Modify ktr(4) to be typesafe
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 *
011c0f93 33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
984263bc
MD
34 */
35
36/*
37 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Engineer, Wind River Systems
41 */
42
43/*
44 * The Broadcom BCM5700 is based on technology originally developed by
45 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49 * frames, highly configurable RX filtering, and 16 RX and TX queues
50 * (which, along with RX filter rules, can be used for QOS applications).
51 * Other features, such as TCP segmentation, may be available as part
52 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53 * firmware images can be stored in hardware and need not be compiled
54 * into the driver.
55 *
56 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58 *
59 * The BCM5701 is a single-chip solution incorporating both the BCM5700
60 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61 * does not support external SSRAM.
62 *
63 * Broadcom also produces a variation of the BCM5700 under the "Altima"
64 * brand name, which is functionally similar but lacks PCI-X support.
65 *
66 * Without external SSRAM, you can only have at most 4 TX rings,
67 * and the use of the mini RX ring is disabled. This seems to imply
68 * that these features are simply not available on the BCM5701. As a
69 * result, this driver does not implement any support for the mini RX
70 * ring.
71 */
72
315fe0ee 73#include "opt_polling.h"
a7db2caa 74
984263bc 75#include <sys/param.h>
62be1357 76#include <sys/bus.h>
20c9a969 77#include <sys/endian.h>
62be1357 78#include <sys/kernel.h>
6b880771 79#include <sys/ktr.h>
9db4b353 80#include <sys/interrupt.h>
984263bc
MD
81#include <sys/mbuf.h>
82#include <sys/malloc.h>
984263bc 83#include <sys/queue.h>
62be1357 84#include <sys/rman.h>
16dca0df 85#include <sys/serialize.h>
62be1357
SZ
86#include <sys/socket.h>
87#include <sys/sockio.h>
055d06f0 88#include <sys/sysctl.h>
984263bc 89
62be1357
SZ
90#include <net/bpf.h>
91#include <net/ethernet.h>
984263bc
MD
92#include <net/if.h>
93#include <net/if_arp.h>
984263bc
MD
94#include <net/if_dl.h>
95#include <net/if_media.h>
984263bc 96#include <net/if_types.h>
62be1357 97#include <net/ifq_var.h>
1f2de5d4 98#include <net/vlan/if_vlan_var.h>
b637f170 99#include <net/vlan/if_vlan_ether.h>
984263bc 100
1f2de5d4
MD
101#include <dev/netif/mii_layer/mii.h>
102#include <dev/netif/mii_layer/miivar.h>
1f2de5d4 103#include <dev/netif/mii_layer/brgphyreg.h>
984263bc 104
f952ab63 105#include <bus/pci/pcidevs.h>
1f2de5d4
MD
106#include <bus/pci/pcireg.h>
107#include <bus/pci/pcivar.h>
984263bc 108
62be1357
SZ
109#include <dev/netif/bge/if_bgereg.h>
110
111/* "device miibus" required. See GENERIC if you get errors here. */
112#include "miibus_if.h"
984263bc
MD
113
114#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
cb623c48 115#define BGE_MIN_FRAME 60
984263bc 116
d265721a 117static const struct bge_type bge_devs[] = {
0ecb11d7
SZ
118 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
119 "3COM 3C996 Gigabit Ethernet" },
120
f952ab63 121 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
9a6ee7e2
JS
122 "Alteon BCM5700 Gigabit Ethernet" },
123 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
124 "Alteon BCM5701 Gigabit Ethernet" },
0ecb11d7
SZ
125
126 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
127 "Altima AC1000 Gigabit Ethernet" },
128 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
129 "Altima AC1002 Gigabit Ethernet" },
130 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
131 "Altima AC9100 Gigabit Ethernet" },
132
133 { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
134 "Apple BCM5701 Gigabit Ethernet" },
135
f952ab63 136 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
984263bc 137 "Broadcom BCM5700 Gigabit Ethernet" },
f952ab63 138 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
984263bc 139 "Broadcom BCM5701 Gigabit Ethernet" },
0ecb11d7
SZ
140 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
141 "Broadcom BCM5702 Gigabit Ethernet" },
f952ab63 142 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
984263bc 143 "Broadcom BCM5702X Gigabit Ethernet" },
9a6ee7e2
JS
144 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
145 "Broadcom BCM5702 Gigabit Ethernet" },
0ecb11d7
SZ
146 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
147 "Broadcom BCM5703 Gigabit Ethernet" },
f952ab63
JS
148 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
149 "Broadcom BCM5703X Gigabit Ethernet" },
9a6ee7e2
JS
150 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
151 "Broadcom BCM5703 Gigabit Ethernet" },
f952ab63 152 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
984263bc 153 "Broadcom BCM5704C Dual Gigabit Ethernet" },
f952ab63 154 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
984263bc 155 "Broadcom BCM5704S Dual Gigabit Ethernet" },
0ecb11d7
SZ
156 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
157 "Broadcom BCM5704S Dual Gigabit Ethernet" },
f952ab63 158 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
7e40b8c5 159 "Broadcom BCM5705 Gigabit Ethernet" },
0ecb11d7
SZ
160 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
161 "Broadcom BCM5705F Gigabit Ethernet" },
9a6ee7e2
JS
162 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
163 "Broadcom BCM5705K Gigabit Ethernet" },
f952ab63 164 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
7e40b8c5 165 "Broadcom BCM5705M Gigabit Ethernet" },
9a6ee7e2 166 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
7e40b8c5 167 "Broadcom BCM5705M Gigabit Ethernet" },
92decf65 168 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
9a6ee7e2 169 "Broadcom BCM5714C Gigabit Ethernet" },
0ecb11d7
SZ
170 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
171 "Broadcom BCM5714S Gigabit Ethernet" },
172 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
173 "Broadcom BCM5715 Gigabit Ethernet" },
174 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
175 "Broadcom BCM5715S Gigabit Ethernet" },
176 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
177 "Broadcom BCM5720 Gigabit Ethernet" },
9a6ee7e2
JS
178 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
179 "Broadcom BCM5721 Gigabit Ethernet" },
0ecb11d7
SZ
180 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
181 "Broadcom BCM5722 Gigabit Ethernet" },
f47afe1a
MN
182 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
183 "Broadcom BCM5723 Gigabit Ethernet" },
9a6ee7e2
JS
184 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
185 "Broadcom BCM5750 Gigabit Ethernet" },
186 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
187 "Broadcom BCM5750M Gigabit Ethernet" },
b7bef88c
JS
188 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
189 "Broadcom BCM5751 Gigabit Ethernet" },
0ecb11d7
SZ
190 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
191 "Broadcom BCM5751F Gigabit Ethernet" },
9a6ee7e2
JS
192 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
193 "Broadcom BCM5751M Gigabit Ethernet" },
bae5fe9a
SZ
194 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
195 "Broadcom BCM5752 Gigabit Ethernet" },
0ecb11d7
SZ
196 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
197 "Broadcom BCM5752M Gigabit Ethernet" },
198 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
199 "Broadcom BCM5753 Gigabit Ethernet" },
200 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
201 "Broadcom BCM5753F Gigabit Ethernet" },
202 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
203 "Broadcom BCM5753M Gigabit Ethernet" },
204 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
205 "Broadcom BCM5754 Gigabit Ethernet" },
206 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
207 "Broadcom BCM5754M Gigabit Ethernet" },
208 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
209 "Broadcom BCM5755 Gigabit Ethernet" },
210 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
211 "Broadcom BCM5755M Gigabit Ethernet" },
212 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
213 "Broadcom BCM5756 Gigabit Ethernet" },
f47afe1a
MN
214 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
215 "Broadcom BCM5761 Gigabit Ethernet" },
216 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
217 "Broadcom BCM5761E Gigabit Ethernet" },
218 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
219 "Broadcom BCM5761S Gigabit Ethernet" },
220 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
221 "Broadcom BCM5761SE Gigabit Ethernet" },
222 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
223 "Broadcom BCM5764 Gigabit Ethernet" },
0ecb11d7
SZ
224 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
225 "Broadcom BCM5780 Gigabit Ethernet" },
226 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
227 "Broadcom BCM5780S Gigabit Ethernet" },
228 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
229 "Broadcom BCM5781 Gigabit Ethernet" },
f952ab63 230 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
7e40b8c5 231 "Broadcom BCM5782 Gigabit Ethernet" },
f47afe1a
MN
232 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
233 "Broadcom BCM5784 Gigabit Ethernet" },
234 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
235 "Broadcom BCM5785F Gigabit Ethernet" },
236 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
237 "Broadcom BCM5785G Gigabit Ethernet" },
0ecb11d7
SZ
238 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
239 "Broadcom BCM5786 Gigabit Ethernet" },
240 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
241 "Broadcom BCM5787 Gigabit Ethernet" },
242 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
243 "Broadcom BCM5787F Gigabit Ethernet" },
244 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
245 "Broadcom BCM5787M Gigabit Ethernet" },
9a6ee7e2 246 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
f952ab63 247 "Broadcom BCM5788 Gigabit Ethernet" },
9a6ee7e2
JS
248 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
249 "Broadcom BCM5789 Gigabit Ethernet" },
f952ab63
JS
250 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
251 "Broadcom BCM5901 Fast Ethernet" },
252 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
253 "Broadcom BCM5901A2 Fast Ethernet" },
0ecb11d7
SZ
254 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
255 "Broadcom BCM5903M Fast Ethernet" },
591dfc77
SZ
256 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
257 "Broadcom BCM5906 Fast Ethernet"},
258 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
259 "Broadcom BCM5906M Fast Ethernet"},
f47afe1a
MN
260 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
261 "Broadcom BCM57760 Gigabit Ethernet"},
262 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
263 "Broadcom BCM57780 Gigabit Ethernet"},
264 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
265 "Broadcom BCM57788 Gigabit Ethernet"},
266 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
267 "Broadcom BCM57790 Gigabit Ethernet"},
f952ab63 268 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
984263bc 269 "SysKonnect Gigabit Ethernet" },
0ecb11d7 270
984263bc
MD
271 { 0, 0, NULL }
272};
273
0ecb11d7
SZ
274#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
275#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
276#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
277#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
278#define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
f47afe1a 279#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
0ecb11d7 280
591dfc77
SZ
281typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
282
33c39a69
JS
283static int bge_probe(device_t);
284static int bge_attach(device_t);
285static int bge_detach(device_t);
33c39a69
JS
286static void bge_txeof(struct bge_softc *);
287static void bge_rxeof(struct bge_softc *);
288
289static void bge_tick(void *);
290static void bge_stats_update(struct bge_softc *);
291static void bge_stats_update_regs(struct bge_softc *);
4a607ed6 292static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
33c39a69 293
315fe0ee
MD
294#ifdef DEVICE_POLLING
295static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
296#endif
33c39a69 297static void bge_intr(void *);
ba39cc82
SZ
298static void bge_enable_intr(struct bge_softc *);
299static void bge_disable_intr(struct bge_softc *);
33c39a69
JS
300static void bge_start(struct ifnet *);
301static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
302static void bge_init(void *);
303static void bge_stop(struct bge_softc *);
304static void bge_watchdog(struct ifnet *);
305static void bge_shutdown(device_t);
aa65409c
SZ
306static int bge_suspend(device_t);
307static int bge_resume(device_t);
33c39a69
JS
308static int bge_ifmedia_upd(struct ifnet *);
309static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
310
591dfc77
SZ
311static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
312static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
313
33c39a69
JS
314static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
315static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
316
33c39a69 317static void bge_setmulti(struct bge_softc *);
6439b28a 318static void bge_setpromisc(struct bge_softc *);
33c39a69 319
33c39a69
JS
320static int bge_alloc_jumbo_mem(struct bge_softc *);
321static void bge_free_jumbo_mem(struct bge_softc *);
2aa9b12f
JS
322static struct bge_jslot
323 *bge_jalloc(struct bge_softc *);
324static void bge_jfree(void *);
325static void bge_jref(void *);
1436f9a0
SZ
326static int bge_newbuf_std(struct bge_softc *, int, int);
327static int bge_newbuf_jumbo(struct bge_softc *, int, int);
328static void bge_setup_rxdesc_std(struct bge_softc *, int);
329static void bge_setup_rxdesc_jumbo(struct bge_softc *, int);
33c39a69
JS
330static int bge_init_rx_ring_std(struct bge_softc *);
331static void bge_free_rx_ring_std(struct bge_softc *);
332static int bge_init_rx_ring_jumbo(struct bge_softc *);
333static void bge_free_rx_ring_jumbo(struct bge_softc *);
334static void bge_free_tx_ring(struct bge_softc *);
335static int bge_init_tx_ring(struct bge_softc *);
336
337static int bge_chipinit(struct bge_softc *);
338static int bge_blockinit(struct bge_softc *);
984263bc 339
33c39a69
JS
340static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
341static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
984263bc 342#ifdef notdef
33c39a69 343static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
984263bc 344#endif
33c39a69 345static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
0ecb11d7 346static void bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
591dfc77 347static void bge_writembx(struct bge_softc *, int, int);
984263bc 348
33c39a69
JS
349static int bge_miibus_readreg(device_t, int, int);
350static int bge_miibus_writereg(device_t, int, int, int);
351static void bge_miibus_statchg(device_t);
db861466
SZ
352static void bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
353static void bge_tbi_link_upd(struct bge_softc *, uint32_t);
354static void bge_copper_link_upd(struct bge_softc *, uint32_t);
984263bc 355
33c39a69 356static void bge_reset(struct bge_softc *);
984263bc 357
20c9a969
SZ
358static int bge_dma_alloc(struct bge_softc *);
359static void bge_dma_free(struct bge_softc *);
360static int bge_dma_block_alloc(struct bge_softc *, bus_size_t,
361 bus_dma_tag_t *, bus_dmamap_t *,
362 void **, bus_addr_t *);
363static void bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
364
591dfc77
SZ
365static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
366static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
367static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
368static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
369
055d06f0
SZ
370static void bge_coal_change(struct bge_softc *);
371static int bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
372static int bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
373static int bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
374static int bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
375static int bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
376
5c56d5d8
SZ
377/*
378 * Set following tunable to 1 for some IBM blade servers with the DNLK
379 * switch module. Auto negotiation is broken for those configurations.
380 */
381static int bge_fake_autoneg = 0;
382TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
383
055d06f0 384/* Interrupt moderation control variables. */
61b4fa0a 385static int bge_rx_coal_ticks = 100; /* usec */
83015dae 386static int bge_tx_coal_ticks = 1023; /* usec */
b02a2d90 387static int bge_rx_max_coal_bds = 80;
77dee542 388static int bge_tx_max_coal_bds = 128;
055d06f0
SZ
389
390TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
391TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
392TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
393TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
394
6b880771
SZ
395#if !defined(KTR_IF_BGE)
396#define KTR_IF_BGE KTR_ALL
397#endif
398KTR_INFO_MASTER(if_bge);
5bf48697
AE
399KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
400KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
401KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
6b880771
SZ
402#define logif(name) KTR_LOG(if_bge_ ## name)
403
984263bc
MD
404static device_method_t bge_methods[] = {
405 /* Device interface */
406 DEVMETHOD(device_probe, bge_probe),
407 DEVMETHOD(device_attach, bge_attach),
408 DEVMETHOD(device_detach, bge_detach),
409 DEVMETHOD(device_shutdown, bge_shutdown),
aa65409c
SZ
410 DEVMETHOD(device_suspend, bge_suspend),
411 DEVMETHOD(device_resume, bge_resume),
984263bc
MD
412
413 /* bus interface */
414 DEVMETHOD(bus_print_child, bus_generic_print_child),
415 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
416
417 /* MII interface */
418 DEVMETHOD(miibus_readreg, bge_miibus_readreg),
419 DEVMETHOD(miibus_writereg, bge_miibus_writereg),
420 DEVMETHOD(miibus_statchg, bge_miibus_statchg),
421
422 { 0, 0 }
423};
424
33c39a69 425static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
984263bc
MD
426static devclass_t bge_devclass;
427
32832096 428DECLARE_DUMMY_MODULE(if_bge);
aa2b9d05
SW
429DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
430DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
984263bc 431
33c39a69
JS
432static uint32_t
433bge_readmem_ind(struct bge_softc *sc, uint32_t off)
984263bc 434{
33c39a69 435 device_t dev = sc->bge_dev;
0ecb11d7 436 uint32_t val;
984263bc
MD
437
438 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
0ecb11d7
SZ
439 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
440 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
441 return (val);
984263bc
MD
442}
443
444static void
33c39a69 445bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
984263bc 446{
33c39a69 447 device_t dev = sc->bge_dev;
984263bc
MD
448
449 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
450 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
0ecb11d7 451 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
984263bc
MD
452}
453
454#ifdef notdef
33c39a69
JS
455static uint32_t
456bge_readreg_ind(struct bge_softc *sc, uin32_t off)
984263bc 457{
33c39a69 458 device_t dev = sc->bge_dev;
984263bc
MD
459
460 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
461 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
462}
463#endif
464
465static void
33c39a69 466bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
984263bc 467{
33c39a69 468 device_t dev = sc->bge_dev;
984263bc
MD
469
470 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
471 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
984263bc
MD
472}
473
0ecb11d7
SZ
474static void
475bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
476{
477 CSR_WRITE_4(sc, off, val);
478}
479
591dfc77
SZ
480static void
481bge_writembx(struct bge_softc *sc, int off, int val)
482{
483 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
484 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
485
486 CSR_WRITE_4(sc, off, val);
487}
488
489static uint8_t
490bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
491{
492 uint32_t access, byte = 0;
493 int i;
494
495 /* Lock. */
496 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
497 for (i = 0; i < 8000; i++) {
498 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
499 break;
500 DELAY(20);
501 }
502 if (i == 8000)
503 return (1);
504
505 /* Enable access. */
506 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
507 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
508
509 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
510 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
511 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
512 DELAY(10);
513 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
514 DELAY(10);
515 break;
516 }
517 }
518
519 if (i == BGE_TIMEOUT * 10) {
520 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
521 return (1);
522 }
523
524 /* Get result. */
525 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
526
527 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
528
529 /* Disable access. */
530 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
531
532 /* Unlock. */
533 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
534 CSR_READ_4(sc, BGE_NVRAM_SWARB);
535
536 return (0);
537}
538
539/*
540 * Read a sequence of bytes from NVRAM.
541 */
542static int
543bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
544{
545 int err = 0, i;
546 uint8_t byte = 0;
547
548 if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
549 return (1);
550
551 for (i = 0; i < cnt; i++) {
552 err = bge_nvram_getbyte(sc, off + i, &byte);
553 if (err)
554 break;
555 *(dest + i) = byte;
556 }
557
558 return (err ? 1 : 0);
559}
560
984263bc
MD
561/*
562 * Read a byte of data stored in the EEPROM at address 'addr.' The
563 * BCM570x supports both the traditional bitbang interface and an
564 * auto access interface for reading the EEPROM. We use the auto
565 * access method.
566 */
33c39a69
JS
567static uint8_t
568bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
984263bc
MD
569{
570 int i;
33c39a69 571 uint32_t byte = 0;
984263bc
MD
572
573 /*
574 * Enable use of auto EEPROM access so we can avoid
575 * having to use the bitbang method.
576 */
577 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
578
579 /* Reset the EEPROM, load the clock period. */
580 CSR_WRITE_4(sc, BGE_EE_ADDR,
581 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
582 DELAY(20);
583
584 /* Issue the read EEPROM command. */
585 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
586
587 /* Wait for completion */
588 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
589 DELAY(10);
590 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
591 break;
592 }
593
594 if (i == BGE_TIMEOUT) {
c6fd6f3b 595 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
7b47d9c2 596 return(1);
984263bc
MD
597 }
598
599 /* Get result. */
600 byte = CSR_READ_4(sc, BGE_EE_DATA);
601
602 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
603
604 return(0);
605}
606
607/*
608 * Read a sequence of bytes from the EEPROM.
609 */
610static int
33c39a69 611bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
984263bc 612{
33c39a69
JS
613 size_t i;
614 int err;
615 uint8_t byte;
984263bc 616
33c39a69 617 for (byte = 0, err = 0, i = 0; i < len; i++) {
984263bc
MD
618 err = bge_eeprom_getbyte(sc, off + i, &byte);
619 if (err)
620 break;
621 *(dest + i) = byte;
622 }
623
624 return(err ? 1 : 0);
625}
626
627static int
33c39a69 628bge_miibus_readreg(device_t dev, int phy, int reg)
984263bc 629{
f7a1f3ba
SZ
630 struct bge_softc *sc = device_get_softc(dev);
631 struct ifnet *ifp = &sc->arpcom.ac_if;
33c39a69 632 uint32_t val, autopoll;
984263bc
MD
633 int i;
634
7e40b8c5
HP
635 /*
636 * Broadcom's own driver always assumes the internal
637 * PHY is at GMII address 1. On some chips, the PHY responds
638 * to accesses at all addresses, which could cause us to
639 * bogusly attach the PHY 32 times at probe type. Always
640 * restricting the lookup to address 1 is simpler than
641 * trying to figure out which chips revisions should be
642 * special-cased.
643 */
984263bc 644 if (phy != 1)
7e40b8c5 645 return(0);
984263bc
MD
646
647 /* Reading with autopolling on may trigger PCI errors */
648 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
649 if (autopoll & BGE_MIMODE_AUTOPOLL) {
650 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
651 DELAY(40);
652 }
653
654 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
655 BGE_MIPHY(phy)|BGE_MIREG(reg));
656
657 for (i = 0; i < BGE_TIMEOUT; i++) {
f7a1f3ba 658 DELAY(10);
984263bc
MD
659 val = CSR_READ_4(sc, BGE_MI_COMM);
660 if (!(val & BGE_MICOMM_BUSY))
661 break;
662 }
663
664 if (i == BGE_TIMEOUT) {
f7a1f3ba
SZ
665 if_printf(ifp, "PHY read timed out "
666 "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
984263bc
MD
667 val = 0;
668 goto done;
669 }
670
f7a1f3ba 671 DELAY(5);
984263bc
MD
672 val = CSR_READ_4(sc, BGE_MI_COMM);
673
674done:
675 if (autopoll & BGE_MIMODE_AUTOPOLL) {
676 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
677 DELAY(40);
678 }
679
680 if (val & BGE_MICOMM_READFAIL)
681 return(0);
682
683 return(val & 0xFFFF);
684}
685
686static int
33c39a69 687bge_miibus_writereg(device_t dev, int phy, int reg, int val)
984263bc 688{
f7a1f3ba 689 struct bge_softc *sc = device_get_softc(dev);
33c39a69 690 uint32_t autopoll;
984263bc
MD
691 int i;
692
f7a1f3ba
SZ
693 /*
694 * See the related comment in bge_miibus_readreg()
695 */
696 if (phy != 1)
697 return(0);
984263bc 698
591dfc77
SZ
699 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
700 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
701 return(0);
702
984263bc
MD
703 /* Reading with autopolling on may trigger PCI errors */
704 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
705 if (autopoll & BGE_MIMODE_AUTOPOLL) {
706 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
707 DELAY(40);
708 }
709
710 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
711 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
712
713 for (i = 0; i < BGE_TIMEOUT; i++) {
f7a1f3ba
SZ
714 DELAY(10);
715 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
716 DELAY(5);
717 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
984263bc 718 break;
f7a1f3ba 719 }
984263bc
MD
720 }
721
722 if (autopoll & BGE_MIMODE_AUTOPOLL) {
723 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
724 DELAY(40);
725 }
726
727 if (i == BGE_TIMEOUT) {
f7a1f3ba
SZ
728 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
729 "(phy %d, reg %d, val %d)\n", phy, reg, val);
984263bc
MD
730 return(0);
731 }
732
733 return(0);
734}
735
736static void
33c39a69 737bge_miibus_statchg(device_t dev)
984263bc
MD
738{
739 struct bge_softc *sc;
740 struct mii_data *mii;
741
742 sc = device_get_softc(dev);
743 mii = device_get_softc(sc->bge_miibus);
744
745 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
7f259627 746 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
984263bc
MD
747 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
748 } else {
749 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
750 }
751
752 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
753 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
754 } else {
755 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
756 }
984263bc
MD
757}
758
759/*
984263bc
MD
760 * Memory management for jumbo frames.
761 */
984263bc 762static int
33c39a69 763bge_alloc_jumbo_mem(struct bge_softc *sc)
984263bc 764{
20c9a969 765 struct ifnet *ifp = &sc->arpcom.ac_if;
2aa9b12f 766 struct bge_jslot *entry;
20c9a969
SZ
767 uint8_t *ptr;
768 bus_addr_t paddr;
769 int i, error;
984263bc 770
20c9a969
SZ
771 /*
772 * Create tag for jumbo mbufs.
773 * This is really a bit of a kludge. We allocate a special
774 * jumbo buffer pool which (thanks to the way our DMA
775 * memory allocation works) will consist of contiguous
776 * pages. This means that even though a jumbo buffer might
777 * be larger than a page size, we don't really need to
778 * map it into more than one DMA segment. However, the
779 * default mbuf tag will result in multi-segment mappings,
780 * so we have to create a special jumbo mbuf tag that
781 * lets us get away with mapping the jumbo buffers as
782 * a single segment. I think eventually the driver should
783 * be changed so that it uses ordinary mbufs and cluster
784 * buffers, i.e. jumbo frames can span multiple DMA
785 * descriptors. But that's a project for another day.
786 */
984263bc 787
20c9a969
SZ
788 /*
789 * Create DMA stuffs for jumbo RX ring.
790 */
791 error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
792 &sc->bge_cdata.bge_rx_jumbo_ring_tag,
793 &sc->bge_cdata.bge_rx_jumbo_ring_map,
da44240f 794 (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
20c9a969
SZ
795 &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
796 if (error) {
797 if_printf(ifp, "could not create jumbo RX ring\n");
798 return error;
799 }
800
801 /*
802 * Create DMA stuffs for jumbo buffer block.
803 */
804 error = bge_dma_block_alloc(sc, BGE_JMEM,
805 &sc->bge_cdata.bge_jumbo_tag,
806 &sc->bge_cdata.bge_jumbo_map,
807 (void **)&sc->bge_ldata.bge_jumbo_buf,
808 &paddr);
809 if (error) {
810 if_printf(ifp, "could not create jumbo buffer\n");
811 return error;
984263bc
MD
812 }
813
814 SLIST_INIT(&sc->bge_jfree_listhead);
984263bc
MD
815
816 /*
817 * Now divide it up into 9K pieces and save the addresses
818 * in an array. Note that we play an evil trick here by using
819 * the first few bytes in the buffer to hold the the address
820 * of the softc structure for this interface. This is because
821 * bge_jfree() needs it, but it is called by the mbuf management
822 * code which will not pass it to us explicitly.
823 */
20c9a969 824 for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
2aa9b12f
JS
825 entry = &sc->bge_cdata.bge_jslots[i];
826 entry->bge_sc = sc;
827 entry->bge_buf = ptr;
20c9a969 828 entry->bge_paddr = paddr;
2aa9b12f
JS
829 entry->bge_inuse = 0;
830 entry->bge_slot = i;
831 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
20c9a969 832
2aa9b12f 833 ptr += BGE_JLEN;
20c9a969 834 paddr += BGE_JLEN;
984263bc 835 }
20c9a969 836 return 0;
984263bc
MD
837}
838
839static void
33c39a69 840bge_free_jumbo_mem(struct bge_softc *sc)
984263bc 841{
20c9a969
SZ
842 /* Destroy jumbo RX ring. */
843 bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
844 sc->bge_cdata.bge_rx_jumbo_ring_map,
845 sc->bge_ldata.bge_rx_jumbo_ring);
846
847 /* Destroy jumbo buffer block. */
848 bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
849 sc->bge_cdata.bge_jumbo_map,
850 sc->bge_ldata.bge_jumbo_buf);
984263bc
MD
851}
852
853/*
854 * Allocate a jumbo buffer.
855 */
2aa9b12f 856static struct bge_jslot *
33c39a69 857bge_jalloc(struct bge_softc *sc)
984263bc 858{
2aa9b12f 859 struct bge_jslot *entry;
33c39a69 860
16dca0df 861 lwkt_serialize_enter(&sc->bge_jslot_serializer);
984263bc 862 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
16dca0df
MD
863 if (entry) {
864 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
865 entry->bge_inuse = 1;
866 } else {
c6fd6f3b 867 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
984263bc 868 }
16dca0df 869 lwkt_serialize_exit(&sc->bge_jslot_serializer);
2aa9b12f 870 return(entry);
984263bc
MD
871}
872
873/*
874 * Adjust usage count on a jumbo buffer.
875 */
876static void
2aa9b12f 877bge_jref(void *arg)
984263bc 878{
2aa9b12f
JS
879 struct bge_jslot *entry = (struct bge_jslot *)arg;
880 struct bge_softc *sc = entry->bge_sc;
984263bc
MD
881
882 if (sc == NULL)
883 panic("bge_jref: can't find softc pointer!");
884
16dca0df 885 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
984263bc
MD
886 panic("bge_jref: asked to reference buffer "
887 "that we don't manage!");
16dca0df 888 } else if (entry->bge_inuse == 0) {
984263bc 889 panic("bge_jref: buffer already free!");
16dca0df
MD
890 } else {
891 atomic_add_int(&entry->bge_inuse, 1);
892 }
984263bc
MD
893}
894
895/*
896 * Release a jumbo buffer.
897 */
898static void
2aa9b12f 899bge_jfree(void *arg)
984263bc 900{
2aa9b12f
JS
901 struct bge_jslot *entry = (struct bge_jslot *)arg;
902 struct bge_softc *sc = entry->bge_sc;
984263bc
MD
903
904 if (sc == NULL)
905 panic("bge_jfree: can't find softc pointer!");
906
16dca0df 907 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
984263bc 908 panic("bge_jfree: asked to free buffer that we don't manage!");
16dca0df 909 } else if (entry->bge_inuse == 0) {
984263bc 910 panic("bge_jfree: buffer already free!");
16dca0df
MD
911 } else {
912 /*
913 * Possible MP race to 0, use the serializer. The atomic insn
914 * is still needed for races against bge_jref().
915 */
916 lwkt_serialize_enter(&sc->bge_jslot_serializer);
917 atomic_subtract_int(&entry->bge_inuse, 1);
918 if (entry->bge_inuse == 0) {
919 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
920 entry, jslot_link);
921 }
922 lwkt_serialize_exit(&sc->bge_jslot_serializer);
923 }
984263bc
MD
924}
925
926
927/*
928 * Intialize a standard receive ring descriptor.
929 */
930static int
1436f9a0 931bge_newbuf_std(struct bge_softc *sc, int i, int init)
984263bc 932{
33c39a69 933 struct mbuf *m_new = NULL;
20c9a969 934 bus_dma_segment_t seg;
1436f9a0 935 bus_dmamap_t map;
2de621e9 936 int error, nsegs;
984263bc 937
1436f9a0
SZ
938 m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
939 if (m_new == NULL)
940 return ENOBUFS;
20c9a969 941 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
984263bc 942
0ecb11d7 943 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
984263bc 944 m_adj(m_new, ETHER_ALIGN);
20c9a969 945
2de621e9
SZ
946 error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
947 sc->bge_cdata.bge_rx_tmpmap, m_new,
948 &seg, 1, &nsegs, BUS_DMA_NOWAIT);
949 if (error) {
1436f9a0 950 m_freem(m_new);
2de621e9 951 return error;
20c9a969
SZ
952 }
953
1436f9a0
SZ
954 if (!init) {
955 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
956 sc->bge_cdata.bge_rx_std_dmamap[i],
957 BUS_DMASYNC_POSTREAD);
958 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
959 sc->bge_cdata.bge_rx_std_dmamap[i]);
960 }
20c9a969 961
1436f9a0
SZ
962 map = sc->bge_cdata.bge_rx_tmpmap;
963 sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
964 sc->bge_cdata.bge_rx_std_dmamap[i] = map;
965
966 sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
2de621e9 967 sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1436f9a0
SZ
968
969 bge_setup_rxdesc_std(sc, i);
20c9a969 970 return 0;
984263bc
MD
971}
972
1436f9a0
SZ
973static void
974bge_setup_rxdesc_std(struct bge_softc *sc, int i)
975{
976 struct bge_rxchain *rc;
977 struct bge_rx_bd *r;
978
979 rc = &sc->bge_cdata.bge_rx_std_chain[i];
980 r = &sc->bge_ldata.bge_rx_std_ring[i];
981
982 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
983 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
984 r->bge_len = rc->bge_mbuf->m_len;
985 r->bge_idx = i;
986 r->bge_flags = BGE_RXBDFLAG_END;
987}
988
984263bc
MD
989/*
990 * Initialize a jumbo receive ring descriptor. This allocates
991 * a jumbo buffer from the pool managed internally by the driver.
992 */
993static int
1436f9a0 994bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
984263bc
MD
995{
996 struct mbuf *m_new = NULL;
20c9a969 997 struct bge_jslot *buf;
20c9a969 998 bus_addr_t paddr;
984263bc 999
1436f9a0
SZ
1000 /* Allocate the mbuf. */
1001 MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1002 if (m_new == NULL)
1003 return ENOBUFS;
2aa9b12f 1004
1436f9a0
SZ
1005 /* Allocate the jumbo buffer */
1006 buf = bge_jalloc(sc);
1007 if (buf == NULL) {
1008 m_freem(m_new);
1009 return ENOBUFS;
984263bc 1010 }
1436f9a0
SZ
1011
1012 /* Attach the buffer to the mbuf. */
1013 m_new->m_ext.ext_arg = buf;
1014 m_new->m_ext.ext_buf = buf->bge_buf;
1015 m_new->m_ext.ext_free = bge_jfree;
1016 m_new->m_ext.ext_ref = bge_jref;
1017 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1018
1019 m_new->m_flags |= M_EXT;
1020
20c9a969
SZ
1021 m_new->m_data = m_new->m_ext.ext_buf;
1022 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
984263bc 1023
20c9a969 1024 paddr = buf->bge_paddr;
0ecb11d7 1025 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
984263bc 1026 m_adj(m_new, ETHER_ALIGN);
20c9a969
SZ
1027 paddr += ETHER_ALIGN;
1028 }
1029
1436f9a0
SZ
1030 /* Save necessary information */
1031 sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1032 sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1033
984263bc 1034 /* Set up the descriptor. */
1436f9a0
SZ
1035 bge_setup_rxdesc_jumbo(sc, i);
1036 return 0;
1037}
1038
1039static void
1040bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1041{
1042 struct bge_rx_bd *r;
1043 struct bge_rxchain *rc;
20c9a969
SZ
1044
1045 r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1436f9a0 1046 rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
984263bc 1047
1436f9a0
SZ
1048 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1049 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1050 r->bge_len = rc->bge_mbuf->m_len;
1051 r->bge_idx = i;
1052 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
984263bc
MD
1053}
1054
984263bc 1055static int
33c39a69 1056bge_init_rx_ring_std(struct bge_softc *sc)
984263bc 1057{
1436f9a0 1058 int i, error;
984263bc 1059
1436f9a0
SZ
1060 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1061 error = bge_newbuf_std(sc, i, 1);
1062 if (error)
1063 return error;
984263bc
MD
1064 };
1065
1436f9a0 1066 sc->bge_std = BGE_STD_RX_RING_CNT - 1;
591dfc77 1067 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
984263bc
MD
1068
1069 return(0);
1070}
1071
1072static void
33c39a69 1073bge_free_rx_ring_std(struct bge_softc *sc)
984263bc
MD
1074{
1075 int i;
1076
1077 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1436f9a0
SZ
1078 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1079
1080 if (rc->bge_mbuf != NULL) {
ddca511d 1081 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
20c9a969 1082 sc->bge_cdata.bge_rx_std_dmamap[i]);
1436f9a0
SZ
1083 m_freem(rc->bge_mbuf);
1084 rc->bge_mbuf = NULL;
984263bc 1085 }
20c9a969 1086 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
984263bc
MD
1087 sizeof(struct bge_rx_bd));
1088 }
984263bc
MD
1089}
1090
1091static int
33c39a69 1092bge_init_rx_ring_jumbo(struct bge_softc *sc)
984263bc 1093{
984263bc 1094 struct bge_rcb *rcb;
1436f9a0 1095 int i, error;
984263bc
MD
1096
1097 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1436f9a0
SZ
1098 error = bge_newbuf_jumbo(sc, i, 1);
1099 if (error)
1100 return error;
984263bc
MD
1101 };
1102
1436f9a0 1103 sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
984263bc 1104
20c9a969 1105 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
984263bc
MD
1106 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1107 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1108
591dfc77 1109 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
984263bc
MD
1110
1111 return(0);
1112}
1113
1114static void
33c39a69 1115bge_free_rx_ring_jumbo(struct bge_softc *sc)
984263bc
MD
1116{
1117 int i;
1118
1119 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1436f9a0
SZ
1120 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1121
1122 if (rc->bge_mbuf != NULL) {
1123 m_freem(rc->bge_mbuf);
1124 rc->bge_mbuf = NULL;
984263bc 1125 }
20c9a969 1126 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
984263bc
MD
1127 sizeof(struct bge_rx_bd));
1128 }
984263bc
MD
1129}
1130
1131static void
33c39a69 1132bge_free_tx_ring(struct bge_softc *sc)
984263bc
MD
1133{
1134 int i;
1135
984263bc
MD
1136 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1137 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
ddca511d 1138 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
20c9a969 1139 sc->bge_cdata.bge_tx_dmamap[i]);
984263bc
MD
1140 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1141 sc->bge_cdata.bge_tx_chain[i] = NULL;
1142 }
20c9a969 1143 bzero(&sc->bge_ldata.bge_tx_ring[i],
984263bc
MD
1144 sizeof(struct bge_tx_bd));
1145 }
984263bc
MD
1146}
1147
1148static int
33c39a69 1149bge_init_tx_ring(struct bge_softc *sc)
984263bc
MD
1150{
1151 sc->bge_txcnt = 0;
1152 sc->bge_tx_saved_considx = 0;
94db8384
SZ
1153 sc->bge_tx_prodidx = 0;
1154
1155 /* Initialize transmit producer index for host-memory send ring. */
591dfc77 1156 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
984263bc 1157
984263bc
MD
1158 /* 5700 b2 errata */
1159 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
591dfc77 1160 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
984263bc 1161
591dfc77 1162 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
984263bc
MD
1163 /* 5700 b2 errata */
1164 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
591dfc77 1165 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
984263bc
MD
1166
1167 return(0);
1168}
1169
984263bc 1170static void
33c39a69 1171bge_setmulti(struct bge_softc *sc)
984263bc
MD
1172{
1173 struct ifnet *ifp;
1174 struct ifmultiaddr *ifma;
33c39a69 1175 uint32_t hashes[4] = { 0, 0, 0, 0 };
984263bc
MD
1176 int h, i;
1177
1178 ifp = &sc->arpcom.ac_if;
1179
1180 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1181 for (i = 0; i < 4; i++)
1182 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1183 return;
1184 }
1185
1186 /* First, zot all the existing filters. */
1187 for (i = 0; i < 4; i++)
1188 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1189
1190 /* Now program new ones. */
441d34b2 1191 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
984263bc
MD
1192 if (ifma->ifma_addr->sa_family != AF_LINK)
1193 continue;
3b4ec5b8
JS
1194 h = ether_crc32_le(
1195 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1196 ETHER_ADDR_LEN) & 0x7f;
984263bc
MD
1197 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1198 }
1199
1200 for (i = 0; i < 4; i++)
1201 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
984263bc
MD
1202}
1203
1204/*
1205 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1206 * self-test results.
1207 */
1208static int
33c39a69 1209bge_chipinit(struct bge_softc *sc)
984263bc 1210{
33c39a69
JS
1211 int i;
1212 uint32_t dma_rw_ctl;
984263bc 1213
20c9a969
SZ
1214 /* Set endian type before we access any non-PCI registers. */
1215 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
984263bc 1216
984263bc
MD
1217 /* Clear the MAC control register */
1218 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1219
1220 /*
1221 * Clear the MAC statistics block in the NIC's
1222 * internal memory.
1223 */
1224 for (i = BGE_STATS_BLOCK;
33c39a69 1225 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
984263bc
MD
1226 BGE_MEMWIN_WRITE(sc, i, 0);
1227
1228 for (i = BGE_STATUS_BLOCK;
33c39a69 1229 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
984263bc
MD
1230 BGE_MEMWIN_WRITE(sc, i, 0);
1231
1232 /* Set up the PCI DMA control register. */
0ecb11d7 1233 if (sc->bge_flags & BGE_FLAG_PCIE) {
9a6ee7e2
JS
1234 /* PCI Express */
1235 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1236 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1237 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
0ecb11d7 1238 } else if (sc->bge_flags & BGE_FLAG_PCIX) {
984263bc 1239 /* PCI-X bus */
0ecb11d7
SZ
1240 if (BGE_IS_5714_FAMILY(sc)) {
1241 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1242 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1243 /* XXX magic values, Broadcom-supplied Linux driver */
1244 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1245 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1246 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1247 } else {
1248 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1249 }
1250 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1251 /*
1252 * The 5704 uses a different encoding of read/write
1253 * watermarks.
1254 */
984263bc
MD
1255 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1256 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1257 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
0ecb11d7 1258 } else {
984263bc
MD
1259 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1260 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1261 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1262 (0x0F);
0ecb11d7 1263 }
984263bc
MD
1264
1265 /*
1266 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1267 * for hardware bugs.
1268 */
1269 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1270 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
33c39a69 1271 uint32_t tmp;
984263bc
MD
1272
1273 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1274 if (tmp == 0x6 || tmp == 0x7)
1275 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1276 }
0ecb11d7
SZ
1277 } else {
1278 /* Conventional PCI bus */
1279 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1280 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1281 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1282 (0x0F);
984263bc
MD
1283 }
1284
1285 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
7e40b8c5 1286 sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
0ecb11d7 1287 sc->bge_asicrev == BGE_ASICREV_BCM5705)
984263bc
MD
1288 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1289 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1290
1291 /*
1292 * Set up general mode register.
1293 */
20c9a969 1294 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
984263bc 1295 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
bf29e666 1296 BGE_MODECTL_TX_NO_PHDR_CSUM);
984263bc
MD
1297
1298 /*
1299 * Disable memory write invalidate. Apparently it is not supported
1300 * properly by these devices.
1301 */
1302 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1303
984263bc
MD
1304 /* Set the timer prescaler (always 66Mhz) */
1305 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1306
591dfc77
SZ
1307 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1308 DELAY(40); /* XXX */
1309
1310 /* Put PHY into ready state */
1311 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1312 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1313 DELAY(40);
1314 }
1315
984263bc
MD
1316 return(0);
1317}
1318
1319static int
33c39a69 1320bge_blockinit(struct bge_softc *sc)
984263bc
MD
1321{
1322 struct bge_rcb *rcb;
20c9a969
SZ
1323 bus_size_t vrcb;
1324 bge_hostaddr taddr;
0ecb11d7 1325 uint32_t val;
984263bc
MD
1326 int i;
1327
1328 /*
1329 * Initialize the memory window pointer register so that
1330 * we can access the first 32K of internal NIC RAM. This will
1331 * allow us to set up the TX send ring RCBs and the RX return
1332 * ring RCBs, plus other things which live in NIC memory.
1333 */
1334 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1335
7e40b8c5
HP
1336 /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1337
0ecb11d7 1338 if (!BGE_IS_5705_PLUS(sc)) {
7e40b8c5 1339 /* Configure mbuf memory pool */
0ecb11d7
SZ
1340 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1341 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1343 else
1344 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
984263bc 1345
7e40b8c5
HP
1346 /* Configure DMA resource pool */
1347 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1348 BGE_DMA_DESCRIPTORS);
1349 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1350 }
984263bc
MD
1351
1352 /* Configure mbuf pool watermarks */
591dfc77 1353 if (!BGE_IS_5705_PLUS(sc)) {
7e40b8c5
HP
1354 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1355 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
591dfc77
SZ
1356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1357 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1358 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1360 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1361 } else {
1362 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1363 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
7e40b8c5 1365 }
984263bc
MD
1366
1367 /* Configure DMA resource watermarks */
1368 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1369 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1370
1371 /* Enable buffer manager */
0ecb11d7 1372 if (!BGE_IS_5705_PLUS(sc)) {
7e40b8c5
HP
1373 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1374 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
984263bc 1375
7e40b8c5
HP
1376 /* Poll for buffer manager start indication */
1377 for (i = 0; i < BGE_TIMEOUT; i++) {
1378 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1379 break;
1380 DELAY(10);
1381 }
984263bc 1382
7e40b8c5 1383 if (i == BGE_TIMEOUT) {
c6fd6f3b
JS
1384 if_printf(&sc->arpcom.ac_if,
1385 "buffer manager failed to start\n");
7e40b8c5
HP
1386 return(ENXIO);
1387 }
984263bc
MD
1388 }
1389
1390 /* Enable flow-through queues */
1391 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1392 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1393
1394 /* Wait until queue initialization is complete */
1395 for (i = 0; i < BGE_TIMEOUT; i++) {
1396 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1397 break;
1398 DELAY(10);
1399 }
1400
1401 if (i == BGE_TIMEOUT) {
c6fd6f3b
JS
1402 if_printf(&sc->arpcom.ac_if,
1403 "flow-through queue init failed\n");
984263bc
MD
1404 return(ENXIO);
1405 }
1406
1407 /* Initialize the standard RX ring control block */
20c9a969
SZ
1408 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1409 rcb->bge_hostaddr.bge_addr_lo =
1410 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1411 rcb->bge_hostaddr.bge_addr_hi =
1412 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
0ecb11d7 1413 if (BGE_IS_5705_PLUS(sc))
7e40b8c5
HP
1414 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1415 else
1416 rcb->bge_maxlen_flags =
1417 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
0ecb11d7 1418 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
984263bc
MD
1419 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1420 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1421 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1422 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1423
1424 /*
1425 * Initialize the jumbo RX ring control block
1426 * We set the 'ring disabled' bit in the flags
1427 * field until we're actually ready to start
1428 * using this ring (i.e. once we set the MTU
1429 * high enough to require it).
1430 */
0ecb11d7 1431 if (BGE_IS_JUMBO_CAPABLE(sc)) {
20c9a969
SZ
1432 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1433
1434 rcb->bge_hostaddr.bge_addr_lo =
1435 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1436 rcb->bge_hostaddr.bge_addr_hi =
1437 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
7e40b8c5
HP
1438 rcb->bge_maxlen_flags =
1439 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1440 BGE_RCB_FLAG_RING_DISABLED);
0ecb11d7 1441 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
7e40b8c5
HP
1442 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1443 rcb->bge_hostaddr.bge_addr_hi);
1444 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1445 rcb->bge_hostaddr.bge_addr_lo);
1446 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1447 rcb->bge_maxlen_flags);
1448 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1449
1450 /* Set up dummy disabled mini ring RCB */
20c9a969 1451 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
7e40b8c5
HP
1452 rcb->bge_maxlen_flags =
1453 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1454 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1455 rcb->bge_maxlen_flags);
1456 }
984263bc
MD
1457
1458 /*
1459 * Set the BD ring replentish thresholds. The recommended
1460 * values are 1/8th the number of descriptors allocated to
1461 * each ring.
1462 */
0ecb11d7
SZ
1463 if (BGE_IS_5705_PLUS(sc))
1464 val = 8;
1465 else
1466 val = BGE_STD_RX_RING_CNT / 8;
1467 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
984263bc
MD
1468 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1469
1470 /*
1471 * Disable all unused send rings by setting the 'ring disabled'
1472 * bit in the flags field of all the TX send ring control blocks.
1473 * These are located in NIC memory.
1474 */
20c9a969 1475 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
984263bc 1476 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
20c9a969
SZ
1477 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1478 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1479 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1480 vrcb += sizeof(struct bge_rcb);
984263bc
MD
1481 }
1482
1483 /* Configure TX RCB 0 (we use only the first ring) */
20c9a969
SZ
1484 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1485 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1486 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1487 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1488 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1489 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
0ecb11d7 1490 if (!BGE_IS_5705_PLUS(sc)) {
20c9a969
SZ
1491 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1492 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1493 }
984263bc
MD
1494
1495 /* Disable all unused RX return rings */
20c9a969 1496 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
984263bc 1497 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
20c9a969
SZ
1498 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1499 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1500 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
7e40b8c5 1501 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
20c9a969
SZ
1502 BGE_RCB_FLAG_RING_DISABLED));
1503 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
591dfc77 1504 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
33c39a69 1505 (i * (sizeof(uint64_t))), 0);
20c9a969 1506 vrcb += sizeof(struct bge_rcb);
984263bc
MD
1507 }
1508
1509 /* Initialize RX ring indexes */
591dfc77
SZ
1510 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1511 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1512 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
984263bc
MD
1513
1514 /*
1515 * Set up RX return ring 0
1516 * Note that the NIC address for RX return rings is 0x00000000.
1517 * The return rings live entirely within the host, so the
1518 * nicaddr field in the RCB isn't used.
1519 */
20c9a969
SZ
1520 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1521 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1522 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1523 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1524 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1525 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1526 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
984263bc
MD
1527
1528 /* Set random backoff seed for TX */
1529 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1530 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1531 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1532 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1533 BGE_TX_BACKOFF_SEED_MASK);
1534
1535 /* Set inter-packet gap */
1536 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1537
1538 /*
1539 * Specify which ring to use for packets that don't match
1540 * any RX rules.
1541 */
1542 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1543
1544 /*
1545 * Configure number of RX lists. One interrupt distribution
1546 * list, sixteen active lists, one bad frames class.
1547 */
1548 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1549
1550 /* Inialize RX list placement stats mask. */
1551 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1552 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1553
1554 /* Disable host coalescing until we get it set up */
1555 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1556
1557 /* Poll to make sure it's shut down. */
1558 for (i = 0; i < BGE_TIMEOUT; i++) {
1559 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1560 break;
1561 DELAY(10);
1562 }
1563
1564 if (i == BGE_TIMEOUT) {
c6fd6f3b
JS
1565 if_printf(&sc->arpcom.ac_if,
1566 "host coalescing engine failed to idle\n");
984263bc
MD
1567 return(ENXIO);
1568 }
1569
1570 /* Set up host coalescing defaults */
1571 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1572 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1573 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1574 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
0ecb11d7 1575 if (!BGE_IS_5705_PLUS(sc)) {
7e40b8c5
HP
1576 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1577 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1578 }
ba39cc82
SZ
1579 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1580 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
984263bc
MD
1581
1582 /* Set up address of statistics block */
0ecb11d7 1583 if (!BGE_IS_5705_PLUS(sc)) {
20c9a969
SZ
1584 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1585 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
7e40b8c5 1586 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
20c9a969 1587 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
7e40b8c5
HP
1588
1589 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1590 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1591 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1592 }
984263bc
MD
1593
1594 /* Set up address of status block */
20c9a969
SZ
1595 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1596 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
984263bc 1597 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
20c9a969
SZ
1598 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1599 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1600 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
984263bc
MD
1601
1602 /* Turn on host coalescing state machine */
1603 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1604
1605 /* Turn on RX BD completion state machine and enable attentions */
1606 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1607 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1608
1609 /* Turn on RX list placement state machine */
1610 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1611
1612 /* Turn on RX list selector state machine. */
0ecb11d7 1613 if (!BGE_IS_5705_PLUS(sc))
7e40b8c5 1614 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
984263bc
MD
1615
1616 /* Turn on DMA, clear stats */
1617 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1618 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1619 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1620 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
0ecb11d7
SZ
1621 ((sc->bge_flags & BGE_FLAG_TBI) ?
1622 BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
984263bc
MD
1623
1624 /* Set misc. local control, enable interrupts on attentions */
1625 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1626
1627#ifdef notdef
1628 /* Assert GPIO pins for PHY reset */
1629 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1630 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1631 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1632 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1633#endif
1634
1635 /* Turn on DMA completion state machine */
0ecb11d7 1636 if (!BGE_IS_5705_PLUS(sc))
7e40b8c5 1637 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
984263bc
MD
1638
1639 /* Turn on write DMA state machine */
0ecb11d7 1640 val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
f47afe1a 1641 if (BGE_IS_5755_PLUS(sc))
0ecb11d7
SZ
1642 val |= (1 << 29); /* Enable host coalescing bug fix. */
1643 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
671bd7ed
SZ
1644 DELAY(40);
1645
984263bc 1646 /* Turn on read DMA state machine */
671bd7ed 1647 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
f47afe1a
MN
1648 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1649 sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1650 sc->bge_asicrev == BGE_ASICREV_BCM57780)
1651 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1652 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1653 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
671bd7ed
SZ
1654 if (sc->bge_flags & BGE_FLAG_PCIE)
1655 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1656 CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1657 DELAY(40);
984263bc
MD
1658
1659 /* Turn on RX data completion state machine */
1660 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1661
1662 /* Turn on RX BD initiator state machine */
1663 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1664
1665 /* Turn on RX data and RX BD initiator state machine */
1666 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1667
1668 /* Turn on Mbuf cluster free state machine */
0ecb11d7 1669 if (!BGE_IS_5705_PLUS(sc))
7e40b8c5 1670 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
984263bc
MD
1671
1672 /* Turn on send BD completion state machine */
1673 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1674
1675 /* Turn on send data completion state machine */
f47afe1a
MN
1676 val = BGE_SDCMODE_ENABLE;
1677 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1678 val |= BGE_SDCMODE_CDELAY;
1679 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
984263bc
MD
1680
1681 /* Turn on send data initiator state machine */
1682 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1683
1684 /* Turn on send BD initiator state machine */
1685 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1686
1687 /* Turn on send BD selector state machine */
1688 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1689
1690 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1691 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1692 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1693
1694 /* ack/clear link change events */
1695 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
7e40b8c5
HP
1696 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1697 BGE_MACSTAT_LINK_CHANGED);
20c9a969 1698 CSR_WRITE_4(sc, BGE_MI_STS, 0);
984263bc
MD
1699
1700 /* Enable PHY auto polling (for MII/GMII only) */
0ecb11d7 1701 if (sc->bge_flags & BGE_FLAG_TBI) {
984263bc
MD
1702 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1703 } else {
1704 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
db861466
SZ
1705 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1706 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
984263bc
MD
1707 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1708 BGE_EVTENB_MI_INTERRUPT);
db861466 1709 }
984263bc
MD
1710 }
1711
db861466
SZ
1712 /*
1713 * Clear any pending link state attention.
1714 * Otherwise some link state change events may be lost until attention
1715 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1716 * It's not necessary on newer BCM chips - perhaps enabling link
1717 * state change attentions implies clearing pending attention.
1718 */
1719 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1720 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1721 BGE_MACSTAT_LINK_CHANGED);
1722
984263bc
MD
1723 /* Enable link state change attentions. */
1724 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1725
1726 return(0);
1727}
1728
1729/*
1730 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1731 * against our list and return its name if we find a match. Note
1732 * that since the Broadcom controller contains VPD support, we
1733 * can get the device name string from the controller itself instead
1734 * of the compiled-in string. This is a little slow, but it guarantees
1735 * we'll always announce the right product name.
1736 */
1737static int
33c39a69 1738bge_probe(device_t dev)
984263bc 1739{
d265721a 1740 const struct bge_type *t;
33c39a69
JS
1741 uint16_t product, vendor;
1742
1743 product = pci_get_device(dev);
1744 vendor = pci_get_vendor(dev);
1745
1746 for (t = bge_devs; t->bge_name != NULL; t++) {
1747 if (vendor == t->bge_vid && product == t->bge_did)
1748 break;
1749 }
33c39a69
JS
1750 if (t->bge_name == NULL)
1751 return(ENXIO);
984263bc 1752
d265721a
SZ
1753 device_set_desc(dev, t->bge_name);
1754 if (pci_get_subvendor(dev) == PCI_VENDOR_DELL) {
1755 struct bge_softc *sc = device_get_softc(dev);
0ecb11d7 1756 sc->bge_flags |= BGE_FLAG_NO_3LED;
d265721a 1757 }
33c39a69 1758 return(0);
984263bc
MD
1759}
1760
1761static int
33c39a69 1762bge_attach(device_t dev)
984263bc 1763{
984263bc
MD
1764 struct ifnet *ifp;
1765 struct bge_softc *sc;
33c39a69 1766 uint32_t hwcfg = 0;
c6fd6f3b 1767 int error = 0, rid;
0a8b5977 1768 uint8_t ether_addr[ETHER_ADDR_LEN];
984263bc 1769
984263bc 1770 sc = device_get_softc(dev);
984263bc 1771 sc->bge_dev = dev;
263489fb 1772 callout_init(&sc->bge_stat_timer);
16dca0df 1773 lwkt_serialize_init(&sc->bge_jslot_serializer);
984263bc 1774
591dfc77
SZ
1775#ifndef BURN_BRIDGES
1776 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1777 uint32_t irq, mem;
1778
1779 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1780 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1781
1782 device_printf(dev, "chip is in D%d power mode "
1783 "-- setting to D0\n", pci_get_powerstate(dev));
1784
1785 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1786
1787 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1788 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1789 }
1790#endif /* !BURN_BRIDGE */
1791
984263bc
MD
1792 /*
1793 * Map control/status registers.
1794 */
cc8ddf9e 1795 pci_enable_busmaster(dev);
984263bc
MD
1796
1797 rid = BGE_PCI_BAR0;
cc8ddf9e
JS
1798 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1799 RF_ACTIVE);
984263bc
MD
1800
1801 if (sc->bge_res == NULL) {
c6fd6f3b 1802 device_printf(dev, "couldn't map memory\n");
baf731bb 1803 return ENXIO;
984263bc
MD
1804 }
1805
1806 sc->bge_btag = rman_get_bustag(sc->bge_res);
1807 sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
984263bc 1808
d265721a 1809 /* Save various chip information */
9a6ee7e2 1810 sc->bge_chipid =
f47afe1a
MN
1811 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1812 BGE_PCIMISCCTL_ASICREV_SHIFT;
1813 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
1814 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
9a6ee7e2
JS
1815 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1816 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1817
0ecb11d7
SZ
1818 /* Save chipset family. */
1819 switch (sc->bge_asicrev) {
f47afe1a
MN
1820 case BGE_ASICREV_BCM5755:
1821 case BGE_ASICREV_BCM5761:
1822 case BGE_ASICREV_BCM5784:
1823 case BGE_ASICREV_BCM5785:
1824 case BGE_ASICREV_BCM5787:
1825 case BGE_ASICREV_BCM57780:
1826 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
1827 BGE_FLAG_5705_PLUS;
1828 break;
1829
0ecb11d7
SZ
1830 case BGE_ASICREV_BCM5700:
1831 case BGE_ASICREV_BCM5701:
1832 case BGE_ASICREV_BCM5703:
1833 case BGE_ASICREV_BCM5704:
1834 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1835 break;
1836
1837 case BGE_ASICREV_BCM5714_A0:
1838 case BGE_ASICREV_BCM5780:
1839 case BGE_ASICREV_BCM5714:
1840 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1841 /* Fall through */
1842
1843 case BGE_ASICREV_BCM5750:
1844 case BGE_ASICREV_BCM5752:
591dfc77 1845 case BGE_ASICREV_BCM5906:
0ecb11d7
SZ
1846 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1847 /* Fall through */
1848
1849 case BGE_ASICREV_BCM5705:
1850 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1851 break;
1852 }
9a6ee7e2 1853
591dfc77
SZ
1854 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
1855 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
1856
9a6ee7e2 1857 /*
0ecb11d7 1858 * Set various quirk flags.
9a6ee7e2 1859 */
9a6ee7e2 1860
0ecb11d7
SZ
1861 sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1862 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1863 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1864 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1865 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1866 sc->bge_asicrev == BGE_ASICREV_BCM5906)
1867 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1868
1869 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1870 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1871 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1872
1873 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1874 sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1875 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1876
1877 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1878 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1879
f47afe1a
MN
1880 if (BGE_IS_5705_PLUS(sc) &&
1881 !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
0ecb11d7 1882 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
f47afe1a
MN
1883 sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1884 sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
0ecb11d7 1885 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
f47afe1a
MN
1886 if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
1887 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
0ecb11d7
SZ
1888 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1889 sc->bge_flags |= BGE_FLAG_BER_BUG;
9a6ee7e2
JS
1890 }
1891 }
1892
0ecb11d7
SZ
1893 /* Allocate interrupt */
1894 rid = 0;
1895
1896 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1897 RF_SHAREABLE | RF_ACTIVE);
1898
1899 if (sc->bge_irq == NULL) {
1900 device_printf(dev, "couldn't map interrupt\n");
1901 error = ENXIO;
1902 goto fail;
1903 }
1904
1905 /*
1906 * Check if this is a PCI-X or PCI Express device.
1907 */
1908 if (BGE_IS_5705_PLUS(sc)) {
32159cc2 1909 if (pci_is_pcie(dev)) {
0ecb11d7 1910 sc->bge_flags |= BGE_FLAG_PCIE;
01c9014b 1911 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
671bd7ed 1912 }
0ecb11d7
SZ
1913 } else {
1914 /*
1915 * Check if the device is in PCI-X Mode.
1916 * (This bit is not valid on PCI Express controllers.)
1917 */
1918 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1919 BGE_PCISTATE_PCI_BUSMODE) == 0)
1920 sc->bge_flags |= BGE_FLAG_PCIX;
1921 }
1922
d265721a
SZ
1923 device_printf(dev, "CHIP ID 0x%08x; "
1924 "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
1925 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
1926 (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
1927 : ((sc->bge_flags & BGE_FLAG_PCIE) ?
1928 "PCI-E" : "PCI"));
b197e64e 1929
c6fd6f3b
JS
1930 ifp = &sc->arpcom.ac_if;
1931 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
984263bc
MD
1932
1933 /* Try to reset the chip. */
1934 bge_reset(sc);
1935
1936 if (bge_chipinit(sc)) {
c6fd6f3b 1937 device_printf(dev, "chip initialization failed\n");
984263bc
MD
1938 error = ENXIO;
1939 goto fail;
1940 }
1941
1942 /*
591dfc77 1943 * Get station address
984263bc 1944 */
591dfc77
SZ
1945 error = bge_get_eaddr(sc, ether_addr);
1946 if (error) {
c6fd6f3b 1947 device_printf(dev, "failed to read station address\n");
984263bc
MD
1948 goto fail;
1949 }
1950
20c9a969 1951 /* 5705/5750 limits RX return ring to 512 entries. */
0ecb11d7 1952 if (BGE_IS_5705_PLUS(sc))
20c9a969
SZ
1953 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1954 else
1955 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
984263bc 1956
20c9a969
SZ
1957 error = bge_dma_alloc(sc);
1958 if (error)
984263bc 1959 goto fail;
984263bc
MD
1960
1961 /* Set default tuneable values. */
1962 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
055d06f0
SZ
1963 sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1964 sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1965 sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1966 sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
984263bc
MD
1967
1968 /* Set up ifnet structure */
984263bc 1969 ifp->if_softc = sc;
984263bc
MD
1970 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1971 ifp->if_ioctl = bge_ioctl;
984263bc 1972 ifp->if_start = bge_start;
315fe0ee
MD
1973#ifdef DEVICE_POLLING
1974 ifp->if_poll = bge_poll;
1975#endif
984263bc
MD
1976 ifp->if_watchdog = bge_watchdog;
1977 ifp->if_init = bge_init;
1978 ifp->if_mtu = ETHERMTU;
cb623c48 1979 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
936ff230
JS
1980 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1981 ifq_set_ready(&ifp->if_snd);
cb623c48
SZ
1982
1983 /*
1984 * 5700 B0 chips do not support checksumming correctly due
1985 * to hardware bugs.
1986 */
1987 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1988 ifp->if_capabilities |= IFCAP_HWCSUM;
1989 ifp->if_hwassist = BGE_CSUM_FEATURES;
1990 }
984263bc
MD
1991 ifp->if_capenable = ifp->if_capabilities;
1992
984263bc
MD
1993 /*
1994 * Figure out what sort of media we have by checking the
1995 * hardware config word in the first 32k of NIC internal memory,
1996 * or fall back to examining the EEPROM if necessary.
1997 * Note: on some BCM5700 cards, this value appears to be unset.
1998 * If that's the case, we have to rely on identifying the NIC
1999 * by its PCI subsystem ID, as we do below for the SysKonnect
2000 * SK-9D41.
2001 */
2002 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2003 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2004 else {
7b47d9c2
SZ
2005 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2006 sizeof(hwcfg))) {
2007 device_printf(dev, "failed to read EEPROM\n");
2008 error = ENXIO;
2009 goto fail;
2010 }
984263bc
MD
2011 hwcfg = ntohl(hwcfg);
2012 }
2013
2014 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
0ecb11d7 2015 sc->bge_flags |= BGE_FLAG_TBI;
984263bc
MD
2016
2017 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
cc8ddf9e 2018 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
0ecb11d7 2019 sc->bge_flags |= BGE_FLAG_TBI;
984263bc 2020
0ecb11d7 2021 if (sc->bge_flags & BGE_FLAG_TBI) {
984263bc
MD
2022 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2023 bge_ifmedia_upd, bge_ifmedia_sts);
2024 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2025 ifmedia_add(&sc->bge_ifmedia,
2026 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2027 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2028 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
70059b3c 2029 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
984263bc
MD
2030 } else {
2031 /*
2032 * Do transceiver setup.
2033 */
2034 if (mii_phy_probe(dev, &sc->bge_miibus,
2035 bge_ifmedia_upd, bge_ifmedia_sts)) {
c6fd6f3b 2036 device_printf(dev, "MII without any PHY!\n");
984263bc
MD
2037 error = ENXIO;
2038 goto fail;
2039 }
2040 }
2041
2042 /*
2043 * When using the BCM5701 in PCI-X mode, data corruption has
2044 * been observed in the first few bytes of some received packets.
2045 * Aligning the packet buffer in memory eliminates the corruption.
2046 * Unfortunately, this misaligns the packet payloads. On platforms
2047 * which do not support unaligned accesses, we will realign the
2048 * payloads by copying the received packets.
2049 */
0ecb11d7
SZ
2050 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2051 (sc->bge_flags & BGE_FLAG_PCIX))
2052 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
984263bc 2053
db861466
SZ
2054 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2055 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2056 sc->bge_link_upd = bge_bcm5700_link_upd;
2057 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
0ecb11d7 2058 } else if (sc->bge_flags & BGE_FLAG_TBI) {
db861466
SZ
2059 sc->bge_link_upd = bge_tbi_link_upd;
2060 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2061 } else {
2062 sc->bge_link_upd = bge_copper_link_upd;
2063 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2064 }
2065
984263bc 2066 /*
055d06f0
SZ
2067 * Create sysctl nodes.
2068 */
2069 sysctl_ctx_init(&sc->bge_sysctl_ctx);
2070 sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2071 SYSCTL_STATIC_CHILDREN(_hw),
2072 OID_AUTO,
2073 device_get_nameunit(dev),
2074 CTLFLAG_RD, 0, "");
2075 if (sc->bge_sysctl_tree == NULL) {
2076 device_printf(dev, "can't add sysctl node\n");
2077 error = ENXIO;
2078 goto fail;
2079 }
2080
2081 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2082 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2083 OID_AUTO, "rx_coal_ticks",
2084 CTLTYPE_INT | CTLFLAG_RW,
2085 sc, 0, bge_sysctl_rx_coal_ticks, "I",
2086 "Receive coalescing ticks (usec).");
2087 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2088 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2089 OID_AUTO, "tx_coal_ticks",
2090 CTLTYPE_INT | CTLFLAG_RW,
2091 sc, 0, bge_sysctl_tx_coal_ticks, "I",
2092 "Transmit coalescing ticks (usec).");
2093 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2094 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2095 OID_AUTO, "rx_max_coal_bds",
2096 CTLTYPE_INT | CTLFLAG_RW,
2097 sc, 0, bge_sysctl_rx_max_coal_bds, "I",
2098 "Receive max coalesced BD count.");
2099 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2100 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2101 OID_AUTO, "tx_max_coal_bds",
2102 CTLTYPE_INT | CTLFLAG_RW,
2103 sc, 0, bge_sysctl_tx_max_coal_bds, "I",
2104 "Transmit max coalesced BD count.");
2105
2106 /*
984263bc
MD
2107 * Call MI attach routine.
2108 */
78195a76 2109 ether_ifattach(ifp, ether_addr, NULL);
984263bc 2110
95893fe4 2111 error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE,
78195a76
MD
2112 bge_intr, sc, &sc->bge_intrhand,
2113 ifp->if_serializer);
9a717c15
JS
2114 if (error) {
2115 ether_ifdetach(ifp);
2116 device_printf(dev, "couldn't set up irq\n");
2117 goto fail;
2118 }
9db4b353 2119
28e81a28 2120 ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
9db4b353
SZ
2121 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2122
9a717c15 2123 return(0);
984263bc 2124fail:
9a717c15 2125 bge_detach(dev);
984263bc
MD
2126 return(error);
2127}
2128
2129static int
33c39a69 2130bge_detach(device_t dev)
984263bc 2131{
9a717c15 2132 struct bge_softc *sc = device_get_softc(dev);
984263bc 2133
9a717c15 2134 if (device_is_attached(dev)) {
baf731bb
SZ
2135 struct ifnet *ifp = &sc->arpcom.ac_if;
2136
cdf89432 2137 lwkt_serialize_enter(ifp->if_serializer);
9a717c15
JS
2138 bge_stop(sc);
2139 bge_reset(sc);
cdf89432
SZ
2140 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2141 lwkt_serialize_exit(ifp->if_serializer);
984263bc 2142
cdf89432
SZ
2143 ether_ifdetach(ifp);
2144 }
baf731bb 2145
0ecb11d7 2146 if (sc->bge_flags & BGE_FLAG_TBI)
984263bc 2147 ifmedia_removeall(&sc->bge_ifmedia);
cbf32d7e 2148 if (sc->bge_miibus)
984263bc 2149 device_delete_child(dev, sc->bge_miibus);
9a717c15 2150 bus_generic_detach(dev);
984263bc 2151
984263bc
MD
2152 if (sc->bge_irq != NULL)
2153 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
2154
2155 if (sc->bge_res != NULL)
2156 bus_release_resource(dev, SYS_RES_MEMORY,
2157 BGE_PCI_BAR0, sc->bge_res);
baf731bb 2158
055d06f0
SZ
2159 if (sc->bge_sysctl_tree != NULL)
2160 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2161
baf731bb
SZ
2162 bge_dma_free(sc);
2163
2164 return 0;
984263bc
MD
2165}
2166
2167static void
33c39a69 2168bge_reset(struct bge_softc *sc)
984263bc
MD
2169{
2170 device_t dev;
9a6ee7e2 2171 uint32_t cachesize, command, pcistate, reset;
0ecb11d7 2172 void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
984263bc
MD
2173 int i, val = 0;
2174
2175 dev = sc->bge_dev;
2176
591dfc77
SZ
2177 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2178 sc->bge_asicrev != BGE_ASICREV_BCM5906) {
0ecb11d7
SZ
2179 if (sc->bge_flags & BGE_FLAG_PCIE)
2180 write_op = bge_writemem_direct;
2181 else
2182 write_op = bge_writemem_ind;
2183 } else {
2184 write_op = bge_writereg_ind;
2185 }
2186
984263bc
MD
2187 /* Save some important PCI state. */
2188 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2189 command = pci_read_config(dev, BGE_PCI_CMD, 4);
2190 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2191
2192 pci_write_config(dev, BGE_PCI_MISC_CTL,
2193 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
20c9a969 2194 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
984263bc 2195
0ecb11d7
SZ
2196 /* Disable fastboot on controllers that support it. */
2197 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2198 sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2199 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2200 if (bootverbose)
2201 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2202 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2203 }
2204
2205 /*
2206 * Write the magic number to SRAM at offset 0xB50.
2207 * When firmware finishes its initialization it will
2208 * write ~BGE_MAGIC_NUMBER to the same location.
2209 */
2210 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2211
9a6ee7e2
JS
2212 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2213
2214 /* XXX: Broadcom Linux driver. */
0ecb11d7 2215 if (sc->bge_flags & BGE_FLAG_PCIE) {
9a6ee7e2
JS
2216 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */
2217 CSR_WRITE_4(sc, 0x7e2c, 0x20);
2218 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2219 /* Prevent PCIE link training during global reset */
2220 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2221 reset |= (1<<29);
2222 }
2223 }
2224
0ecb11d7
SZ
2225 /*
2226 * Set GPHY Power Down Override to leave GPHY
2227 * powered up in D0 uninitialized.
2228 */
2229 if (BGE_IS_5705_PLUS(sc))
2230 reset |= 0x04000000;
2231
984263bc 2232 /* Issue global reset */
0ecb11d7 2233 write_op(sc, BGE_MISC_CFG, reset);
984263bc 2234
591dfc77
SZ
2235 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2236 uint32_t status, ctrl;
2237
2238 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2239 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2240 status | BGE_VCPU_STATUS_DRV_RESET);
2241 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2242 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2243 ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2244 }
2245
984263bc
MD
2246 DELAY(1000);
2247
9a6ee7e2 2248 /* XXX: Broadcom Linux driver. */
0ecb11d7 2249 if (sc->bge_flags & BGE_FLAG_PCIE) {
9a6ee7e2
JS
2250 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2251 uint32_t v;
2252
2253 DELAY(500000); /* wait for link training to complete */
2254 v = pci_read_config(dev, 0xc4, 4);
2255 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2256 }
0ecb11d7
SZ
2257 /*
2258 * Set PCIE max payload size to 128 bytes and
2259 * clear error status.
2260 */
9a6ee7e2
JS
2261 pci_write_config(dev, 0xd8, 0xf5000, 4);
2262 }
2263
984263bc
MD
2264 /* Reset some of the PCI state that got zapped by reset */
2265 pci_write_config(dev, BGE_PCI_MISC_CTL,
2266 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
20c9a969 2267 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
984263bc
MD
2268 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2269 pci_write_config(dev, BGE_PCI_CMD, command, 4);
0ecb11d7 2270 write_op(sc, BGE_MISC_CFG, (65 << 1));
984263bc 2271
a313b56f 2272 /* Enable memory arbiter. */
0ecb11d7
SZ
2273 if (BGE_IS_5714_FAMILY(sc)) {
2274 uint32_t val;
2275
2276 val = CSR_READ_4(sc, BGE_MARB_MODE);
2277 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2278 } else {
a313b56f 2279 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
0ecb11d7 2280 }
a313b56f 2281
591dfc77
SZ
2282 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2283 for (i = 0; i < BGE_TIMEOUT; i++) {
2284 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2285 if (val & BGE_VCPU_STATUS_INIT_DONE)
2286 break;
2287 DELAY(100);
2288 }
2289 if (i == BGE_TIMEOUT) {
2290 if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2291 return;
2292 }
2293 } else {
2294 /*
2295 * Poll until we see the 1's complement of the magic number.
2296 * This indicates that the firmware initialization
2297 * is complete.
2298 */
d880f7b3 2299 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
591dfc77
SZ
2300 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2301 if (val == ~BGE_MAGIC_NUMBER)
2302 break;
2303 DELAY(10);
2304 }
d880f7b3 2305 if (i == BGE_FIRMWARE_TIMEOUT) {
591dfc77
SZ
2306 if_printf(&sc->arpcom.ac_if, "firmware handshake "
2307 "timed out, found 0x%08x\n", val);
2308 return;
2309 }
984263bc
MD
2310 }
2311
2312 /*
2313 * XXX Wait for the value of the PCISTATE register to
2314 * return to its original pre-reset state. This is a
2315 * fairly good indicator of reset completion. If we don't
2316 * wait for the reset to fully complete, trying to read
2317 * from the device's non-PCI registers may yield garbage
2318 * results.
2319 */
2320 for (i = 0; i < BGE_TIMEOUT; i++) {
2321 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2322 break;
2323 DELAY(10);
2324 }
2325
0ecb11d7
SZ
2326 if (sc->bge_flags & BGE_FLAG_PCIE) {
2327 reset = bge_readmem_ind(sc, 0x7c00);
2328 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2329 }
2330
984263bc 2331 /* Fix up byte swapping */
20c9a969 2332 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
984263bc
MD
2333 BGE_MODECTL_BYTESWAP_DATA);
2334
2335 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2336
70059b3c
JS
2337 /*
2338 * The 5704 in TBI mode apparently needs some special
2339 * adjustment to insure the SERDES drive level is set
2340 * to 1.2V.
2341 */
0ecb11d7
SZ
2342 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2343 (sc->bge_flags & BGE_FLAG_TBI)) {
70059b3c
JS
2344 uint32_t serdescfg;
2345
2346 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2347 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2348 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2349 }
2350
9a6ee7e2 2351 /* XXX: Broadcom Linux driver. */
0ecb11d7
SZ
2352 if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2353 sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
9a6ee7e2 2354 uint32_t v;
984263bc 2355
9a6ee7e2
JS
2356 v = CSR_READ_4(sc, 0x7c00);
2357 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2358 }
2359
2360 DELAY(10000);
984263bc
MD
2361}
2362
2363/*
2364 * Frame reception handling. This is called if there's a frame
2365 * on the receive return list.
2366 *
2367 * Note: we have to be able to handle two possibilities here:
2368 * 1) the frame is from the jumbo recieve ring
2369 * 2) the frame is from the standard receive ring
2370 */
2371
2372static void
33c39a69 2373bge_rxeof(struct bge_softc *sc)
984263bc
MD
2374{
2375 struct ifnet *ifp;
2376 int stdcnt = 0, jumbocnt = 0;
a7db2caa 2377 struct mbuf_chain chain[MAXCPU];
984263bc 2378
449e06cc 2379 if (sc->bge_rx_saved_considx ==
20c9a969 2380 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
449e06cc
SZ
2381 return;
2382
a7db2caa 2383 ether_input_chain_init(chain);
a7db2caa 2384
984263bc
MD
2385 ifp = &sc->arpcom.ac_if;
2386
20c9a969
SZ
2387 while (sc->bge_rx_saved_considx !=
2388 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
984263bc 2389 struct bge_rx_bd *cur_rx;
33c39a69 2390 uint32_t rxidx;
984263bc 2391 struct mbuf *m = NULL;
33c39a69 2392 uint16_t vlan_tag = 0;
984263bc
MD
2393 int have_tag = 0;
2394
2395 cur_rx =
20c9a969 2396 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
984263bc
MD
2397
2398 rxidx = cur_rx->bge_idx;
7e40b8c5 2399 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
6b880771 2400 logif(rx_pkt);
984263bc
MD
2401
2402 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2403 have_tag = 1;
2404 vlan_tag = cur_rx->bge_vlan_tag;
2405 }
2406
2407 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2408 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
984263bc 2409 jumbocnt++;
1436f9a0
SZ
2410
2411 if (rxidx != sc->bge_jumbo) {
2412 ifp->if_ierrors++;
2413 if_printf(ifp, "sw jumbo index(%d) "
2414 "and hw jumbo index(%d) mismatch, drop!\n",
2415 sc->bge_jumbo, rxidx);
2416 bge_setup_rxdesc_jumbo(sc, rxidx);
2417 continue;
2418 }
2419
2420 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
984263bc
MD
2421 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2422 ifp->if_ierrors++;
1436f9a0 2423 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
984263bc
MD
2424 continue;
2425 }
1436f9a0 2426 if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
984263bc 2427 ifp->if_ierrors++;
1436f9a0 2428 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
984263bc
MD
2429 continue;
2430 }
2431 } else {
2432 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
984263bc 2433 stdcnt++;
1436f9a0
SZ
2434
2435 if (rxidx != sc->bge_std) {
2436 ifp->if_ierrors++;
2437 if_printf(ifp, "sw std index(%d) "
2438 "and hw std index(%d) mismatch, drop!\n",
2439 sc->bge_std, rxidx);
2440 bge_setup_rxdesc_std(sc, rxidx);
2441 continue;
2442 }
2443
2444 m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
984263bc
MD
2445 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2446 ifp->if_ierrors++;
1436f9a0 2447 bge_setup_rxdesc_std(sc, sc->bge_std);
984263bc
MD
2448 continue;
2449 }
1436f9a0 2450 if (bge_newbuf_std(sc, sc->bge_std, 0)) {
984263bc 2451 ifp->if_ierrors++;
1436f9a0 2452 bge_setup_rxdesc_std(sc, sc->bge_std);
984263bc
MD
2453 continue;
2454 }
2455 }
2456
2457 ifp->if_ipackets++;
2458#ifndef __i386__
2459 /*
2460 * The i386 allows unaligned accesses, but for other
2461 * platforms we must make sure the payload is aligned.
2462 */
0ecb11d7 2463 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
984263bc
MD
2464 bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2465 cur_rx->bge_len);
2466 m->m_data += ETHER_ALIGN;
2467 }
2468#endif
160185fa 2469 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
984263bc
MD
2470 m->m_pkthdr.rcvif = ifp;
2471
cb623c48
SZ
2472 if (ifp->if_capenable & IFCAP_RXCSUM) {
2473 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2474 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2475 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2476 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2477 }
17240569 2478 if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
cb623c48 2479 m->m_pkthdr.len >= BGE_MIN_FRAME) {
984263bc 2480 m->m_pkthdr.csum_data =
17240569 2481 cur_rx->bge_tcp_udp_csum;
bf29e666
SZ
2482 m->m_pkthdr.csum_flags |=
2483 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
984263bc
MD
2484 }
2485 }
984263bc
MD
2486
2487 /*
2488 * If we received a packet with a vlan tag, pass it
2489 * to vlan_input() instead of ether_input().
2490 */
2491 if (have_tag) {
e6b5847c
SZ
2492 m->m_flags |= M_VLANTAG;
2493 m->m_pkthdr.ether_vlantag = vlan_tag;
984263bc 2494 have_tag = vlan_tag = 0;
984263bc 2495 }
2eb0d069 2496 ether_input_chain(ifp, m, NULL, chain);
984263bc
MD
2497 }
2498
a7db2caa 2499 ether_input_dispatch(chain);
a7db2caa 2500
591dfc77 2501 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
984263bc 2502 if (stdcnt)
591dfc77 2503 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
984263bc 2504 if (jumbocnt)
591dfc77 2505 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
984263bc
MD
2506}
2507
2508static void
33c39a69 2509bge_txeof(struct bge_softc *sc)
984263bc
MD
2510{
2511 struct bge_tx_bd *cur_tx = NULL;
2512 struct ifnet *ifp;
2513
449e06cc 2514 if (sc->bge_tx_saved_considx ==
20c9a969 2515 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
449e06cc
SZ
2516 return;
2517
984263bc
MD
2518 ifp = &sc->arpcom.ac_if;
2519
2520 /*
2521 * Go through our tx ring and free mbufs for those
2522 * frames that have been sent.
2523 */
2524 while (sc->bge_tx_saved_considx !=
20c9a969
SZ
2525 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2526 uint32_t idx = 0;
984263bc
MD
2527
2528 idx = sc->bge_tx_saved_considx;
20c9a969 2529 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
984263bc
MD
2530 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2531 ifp->if_opackets++;
2532 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
ddca511d 2533 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
20c9a969 2534 sc->bge_cdata.bge_tx_dmamap[idx]);
984263bc
MD
2535 m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2536 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2537 }
2538 sc->bge_txcnt--;
2539 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
6b880771 2540 logif(tx_pkt);
984263bc
MD
2541 }
2542
20c9a969
SZ
2543 if (cur_tx != NULL &&
2544 (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2545 (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
984263bc 2546 ifp->if_flags &= ~IFF_OACTIVE;
20c9a969 2547
142ca760
SZ
2548 if (sc->bge_txcnt == 0)
2549 ifp->if_timer = 0;
2550
20c9a969 2551 if (!ifq_is_empty(&ifp->if_snd))
9db4b353 2552 if_devstart(ifp);
984263bc
MD
2553}
2554
315fe0ee
MD
2555#ifdef DEVICE_POLLING
2556
2557static void
2558bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2559{
2560 struct bge_softc *sc = ifp->if_softc;
2561 uint32_t status;
2562
2563 switch(cmd) {
2564 case POLL_REGISTER:
ba39cc82 2565 bge_disable_intr(sc);
315fe0ee
MD
2566 break;
2567 case POLL_DEREGISTER:
ba39cc82 2568 bge_enable_intr(sc);
315fe0ee
MD
2569 break;
2570 case POLL_AND_CHECK_STATUS:
315fe0ee
MD
2571 /*
2572 * Process link state changes.
2573 */
2574 status = CSR_READ_4(sc, BGE_MAC_STS);
2575 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2576 sc->bge_link_evt = 0;
2577 sc->bge_link_upd(sc, status);
2578 }
2579 /* fall through */
2580 case POLL_ONLY:
2581 if (ifp->if_flags & IFF_RUNNING) {
2582 bge_rxeof(sc);
2583 bge_txeof(sc);
2584 }
2585 break;
2586 }
2587}
2588
2589#endif
2590
984263bc 2591static void
33c39a69 2592bge_intr(void *xsc)
984263bc 2593{
bf522c7f 2594 struct bge_softc *sc = xsc;
33c39a69 2595 struct ifnet *ifp = &sc->arpcom.ac_if;
6b880771
SZ
2596 uint32_t status;
2597
2598 logif(intr);
0029ccf6 2599
142ca760
SZ
2600 /*
2601 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
2602 * disable interrupts by writing nonzero like we used to, since with
2603 * our current organization this just gives complications and
2604 * pessimizations for re-enabling interrupts. We used to have races
2605 * instead of the necessary complications. Disabling interrupts
2606 * would just reduce the chance of a status update while we are
2607 * running (by switching to the interrupt-mode coalescence
2608 * parameters), but this chance is already very low so it is more
2609 * efficient to get another interrupt than prevent it.
2610 *
2611 * We do the ack first to ensure another interrupt if there is a
2612 * status update after the ack. We don't check for the status
2613 * changing later because it is more efficient to get another
2614 * interrupt than prevent it, not quite as above (not checking is
2615 * a smaller optimization than not toggling the interrupt enable,
2616 * since checking doesn't involve PCI accesses and toggling require
2617 * the status check). So toggling would probably be a pessimization
2618 * even with MSI. It would only be needed for using a task queue.
2619 */
591dfc77 2620 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
142ca760 2621
984263bc
MD
2622 /*
2623 * Process link state changes.
984263bc 2624 */
db861466
SZ
2625 status = CSR_READ_4(sc, BGE_MAC_STS);
2626 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2627 sc->bge_link_evt = 0;
2628 sc->bge_link_upd(sc, status);
984263bc
MD
2629 }
2630
2631 if (ifp->if_flags & IFF_RUNNING) {
2632 /* Check RX return ring producer/consumer */
2633 bge_rxeof(sc);
2634
2635 /* Check TX ring producer/consumer */
2636 bge_txeof(sc);
2637 }
055d06f0
SZ
2638
2639 if (sc->bge_coal_chg)
2640 bge_coal_change(sc);
984263bc
MD
2641}
2642
2643static void
33c39a69 2644bge_tick(void *xsc)
984263bc 2645{
33c39a69
JS
2646 struct bge_softc *sc = xsc;
2647 struct ifnet *ifp = &sc->arpcom.ac_if;
78195a76
MD
2648
2649 lwkt_serialize_enter(ifp->if_serializer);
984263bc 2650
0ecb11d7 2651 if (BGE_IS_5705_PLUS(sc))
7e40b8c5
HP
2652 bge_stats_update_regs(sc);
2653 else
2654 bge_stats_update(sc);
9a717c15 2655
0ecb11d7 2656 if (sc->bge_flags & BGE_FLAG_TBI) {
db861466
SZ
2657 /*
2658 * Since in TBI mode auto-polling can't be used we should poll
2659 * link status manually. Here we register pending link event
2660 * and trigger interrupt.
2661 */
2662 sc->bge_link_evt++;
2663 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3f82ed83 2664 } else if (!sc->bge_link) {
db861466 2665 mii_tick(device_get_softc(sc->bge_miibus));
984263bc
MD
2666 }
2667
db861466
SZ
2668 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2669
2670 lwkt_serialize_exit(ifp->if_serializer);
984263bc
MD
2671}
2672
2673static void
33c39a69 2674bge_stats_update_regs(struct bge_softc *sc)
7e40b8c5 2675{
33c39a69 2676 struct ifnet *ifp = &sc->arpcom.ac_if;
7e40b8c5 2677 struct bge_mac_stats_regs stats;
33c39a69 2678 uint32_t *s;
7e40b8c5
HP
2679 int i;
2680
33c39a69 2681 s = (uint32_t *)&stats;
7e40b8c5
HP
2682 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2683 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2684 s++;
2685 }
2686
2687 ifp->if_collisions +=
2688 (stats.dot3StatsSingleCollisionFrames +
2689 stats.dot3StatsMultipleCollisionFrames +
2690 stats.dot3StatsExcessiveCollisions +
2691 stats.dot3StatsLateCollisions) -
2692 ifp->if_collisions;
7e40b8c5
HP
2693}
2694
2695static void
33c39a69 2696bge_stats_update(struct bge_softc *sc)
984263bc 2697{
33c39a69 2698 struct ifnet *ifp = &sc->arpcom.ac_if;
20c9a969
SZ
2699 bus_size_t stats;
2700
2701 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
984263bc 2702
20c9a969
SZ
2703#define READ_STAT(sc, stats, stat) \
2704 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
984263bc
MD
2705
2706 ifp->if_collisions +=
20c9a969
SZ
2707 (READ_STAT(sc, stats,
2708 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2709 READ_STAT(sc, stats,
2710 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2711 READ_STAT(sc, stats,
2712 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2713 READ_STAT(sc, stats,
2714 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
984263bc
MD
2715 ifp->if_collisions;
2716
20c9a969
SZ
2717#undef READ_STAT
2718
984263bc
MD
2719#ifdef notdef
2720 ifp->if_collisions +=
2721 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2722 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2723 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2724 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2725 ifp->if_collisions;
2726#endif
984263bc
MD
2727}
2728
2729/*
2730 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2731 * pointers to descriptors.
2732 */
2733static int
4a607ed6 2734bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
984263bc 2735{
20c9a969 2736 struct bge_tx_bd *d = NULL;
33c39a69 2737 uint16_t csum_flags = 0;
20c9a969
SZ
2738 bus_dma_segment_t segs[BGE_NSEG_NEW];
2739 bus_dmamap_t map;
2de621e9 2740 int error, maxsegs, nsegs, idx, i;
4a607ed6 2741 struct mbuf *m_head = *m_head0;
984263bc 2742
984263bc
MD
2743 if (m_head->m_pkthdr.csum_flags) {
2744 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2745 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2746 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2747 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2748 if (m_head->m_flags & M_LASTFRAG)
2749 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2750 else if (m_head->m_flags & M_FRAG)
2751 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2752 }
20c9a969
SZ
2753
2754 idx = *txidx;
2755 map = sc->bge_cdata.bge_tx_dmamap[idx];
2756
2757 maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2758 KASSERT(maxsegs >= BGE_NSEG_SPARE,
2759 ("not enough segments %d\n", maxsegs));
2760
2761 if (maxsegs > BGE_NSEG_NEW)
2762 maxsegs = BGE_NSEG_NEW;
2763
cb623c48
SZ
2764 /*
2765 * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2766 * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2767 * but when such padded frames employ the bge IP/TCP checksum
2768 * offload, the hardware checksum assist gives incorrect results
2769 * (possibly from incorporating its own padding into the UDP/TCP
2770 * checksum; who knows). If we pad such runts with zeros, the
2679514c 2771 * onboard checksum comes out correct.
cb623c48
SZ
2772 */
2773 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2774 m_head->m_pkthdr.len < BGE_MIN_FRAME) {
cf12ba3c 2775 error = m_devpad(m_head, BGE_MIN_FRAME);
2679514c
SZ
2776 if (error)
2777 goto back;
cb623c48 2778 }
2679514c 2779
2de621e9
SZ
2780 error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
2781 m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2782 if (error)
20c9a969 2783 goto back;
984263bc 2784
2de621e9 2785 m_head = *m_head0;
ddca511d 2786 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
984263bc 2787
20c9a969
SZ
2788 for (i = 0; ; i++) {
2789 d = &sc->bge_ldata.bge_tx_ring[idx];
984263bc 2790
2de621e9
SZ
2791 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
2792 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
20c9a969
SZ
2793 d->bge_len = segs[i].ds_len;
2794 d->bge_flags = csum_flags;
984263bc 2795
2de621e9 2796 if (i == nsegs - 1)
20c9a969
SZ
2797 break;
2798 BGE_INC(idx, BGE_TX_RING_CNT);
2799 }
2800 /* Mark the last segment as end of packet... */
2801 d->bge_flags |= BGE_TXBDFLAG_END;
984263bc 2802
20c9a969
SZ
2803 /* Set vlan tag to the first segment of the packet. */
2804 d = &sc->bge_ldata.bge_tx_ring[*txidx];
83790f85 2805 if (m_head->m_flags & M_VLANTAG) {
20c9a969 2806 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
83790f85 2807 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
20c9a969
SZ
2808 } else {
2809 d->bge_vlan_tag = 0;
2810 }
2811
2812 /*
2813 * Insure that the map for this transmission is placed at
2814 * the array index of the last descriptor in this chain.
2815 */
2816 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2817 sc->bge_cdata.bge_tx_dmamap[idx] = map;
2818 sc->bge_cdata.bge_tx_chain[idx] = m_head;
2de621e9 2819 sc->bge_txcnt += nsegs;
20c9a969
SZ
2820
2821 BGE_INC(idx, BGE_TX_RING_CNT);
2822 *txidx = idx;
2823back:
4a607ed6 2824 if (error) {
2de621e9 2825 m_freem(*m_head0);
4a607ed6
SZ
2826 *m_head0 = NULL;
2827 }
20c9a969 2828 return error;
984263bc
MD
2829}
2830
2831/*
2832 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2833 * to the mbuf data regions directly in the transmit descriptors.
2834 */
2835static void
33c39a69 2836bge_start(struct ifnet *ifp)
984263bc 2837{
20c9a969 2838 struct bge_softc *sc = ifp->if_softc;
984263bc 2839 struct mbuf *m_head = NULL;
20c9a969 2840 uint32_t prodidx;
2f54d1d2 2841 int need_trans;
984263bc 2842
d47d96f2 2843 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
984263bc
MD
2844 return;
2845
94db8384 2846 prodidx = sc->bge_tx_prodidx;
984263bc 2847
2f54d1d2 2848 need_trans = 0;
75544bcd 2849 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
9db4b353 2850 m_head = ifq_dequeue(&ifp->if_snd, NULL);
984263bc
MD
2851 if (m_head == NULL)
2852 break;
2853
2854 /*
2855 * XXX
cb623c48
SZ
2856 * The code inside the if() block is never reached since we
2857 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2858 * requests to checksum TCP/UDP in a fragmented packet.
2859 *
2860 * XXX
984263bc
MD
2861 * safety overkill. If this is a fragmented packet chain
2862 * with delayed TCP/UDP checksums, then only encapsulate
2863 * it if we have enough descriptors to handle the entire
2864 * chain at once.
2865 * (paranoia -- may not actually be needed)
2866 */
9db4b353
SZ
2867 if ((m_head->m_flags & M_FIRSTFRAG) &&
2868 (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
984263bc 2869 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
9db4b353 2870 m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
984263bc 2871 ifp->if_flags |= IFF_OACTIVE;
9db4b353 2872 ifq_prepend(&ifp->if_snd, m_head);
984263bc
MD
2873 break;
2874 }
2875 }
2876
2877 /*
20c9a969
SZ
2878 * Sanity check: avoid coming within BGE_NSEG_RSVD
2879 * descriptors of the end of the ring. Also make
2880 * sure there are BGE_NSEG_SPARE descriptors for
2881 * jumbo buffers' defragmentation.
2882 */
2883 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2884 (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2885 ifp->if_flags |= IFF_OACTIVE;
9db4b353 2886 ifq_prepend(&ifp->if_snd, m_head);
20c9a969
SZ
2887 break;
2888 }
2889
2890 /*
984263bc
MD
2891 * Pack the data into the transmit ring. If we
2892 * don't have room, set the OACTIVE flag and wait
2893 * for the NIC to drain the ring.
2894 */
4a607ed6 2895 if (bge_encap(sc, &m_head, &prodidx)) {
984263bc 2896 ifp->if_flags |= IFF_OACTIVE;
2679514c 2897 ifp->if_oerrors++;
984263bc
MD
2898 break;
2899 }
2f54d1d2 2900 need_trans = 1;
984263bc 2901
b637f170 2902 ETHER_BPF_MTAP(ifp, m_head);
984263bc
MD
2903 }
2904
2f54d1d2
SZ
2905 if (!need_trans)
2906 return;
2907
984263bc 2908 /* Transmit */
591dfc77 2909 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
984263bc
MD
2910 /* 5700 b2 errata */
2911 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
591dfc77 2912 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
984263bc 2913
94db8384
SZ
2914 sc->bge_tx_prodidx = prodidx;
2915
984263bc
MD
2916 /*
2917 * Set a timeout in case the chip goes out to lunch.
2918 */
2919 ifp->if_timer = 5;
984263bc
MD
2920}
2921
2922static void
33c39a69 2923bge_init(void *xsc)
984263bc
MD
2924{
2925 struct bge_softc *sc = xsc;
33c39a69
JS
2926 struct ifnet *ifp = &sc->arpcom.ac_if;
2927 uint16_t *m;
984263bc 2928
aa65409c
SZ
2929 ASSERT_SERIALIZED(ifp->if_serializer);
2930
2931 if (ifp->if_flags & IFF_RUNNING)
984263bc 2932 return;
984263bc
MD
2933
2934 /* Cancel pending I/O and flush buffers. */
2935 bge_stop(sc);
2936 bge_reset(sc);
2937 bge_chipinit(sc);
2938
2939 /*
2940 * Init the various state machines, ring
2941 * control blocks and firmware.
2942 */
2943 if (bge_blockinit(sc)) {
c6fd6f3b 2944 if_printf(ifp, "initialization failure\n");
1436f9a0 2945 bge_stop(sc);
984263bc
MD
2946 return;
2947 }
2948
984263bc
MD
2949 /* Specify MTU. */
2950 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
011c0f93 2951 ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
984263bc
MD
2952
2953 /* Load our MAC address. */
33c39a69 2954 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
984263bc
MD
2955 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2956 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2957
2958 /* Enable or disable promiscuous mode as needed. */
6439b28a 2959 bge_setpromisc(sc);
984263bc
MD
2960
2961 /* Program multicast filter. */
2962 bge_setmulti(sc);
2963
2964 /* Init RX ring. */
1436f9a0
SZ
2965 if (bge_init_rx_ring_std(sc)) {
2966 if_printf(ifp, "RX ring initialization failed\n");
2967 bge_stop(sc);
2968 return;
2969 }
984263bc 2970
7e40b8c5
HP
2971 /*
2972 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2973 * memory to insure that the chip has in fact read the first
2974 * entry of the ring.
2975 */
2976 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
33c39a69 2977 uint32_t v, i;
7e40b8c5
HP
2978 for (i = 0; i < 10; i++) {
2979 DELAY(20);
2980 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2981 if (v == (MCLBYTES - ETHER_ALIGN))
2982 break;
2983 }
2984 if (i == 10)
c6fd6f3b 2985 if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
7e40b8c5
HP
2986 }
2987
984263bc 2988 /* Init jumbo RX ring. */
1436f9a0
SZ
2989 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
2990 if (bge_init_rx_ring_jumbo(sc)) {
2991 if_printf(ifp, "Jumbo RX ring initialization failed\n");
2992 bge_stop(sc);
2993 return;
2994 }
2995 }
984263bc
MD
2996
2997 /* Init our RX return ring index */
2998 sc->bge_rx_saved_considx = 0;
2999
3000 /* Init TX ring. */
3001 bge_init_tx_ring(sc);
3002
3003 /* Turn on transmitter */
3004 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3005
3006 /* Turn on receiver */
3007 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3008
3009 /* Tell firmware we're alive. */
3010 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3011
ba39cc82 3012 /* Enable host interrupts if polling(4) is not enabled. */
984263bc 3013 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
315fe0ee 3014#ifdef DEVICE_POLLING
ba39cc82
SZ
3015 if (ifp->if_flags & IFF_POLLING)
3016 bge_disable_intr(sc);
3017 else
315fe0ee 3018#endif
ba39cc82 3019 bge_enable_intr(sc);
984263bc
MD
3020
3021 bge_ifmedia_upd(ifp);
3022
3023 ifp->if_flags |= IFF_RUNNING;
3024 ifp->if_flags &= ~IFF_OACTIVE;
3025
263489fb 3026 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
984263bc
MD
3027}
3028
3029/*
3030 * Set media options.
3031 */
3032static int
33c39a69 3033bge_ifmedia_upd(struct ifnet *ifp)
984263bc 3034{
33c39a69 3035 struct bge_softc *sc = ifp->if_softc;
984263bc
MD
3036
3037 /* If this is a 1000baseX NIC, enable the TBI port. */
0ecb11d7 3038 if (sc->bge_flags & BGE_FLAG_TBI) {
db861466
SZ
3039 struct ifmedia *ifm = &sc->bge_ifmedia;
3040
984263bc
MD
3041 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3042 return(EINVAL);
db861466 3043
984263bc
MD
3044 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3045 case IFM_AUTO:
70059b3c
JS
3046 /*
3047 * The BCM5704 ASIC appears to have a special
3048 * mechanism for programming the autoneg
3049 * advertisement registers in TBI mode.
3050 */
5c56d5d8
SZ
3051 if (!bge_fake_autoneg &&
3052 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
70059b3c
JS
3053 uint32_t sgdig;
3054
3055 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3056 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3057 sgdig |= BGE_SGDIGCFG_AUTO |
3058 BGE_SGDIGCFG_PAUSE_CAP |
3059 BGE_SGDIGCFG_ASYM_PAUSE;
3060 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3061 sgdig | BGE_SGDIGCFG_SEND);
3062 DELAY(5);
3063 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3064 }
984263bc
MD
3065 break;
3066 case IFM_1000_SX:
3067 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3068 BGE_CLRBIT(sc, BGE_MAC_MODE,
3069 BGE_MACMODE_HALF_DUPLEX);
3070 } else {
3071 BGE_SETBIT(sc, BGE_MAC_MODE,
3072 BGE_MACMODE_HALF_DUPLEX);
3073 }
3074 break;
3075 default:
3076 return(EINVAL);
3077 }
db861466
SZ
3078 } else {
3079 struct mii_data *mii = device_get_softc(sc->bge_miibus);
984263bc 3080
db861466 3081 sc->bge_link_evt++;
3f82ed83 3082 sc->bge_link = 0;
db861466
SZ
3083 if (mii->mii_instance) {
3084 struct mii_softc *miisc;
984263bc 3085
db861466
SZ
3086 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3087 mii_phy_reset(miisc);
3088 }
3089 mii_mediachg(mii);
3090 }
984263bc
MD
3091 return(0);
3092}
3093
3094/*
3095 * Report current media status.
3096 */
3097static void
33c39a69 3098bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
984263bc 3099{
33c39a69 3100 struct bge_softc *sc = ifp->if_softc;
984263bc 3101
0ecb11d7 3102 if (sc->bge_flags & BGE_FLAG_TBI) {
984263bc
MD
3103 ifmr->ifm_status = IFM_AVALID;
3104 ifmr->ifm_active = IFM_ETHER;
3105 if (CSR_READ_4(sc, BGE_MAC_STS) &
db861466 3106 BGE_MACSTAT_TBI_PCS_SYNCHED) {
984263bc 3107 ifmr->ifm_status |= IFM_ACTIVE;
db861466
SZ
3108 } else {
3109 ifmr->ifm_active |= IFM_NONE;
3110 return;
3111 }
3112
984263bc
MD
3113 ifmr->ifm_active |= IFM_1000_SX;
3114 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3115 ifmr->ifm_active |= IFM_HDX;
3116 else
3117 ifmr->ifm_active |= IFM_FDX;
db861466
SZ
3118 } else {
3119 struct mii_data *mii = device_get_softc(sc->bge_miibus);
984263bc 3120
db861466
SZ
3121 mii_pollstat(mii);
3122 ifmr->ifm_active = mii->mii_media_active;
3123 ifmr->ifm_status = mii->mii_media_status;
3124 }
984263bc
MD
3125}
3126
3127static int
33c39a69 3128bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
984263bc
MD
3129{
3130 struct bge_softc *sc = ifp->if_softc;
98dabdac 3131 struct ifreq *ifr = (struct ifreq *)data;
9a717c15 3132 int mask, error = 0;
984263bc 3133
aa65409c
SZ
3134 ASSERT_SERIALIZED(ifp->if_serializer);
3135
98dabdac 3136 switch (command) {
984263bc 3137 case SIOCSIFMTU:
0ecb11d7
SZ
3138 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3139 (BGE_IS_JUMBO_CAPABLE(sc) &&
3140 ifr->ifr_mtu > BGE_JUMBO_MTU)) {
984263bc 3141 error = EINVAL;
0ecb11d7 3142 } else if (ifp->if_mtu != ifr->ifr_mtu) {
984263bc
MD
3143 ifp->if_mtu = ifr->ifr_mtu;
3144 ifp->if_flags &= ~IFF_RUNNING;
3145 bge_init(sc);
3146 }
3147 break;
3148 case SIOCSIFFLAGS:
3149 if (ifp->if_flags & IFF_UP) {
6439b28a 3150 if (ifp->if_flags & IFF_RUNNING) {
98dabdac 3151 mask = ifp->if_flags ^ sc->bge_if_flags;
6439b28a
SZ
3152
3153 /*
3154 * If only the state of the PROMISC flag
3155 * changed, then just use the 'set promisc
3156 * mode' command instead of reinitializing
3157 * the entire NIC. Doing a full re-init
3158 * means reloading the firmware and waiting
3159 * for it to start up, which may take a
3160 * second or two. Similarly for ALLMULTI.
3161 */
98dabdac 3162 if (mask & IFF_PROMISC)
6439b28a 3163 bge_setpromisc(sc);
98dabdac 3164 if (mask & IFF_ALLMULTI)
6439b28a
SZ
3165 bge_setmulti(sc);
3166 } else {
984263bc 3167 bge_init(sc);
6439b28a 3168 }
984263bc 3169 } else {
aa65409c 3170 if (ifp->if_flags & IFF_RUNNING)
984263bc 3171 bge_stop(sc);
984263bc
MD
3172 }
3173 sc->bge_if_flags = ifp->if_flags;
984263bc
MD
3174 break;
3175 case SIOCADDMULTI:
3176 case SIOCDELMULTI:
98dabdac 3177 if (ifp->if_flags & IFF_RUNNING)
984263bc 3178 bge_setmulti(sc);
984263bc
MD
3179 break;
3180 case SIOCSIFMEDIA:
3181 case SIOCGIFMEDIA:
0ecb11d7 3182 if (sc->bge_flags & BGE_FLAG_TBI) {
984263bc
MD
3183 error = ifmedia_ioctl(ifp, ifr,
3184 &sc->bge_ifmedia, command);
3185 } else {
98dabdac
SZ
3186 struct mii_data *mii;
3187
984263bc
MD
3188 mii = device_get_softc(sc->bge_miibus);
3189 error = ifmedia_ioctl(ifp, ifr,
98dabdac 3190 &mii->mii_media, command);
984263bc
MD
3191 }
3192 break;
3193 case SIOCSIFCAP:
3194 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3195 if (mask & IFCAP_HWCSUM) {
71e2c3e7 3196 ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
984263bc 3197 if (IFCAP_HWCSUM & ifp->if_capenable)
cb623c48 3198 ifp->if_hwassist = BGE_CSUM_FEATURES;
984263bc 3199 else
cb623c48 3200 ifp->if_hwassist = 0;
984263bc 3201 }
984263bc
MD
3202 break;
3203 default:
4cde4dd5 3204 error = ether_ioctl(ifp, command, data);
984263bc
MD
3205 break;
3206 }
98dabdac 3207 return error;
984263bc
MD
3208}
3209
3210static void
33c39a69 3211bge_watchdog(struct ifnet *ifp)
984263bc 3212{
33c39a69 3213 struct bge_softc *sc = ifp->if_softc;
984263bc 3214
c6fd6f3b 3215 if_printf(ifp, "watchdog timeout -- resetting\n");
984263bc
MD
3216
3217 ifp->if_flags &= ~IFF_RUNNING;
3218 bge_init(sc);
3219
3220 ifp->if_oerrors++;
2f54d1d2
SZ
3221
3222 if (!ifq_is_empty(&ifp->if_snd))
9db4b353 3223 if_devstart(ifp);
984263bc
MD
3224}
3225
3226/*
3227 * Stop the adapter and free any mbufs allocated to the
3228 * RX and TX lists.
3229 */
3230static void
33c39a69 3231bge_stop(struct bge_softc *sc)
984263bc 3232{
33c39a69 3233 struct ifnet *ifp = &sc->arpcom.ac_if;
984263bc
MD
3234 struct ifmedia_entry *ifm;
3235 struct mii_data *mii = NULL;
3236 int mtmp, itmp;
3237
aa65409c
SZ
3238 ASSERT_SERIALIZED(ifp->if_serializer);
3239
0ecb11d7 3240 if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
984263bc
MD
3241 mii = device_get_softc(sc->bge_miibus);
3242
263489fb 3243 callout_stop(&sc->bge_stat_timer);
984263bc
MD
3244
3245 /*
3246 * Disable all of the receiver blocks
3247 */
3248 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3249 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3250 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
0ecb11d7 3251 if (!BGE_IS_5705_PLUS(sc))
7e40b8c5 3252 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
984263bc
MD
3253 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3254 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3255 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3256
3257 /*
3258 * Disable all of the transmit blocks
3259 */
3260 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3261 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3262 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3263 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3264 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
0ecb11d7 3265 if (!BGE_IS_5705_PLUS(sc))
7e40b8c5 3266 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
984263bc
MD
3267 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3268
3269 /*
3270 * Shut down all of the memory managers and related
3271 * state machines.
3272 */
3273 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3274 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
0ecb11d7 3275 if (!BGE_IS_5705_PLUS(sc))
7e40b8c5 3276 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
984263bc
MD
3277 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3278 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
0ecb11d7 3279 if (!BGE_IS_5705_PLUS(sc)) {
7e40b8c5
HP
3280 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3281 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3282 }
984263bc
MD
3283
3284 /* Disable host interrupts. */
ba39cc82 3285 bge_disable_intr(sc);
984263bc
MD
3286
3287 /*
3288 * Tell firmware we're shutting down.
3289 */
3290 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3291
3292 /* Free the RX lists. */
3293 bge_free_rx_ring_std(sc);
3294
3295 /* Free jumbo RX list. */
0ecb11d7 3296 if (BGE_IS_JUMBO_CAPABLE(sc))
7e40b8c5 3297 bge_free_rx_ring_jumbo(sc);
984263bc
MD
3298
3299 /* Free TX buffers. */
3300 bge_free_tx_ring(sc);
3301