kernel: Add descriptions to the intrhooks that miss them.
[dragonfly.git] / sys / dev / raid / mps / mps.c
CommitLineData
ad8cf91c
SW
1/*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
c12c399a
SW
26 */
27/*-
28 * Copyright (c) 2011 LSI Corp.
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * LSI MPT-Fusion Host Adapter FreeBSD
53 *
54 * $FreeBSD: src/sys/dev/mps/mps.c,v 1.14 2012/01/26 18:17:21 ken Exp $
ad8cf91c
SW
55 */
56
57/* Communications core for LSI MPT2 */
58
c12c399a 59/* TODO Move headers to mpsvar */
ad8cf91c
SW
60#include <sys/types.h>
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/kernel.h>
64#include <sys/lock.h>
c12c399a 65#include <sys/globaldata.h>
ad8cf91c
SW
66#include <sys/module.h>
67#include <sys/bus.h>
68#include <sys/conf.h>
69#include <sys/bio.h>
70#include <sys/malloc.h>
71#include <sys/uio.h>
72#include <sys/sysctl.h>
c12c399a
SW
73#include <sys/queue.h>
74#include <sys/kthread.h>
ad8cf91c 75#include <sys/endian.h>
c12c399a 76#include <sys/eventhandler.h>
ad8cf91c
SW
77
78#include <sys/rman.h>
79
c12c399a 80#include <bus/pci/pcivar.h>
ad8cf91c 81
c12c399a 82#include <bus/cam/scsi/scsi_all.h>
ad8cf91c 83
c12c399a
SW
84#include <dev/raid/mps/mpi/mpi2_type.h>
85#include <dev/raid/mps/mpi/mpi2.h>
86#include <dev/raid/mps/mpi/mpi2_ioc.h>
87#include <dev/raid/mps/mpi/mpi2_sas.h>
88#include <dev/raid/mps/mpi/mpi2_cnfg.h>
89#include <dev/raid/mps/mpi/mpi2_init.h>
90#include <dev/raid/mps/mpi/mpi2_tool.h>
91#include <dev/raid/mps/mps_ioctl.h>
92#include <dev/raid/mps/mpsvar.h>
93#include <dev/raid/mps/mps_table.h>
94
95static int mps_diag_reset(struct mps_softc *sc);
96static int mps_init_queues(struct mps_softc *sc);
97static int mps_message_unit_reset(struct mps_softc *sc);
98static int mps_transition_operational(struct mps_softc *sc);
ad8cf91c 99static void mps_startup(void *arg);
ad8cf91c
SW
100static int mps_send_iocinit(struct mps_softc *sc);
101static int mps_attach_log(struct mps_softc *sc);
c12c399a
SW
102static __inline void mps_complete_command(struct mps_command *cm);
103static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
104 MPI2_EVENT_NOTIFICATION_REPLY *reply);
ad8cf91c
SW
105static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
106static void mps_periodic(void *);
c12c399a
SW
107static int mps_reregister_events(struct mps_softc *sc);
108static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
ad8cf91c
SW
109
110SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
111
112MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
113
114/*
115 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
116 * any state and back to its initialization state machine.
117 */
118static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
119
120static int
c12c399a 121mps_diag_reset(struct mps_softc *sc)
ad8cf91c
SW
122{
123 uint32_t reg;
124 int i, error, tries = 0;
125
126 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
127
128 /* Clear any pending interrupts */
129 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
130
131 /* Push the magic sequence */
132 error = ETIMEDOUT;
133 while (tries++ < 20) {
134 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
135 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
136 mpt2_reset_magic[i]);
137
138 DELAY(100 * 1000);
139
140 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
141 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
142 error = 0;
143 break;
144 }
145 }
146 if (error)
147 return (error);
148
149 /* Send the actual reset. XXX need to refresh the reg? */
150 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
151 reg | MPI2_DIAG_RESET_ADAPTER);
152
153 /* Wait up to 300 seconds in 50ms intervals */
154 error = ETIMEDOUT;
155 for (i = 0; i < 60000; i++) {
156 DELAY(50000);
157 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
158 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
159 error = 0;
160 break;
161 }
162 }
163 if (error)
164 return (error);
165
166 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
167
168 return (0);
169}
170
171static int
c12c399a 172mps_message_unit_reset(struct mps_softc *sc)
ad8cf91c
SW
173{
174
175 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
176
177 mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
178 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
179 MPI2_DOORBELL_FUNCTION_SHIFT);
180 DELAY(50000);
181
182 return (0);
183}
184
185static int
186mps_transition_ready(struct mps_softc *sc)
187{
188 uint32_t reg, state;
189 int error, tries = 0;
190
191 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
192
193 error = 0;
194 while (tries++ < 5) {
195 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
196 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
197
198 /*
199 * Ensure the IOC is ready to talk. If it's not, try
200 * resetting it.
201 */
202 if (reg & MPI2_DOORBELL_USED) {
c12c399a 203 mps_diag_reset(sc);
ad8cf91c
SW
204 DELAY(50000);
205 continue;
206 }
207
208 /* Is the adapter owned by another peer? */
209 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
210 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
211 device_printf(sc->mps_dev, "IOC is under the control "
212 "of another peer host, aborting initialization.\n");
213 return (ENXIO);
214 }
215
216 state = reg & MPI2_IOC_STATE_MASK;
217 if (state == MPI2_IOC_STATE_READY) {
218 /* Ready to go! */
219 error = 0;
220 break;
221 } else if (state == MPI2_IOC_STATE_FAULT) {
222 mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n",
223 state & MPI2_DOORBELL_FAULT_CODE_MASK);
c12c399a 224 mps_diag_reset(sc);
ad8cf91c
SW
225 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
226 /* Need to take ownership */
c12c399a 227 mps_message_unit_reset(sc);
ad8cf91c
SW
228 } else if (state == MPI2_IOC_STATE_RESET) {
229 /* Wait a bit, IOC might be in transition */
230 mps_dprint(sc, MPS_FAULT,
231 "IOC in unexpected reset state\n");
232 } else {
233 mps_dprint(sc, MPS_FAULT,
234 "IOC in unknown state 0x%x\n", state);
235 error = EINVAL;
236 break;
237 }
238
239 /* Wait 50ms for things to settle down. */
240 DELAY(50000);
241 }
242
243 if (error)
244 device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
245
246 return (error);
247}
248
249static int
250mps_transition_operational(struct mps_softc *sc)
251{
252 uint32_t reg, state;
253 int error;
254
255 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
256
257 error = 0;
258 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
259 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
260
261 state = reg & MPI2_IOC_STATE_MASK;
262 if (state != MPI2_IOC_STATE_READY) {
c12c399a
SW
263 if ((error = mps_transition_ready(sc)) != 0) {
264 mps_dprint(sc, MPS_FAULT,
265 "%s failed to transition ready\n", __func__);
ad8cf91c 266 return (error);
c12c399a 267 }
ad8cf91c
SW
268 }
269
270 error = mps_send_iocinit(sc);
271 return (error);
272}
273
c12c399a
SW
274/*
275 * XXX Some of this should probably move to mps.c
276 *
277 * The terms diag reset and hard reset are used interchangeably in the MPI
278 * docs to mean resetting the controller chip. In this code diag reset
279 * cleans everything up, and the hard reset function just sends the reset
280 * sequence to the chip. This should probably be refactored so that every
281 * subsystem gets a reset notification of some sort, and can clean up
282 * appropriately.
283 */
284int
285mps_reinit(struct mps_softc *sc)
286{
287 int error;
288 uint32_t db;
289
290 mps_printf(sc, "%s sc %p\n", __func__, sc);
291
292 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
293
294 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
295 mps_printf(sc, "%s reset already in progress\n", __func__);
296 return 0;
297 }
298
299 /* make sure the completion callbacks can recognize they're getting
300 * a NULL cm_reply due to a reset.
301 */
302 sc->mps_flags |= MPS_FLAGS_DIAGRESET;
303
304 mps_printf(sc, "%s mask interrupts\n", __func__);
305 mps_mask_intr(sc);
306
307 error = mps_diag_reset(sc);
308 if (error != 0) {
ed20d0e3 309 panic("%s hard reset failed with error %d",
c12c399a
SW
310 __func__, error);
311 }
312
313 /* Restore the PCI state, including the MSI-X registers */
314 mps_pci_restore(sc);
315
316 /* Give the I/O subsystem special priority to get itself prepared */
317 mpssas_handle_reinit(sc);
318
319 /* reinitialize queues after the reset */
320 bzero(sc->free_queue, sc->fqdepth * 4);
321 mps_init_queues(sc);
322
323 /* get the chip out of the reset state */
324 error = mps_transition_operational(sc);
325 if (error != 0)
ed20d0e3 326 panic("%s transition operational failed with error %d",
c12c399a
SW
327 __func__, error);
328
329 /* Reinitialize the reply queue. This is delicate because this
330 * function is typically invoked by task mgmt completion callbacks,
331 * which are called by the interrupt thread. We need to make sure
332 * the interrupt handler loop will exit when we return to it, and
333 * that it will recognize the indexes we've changed.
334 */
335 sc->replypostindex = 0;
336 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
337 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
338
339 db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
340 mps_printf(sc, "%s doorbell 0x%08x\n", __func__, db);
341
342 mps_printf(sc, "%s unmask interrupts post %u free %u\n", __func__,
343 sc->replypostindex, sc->replyfreeindex);
344
345 mps_unmask_intr(sc);
346
347 mps_printf(sc, "%s restarting post %u free %u\n", __func__,
348 sc->replypostindex, sc->replyfreeindex);
349
350 /* restart will reload the event masks clobbered by the reset, and
351 * then enable the port.
352 */
353 mps_reregister_events(sc);
354
355 /* the end of discovery will release the simq, so we're done. */
356 mps_printf(sc, "%s finished sc %p post %u free %u\n",
357 __func__, sc,
358 sc->replypostindex, sc->replyfreeindex);
359
360 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
361
362 return 0;
363}
364
ad8cf91c
SW
365/* Wait for the chip to ACK a word that we've put into its FIFO */
366static int
367mps_wait_db_ack(struct mps_softc *sc)
368{
369 int retry;
370
371 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
372 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
373 MPI2_HIS_SYS2IOC_DB_STATUS) == 0)
374 return (0);
375 DELAY(2000);
376 }
377 return (ETIMEDOUT);
378}
379
380/* Wait for the chip to signal that the next word in its FIFO can be fetched */
381static int
382mps_wait_db_int(struct mps_softc *sc)
383{
384 int retry;
385
386 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
387 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
388 MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
389 return (0);
390 DELAY(2000);
391 }
392 return (ETIMEDOUT);
393}
394
395/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
396static int
397mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
398 int req_sz, int reply_sz, int timeout)
399{
400 uint32_t *data32;
401 uint16_t *data16;
402 int i, count, ioc_sz, residual;
403
404 /* Step 1 */
405 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
406
407 /* Step 2 */
408 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
409 return (EBUSY);
410
411 /* Step 3
412 * Announce that a message is coming through the doorbell. Messages
413 * are pushed at 32bit words, so round up if needed.
414 */
415 count = (req_sz + 3) / 4;
416 mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
417 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
418 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
419
420 /* Step 4 */
421 if (mps_wait_db_int(sc) ||
422 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
423 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
424 return (ENXIO);
425 }
426 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
427 if (mps_wait_db_ack(sc) != 0) {
428 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
429 return (ENXIO);
430 }
431
432 /* Step 5 */
433 /* Clock out the message data synchronously in 32-bit dwords*/
434 data32 = (uint32_t *)req;
435 for (i = 0; i < count; i++) {
436 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, data32[i]);
437 if (mps_wait_db_ack(sc) != 0) {
438 mps_dprint(sc, MPS_FAULT,
439 "Timeout while writing doorbell\n");
440 return (ENXIO);
441 }
442 }
443
444 /* Step 6 */
445 /* Clock in the reply in 16-bit words. The total length of the
446 * message is always in the 4th byte, so clock out the first 2 words
447 * manually, then loop the rest.
448 */
449 data16 = (uint16_t *)reply;
450 if (mps_wait_db_int(sc) != 0) {
451 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
452 return (ENXIO);
453 }
454 data16[0] =
455 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
456 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
457 if (mps_wait_db_int(sc) != 0) {
458 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
459 return (ENXIO);
460 }
461 data16[1] =
462 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
463 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
464
465 /* Number of 32bit words in the message */
466 ioc_sz = reply->MsgLength;
467
468 /*
469 * Figure out how many 16bit words to clock in without overrunning.
470 * The precision loss with dividing reply_sz can safely be
471 * ignored because the messages can only be multiples of 32bits.
472 */
473 residual = 0;
474 count = MIN((reply_sz / 4), ioc_sz) * 2;
475 if (count < ioc_sz * 2) {
476 residual = ioc_sz * 2 - count;
477 mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d "
478 "residual message words\n", residual);
479 }
480
481 for (i = 2; i < count; i++) {
482 if (mps_wait_db_int(sc) != 0) {
483 mps_dprint(sc, MPS_FAULT,
484 "Timeout reading doorbell %d\n", i);
485 return (ENXIO);
486 }
487 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
488 MPI2_DOORBELL_DATA_MASK;
489 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
490 }
491
492 /*
493 * Pull out residual words that won't fit into the provided buffer.
494 * This keeps the chip from hanging due to a driver programming
495 * error.
496 */
497 while (residual--) {
498 if (mps_wait_db_int(sc) != 0) {
499 mps_dprint(sc, MPS_FAULT,
500 "Timeout reading doorbell\n");
501 return (ENXIO);
502 }
503 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
504 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
505 }
506
507 /* Step 7 */
508 if (mps_wait_db_int(sc) != 0) {
509 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
510 return (ENXIO);
511 }
512 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
513 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
514 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
515
516 return (0);
517}
518
c12c399a 519static void
ad8cf91c
SW
520mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
521{
522
c12c399a
SW
523 mps_dprint(sc, MPS_TRACE, "%s SMID %u cm %p ccb %p\n", __func__,
524 cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
525
526 if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
527 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
528
529 if (++sc->io_cmds_active > sc->io_cmds_highwater)
530 sc->io_cmds_highwater++;
ad8cf91c
SW
531
532 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
533 cm->cm_desc.Words.Low);
534 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
535 cm->cm_desc.Words.High);
536}
537
ad8cf91c
SW
538/*
539 * Just the FACTS, ma'am.
540 */
541static int
542mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
543{
544 MPI2_DEFAULT_REPLY *reply;
545 MPI2_IOC_FACTS_REQUEST request;
546 int error, req_sz, reply_sz;
547
548 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
549
550 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
551 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
552 reply = (MPI2_DEFAULT_REPLY *)facts;
553
554 bzero(&request, req_sz);
555 request.Function = MPI2_FUNCTION_IOC_FACTS;
556 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
557
558 return (error);
559}
560
561static int
562mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port)
563{
564 MPI2_PORT_FACTS_REQUEST *request;
565 MPI2_PORT_FACTS_REPLY *reply;
566 struct mps_command *cm;
567 int error;
568
569 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
570
571 if ((cm = mps_alloc_command(sc)) == NULL)
572 return (EBUSY);
573 request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req;
574 request->Function = MPI2_FUNCTION_PORT_FACTS;
575 request->PortNumber = port;
576 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
577 cm->cm_data = NULL;
578 error = mps_request_polled(sc, cm);
579 reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply;
c12c399a
SW
580 if (reply == NULL) {
581 mps_printf(sc, "%s NULL reply\n", __func__);
582 goto done;
583 }
584 if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) {
585 mps_printf(sc,
586 "%s error %d iocstatus 0x%x iocloginfo 0x%x type 0x%x\n",
90ff74f1 587 __func__, error, reply->IOCStatus, reply->IOCLogInfo,
c12c399a 588 reply->PortType);
ad8cf91c 589 error = ENXIO;
c12c399a 590 }
ad8cf91c 591 bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY));
c12c399a 592done:
ad8cf91c
SW
593 mps_free_command(sc, cm);
594
595 return (error);
596}
597
598static int
599mps_send_iocinit(struct mps_softc *sc)
600{
601 MPI2_IOC_INIT_REQUEST init;
602 MPI2_DEFAULT_REPLY reply;
603 int req_sz, reply_sz, error;
604
605 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
606
607 req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
608 reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
609 bzero(&init, req_sz);
610 bzero(&reply, reply_sz);
611
612 /*
613 * Fill in the init block. Note that most addresses are
614 * deliberately in the lower 32bits of memory. This is a micro-
615 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
616 */
617 init.Function = MPI2_FUNCTION_IOC_INIT;
618 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
619 init.MsgVersion = MPI2_VERSION;
620 init.HeaderVersion = MPI2_HEADER_VERSION;
621 init.SystemRequestFrameSize = sc->facts->IOCRequestFrameSize;
622 init.ReplyDescriptorPostQueueDepth = sc->pqdepth;
623 init.ReplyFreeQueueDepth = sc->fqdepth;
624 init.SenseBufferAddressHigh = 0;
625 init.SystemReplyAddressHigh = 0;
626 init.SystemRequestFrameBaseAddress.High = 0;
627 init.SystemRequestFrameBaseAddress.Low = (uint32_t)sc->req_busaddr;
628 init.ReplyDescriptorPostQueueAddress.High = 0;
629 init.ReplyDescriptorPostQueueAddress.Low = (uint32_t)sc->post_busaddr;
630 init.ReplyFreeQueueAddress.High = 0;
631 init.ReplyFreeQueueAddress.Low = (uint32_t)sc->free_busaddr;
632 init.TimeStamp.High = 0;
633 init.TimeStamp.Low = (uint32_t)time_second;
634
635 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
636 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
637 error = ENXIO;
638
639 mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus);
640 return (error);
641}
642
ad8cf91c
SW
643void
644mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
645{
646 bus_addr_t *addr;
647
648 addr = arg;
649 *addr = segs[0].ds_addr;
650}
651
652static int
653mps_alloc_queues(struct mps_softc *sc)
654{
655 bus_addr_t queues_busaddr;
656 uint8_t *queues;
657 int qsize, fqsize, pqsize;
658
659 /*
660 * The reply free queue contains 4 byte entries in multiples of 16 and
661 * aligned on a 16 byte boundary. There must always be an unused entry.
662 * This queue supplies fresh reply frames for the firmware to use.
663 *
664 * The reply descriptor post queue contains 8 byte entries in
665 * multiples of 16 and aligned on a 16 byte boundary. This queue
666 * contains filled-in reply frames sent from the firmware to the host.
667 *
668 * These two queues are allocated together for simplicity.
669 */
670 sc->fqdepth = roundup2((sc->num_replies + 1), 16);
671 sc->pqdepth = roundup2((sc->num_replies + 1), 16);
672 fqsize= sc->fqdepth * 4;
673 pqsize = sc->pqdepth * 8;
674 qsize = fqsize + pqsize;
675
676 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
677 16, 0, /* algnmnt, boundary */
678 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
679 BUS_SPACE_MAXADDR, /* highaddr */
680 NULL, NULL, /* filter, filterarg */
681 qsize, /* maxsize */
682 1, /* nsegments */
683 qsize, /* maxsegsize */
684 0, /* flags */
685 &sc->queues_dmat)) {
686 device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
687 return (ENOMEM);
688 }
689 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
690 &sc->queues_map)) {
691 device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
692 return (ENOMEM);
693 }
694 bzero(queues, qsize);
695 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
696 mps_memaddr_cb, &queues_busaddr, 0);
697
698 sc->free_queue = (uint32_t *)queues;
699 sc->free_busaddr = queues_busaddr;
700 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
701 sc->post_busaddr = queues_busaddr + fqsize;
702
703 return (0);
704}
705
706static int
707mps_alloc_replies(struct mps_softc *sc)
708{
709 int rsize, num_replies;
710
711 /*
712 * sc->num_replies should be one less than sc->fqdepth. We need to
713 * allocate space for sc->fqdepth replies, but only sc->num_replies
714 * replies can be used at once.
715 */
716 num_replies = max(sc->fqdepth, sc->num_replies);
717
718 rsize = sc->facts->ReplyFrameSize * num_replies * 4;
719 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
720 4, 0, /* algnmnt, boundary */
721 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
722 BUS_SPACE_MAXADDR, /* highaddr */
723 NULL, NULL, /* filter, filterarg */
724 rsize, /* maxsize */
725 1, /* nsegments */
726 rsize, /* maxsegsize */
727 0, /* flags */
728 &sc->reply_dmat)) {
729 device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
730 return (ENOMEM);
731 }
732 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
733 BUS_DMA_NOWAIT, &sc->reply_map)) {
734 device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
735 return (ENOMEM);
736 }
737 bzero(sc->reply_frames, rsize);
738 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
739 mps_memaddr_cb, &sc->reply_busaddr, 0);
740
741 return (0);
742}
743
744static int
745mps_alloc_requests(struct mps_softc *sc)
746{
747 struct mps_command *cm;
748 struct mps_chain *chain;
749 int i, rsize, nsegs;
750
751 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
752 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
753 16, 0, /* algnmnt, boundary */
754 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
755 BUS_SPACE_MAXADDR, /* highaddr */
756 NULL, NULL, /* filter, filterarg */
757 rsize, /* maxsize */
758 1, /* nsegments */
759 rsize, /* maxsegsize */
760 0, /* flags */
761 &sc->req_dmat)) {
762 device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
763 return (ENOMEM);
764 }
765 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
766 BUS_DMA_NOWAIT, &sc->req_map)) {
767 device_printf(sc->mps_dev, "Cannot allocate request memory\n");
768 return (ENOMEM);
769 }
770 bzero(sc->req_frames, rsize);
771 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
772 mps_memaddr_cb, &sc->req_busaddr, 0);
773
c12c399a 774 rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
ad8cf91c
SW
775 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
776 16, 0, /* algnmnt, boundary */
777 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
778 BUS_SPACE_MAXADDR, /* highaddr */
779 NULL, NULL, /* filter, filterarg */
780 rsize, /* maxsize */
781 1, /* nsegments */
782 rsize, /* maxsegsize */
783 0, /* flags */
784 &sc->chain_dmat)) {
785 device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
786 return (ENOMEM);
787 }
788 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
789 BUS_DMA_NOWAIT, &sc->chain_map)) {
790 device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
791 return (ENOMEM);
792 }
793 bzero(sc->chain_frames, rsize);
794 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
795 mps_memaddr_cb, &sc->chain_busaddr, 0);
796
797 rsize = MPS_SENSE_LEN * sc->num_reqs;
798 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
799 1, 0, /* algnmnt, boundary */
800 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
801 BUS_SPACE_MAXADDR, /* highaddr */
802 NULL, NULL, /* filter, filterarg */
803 rsize, /* maxsize */
804 1, /* nsegments */
805 rsize, /* maxsegsize */
806 0, /* flags */
807 &sc->sense_dmat)) {
808 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
809 return (ENOMEM);
810 }
811 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
812 BUS_DMA_NOWAIT, &sc->sense_map)) {
813 device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
814 return (ENOMEM);
815 }
816 bzero(sc->sense_frames, rsize);
817 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
818 mps_memaddr_cb, &sc->sense_busaddr, 0);
819
c12c399a
SW
820 sc->chains = kmalloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2,
821 M_WAITOK | M_ZERO);
822 for (i = 0; i < sc->max_chains; i++) {
ad8cf91c
SW
823 chain = &sc->chains[i];
824 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
825 i * sc->facts->IOCRequestFrameSize * 4);
826 chain->chain_busaddr = sc->chain_busaddr +
827 i * sc->facts->IOCRequestFrameSize * 4;
828 mps_free_chain(sc, chain);
c12c399a 829 sc->chain_free_lowwater++;
ad8cf91c
SW
830 }
831
832 /* XXX Need to pick a more precise value */
833 nsegs = (MAXPHYS / PAGE_SIZE) + 1;
834 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
835 1, 0, /* algnmnt, boundary */
836 BUS_SPACE_MAXADDR, /* lowaddr */
837 BUS_SPACE_MAXADDR, /* highaddr */
838 NULL, NULL, /* filter, filterarg */
839 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
840 nsegs, /* nsegments */
841 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
842 BUS_DMA_ALLOCNOW, /* flags */
843 &sc->buffer_dmat)) {
c12c399a 844 device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n");
ad8cf91c
SW
845 return (ENOMEM);
846 }
847
848 /*
849 * SMID 0 cannot be used as a free command per the firmware spec.
850 * Just drop that command instead of risking accounting bugs.
851 */
852 sc->commands = kmalloc(sizeof(struct mps_command) * sc->num_reqs,
853 M_MPT2, M_WAITOK | M_ZERO);
854 for (i = 1; i < sc->num_reqs; i++) {
855 cm = &sc->commands[i];
856 cm->cm_req = sc->req_frames +
857 i * sc->facts->IOCRequestFrameSize * 4;
858 cm->cm_req_busaddr = sc->req_busaddr +
859 i * sc->facts->IOCRequestFrameSize * 4;
860 cm->cm_sense = &sc->sense_frames[i];
861 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
862 cm->cm_desc.Default.SMID = i;
863 cm->cm_sc = sc;
864 TAILQ_INIT(&cm->cm_chain_list);
865 callout_init(&cm->cm_callout);
866
867 /* XXX Is a failure here a critical problem? */
868 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
c12c399a
SW
869 if (i <= sc->facts->HighPriorityCredit)
870 mps_free_high_priority_command(sc, cm);
871 else
872 mps_free_command(sc, cm);
ad8cf91c 873 else {
ed20d0e3 874 panic("failed to allocate command %d", i);
ad8cf91c
SW
875 sc->num_reqs = i;
876 break;
877 }
878 }
879
880 return (0);
881}
882
883static int
884mps_init_queues(struct mps_softc *sc)
885{
886 int i;
887
888 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
889
890 /*
891 * According to the spec, we need to use one less reply than we
892 * have space for on the queue. So sc->num_replies (the number we
893 * use) should be less than sc->fqdepth (allocated size).
894 */
895 if (sc->num_replies >= sc->fqdepth)
896 return (EINVAL);
897
898 /*
899 * Initialize all of the free queue entries.
900 */
901 for (i = 0; i < sc->fqdepth; i++)
902 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
903 sc->replyfreeindex = sc->num_replies;
904
905 return (0);
906}
907
c12c399a
SW
908/* Get the driver parameter tunables. Lowest priority are the driver defaults.
909 * Next are the global settings, if they exist. Highest are the per-unit
910 * settings, if they exist.
911 */
912static void
913mps_get_tunables(struct mps_softc *sc)
ad8cf91c 914{
c12c399a
SW
915 char tmpstr[80];
916
917 /* XXX default to some debugging for now */
918 sc->mps_debug = MPS_FAULT;
919#if 0 /* XXX swildner */
920 sc->disable_msix = 0;
921#endif
922 sc->enable_msi = 1;
923 sc->max_chains = MPS_CHAIN_FRAMES;
ad8cf91c
SW
924
925 /*
c12c399a 926 * Grab the global variables.
ad8cf91c 927 */
c12c399a
SW
928 TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug);
929#if 0 /* XXX swildner */
930 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
931#endif
932 TUNABLE_INT_FETCH("hw.mps.msi.enable", &sc->enable_msi);
933 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
934
935 /* Grab the unit-instance variables */
936 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
ad8cf91c
SW
937 device_get_unit(sc->mps_dev));
938 TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
c12c399a
SW
939
940#if 0 /* XXX swildner */
941 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
ad8cf91c 942 device_get_unit(sc->mps_dev));
c12c399a
SW
943 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
944#endif
ad8cf91c 945
c12c399a
SW
946 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_msi",
947 device_get_unit(sc->mps_dev));
948 TUNABLE_INT_FETCH(tmpstr, &sc->enable_msi);
ad8cf91c 949
c12c399a
SW
950 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
951 device_get_unit(sc->mps_dev));
952 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
953}
954
955static void
956mps_setup_sysctl(struct mps_softc *sc)
957{
958 struct sysctl_ctx_list *sysctl_ctx = NULL;
959 struct sysctl_oid *sysctl_tree = NULL;
960 char tmpstr[80], tmpstr2[80];
ad8cf91c
SW
961
962 /*
963 * Setup the sysctl variable so the user can change the debug level
964 * on the fly.
965 */
966 ksnprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
967 device_get_unit(sc->mps_dev));
968 ksnprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
969
970 sysctl_ctx_init(&sc->sysctl_ctx);
971 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
c12c399a
SW
972 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
973 CTLFLAG_RD, 0, tmpstr);
ad8cf91c 974 if (sc->sysctl_tree == NULL)
c12c399a
SW
975 return;
976 sysctl_ctx = &sc->sysctl_ctx;
977 sysctl_tree = sc->sysctl_tree;
ad8cf91c 978
c12c399a 979 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
ad8cf91c
SW
980 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
981 "mps debug level");
982
c12c399a
SW
983#if 0 /* XXX swildner */
984 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
985 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
986 "Disable the use of MSI-X interrupts");
987#endif
988
989 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
990 OID_AUTO, "enable_msi", CTLFLAG_RD, &sc->enable_msi, 0,
991 "Enable the use of MSI interrupts");
992
993 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
994 OID_AUTO, "firmware_version", CTLFLAG_RW, &sc->fw_version,
995 strlen(sc->fw_version), "firmware version");
996
997 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
998 OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
999 strlen(MPS_DRIVER_VERSION), "driver version");
1000
1001 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1002 OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1003 &sc->io_cmds_active, 0, "number of currently active commands");
1004
1005 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1006 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1007 &sc->io_cmds_highwater, 0, "maximum active commands seen");
1008
1009 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1010 OID_AUTO, "chain_free", CTLFLAG_RD,
1011 &sc->chain_free, 0, "number of free chain elements");
1012
1013 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1014 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1015 &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1016
1017 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1018 OID_AUTO, "max_chains", CTLFLAG_RD,
1019 &sc->max_chains, 0,"maximum chain frames that will be allocated");
1020
1021#if __FreeBSD_version >= 900030
1022 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1023 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1024 &sc->chain_alloc_fail, "chain allocation failures");
1025#endif //FreeBSD_version >= 900030
1026}
1027
1028int
1029mps_attach(struct mps_softc *sc)
1030{
1031 int i, error;
1032
1033 mps_get_tunables(sc);
ad8cf91c 1034
c12c399a
SW
1035 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1036
1037 lockinit(&sc->mps_lock, "MPT2SAS lock", 0, LK_CANRECURSE);
1038 callout_init(&sc->periodic);
1039 TAILQ_INIT(&sc->event_list);
1040
1041 if ((error = mps_transition_ready(sc)) != 0) {
1042 mps_printf(sc, "%s failed to transition ready\n", __func__);
ad8cf91c 1043 return (error);
c12c399a 1044 }
ad8cf91c
SW
1045
1046 sc->facts = kmalloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1eb10600 1047 M_ZERO|M_WAITOK);
ad8cf91c
SW
1048 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0)
1049 return (error);
1050
1051 mps_print_iocfacts(sc, sc->facts);
1052
c12c399a
SW
1053 ksnprintf(sc->fw_version, sizeof(sc->fw_version),
1054 "%02d.%02d.%02d.%02d",
ad8cf91c
SW
1055 sc->facts->FWVersion.Struct.Major,
1056 sc->facts->FWVersion.Struct.Minor,
1057 sc->facts->FWVersion.Struct.Unit,
1058 sc->facts->FWVersion.Struct.Dev);
c12c399a
SW
1059
1060 mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
1061 MPS_DRIVER_VERSION);
90ff74f1 1062 mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
ad8cf91c
SW
1063 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
1064 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
1065 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
1066
1067 /*
1068 * If the chip doesn't support event replay then a hard reset will be
1069 * required to trigger a full discovery. Do the reset here then
1070 * retransition to Ready. A hard reset might have already been done,
1071 * but it doesn't hurt to do it again.
1072 */
1073 if ((sc->facts->IOCCapabilities &
1074 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
c12c399a 1075 mps_diag_reset(sc);
ad8cf91c
SW
1076 if ((error = mps_transition_ready(sc)) != 0)
1077 return (error);
1078 }
1079
1080 /*
c12c399a
SW
1081 * Set flag if IR Firmware is loaded.
1082 */
1083 if (sc->facts->IOCCapabilities &
1084 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
1085 sc->ir_firmware = 1;
1086
1087 /*
1088 * Check if controller supports FW diag buffers and set flag to enable
1089 * each type.
1090 */
1091 if (sc->facts->IOCCapabilities &
1092 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1093 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].enabled =
1094 TRUE;
1095 if (sc->facts->IOCCapabilities &
1096 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1097 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].enabled =
1098 TRUE;
1099 if (sc->facts->IOCCapabilities &
1100 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1101 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].enabled =
1102 TRUE;
1103
1104 /*
1105 * Set flag if EEDP is supported and if TLR is supported.
1106 */
1107 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
1108 sc->eedp_enabled = TRUE;
1109 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
1110 sc->control_TLR = TRUE;
1111
1112 /*
ad8cf91c
SW
1113 * Size the queues. Since the reply queues always need one free entry,
1114 * we'll just deduct one reply message here.
1115 */
1116 sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
1117 sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
1118 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
1119 TAILQ_INIT(&sc->req_list);
c12c399a 1120 TAILQ_INIT(&sc->high_priority_req_list);
ad8cf91c
SW
1121 TAILQ_INIT(&sc->chain_list);
1122 TAILQ_INIT(&sc->tm_list);
1123
1124 if (((error = mps_alloc_queues(sc)) != 0) ||
1125 ((error = mps_alloc_replies(sc)) != 0) ||
1126 ((error = mps_alloc_requests(sc)) != 0)) {
c12c399a 1127 mps_printf(sc, "%s failed to alloc\n", __func__);
ad8cf91c
SW
1128 mps_free(sc);
1129 return (error);
1130 }
1131
1132 if (((error = mps_init_queues(sc)) != 0) ||
1133 ((error = mps_transition_operational(sc)) != 0)) {
c12c399a 1134 mps_printf(sc, "%s failed to transition operational\n", __func__);
ad8cf91c
SW
1135 mps_free(sc);
1136 return (error);
1137 }
1138
1139 /*
1140 * Finish the queue initialization.
1141 * These are set here instead of in mps_init_queues() because the
1142 * IOC resets these values during the state transition in
1143 * mps_transition_operational(). The free index is set to 1
1144 * because the corresponding index in the IOC is set to 0, and the
1145 * IOC treats the queues as full if both are set to the same value.
1146 * Hence the reason that the queue can't hold all of the possible
1147 * replies.
1148 */
1149 sc->replypostindex = 0;
1150 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
1151 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
1152
1153 sc->pfacts = kmalloc(sizeof(MPI2_PORT_FACTS_REPLY) *
1154 sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK);
1155 for (i = 0; i < sc->facts->NumberOfPorts; i++) {
1156 if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) {
c12c399a
SW
1157 mps_printf(sc, "%s failed to get portfacts for port %d\n",
1158 __func__, i);
ad8cf91c
SW
1159 mps_free(sc);
1160 return (error);
1161 }
1162 mps_print_portfacts(sc, &sc->pfacts[i]);
1163 }
1164
1165 /* Attach the subsystems so they can prepare their event masks. */
1166 /* XXX Should be dynamic so that IM/IR and user modules can attach */
1167 if (((error = mps_attach_log(sc)) != 0) ||
1168 ((error = mps_attach_sas(sc)) != 0) ||
1169 ((error = mps_attach_user(sc)) != 0)) {
1170 mps_printf(sc, "%s failed to attach all subsystems: error %d\n",
1171 __func__, error);
1172 mps_free(sc);
1173 return (error);
1174 }
1175
1176 if ((error = mps_pci_setup_interrupts(sc)) != 0) {
c12c399a 1177 mps_printf(sc, "%s failed to setup interrupts\n", __func__);
ad8cf91c
SW
1178 mps_free(sc);
1179 return (error);
1180 }
1181
c12c399a
SW
1182 /*
1183 * The static page function currently read is ioc page8. Others can be
1184 * added in future.
1185 */
1186 mps_base_static_config_pages(sc);
1187
ad8cf91c
SW
1188 /* Start the periodic watchdog check on the IOC Doorbell */
1189 mps_periodic(sc);
1190
1191 /*
1192 * The portenable will kick off discovery events that will drive the
1193 * rest of the initialization process. The CAM/SAS module will
1194 * hold up the boot sequence until discovery is complete.
1195 */
1196 sc->mps_ich.ich_func = mps_startup;
1197 sc->mps_ich.ich_arg = sc;
52800c9d 1198 sc->mps_ich.ich_desc = "mps";
ad8cf91c
SW
1199 if (config_intrhook_establish(&sc->mps_ich) != 0) {
1200 mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n");
1201 error = EINVAL;
1202 }
1203
c12c399a
SW
1204 /*
1205 * Allow IR to shutdown gracefully when shutdown occurs.
1206 */
1207 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1208 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1209
1210 if (sc->shutdown_eh == NULL)
1211 mps_dprint(sc, MPS_FAULT, "shutdown event registration "
1212 "failed\n");
1213
1214 mps_setup_sysctl(sc);
1215
1216 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
1217
ad8cf91c
SW
1218 return (error);
1219}
1220
c12c399a 1221/* Run through any late-start handlers. */
ad8cf91c
SW
1222static void
1223mps_startup(void *arg)
1224{
1225 struct mps_softc *sc;
1226
1227 sc = (struct mps_softc *)arg;
1228
1229 mps_lock(sc);
1230 mps_unmask_intr(sc);
c12c399a
SW
1231 /* initialize device mapping tables */
1232 mps_mapping_initialize(sc);
1233 mpssas_startup(sc);
ad8cf91c
SW
1234 mps_unlock(sc);
1235}
1236
1237/* Periodic watchdog. Is called with the driver lock already held. */
1238static void
1239mps_periodic(void *arg)
1240{
1241 struct mps_softc *sc;
1242 uint32_t db;
1243
1244 sc = (struct mps_softc *)arg;
c12c399a
SW
1245 mps_lock(sc);
1246 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) {
1247 mps_unlock(sc);
ad8cf91c 1248 return;
c12c399a 1249 }
ad8cf91c
SW
1250
1251 db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
1252 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1253 device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db);
c12c399a
SW
1254
1255 mps_reinit(sc);
ad8cf91c
SW
1256 }
1257
1258 callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
c12c399a 1259 mps_unlock(sc);
ad8cf91c
SW
1260}
1261
1262static void
1263mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
1264 MPI2_EVENT_NOTIFICATION_REPLY *event)
1265{
1266 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1267
1268 mps_print_event(sc, event);
1269
1270 switch (event->Event) {
1271 case MPI2_EVENT_LOG_DATA:
1272 device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n");
1273 hexdump(event->EventData, event->EventDataLength, NULL, 0);
1274 break;
1275 case MPI2_EVENT_LOG_ENTRY_ADDED:
1276 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1277 mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1278 "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1279 entry->LogSequence);
1280 break;
1281 default:
1282 break;
1283 }
1284 return;
1285}
1286
1287static int
1288mps_attach_log(struct mps_softc *sc)
1289{
1290 uint8_t events[16];
1291
1292 bzero(events, 16);
1293 setbit(events, MPI2_EVENT_LOG_DATA);
1294 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1295
1296 mps_register_events(sc, events, mps_log_evt_handler, NULL,
1297 &sc->mps_log_eh);
1298
1299 return (0);
1300}
1301
1302static int
1303mps_detach_log(struct mps_softc *sc)
1304{
1305
1306 if (sc->mps_log_eh != NULL)
1307 mps_deregister_events(sc, sc->mps_log_eh);
1308 return (0);
1309}
1310
1311/*
1312 * Free all of the driver resources and detach submodules. Should be called
1313 * without the lock held.
1314 */
1315int
1316mps_free(struct mps_softc *sc)
1317{
1318 struct mps_command *cm;
1319 int i, error;
1320
1321 /* Turn off the watchdog */
1322 mps_lock(sc);
1323 sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
1324 mps_unlock(sc);
1325#if 0 /* XXX swildner */
1326 /* Lock must not be held for this */
1327 callout_drain(&sc->periodic);
c12c399a
SW
1328#else
1329 callout_stop(&sc->periodic);
ad8cf91c
SW
1330#endif
1331
1332 if (((error = mps_detach_log(sc)) != 0) ||
1333 ((error = mps_detach_sas(sc)) != 0))
1334 return (error);
1335
1336 /* Put the IOC back in the READY state. */
1337 mps_lock(sc);
c12c399a 1338 if ((error = mps_transition_ready(sc)) != 0) {
ad8cf91c
SW
1339 mps_unlock(sc);
1340 return (error);
1341 }
1342 mps_unlock(sc);
1343
1344 if (sc->facts != NULL)
1345 kfree(sc->facts, M_MPT2);
1346
1347 if (sc->pfacts != NULL)
1348 kfree(sc->pfacts, M_MPT2);
1349
1350 if (sc->post_busaddr != 0)
1351 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
1352 if (sc->post_queue != NULL)
1353 bus_dmamem_free(sc->queues_dmat, sc->post_queue,
1354 sc->queues_map);
1355 if (sc->queues_dmat != NULL)
1356 bus_dma_tag_destroy(sc->queues_dmat);
1357
1358 if (sc->chain_busaddr != 0)
1359 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
1360 if (sc->chain_frames != NULL)
1361 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map);
1362 if (sc->chain_dmat != NULL)
1363 bus_dma_tag_destroy(sc->chain_dmat);
1364
1365 if (sc->sense_busaddr != 0)
1366 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
1367 if (sc->sense_frames != NULL)
1368 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map);
1369 if (sc->sense_dmat != NULL)
1370 bus_dma_tag_destroy(sc->sense_dmat);
1371
1372 if (sc->reply_busaddr != 0)
1373 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
1374 if (sc->reply_frames != NULL)
1375 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map);
1376 if (sc->reply_dmat != NULL)
1377 bus_dma_tag_destroy(sc->reply_dmat);
1378
1379 if (sc->req_busaddr != 0)
1380 bus_dmamap_unload(sc->req_dmat, sc->req_map);
1381 if (sc->req_frames != NULL)
1382 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
1383 if (sc->req_dmat != NULL)
1384 bus_dma_tag_destroy(sc->req_dmat);
1385
1386 if (sc->chains != NULL)
1387 kfree(sc->chains, M_MPT2);
1388 if (sc->commands != NULL) {
1389 for (i = 1; i < sc->num_reqs; i++) {
1390 cm = &sc->commands[i];
1391 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
1392 }
1393 kfree(sc->commands, M_MPT2);
1394 }
1395 if (sc->buffer_dmat != NULL)
1396 bus_dma_tag_destroy(sc->buffer_dmat);
1397
1398 if (sc->sysctl_tree != NULL)
1399 sysctl_ctx_free(&sc->sysctl_ctx);
1400
c12c399a
SW
1401 mps_mapping_free_memory(sc);
1402
1403 /* Deregister the shutdown function */
1404 if (sc->shutdown_eh != NULL)
1405 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1406
ad8cf91c
SW
1407 lockuninit(&sc->mps_lock);
1408
1409 return (0);
1410}
1411
c12c399a
SW
1412static __inline void
1413mps_complete_command(struct mps_command *cm)
1414{
1415 if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1416 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1417
1418 if (cm->cm_complete != NULL) {
1419 mps_dprint(cm->cm_sc, MPS_TRACE,
1420 "%s cm %p calling cm_complete %p data %p reply %p\n",
1421 __func__, cm, cm->cm_complete, cm->cm_complete_data,
1422 cm->cm_reply);
1423 cm->cm_complete(cm->cm_sc, cm);
1424 }
1425
1426 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1427 mps_dprint(cm->cm_sc, MPS_TRACE, "%s: waking up %p\n",
1428 __func__, cm);
1429 wakeup(cm);
1430 }
1431
1432 if (cm->cm_sc->io_cmds_active != 0) {
1433 cm->cm_sc->io_cmds_active--;
1434 } else {
1435 mps_dprint(cm->cm_sc, MPS_INFO, "Warning: io_cmds_active is "
1436 "out of sync - resynching to 0\n");
1437 }
1438}
1439
ad8cf91c
SW
1440void
1441mps_intr(void *data)
1442{
1443 struct mps_softc *sc;
1444 uint32_t status;
1445
1446 sc = (struct mps_softc *)data;
1447 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1448
1449 /*
1450 * Check interrupt status register to flush the bus. This is
1451 * needed for both INTx interrupts and driver-driven polling
1452 */
1453 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1454 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1455 return;
1456
1457 mps_lock(sc);
1458 mps_intr_locked(data);
1459 mps_unlock(sc);
1460 return;
1461}
1462
1463/*
1464 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1465 * chip. Hopefully this theory is correct.
1466 */
1467void
1468mps_intr_msi(void *data)
1469{
1470 struct mps_softc *sc;
1471
1472 sc = (struct mps_softc *)data;
c12c399a 1473 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
ad8cf91c
SW
1474 mps_lock(sc);
1475 mps_intr_locked(data);
1476 mps_unlock(sc);
1477 return;
1478}
1479
1480/*
1481 * The locking is overly broad and simplistic, but easy to deal with for now.
1482 */
1483void
1484mps_intr_locked(void *data)
1485{
1486 MPI2_REPLY_DESCRIPTORS_UNION *desc;
1487 struct mps_softc *sc;
1488 struct mps_command *cm = NULL;
1489 uint8_t flags;
1490 u_int pq;
c12c399a
SW
1491 MPI2_DIAG_RELEASE_REPLY *rel_rep;
1492 mps_fw_diagnostic_buffer_t *pBuffer;
ad8cf91c
SW
1493
1494 sc = (struct mps_softc *)data;
1495
1496 pq = sc->replypostindex;
c12c399a
SW
1497 mps_dprint(sc, MPS_TRACE,
1498 "%s sc %p starting with replypostindex %u\n",
1499 __func__, sc, sc->replypostindex);
ad8cf91c
SW
1500
1501 for ( ;; ) {
1502 cm = NULL;
c12c399a 1503 desc = &sc->post_queue[sc->replypostindex];
ad8cf91c
SW
1504 flags = desc->Default.ReplyFlags &
1505 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1506 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1507 || (desc->Words.High == 0xffffffff))
1508 break;
1509
c12c399a
SW
1510 /* increment the replypostindex now, so that event handlers
1511 * and cm completion handlers which decide to do a diag
1512 * reset can zero it without it getting incremented again
1513 * afterwards, and we break out of this loop on the next
1514 * iteration since the reply post queue has been cleared to
1515 * 0xFF and all descriptors look unused (which they are).
1516 */
1517 if (++sc->replypostindex >= sc->pqdepth)
1518 sc->replypostindex = 0;
1519
ad8cf91c
SW
1520 switch (flags) {
1521 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1522 cm = &sc->commands[desc->SCSIIOSuccess.SMID];
1523 cm->cm_reply = NULL;
1524 break;
1525 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1526 {
1527 uint32_t baddr;
1528 uint8_t *reply;
1529
1530 /*
1531 * Re-compose the reply address from the address
1532 * sent back from the chip. The ReplyFrameAddress
1533 * is the lower 32 bits of the physical address of
1534 * particular reply frame. Convert that address to
1535 * host format, and then use that to provide the
1536 * offset against the virtual address base
1537 * (sc->reply_frames).
1538 */
1539 baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1540 reply = sc->reply_frames +
1541 (baddr - ((uint32_t)sc->reply_busaddr));
1542 /*
1543 * Make sure the reply we got back is in a valid
1544 * range. If not, go ahead and panic here, since
1545 * we'll probably panic as soon as we deference the
1546 * reply pointer anyway.
1547 */
1548 if ((reply < sc->reply_frames)
1549 || (reply > (sc->reply_frames +
1550 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1551 kprintf("%s: WARNING: reply %p out of range!\n",
1552 __func__, reply);
1553 kprintf("%s: reply_frames %p, fqdepth %d, "
1554 "frame size %d\n", __func__,
1555 sc->reply_frames, sc->fqdepth,
1556 sc->facts->ReplyFrameSize * 4);
1557 kprintf("%s: baddr %#x,\n", __func__, baddr);
1558 panic("Reply address out of range");
1559 }
1560 if (desc->AddressReply.SMID == 0) {
c12c399a
SW
1561 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1562 MPI2_FUNCTION_DIAG_BUFFER_POST) {
1563 /*
1564 * If SMID is 0 for Diag Buffer Post,
1565 * this implies that the reply is due to
1566 * a release function with a status that
1567 * the buffer has been released. Set
1568 * the buffer flags accordingly.
1569 */
1570 rel_rep =
1571 (MPI2_DIAG_RELEASE_REPLY *)reply;
1572 if (rel_rep->IOCStatus ==
1573 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1574 {
1575 pBuffer =
1576 &sc->fw_diag_buffer_list[
1577 rel_rep->BufferType];
1578 pBuffer->valid_data = TRUE;
1579 pBuffer->owned_by_firmware =
1580 FALSE;
1581 pBuffer->immediate = FALSE;
1582 }
1583 } else
1584 mps_dispatch_event(sc, baddr,
1585 (MPI2_EVENT_NOTIFICATION_REPLY *)
1586 reply);
ad8cf91c
SW
1587 } else {
1588 cm = &sc->commands[desc->AddressReply.SMID];
1589 cm->cm_reply = reply;
1590 cm->cm_reply_data =
1591 desc->AddressReply.ReplyFrameAddress;
1592 }
1593 break;
1594 }
1595 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1596 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1597 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1598 default:
1599 /* Unhandled */
1600 device_printf(sc->mps_dev, "Unhandled reply 0x%x\n",
1601 desc->Default.ReplyFlags);
1602 cm = NULL;
1603 break;
1604 }
1605
c12c399a
SW
1606 if (cm != NULL)
1607 mps_complete_command(cm);
ad8cf91c
SW
1608
1609 desc->Words.Low = 0xffffffff;
1610 desc->Words.High = 0xffffffff;
ad8cf91c
SW
1611 }
1612
1613 if (pq != sc->replypostindex) {
c12c399a
SW
1614 mps_dprint(sc, MPS_TRACE,
1615 "%s sc %p writing postindex %d\n",
1616 __func__, sc, sc->replypostindex);
1617 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
ad8cf91c
SW
1618 }
1619
1620 return;
1621}
1622
1623static void
1624mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
1625 MPI2_EVENT_NOTIFICATION_REPLY *reply)
1626{
1627 struct mps_event_handle *eh;
1628 int event, handled = 0;
1629
1630 event = reply->Event;
1631 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1632 if (isset(eh->mask, event)) {
1633 eh->callback(sc, data, reply);
1634 handled++;
1635 }
1636 }
1637
1638 if (handled == 0)
1639 device_printf(sc->mps_dev, "Unhandled event 0x%x\n", event);
c12c399a
SW
1640
1641 /*
1642 * This is the only place that the event/reply should be freed.
1643 * Anything wanting to hold onto the event data should have
1644 * already copied it into their own storage.
1645 */
1646 mps_free_reply(sc, data);
1647}
1648
1649static void
1650mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
1651{
1652 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1653
1654 if (cm->cm_reply)
1655 mps_print_event(sc,
1656 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
1657
1658 mps_free_command(sc, cm);
1659
1660 /* next, send a port enable */
1661 mpssas_startup(sc);
ad8cf91c
SW
1662}
1663
1664/*
1665 * For both register_events and update_events, the caller supplies a bitmap
1666 * of events that it _wants_. These functions then turn that into a bitmask
1667 * suitable for the controller.
1668 */
1669int
1670mps_register_events(struct mps_softc *sc, uint8_t *mask,
1671 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
1672{
1673 struct mps_event_handle *eh;
1674 int error = 0;
1675
1676 eh = kmalloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
1677 eh->callback = cb;
1678 eh->data = data;
1679 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
1680 if (mask != NULL)
1681 error = mps_update_events(sc, eh, mask);
1682 *handle = eh;
1683
1684 return (error);
1685}
1686
1687int
1688mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
1689 uint8_t *mask)
1690{
1691 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1692 MPI2_EVENT_NOTIFICATION_REPLY *reply;
1693 struct mps_command *cm;
1694 struct mps_event_handle *eh;
1695 int error, i;
1696
1697 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1698
1699 if ((mask != NULL) && (handle != NULL))
1700 bcopy(mask, &handle->mask[0], 16);
1701 memset(sc->event_mask, 0xff, 16);
1702
1703 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1704 for (i = 0; i < 16; i++)
1705 sc->event_mask[i] &= ~eh->mask[i];
1706 }
1707
1708 if ((cm = mps_alloc_command(sc)) == NULL)
1709 return (EBUSY);
1710 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1711 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1712 evtreq->MsgFlags = 0;
1713 evtreq->SASBroadcastPrimitiveMasks = 0;
1714#ifdef MPS_DEBUG_ALL_EVENTS
1715 {
1716 u_char fullmask[16];
1717 memset(fullmask, 0x00, 16);
1718 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1719 }
1720#else
1721 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1722#endif
1723 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1724 cm->cm_data = NULL;
1725
1726 error = mps_request_polled(sc, cm);
1727 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
c12c399a
SW
1728 if ((reply == NULL) ||
1729 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
ad8cf91c
SW
1730 error = ENXIO;
1731 mps_print_event(sc, reply);
c12c399a 1732 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
ad8cf91c
SW
1733
1734 mps_free_command(sc, cm);
1735 return (error);
1736}
1737
c12c399a
SW
1738static int
1739mps_reregister_events(struct mps_softc *sc)
1740{
1741 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1742 struct mps_command *cm;
1743 struct mps_event_handle *eh;
1744 int error, i;
1745
1746 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1747
1748 /* first, reregister events */
1749
1750 memset(sc->event_mask, 0xff, 16);
1751
1752 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1753 for (i = 0; i < 16; i++)
1754 sc->event_mask[i] &= ~eh->mask[i];
1755 }
1756
1757 if ((cm = mps_alloc_command(sc)) == NULL)
1758 return (EBUSY);
1759 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1760 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1761 evtreq->MsgFlags = 0;
1762 evtreq->SASBroadcastPrimitiveMasks = 0;
1763#ifdef MPS_DEBUG_ALL_EVENTS
1764 {
1765 u_char fullmask[16];
1766 memset(fullmask, 0x00, 16);
1767 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1768 }
1769#else
1770 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1771#endif
1772 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1773 cm->cm_data = NULL;
1774 cm->cm_complete = mps_reregister_events_complete;
1775
1776 error = mps_map_command(sc, cm);
1777
1778 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, error);
1779 return (error);
1780}
1781
ad8cf91c
SW
1782int
1783mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
1784{
1785
1786 TAILQ_REMOVE(&sc->event_list, handle, eh_list);
1787 kfree(handle, M_MPT2);
1788 return (mps_update_events(sc, NULL, NULL));
1789}
1790
1791/*
1792 * Add a chain element as the next SGE for the specified command.
1793 * Reset cm_sge and cm_sgesize to indicate all the available space.
1794 */
1795static int
1796mps_add_chain(struct mps_command *cm)
1797{
1798 MPI2_SGE_CHAIN32 *sgc;
1799 struct mps_chain *chain;
1800 int space;
1801
1802 if (cm->cm_sglsize < MPS_SGC_SIZE)
ed20d0e3 1803 panic("MPS: Need SGE Error Code");
ad8cf91c
SW
1804
1805 chain = mps_alloc_chain(cm->cm_sc);
1806 if (chain == NULL)
1807 return (ENOBUFS);
1808
1809 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
1810
1811 /*
1812 * Note: a double-linked list is used to make it easier to
1813 * walk for debugging.
1814 */
1815 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
1816
1817 sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
1818 sgc->Length = space;
1819 sgc->NextChainOffset = 0;
1820 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
1821 sgc->Address = chain->chain_busaddr;
1822
1823 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
1824 cm->cm_sglsize = space;
1825 return (0);
1826}
1827
1828/*
1829 * Add one scatter-gather element (chain, simple, transaction context)
1830 * to the scatter-gather list for a command. Maintain cm_sglsize and
1831 * cm_sge as the remaining size and pointer to the next SGE to fill
1832 * in, respectively.
1833 */
1834int
1835mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
1836{
1837 MPI2_SGE_TRANSACTION_UNION *tc = sgep;
1838 MPI2_SGE_SIMPLE64 *sge = sgep;
1839 int error, type;
c12c399a 1840 uint32_t saved_buf_len, saved_address_low, saved_address_high;
ad8cf91c
SW
1841
1842 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
1843
1844#ifdef INVARIANTS
1845 switch (type) {
1846 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
1847 if (len != tc->DetailsLength + 4)
1848 panic("TC %p length %u or %zu?", tc,
1849 tc->DetailsLength + 4, len);
1850 }
1851 break;
1852 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
1853 /* Driver only uses 32-bit chain elements */
1854 if (len != MPS_SGC_SIZE)
1855 panic("CHAIN %p length %u or %zu?", sgep,
1856 MPS_SGC_SIZE, len);
1857 break;
1858 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
1859 /* Driver only uses 64-bit SGE simple elements */
1860 sge = sgep;
1861 if (len != MPS_SGE64_SIZE)
1862 panic("SGE simple %p length %u or %zu?", sge,
1863 MPS_SGE64_SIZE, len);
1864 if (((sge->FlagsLength >> MPI2_SGE_FLAGS_SHIFT) &
1865 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
1866 panic("SGE simple %p flags %02x not marked 64-bit?",
90ff74f1 1867 sge, sge->FlagsLength >> MPI2_SGE_FLAGS_SHIFT);
ad8cf91c
SW
1868
1869 break;
1870 default:
1871 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
1872 }
1873#endif
1874
1875 /*
1876 * case 1: 1 more segment, enough room for it
1877 * case 2: 2 more segments, enough room for both
1878 * case 3: >=2 more segments, only enough room for 1 and a chain
1879 * case 4: >=1 more segment, enough room for only a chain
1880 * case 5: >=1 more segment, no room for anything (error)
1881 */
1882
1883 /*
1884 * There should be room for at least a chain element, or this
1885 * code is buggy. Case (5).
1886 */
1887 if (cm->cm_sglsize < MPS_SGC_SIZE)
ed20d0e3 1888 panic("MPS: Need SGE Error Code");
ad8cf91c
SW
1889
1890 if (segsleft >= 2 &&
c185131a 1891 cm->cm_sglsize >= len + MPS_SGC_SIZE &&
ad8cf91c
SW
1892 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
1893 /*
1894 * There are 2 or more segments left to add, and only
1895 * enough room for 1 and a chain. Case (3).
1896 *
1897 * Mark as last element in this chain if necessary.
1898 */
1899 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1900 sge->FlagsLength |=
1901 (MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
1902 }
1903
1904 /*
1905 * Add the item then a chain. Do the chain now,
1906 * rather than on the next iteration, to simplify
1907 * understanding the code.
1908 */
1909 cm->cm_sglsize -= len;
1910 bcopy(sgep, cm->cm_sge, len);
1911 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1912 return (mps_add_chain(cm));
1913 }
1914
1915 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
1916 /*
1917 * 1 or more segment, enough room for only a chain.
1918 * Hope the previous element wasn't a Simple entry
1919 * that needed to be marked with
1920 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4).
1921 */
1922 if ((error = mps_add_chain(cm)) != 0)
1923 return (error);
1924 }
1925
1926#ifdef INVARIANTS
1927 /* Case 1: 1 more segment, enough room for it. */
1928 if (segsleft == 1 && cm->cm_sglsize < len)
1929 panic("1 seg left and no room? %u versus %zu",
1930 cm->cm_sglsize, len);
1931
1932 /* Case 2: 2 more segments, enough room for both */
1933 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
1934 panic("2 segs left and no room? %u versus %zu",
1935 cm->cm_sglsize, len);
1936#endif
1937
1938 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1939 /*
c12c399a
SW
1940 * If this is a bi-directional request, need to account for that
1941 * here. Save the pre-filled sge values. These will be used
1942 * either for the 2nd SGL or for a single direction SGL. If
1943 * cm_out_len is non-zero, this is a bi-directional request, so
1944 * fill in the OUT SGL first, then the IN SGL, otherwise just
1945 * fill in the IN SGL. Note that at this time, when filling in
1946 * 2 SGL's for a bi-directional request, they both use the same
1947 * DMA buffer (same cm command).
ad8cf91c 1948 */
c12c399a
SW
1949 saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
1950 saved_address_low = sge->Address.Low;
1951 saved_address_high = sge->Address.High;
1952 if (cm->cm_out_len) {
1953 sge->FlagsLength = cm->cm_out_len |
1954 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1955 MPI2_SGE_FLAGS_END_OF_BUFFER |
1956 MPI2_SGE_FLAGS_HOST_TO_IOC |
1957 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1958 MPI2_SGE_FLAGS_SHIFT);
1959 cm->cm_sglsize -= len;
1960 bcopy(sgep, cm->cm_sge, len);
1961 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
1962 + len);
1963 }
1964 sge->FlagsLength = saved_buf_len |
1965 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
ad8cf91c 1966 MPI2_SGE_FLAGS_END_OF_BUFFER |
c12c399a
SW
1967 MPI2_SGE_FLAGS_LAST_ELEMENT |
1968 MPI2_SGE_FLAGS_END_OF_LIST |
1969 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1970 MPI2_SGE_FLAGS_SHIFT);
1971 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
1972 sge->FlagsLength |=
1973 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
1974 MPI2_SGE_FLAGS_SHIFT);
1975 } else {
1976 sge->FlagsLength |=
1977 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
1978 MPI2_SGE_FLAGS_SHIFT);
1979 }
1980 sge->Address.Low = saved_address_low;
1981 sge->Address.High = saved_address_high;
ad8cf91c
SW
1982 }
1983
1984 cm->cm_sglsize -= len;
1985 bcopy(sgep, cm->cm_sge, len);
1986 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1987 return (0);
1988}
1989
1990/*
1991 * Add one dma segment to the scatter-gather list for a command.
1992 */
1993int
1994mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
1995 int segsleft)
1996{
1997 MPI2_SGE_SIMPLE64 sge;
1998
1999 /*
c12c399a 2000 * This driver always uses 64-bit address elements for simplicity.
ad8cf91c 2001 */
c12c399a
SW
2002 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2003 MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
ad8cf91c
SW
2004 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
2005 mps_from_u64(pa, &sge.Address);
2006
2007 return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2008}
2009
2010static void
2011mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2012{
2013 struct mps_softc *sc;
2014 struct mps_command *cm;
2015 u_int i, dir, sflags;
2016
2017 cm = (struct mps_command *)arg;
2018 sc = cm->cm_sc;
2019
2020 /*
2021 * In this case, just print out a warning and let the chip tell the
2022 * user they did the wrong thing.
2023 */
2024 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2025 mps_printf(sc, "%s: warning: busdma returned %d segments, "
2026 "more than the %d allowed\n", __func__, nsegs,
2027 cm->cm_max_segs);
2028 }
2029
2030 /*
c12c399a
SW
2031 * Set up DMA direction flags. Bi-directional requests are also handled
2032 * here. In that case, both direction flags will be set.
ad8cf91c
SW
2033 */
2034 sflags = 0;
2035 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2036 /*
2037 * We have to add a special case for SMP passthrough, there
2038 * is no easy way to generically handle it. The first
2039 * S/G element is used for the command (therefore the
2040 * direction bit needs to be set). The second one is used
2041 * for the reply. We'll leave it to the caller to make
2042 * sure we only have two buffers.
2043 */
2044 /*
2045 * Even though the busdma man page says it doesn't make
2046 * sense to have both direction flags, it does in this case.
2047 * We have one s/g element being accessed in each direction.
2048 */
2049 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2050
2051 /*
2052 * Set the direction flag on the first buffer in the SMP
2053 * passthrough request. We'll clear it for the second one.
2054 */
2055 sflags |= MPI2_SGE_FLAGS_DIRECTION |
2056 MPI2_SGE_FLAGS_END_OF_BUFFER;
2057 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
c12c399a 2058 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
ad8cf91c
SW
2059 dir = BUS_DMASYNC_PREWRITE;
2060 } else
2061 dir = BUS_DMASYNC_PREREAD;
2062
2063 for (i = 0; i < nsegs; i++) {
c12c399a 2064 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
ad8cf91c
SW
2065 sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2066 }
2067 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2068 sflags, nsegs - i);
2069 if (error != 0) {
2070 /* Resource shortage, roll back! */
c12c399a
SW
2071 mps_dprint(sc, MPS_INFO, "out of chain frames\n");
2072 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2073 mps_complete_command(cm);
ad8cf91c
SW
2074 return;
2075 }
2076 }
2077
2078 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2079 mps_enqueue_request(sc, cm);
2080
2081 return;
2082}
2083
2084static void
2085mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2086 int error)
2087{
2088 mps_data_cb(arg, segs, nsegs, error);
2089}
2090
2091/*
c12c399a 2092 * This is the routine to enqueue commands ansynchronously.
ad8cf91c 2093 * Note that the only error path here is from bus_dmamap_load(), which can
c12c399a
SW
2094 * return EINPROGRESS if it is waiting for resources. Other than this, it's
2095 * assumed that if you have a command in-hand, then you have enough credits
2096 * to use it.
ad8cf91c
SW
2097 */
2098int
2099mps_map_command(struct mps_softc *sc, struct mps_command *cm)
2100{
2101 MPI2_SGE_SIMPLE32 *sge;
2102 int error = 0;
2103
2104 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
2105 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2106 &cm->cm_uio, mps_data_cb2, cm, 0);
2107 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2108 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2109 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
2110 } else {
2111 /* Add a zero-length element as needed */
2112 if (cm->cm_sge != NULL) {
2113 sge = (MPI2_SGE_SIMPLE32 *)cm->cm_sge;
2114 sge->FlagsLength = (MPI2_SGE_FLAGS_LAST_ELEMENT |
2115 MPI2_SGE_FLAGS_END_OF_BUFFER |
2116 MPI2_SGE_FLAGS_END_OF_LIST |
2117 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2118 MPI2_SGE_FLAGS_SHIFT;
2119 sge->Address = 0;
2120 }
2121 mps_enqueue_request(sc, cm);
2122 }
2123
2124 return (error);
2125}
2126
2127/*
c12c399a
SW
2128 * This is the routine to enqueue commands synchronously. An error of
2129 * EINPROGRESS from mps_map_command() is ignored since the command will
2130 * be executed and enqueued automatically. Other errors come from msleep().
2131 */
2132int
2133mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout)
2134{
2135 int error;
2136
2137 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
2138
2139 cm->cm_complete = NULL;
2140 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
2141 error = mps_map_command(sc, cm);
2142 if ((error != 0) && (error != EINPROGRESS))
2143 return (error);
2144 error = lksleep(cm, &sc->mps_lock, 0, "mpswait", timeout);
2145 if (error == EWOULDBLOCK)
2146 error = ETIMEDOUT;
2147 return (error);
2148}
2149
2150/*
2151 * This is the routine to enqueue a command synchonously and poll for
2152 * completion. Its use should be rare.
2153 */
2154int
2155mps_request_polled(struct mps_softc *sc, struct mps_command *cm)
2156{
2157 int error, timeout = 0;
2158
2159 error = 0;
2160
2161 cm->cm_flags |= MPS_CM_FLAGS_POLLED;
2162 cm->cm_complete = NULL;
2163 mps_map_command(sc, cm);
2164
2165 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
2166 mps_intr_locked(sc);
2167 DELAY(50 * 1000);
2168 if (timeout++ > 1000) {
2169 mps_dprint(sc, MPS_FAULT, "polling failed\n");
2170 error = ETIMEDOUT;
2171 break;
2172 }
2173 }
2174
2175 return (error);
2176}
2177
2178/*
ad8cf91c
SW
2179 * The MPT driver had a verbose interface for config pages. In this driver,
2180 * reduce it to much simplier terms, similar to the Linux driver.
2181 */
2182int
2183mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
2184{
2185 MPI2_CONFIG_REQUEST *req;
2186 struct mps_command *cm;
2187 int error;
2188
2189 if (sc->mps_flags & MPS_FLAGS_BUSY) {
2190 return (EBUSY);
2191 }
2192
2193 cm = mps_alloc_command(sc);
2194 if (cm == NULL) {
2195 return (EBUSY);
2196 }
2197
2198 req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2199 req->Function = MPI2_FUNCTION_CONFIG;
2200 req->Action = params->action;
2201 req->SGLFlags = 0;
2202 req->ChainOffset = 0;
2203 req->PageAddress = params->page_address;
2204 if (params->hdr.Ext.ExtPageType != 0) {
2205 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2206
2207 hdr = &params->hdr.Ext;
2208 req->ExtPageType = hdr->ExtPageType;
2209 req->ExtPageLength = hdr->ExtPageLength;
2210 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2211 req->Header.PageLength = 0; /* Must be set to zero */
2212 req->Header.PageNumber = hdr->PageNumber;
2213 req->Header.PageVersion = hdr->PageVersion;
2214 } else {
2215 MPI2_CONFIG_PAGE_HEADER *hdr;
2216
2217 hdr = &params->hdr.Struct;
2218 req->Header.PageType = hdr->PageType;
2219 req->Header.PageNumber = hdr->PageNumber;
2220 req->Header.PageLength = hdr->PageLength;
2221 req->Header.PageVersion = hdr->PageVersion;
2222 }
2223
2224 cm->cm_data = params->buffer;
2225 cm->cm_length = params->length;
2226 cm->cm_sge = &req->PageBufferSGE;
2227 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2228 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
2229 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2230
2231 cm->cm_complete_data = params;
2232 if (params->callback != NULL) {
2233 cm->cm_complete = mps_config_complete;
2234 return (mps_map_command(sc, cm));
2235 } else {
c12c399a
SW
2236 error = mps_wait_command(sc, cm, 0);
2237 if (error) {
2238 mps_dprint(sc, MPS_FAULT,
2239 "Error %d reading config page\n", error);
2240 mps_free_command(sc, cm);
ad8cf91c 2241 return (error);
c12c399a 2242 }
ad8cf91c
SW
2243 mps_config_complete(sc, cm);
2244 }
2245
2246 return (0);
2247}
2248
2249int
2250mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
2251{
2252 return (EINVAL);
2253}
2254
2255static void
2256mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
2257{
2258 MPI2_CONFIG_REPLY *reply;
2259 struct mps_config_params *params;
2260
2261 params = cm->cm_complete_data;
2262
2263 if (cm->cm_data != NULL) {
2264 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2265 BUS_DMASYNC_POSTREAD);
2266 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2267 }
2268
c12c399a
SW
2269 /*
2270 * XXX KDM need to do more error recovery? This results in the
2271 * device in question not getting probed.
2272 */
2273 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2274 params->status = MPI2_IOCSTATUS_BUSY;
2275 goto done;
2276 }
2277
ad8cf91c 2278 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
c12c399a
SW
2279 if (reply == NULL) {
2280 params->status = MPI2_IOCSTATUS_BUSY;
2281 goto done;
2282 }
ad8cf91c
SW
2283 params->status = reply->IOCStatus;
2284 if (params->hdr.Ext.ExtPageType != 0) {
2285 params->hdr.Ext.ExtPageType = reply->ExtPageType;
2286 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2287 } else {
2288 params->hdr.Struct.PageType = reply->Header.PageType;
2289 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2290 params->hdr.Struct.PageLength = reply->Header.PageLength;
2291 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2292 }
2293
c12c399a 2294done:
ad8cf91c
SW
2295 mps_free_command(sc, cm);
2296 if (params->callback != NULL)
2297 params->callback(sc, params);
2298
2299 return;
2300}