good without knowing the MAC type. */
398 ret_val = e1000_set_mac_type(hw);
399 if (ret_val) {
400 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
401 goto out;
402 }
403
404 if (!hw->hw_addr) {
405 DEBUGOUT("ERROR: Registers not mapped\n");
406 ret_val = -E1000_ERR_CONFIG;
407 goto out;
408 }
409
410 /*
411 * Init function pointers to generic implementations. We do this first
412 * allowing a driver module to override it afterward.
413 */
414 e1000_init_mac_ops_generic(hw);
415 e1000_init_phy_ops_generic(hw);
416 e1000_init_nvm_ops_generic(hw);
62583d18 417 e1000_init_mbx_ops_generic(hw);
9c80d176
SZ
418
419 /*
420 * Set up the init function pointers. These are functions within the
421 * adapter family file that sets up function pointers for the rest of
422 * the functions in that family.
423 */
424 switch (hw->mac.type) {
6a5a645e 425#ifndef NO_82542_SUPPORT
9c80d176
SZ
426 case e1000_82542:
427 e1000_init_function_pointers_82542(hw);
428 break;
6a5a645e 429#endif
9c80d176
SZ
430 case e1000_82543:
431 case e1000_82544:
432 e1000_init_function_pointers_82543(hw);
433 break;
434 case e1000_82540:
435 case e1000_82545:
436 case e1000_82545_rev_3:
437 case e1000_82546:
438 case e1000_82546_rev_3:
439 e1000_init_function_pointers_82540(hw);
440 break;
441 case e1000_82541:
442 case e1000_82541_rev_2:
443 case e1000_82547:
444 case e1000_82547_rev_2:
445 e1000_init_function_pointers_82541(hw);
446 break;
447 case e1000_82571:
448 case e1000_82572:
449 case e1000_82573:
450 case e1000_82574:
6a5a645e 451 case e1000_82583:
9c80d176
SZ
452 e1000_init_function_pointers_82571(hw);
453 break;
454 case e1000_80003es2lan:
455 e1000_init_function_pointers_80003es2lan(hw);
456 break;
457 case e1000_ich8lan:
458 case e1000_ich9lan:
459 case e1000_ich10lan:
6a5a645e
SZ
460 case e1000_pchlan:
461 case e1000_pch2lan:
379ebbe7 462 case e1000_pch_lpt:
524ce499 463 case e1000_pch_spt:
9c80d176
SZ
464 e1000_init_function_pointers_ich8lan(hw);
465 break;
62583d18
SZ
466 case e1000_82575:
467 case e1000_82576:
468 case e1000_82580:
469 case e1000_i350:
379ebbe7 470 case e1000_i354:
62583d18
SZ
471 e1000_init_function_pointers_82575(hw);
472 break;
4be59a01
SZ
473 case e1000_i210:
474 case e1000_i211:
475 e1000_init_function_pointers_i210(hw);
476 break;
62583d18
SZ
477 case e1000_vfadapt:
478 e1000_init_function_pointers_vf(hw);
479 break;
480 case e1000_vfadapt_i350:
481 e1000_init_function_pointers_vf(hw);
482 break;
9c80d176
SZ
483 default:
484 DEBUGOUT("Hardware not supported\n");
485 ret_val = -E1000_ERR_CONFIG;
486 break;
487 }
488
489 /*
490 * Initialize the rest of the function pointers. These require some
491 * register reads/writes in some cases.
492 */
493 if (!(ret_val) && init_device) {
494 ret_val = e1000_init_mac_params(hw);
495 if (ret_val)
496 goto out;
497
498 ret_val = e1000_init_nvm_params(hw);
499 if (ret_val)
500 goto out;
501
502 ret_val = e1000_init_phy_params(hw);
503 if (ret_val)
504 goto out;
62583d18
SZ
505
506 ret_val = e1000_init_mbx_params(hw);
507 if (ret_val)
508 goto out;
9c80d176
SZ
509 }
510
511out:
512 return ret_val;
513}
514
515/**
516 * e1000_get_bus_info - Obtain bus information for adapter
517 * @hw: pointer to the HW structure
518 *
519 * This will obtain information about the HW bus for which the
520 * adapter is attached and stores it in the hw structure. This is a
521 * function pointer entry point called by drivers.
522 **/
523s32 e1000_get_bus_info(struct e1000_hw *hw)
524{
525 if (hw->mac.ops.get_bus_info)
526 return hw->mac.ops.get_bus_info(hw);
527
528 return E1000_SUCCESS;
529}
530
531/**
532 * e1000_clear_vfta - Clear VLAN filter table
533 * @hw: pointer to the HW structure
534 *
535 * This clears the VLAN filter table on the adapter. This is a function
536 * pointer entry point called by drivers.
537 **/
538void e1000_clear_vfta(struct e1000_hw *hw)
539{
540 if (hw->mac.ops.clear_vfta)
541 hw->mac.ops.clear_vfta(hw);
542}
543
544/**
545 * e1000_write_vfta - Write value to VLAN filter table
546 * @hw: pointer to the HW structure
547 * @offset: the 32-bit offset in which to write the value to.
548 * @value: the 32-bit value to write at location offset.
549 *
550 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
551 * table. This is a function pointer entry point called by drivers.
552 **/
553void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
554{
555 if (hw->mac.ops.write_vfta)
556 hw->mac.ops.write_vfta(hw, offset, value);
557}
558
559/**
560 * e1000_update_mc_addr_list - Update Multicast addresses
561 * @hw: pointer to the HW structure
562 * @mc_addr_list: array of multicast addresses to program
563 * @mc_addr_count: number of multicast addresses to program
9c80d176 564 *
6a5a645e 565 * Updates the Multicast Table Array.
9c80d176 566 * The caller must have a packed mc_addr_list of multicast addresses.
9c80d176
SZ
567 **/
568void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
4be59a01 569 u32 mc_addr_count)
9c80d176
SZ
570{
571 if (hw->mac.ops.update_mc_addr_list)
6a5a645e 572 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
4be59a01 573 mc_addr_count);
9c80d176
SZ
574}
575
576/**
577 * e1000_force_mac_fc - Force MAC flow control
578 * @hw: pointer to the HW structure
579 *
580 * Force the MAC's flow control settings. Currently no func pointer exists
581 * and all implementations are handled in the generic version of this
582 * function.
583 **/
584s32 e1000_force_mac_fc(struct e1000_hw *hw)
585{
586 return e1000_force_mac_fc_generic(hw);
587}
588
589/**
590 * e1000_check_for_link - Check/Store link connection
591 * @hw: pointer to the HW structure
592 *
593 * This checks the link condition of the adapter and stores the
594 * results in the hw->mac structure. This is a function pointer entry
595 * point called by drivers.
596 **/
597s32 e1000_check_for_link(struct e1000_hw *hw)
598{
599 if (hw->mac.ops.check_for_link)
600 return hw->mac.ops.check_for_link(hw);
601
602 return -E1000_ERR_CONFIG;
603}
604
605/**
606 * e1000_check_mng_mode - Check management mode
607 * @hw: pointer to the HW structure
608 *
609 * This checks if the adapter has manageability enabled.
610 * This is a function pointer entry point called by drivers.
611 **/
612bool e1000_check_mng_mode(struct e1000_hw *hw)
613{
614 if (hw->mac.ops.check_mng_mode)
615 return hw->mac.ops.check_mng_mode(hw);
616
617 return FALSE;
618}
619
620/**
621 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
622 * @hw: pointer to the HW structure
623 * @buffer: pointer to the host interface
624 * @length: size of the buffer
625 *
626 * Writes the DHCP information to the host interface.
627 **/
628s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
629{
630 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
631}
632
633/**
634 * e1000_reset_hw - Reset hardware
635 * @hw: pointer to the HW structure
636 *
637 * This resets the hardware into a known state. This is a function pointer
638 * entry point called by drivers.
639 **/
640s32 e1000_reset_hw(struct e1000_hw *hw)
641{
642 if (hw->mac.ops.reset_hw)
643 return hw->mac.ops.reset_hw(hw);
644
645 return -E1000_ERR_CONFIG;
646}
647
648/**
649 * e1000_init_hw - Initialize hardware
650 * @hw: pointer to the HW structure
651 *
652 * This inits the hardware readying it for operation. This is a function
653 * pointer entry point called by drivers.
654 **/
655s32 e1000_init_hw(struct e1000_hw *hw)
656{
657 if (hw->mac.ops.init_hw)
658 return hw->mac.ops.init_hw(hw);
659
660 return -E1000_ERR_CONFIG;
661}
662
663/**
664 * e1000_setup_link - Configures link and flow control
665 * @hw: pointer to the HW structure
666 *
667 * This configures link and flow control settings for the adapter. This
668 * is a function pointer entry point called by drivers. While modules can
669 * also call this, they probably call their own version of this function.
670 **/
671s32 e1000_setup_link(struct e1000_hw *hw)
672{
673 if (hw->mac.ops.setup_link)
674 return hw->mac.ops.setup_link(hw);
675
676 return -E1000_ERR_CONFIG;
677}
678
679/**
680 * e1000_get_speed_and_duplex - Returns current speed and duplex
681 * @hw: pointer to the HW structure
682 * @speed: pointer to a 16-bit value to store the speed
683 * @duplex: pointer to a 16-bit value to store the duplex.
684 *
685 * This returns the speed and duplex of the adapter in the two 'out'
686 * variables passed in. This is a function pointer entry point called
687 * by drivers.
688 **/
689s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
690{
691 if (hw->mac.ops.get_link_up_info)
692 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
693
694 return -E1000_ERR_CONFIG;
695}
696
697/**
698 * e1000_setup_led - Configures SW controllable LED
699 * @hw: pointer to the HW structure
700 *
701 * This prepares the SW controllable LED for use and saves the current state
702 * of the LED so it can be later restored. This is a function pointer entry
703 * point called by drivers.
704 **/
705s32 e1000_setup_led(struct e1000_hw *hw)
706{
707 if (hw->mac.ops.setup_led)
708 return hw->mac.ops.setup_led(hw);
709
710 return E1000_SUCCESS;
711}
712
713/**
714 * e1000_cleanup_led - Restores SW controllable LED
715 * @hw: pointer to the HW structure
716 *
717 * This restores the SW controllable LED to the value saved off by
718 * e1000_setup_led. This is a function pointer entry point called by drivers.
719 **/
720s32 e1000_cleanup_led(struct e1000_hw *hw)
721{
722 if (hw->mac.ops.cleanup_led)
723 return hw->mac.ops.cleanup_led(hw);
724
725 return E1000_SUCCESS;
726}
727
728/**
729 * e1000_blink_led - Blink SW controllable LED
730 * @hw: pointer to the HW structure
731 *
732 * This starts the adapter LED blinking. Request the LED to be setup first
733 * and cleaned up after. This is a function pointer entry point called by
734 * drivers.
735 **/
736s32 e1000_blink_led(struct e1000_hw *hw)
737{
738 if (hw->mac.ops.blink_led)
739 return hw->mac.ops.blink_led(hw);
740
741 return E1000_SUCCESS;
742}
743
6a5a645e
SZ
744/**
745 * e1000_id_led_init - store LED configurations in SW
746 * @hw: pointer to the HW structure
747 *
748 * Initializes the LED config in SW. This is a function pointer entry point
749 * called by drivers.
750 **/
751s32 e1000_id_led_init(struct e1000_hw *hw)
752{
753 if (hw->mac.ops.id_led_init)
754 return hw->mac.ops.id_led_init(hw);
755
756 return E1000_SUCCESS;
757}
758
9c80d176
SZ
759/**
760 * e1000_led_on - Turn on SW controllable LED
761 * @hw: pointer to the HW structure
762 *
763 * Turns the SW defined LED on. This is a function pointer entry point
764 * called by drivers.
765 **/
766s32 e1000_led_on(struct e1000_hw *hw)
767{
768 if (hw->mac.ops.led_on)
769 return hw->mac.ops.led_on(hw);
770
771 return E1000_SUCCESS;
772}
773
774/**
775 * e1000_led_off - Turn off SW controllable LED
776 * @hw: pointer to the HW structure
777 *
778 * Turns the SW defined LED off. This is a function pointer entry point
779 * called by drivers.
780 **/
781s32 e1000_led_off(struct e1000_hw *hw)
782{
783 if (hw->mac.ops.led_off)
784 return hw->mac.ops.led_off(hw);
785
786 return E1000_SUCCESS;
787}
788
789/**
790 * e1000_reset_adaptive - Reset adaptive IFS
791 * @hw: pointer to the HW structure
792 *
793 * Resets the adaptive IFS. Currently no func pointer exists and all
794 * implementations are handled in the generic version of this function.
795 **/
796void e1000_reset_adaptive(struct e1000_hw *hw)
797{
798 e1000_reset_adaptive_generic(hw);
799}
800
801/**
802 * e1000_update_adaptive - Update adaptive IFS
803 * @hw: pointer to the HW structure
804 *
805 * Updates adapter IFS. Currently no func pointer exists and all
806 * implementations are handled in the generic version of this function.
807 **/
808void e1000_update_adaptive(struct e1000_hw *hw)
809{
810 e1000_update_adaptive_generic(hw);
811}
812
813/**
814 * e1000_disable_pcie_master - Disable PCI-Express master access
815 * @hw: pointer to the HW structure
816 *
817 * Disables PCI-Express master access and verifies there are no pending
818 * requests. Currently no func pointer exists and all implementations are
819 * handled in the generic version of this function.
820 **/
821s32 e1000_disable_pcie_master(struct e1000_hw *hw)
822{
823 return e1000_disable_pcie_master_generic(hw);
824}
825
826/**
827 * e1000_config_collision_dist - Configure collision distance
828 * @hw: pointer to the HW structure
829 *
830 * Configures the collision distance to the default value and is used
831 * during link setup.
832 **/
833void e1000_config_collision_dist(struct e1000_hw *hw)
834{
835 if (hw->mac.ops.config_collision_dist)
836 hw->mac.ops.config_collision_dist(hw);
837}
838
839/**
840 * e1000_rar_set - Sets a receive address register
841 * @hw: pointer to the HW structure
842 * @addr: address to set the RAR to
843 * @index: the RAR to set
844 *
845 * Sets a Receive Address Register (RAR) to the specified address.
846 **/
4765c386 847int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
9c80d176
SZ
848{
849 if (hw->mac.ops.rar_set)
4765c386
MN
850 return hw->mac.ops.rar_set(hw, addr, index);
851
852 return E1000_SUCCESS;
9c80d176
SZ
853}
854
855/**
856 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
857 * @hw: pointer to the HW structure
858 *
859 * Ensures that the MDI/MDIX SW state is valid.
860 **/
861s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
862{
863 if (hw->mac.ops.validate_mdi_setting)
864 return hw->mac.ops.validate_mdi_setting(hw);
865
866 return E1000_SUCCESS;
867}
868
9c80d176
SZ
869/**
870 * e1000_hash_mc_addr - Determines address location in multicast table
871 * @hw: pointer to the HW structure
872 * @mc_addr: Multicast address to hash.
873 *
874 * This hashes an address to determine its location in the multicast
875 * table. Currently no func pointer exists and all implementations
876 * are handled in the generic version of this function.
877 **/
878u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
879{
880 return e1000_hash_mc_addr_generic(hw, mc_addr);
881}
882
883/**
884 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
885 * @hw: pointer to the HW structure
886 *
887 * Enables packet filtering on transmit packets if manageability is enabled
888 * and host interface is enabled.
889 * Currently no func pointer exists and all implementations are handled in the
890 * generic version of this function.
891 **/
892bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
893{
894 return e1000_enable_tx_pkt_filtering_generic(hw);
895}
896
897/**
898 * e1000_mng_host_if_write - Writes to the manageability host interface
899 * @hw: pointer to the HW structure
900 * @buffer: pointer to the host interface buffer
901 * @length: size of the buffer
902 * @offset: location in the buffer to write to
903 * @sum: sum of the data (not checksum)
904 *
905 * This function writes the buffer content at the offset given on the host if.
906 * It also does alignment considerations to do the writes in most efficient
907 * way. Also fills up the sum of the buffer in *buffer parameter.
908 **/
4be59a01
SZ
909s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
910 u16 offset, u8 *sum)
9c80d176 911{
379ebbe7 912 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
9c80d176
SZ
913}
914
915/**
916 * e1000_mng_write_cmd_header - Writes manageability command header
917 * @hw: pointer to the HW structure
918 * @hdr: pointer to the host interface command header
919 *
920 * Writes the command header after does the checksum calculation.
921 **/
922s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
4be59a01 923 struct e1000_host_mng_command_header *hdr)
9c80d176 924{
379ebbe7 925 return e1000_mng_write_cmd_header_generic(hw, hdr);
9c80d176
SZ
926}
927
928/**
929 * e1000_mng_enable_host_if - Checks host interface is enabled
930 * @hw: pointer to the HW structure
931 *
932 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
933 *
934 * This function checks whether the HOST IF is enabled for command operation
935 * and also checks whether the previous command is completed. It busy waits
936 * in case of previous command is not completed.
937 **/
4be59a01 938s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
9c80d176 939{
379ebbe7 940 return e1000_mng_enable_host_if_generic(hw);
9c80d176
SZ
941}
942
943/**
379ebbe7 944 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
9c80d176 945 * @hw: pointer to the HW structure
379ebbe7 946 * @itr: u32 indicating itr value
9c80d176 947 *
379ebbe7 948 * Set the OBFF timer based on the given interrupt rate.
9c80d176 949 **/
379ebbe7 950s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
9c80d176 951{
379ebbe7
SZ
952 if (hw->mac.ops.set_obff_timer)
953 return hw->mac.ops.set_obff_timer(hw, itr);
9c80d176
SZ
954
955 return E1000_SUCCESS;
956}
957
958/**
959 * e1000_check_reset_block - Verifies PHY can be reset
960 * @hw: pointer to the HW structure
961 *
962 * Checks if the PHY is in a state that can be reset or if manageability
963 * has it tied up. This is a function pointer entry point called by drivers.
964 **/
965s32 e1000_check_reset_block(struct e1000_hw *hw)
966{
967 if (hw->phy.ops.check_reset_block)
968 return hw->phy.ops.check_reset_block(hw);
969
970 return E1000_SUCCESS;
971}
972
973/**
974 * e1000_read_phy_reg - Reads PHY register
975 * @hw: pointer to the HW structure
976 * @offset: the register to read
977 * @data: the buffer to store the 16-bit read.
978 *
979 * Reads the PHY register and returns the value in data.
980 * This is a function pointer entry point called by drivers.
981 **/
982s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
983{
984 if (hw->phy.ops.read_reg)
985 return hw->phy.ops.read_reg(hw, offset, data);
986
987 return E1000_SUCCESS;
988}
989
990/**
991 * e1000_write_phy_reg - Writes PHY register
992 * @hw: pointer to the HW structure
993 * @offset: the register to write
994 * @data: the value to write.
995 *
996 * Writes the PHY register at offset with the value in data.
997 * This is a function pointer entry point called by drivers.
998 **/
999s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1000{
1001 if (hw->phy.ops.write_reg)
1002 return hw->phy.ops.write_reg(hw, offset, data);
1003
1004 return E1000_SUCCESS;
1005}
1006
1007/**
1008 * e1000_release_phy - Generic release PHY
1009 * @hw: pointer to the HW structure
1010 *
1011 * Return if silicon family does not require a semaphore when accessing the
1012 * PHY.
1013 **/
1014void e1000_release_phy(struct e1000_hw *hw)
1015{
1016 if (hw->phy.ops.release)
1017 hw->phy.ops.release(hw);
1018}
1019
1020/**
1021 * e1000_acquire_phy - Generic acquire PHY
1022 * @hw: pointer to the HW structure
1023 *
1024 * Return success if silicon family does not require a semaphore when
1025 * accessing the PHY.
1026 **/
1027s32 e1000_acquire_phy(struct e1000_hw *hw)
1028{
1029 if (hw->phy.ops.acquire)
1030 return hw->phy.ops.acquire(hw);
1031
1032 return E1000_SUCCESS;
1033}
1034
1035/**
1036 * e1000_cfg_on_link_up - Configure PHY upon link up
1037 * @hw: pointer to the HW structure
1038 **/
1039s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1040{
1041 if (hw->phy.ops.cfg_on_link_up)
1042 return hw->phy.ops.cfg_on_link_up(hw);
1043
1044 return E1000_SUCCESS;
1045}
1046
1047/**
1048 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1049 * @hw: pointer to the HW structure
1050 * @offset: the register to read
1051 * @data: the location to store the 16-bit value read.
1052 *
1053 * Reads a register out of the Kumeran interface. Currently no func pointer
1054 * exists and all implementations are handled in the generic version of
1055 * this function.
1056 **/
1057s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1058{
1059 return e1000_read_kmrn_reg_generic(hw, offset, data);
1060}
1061
1062/**
1063 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1064 * @hw: pointer to the HW structure
1065 * @offset: the register to write
1066 * @data: the value to write.
1067 *
1068 * Writes a register to the Kumeran interface. Currently no func pointer
1069 * exists and all implementations are handled in the generic version of
1070 * this function.
1071 **/
1072s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1073{
1074 return e1000_write_kmrn_reg_generic(hw, offset, data);
1075}
1076
1077/**
1078 * e1000_get_cable_length - Retrieves cable length estimation
1079 * @hw: pointer to the HW structure
1080 *
1081 * This function estimates the cable length and stores them in
1082 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1083 * entry point called by drivers.
1084 **/
1085s32 e1000_get_cable_length(struct e1000_hw *hw)
1086{
1087 if (hw->phy.ops.get_cable_length)
1088 return hw->phy.ops.get_cable_length(hw);
1089
1090 return E1000_SUCCESS;
1091}
1092
1093/**
1094 * e1000_get_phy_info - Retrieves PHY information from registers
1095 * @hw: pointer to the HW structure
1096 *
1097 * This function gets some information from various PHY registers and
1098 * populates hw->phy values with it. This is a function pointer entry
1099 * point called by drivers.
1100 **/
1101s32 e1000_get_phy_info(struct e1000_hw *hw)
1102{
1103 if (hw->phy.ops.get_info)
1104 return hw->phy.ops.get_info(hw);
1105
1106 return E1000_SUCCESS;
1107}
1108
1109/**
1110 * e1000_phy_hw_reset - Hard PHY reset
1111 * @hw: pointer to the HW structure
1112 *
1113 * Performs a hard PHY reset. This is a function pointer entry point called
1114 * by drivers.
1115 **/
1116s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1117{
1118 if (hw->phy.ops.reset)
1119 return hw->phy.ops.reset(hw);
1120
1121 return E1000_SUCCESS;
1122}
1123
1124/**
1125 * e1000_phy_commit - Soft PHY reset
1126 * @hw: pointer to the HW structure
1127 *
1128 * Performs a soft PHY reset on those that apply. This is a function pointer
1129 * entry point called by drivers.
1130 **/
1131s32 e1000_phy_commit(struct e1000_hw *hw)
1132{
1133 if (hw->phy.ops.commit)
1134 return hw->phy.ops.commit(hw);
1135
1136 return E1000_SUCCESS;
1137}
1138
1139/**
1140 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1141 * @hw: pointer to the HW structure
1142 * @active: boolean used to enable/disable lplu
1143 *
1144 * Success returns 0, Failure returns 1
1145 *
1146 * The low power link up (lplu) state is set to the power management level D0
1147 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1148 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1149 * is used during Dx states where the power conservation is most important.
1150 * During driver activity, SmartSpeed should be enabled so performance is
1151 * maintained. This is a function pointer entry point called by drivers.
1152 **/
1153s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1154{
1155 if (hw->phy.ops.set_d0_lplu_state)
1156 return hw->phy.ops.set_d0_lplu_state(hw, active);
1157
1158 return E1000_SUCCESS;
1159}
1160
1161/**
1162 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1163 * @hw: pointer to the HW structure
1164 * @active: boolean used to enable/disable lplu
1165 *
1166 * Success returns 0, Failure returns 1
1167 *
1168 * The low power link up (lplu) state is set to the power management level D3
1169 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1170 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1171 * is used during Dx states where the power conservation is most important.
1172 * During driver activity, SmartSpeed should be enabled so performance is
1173 * maintained. This is a function pointer entry point called by drivers.
1174 **/
1175s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1176{
1177 if (hw->phy.ops.set_d3_lplu_state)
1178 return hw->phy.ops.set_d3_lplu_state(hw, active);
1179
1180 return E1000_SUCCESS;
1181}
1182
1183/**
1184 * e1000_read_mac_addr - Reads MAC address
1185 * @hw: pointer to the HW structure
1186 *
1187 * Reads the MAC address out of the adapter and stores it in the HW structure.
1188 * Currently no func pointer exists and all implementations are handled in the
1189 * generic version of this function.
1190 **/
1191s32 e1000_read_mac_addr(struct e1000_hw *hw)
1192{
1193 if (hw->mac.ops.read_mac_addr)
1194 return hw->mac.ops.read_mac_addr(hw);
1195
1196 return e1000_read_mac_addr_generic(hw);
1197}
1198
6a5a645e
SZ
1199/**
1200 * e1000_read_pba_string - Read device part number string
1201 * @hw: pointer to the HW structure
1202 * @pba_num: pointer to device part number
1203 * @pba_num_size: size of part number buffer
1204 *
1205 * Reads the product board assembly (PBA) number from the EEPROM and stores
1206 * the value in pba_num.
1207 * Currently no func pointer exists and all implementations are handled in the
1208 * generic version of this function.
1209 **/
1210s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1211{
1212 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1213}
1214
1215/**
1216 * e1000_read_pba_length - Read device part number string length
1217 * @hw: pointer to the HW structure
1218 * @pba_num_size: size of part number buffer
1219 *
1220 * Reads the product board assembly (PBA) number length from the EEPROM and
1221 * stores the value in pba_num.
1222 * Currently no func pointer exists and all implementations are handled in the
1223 * generic version of this function.
1224 **/
1225s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1226{
1227 return e1000_read_pba_length_generic(hw, pba_num_size);
1228}
1229
9c80d176
SZ
1230/**
1231 * e1000_read_pba_num - Read device part number
1232 * @hw: pointer to the HW structure
1233 * @pba_num: pointer to device part number
1234 *
1235 * Reads the product board assembly (PBA) number from the EEPROM and stores
1236 * the value in pba_num.
1237 * Currently no func pointer exists and all implementations are handled in the
1238 * generic version of this function.
1239 **/
1240s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1241{
1242 return e1000_read_pba_num_generic(hw, pba_num);
1243}
1244
1245/**
1246 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1247 * @hw: pointer to the HW structure
1248 *
1249 * Validates the NVM checksum is correct. This is a function pointer entry
1250 * point called by drivers.
1251 **/
1252s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1253{
1254 if (hw->nvm.ops.validate)
1255 return hw->nvm.ops.validate(hw);
1256
1257 return -E1000_ERR_CONFIG;
1258}
1259
1260/**
1261 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1262 * @hw: pointer to the HW structure
1263 *
1264 * Updates the NVM checksum. Currently no func pointer exists and all
1265 * implementations are handled in the generic version of this function.
1266 **/
1267s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1268{
1269 if (hw->nvm.ops.update)
1270 return hw->nvm.ops.update(hw);
1271
1272 return -E1000_ERR_CONFIG;
1273}
1274
1275/**
1276 * e1000_reload_nvm - Reloads EEPROM
1277 * @hw: pointer to the HW structure
1278 *
1279 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1280 * extended control register.
1281 **/
1282void e1000_reload_nvm(struct e1000_hw *hw)
1283{
1284 if (hw->nvm.ops.reload)
1285 hw->nvm.ops.reload(hw);
1286}
1287
1288/**
1289 * e1000_read_nvm - Reads NVM (EEPROM)
1290 * @hw: pointer to the HW structure
1291 * @offset: the word offset to read
1292 * @words: number of 16-bit words to read
1293 * @data: pointer to the properly sized buffer for the data.
1294 *
1295 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1296 * pointer entry point called by drivers.
1297 **/
1298s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1299{
1300 if (hw->nvm.ops.read)
1301 return hw->nvm.ops.read(hw, offset, words, data);
1302
1303 return -E1000_ERR_CONFIG;
1304}
1305
1306/**
1307 * e1000_write_nvm - Writes to NVM (EEPROM)
1308 * @hw: pointer to the HW structure
1309 * @offset: the word offset to read
1310 * @words: number of 16-bit words to write
1311 * @data: pointer to the properly sized buffer for the data.
1312 *
1313 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1314 * pointer entry point called by drivers.
1315 **/
1316s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1317{
1318 if (hw->nvm.ops.write)
1319 return hw->nvm.ops.write(hw, offset, words, data);
1320
1321 return E1000_SUCCESS;
1322}
1323
62583d18
SZ
1324/**
1325 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1326 * @hw: pointer to the HW structure
1327 * @reg: 32bit register offset
1328 * @offset: the register to write
1329 * @data: the value to write.
1330 *
1331 * Writes the PHY register at offset with the value in data.
1332 * This is a function pointer entry point called by drivers.
1333 **/
1334s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
4be59a01 1335 u8 data)
62583d18
SZ
1336{
1337 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1338}
1339
9c80d176
SZ
1340/**
1341 * e1000_power_up_phy - Restores link in case of PHY power down
1342 * @hw: pointer to the HW structure
1343 *
1344 * The phy may be powered down to save power, to turn off link when the
1345 * driver is unloaded, or wake on lan is not enabled (among others).
1346 **/
1347void e1000_power_up_phy(struct e1000_hw *hw)
1348{
1349 if (hw->phy.ops.power_up)
1350 hw->phy.ops.power_up(hw);
1351
1352 e1000_setup_link(hw);
1353}
1354
1355/**
1356 * e1000_power_down_phy - Power down PHY
1357 * @hw: pointer to the HW structure
1358 *
1359 * The phy may be powered down to save power, to turn off link when the
1360 * driver is unloaded, or wake on lan is not enabled (among others).
1361 **/
1362void e1000_power_down_phy(struct e1000_hw *hw)
1363{
1364 if (hw->phy.ops.power_down)
1365 hw->phy.ops.power_down(hw);
1366}
1367
62583d18
SZ
1368/**
1369 * e1000_power_up_fiber_serdes_link - Power up serdes link
1370 * @hw: pointer to the HW structure
1371 *
1372 * Power on the optics and PCS.
1373 **/
1374void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1375{
1376 if (hw->mac.ops.power_up_serdes)
1377 hw->mac.ops.power_up_serdes(hw);
1378}
1379
1380/**
1381 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1382 * @hw: pointer to the HW structure
1383 *
1384 * Shutdown the optics and PCS on driver unload.
1385 **/
1386void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1387{
1388 if (hw->mac.ops.shutdown_serdes)
1389 hw->mac.ops.shutdown_serdes(hw);
1390}