statclock: Fix intr% counting on heavily interrupted systems
[dragonfly.git] / sys / kern / kern_clock.c
CommitLineData
8c10bfcf
MD
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
984263bc
MD
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
c730be20 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
984263bc
MD
74 */
75
76#include "opt_ntp.h"
2b71c8f1 77#include "opt_polling.h"
b3a7093f 78#include "opt_ifpoll.h"
07522099 79#include "opt_pctrack.h"
984263bc
MD
80
81#include <sys/param.h>
82#include <sys/systm.h>
984263bc
MD
83#include <sys/callout.h>
84#include <sys/kernel.h>
f5d21610 85#include <sys/kinfo.h>
984263bc
MD
86#include <sys/proc.h>
87#include <sys/malloc.h>
d70eef28 88#include <sys/resource.h>
984263bc
MD
89#include <sys/resourcevar.h>
90#include <sys/signalvar.h>
91#include <sys/timex.h>
92#include <sys/timepps.h>
93#include <vm/vm.h>
94#include <sys/lock.h>
95#include <vm/pmap.h>
96#include <vm/vm_map.h>
5ffd1608 97#include <vm/vm_extern.h>
984263bc 98#include <sys/sysctl.h>
684a93c4 99
2689779e 100#include <sys/thread2.h>
984263bc
MD
101
102#include <machine/cpu.h>
103#include <machine/limits.h>
104#include <machine/smp.h>
d2412a2e
MD
105#include <machine/cpufunc.h>
106#include <machine/specialreg.h>
107#include <machine/clock.h>
984263bc
MD
108
109#ifdef GPROF
110#include <sys/gmon.h>
111#endif
112
113#ifdef DEVICE_POLLING
94ebffcd 114extern void init_device_poll_pcpu(int);
3e61f60e 115#endif
984263bc 116
b3a7093f
SZ
117#ifdef IFPOLL_ENABLE
118extern void ifpoll_init_pcpu(int);
119#endif
120
07522099
MD
121#ifdef DEBUG_PCTRACK
122static void do_pctrack(struct intrframe *frame, int which);
123#endif
124
402ed7e1 125static void initclocks (void *dummy);
ba39e2e0 126SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
984263bc 127
6ad39cae
MD
128/*
129 * Some of these don't belong here, but it's easiest to concentrate them.
9eea7f0c 130 * Note that cpu_time counts in microseconds, but most userland programs
6ad39cae
MD
131 * just compare relative times against the total by delta.
132 */
9eea7f0c 133struct kinfo_cputime cputime_percpu[MAXCPU];
07522099
MD
134#ifdef DEBUG_PCTRACK
135struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
136struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
137#endif
138
9eea7f0c
HP
139#ifdef SMP
140static int
141sysctl_cputime(SYSCTL_HANDLER_ARGS)
142{
143 int cpu, error = 0;
144 size_t size = sizeof(struct kinfo_cputime);
145
146 for (cpu = 0; cpu < ncpus; ++cpu) {
147 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
148 break;
149 }
984263bc 150
9eea7f0c
HP
151 return (error);
152}
153SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
154 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
155#else
156SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
157 "CPU time statistics");
158#endif
984263bc 159
06636a8e
AHJ
160static int
161sysctl_cp_time(SYSCTL_HANDLER_ARGS)
162{
163 long cpu_states[5] = {0};
164 int cpu, error = 0;
165 size_t size = sizeof(cpu_states);
166
167 for (cpu = 0; cpu < ncpus; ++cpu) {
d70eef28
SG
168 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
169 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
170 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
171 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
172 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
06636a8e
AHJ
173 }
174
175 error = SYSCTL_OUT(req, cpu_states, size);
176
177 return (error);
178}
179
180SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
181 sysctl_cp_time, "LU", "CPU time statistics");
182
88c4d2f6
MD
183/*
184 * boottime is used to calculate the 'real' uptime. Do not confuse this with
185 * microuptime(). microtime() is not drift compensated. The real uptime
60b2809b
MD
186 * with compensation is nanotime() - bootime. boottime is recalculated
187 * whenever the real time is set based on the compensated elapsed time
188 * in seconds (gd->gd_time_seconds).
88c4d2f6 189 *
88c4d2f6
MD
190 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
191 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
192 * the real time.
193 */
194struct timespec boottime; /* boot time (realtime) for reference only */
88c4d2f6 195time_t time_second; /* read-only 'passive' uptime in seconds */
984263bc 196
5eb5a6bc
MD
197/*
198 * basetime is used to calculate the compensated real time of day. The
199 * basetime can be modified on a per-tick basis by the adjtime(),
200 * ntp_adjtime(), and sysctl-based time correction APIs.
201 *
202 * Note that frequency corrections can also be made by adjusting
203 * gd_cpuclock_base.
204 *
205 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
206 * used on both SMP and UP systems to avoid MP races between cpu's and
207 * interrupt races on UP systems.
208 */
209#define BASETIME_ARYSIZE 16
210#define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
211static struct timespec basetime[BASETIME_ARYSIZE];
212static volatile int basetime_index;
213
214static int
215sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
216{
217 struct timespec *bt;
218 int error;
35238fa5 219 int index;
5eb5a6bc 220
35238fa5
MD
221 /*
222 * Because basetime data and index may be updated by another cpu,
223 * a load fence is required to ensure that the data we read has
224 * not been speculatively read relative to a possibly updated index.
225 */
226 index = basetime_index;
227 cpu_lfence();
228 bt = &basetime[index];
08f95c49 229 error = SYSCTL_OUT(req, bt, sizeof(*bt));
5eb5a6bc
MD
230 return (error);
231}
232
984263bc 233SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
08f95c49 234 &boottime, timespec, "System boottime");
5eb5a6bc 235SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
08f95c49 236 sysctl_get_basetime, "S,timespec", "System basetime");
984263bc 237
96d52ac8
SZ
238static void hardclock(systimer_t info, int, struct intrframe *frame);
239static void statclock(systimer_t info, int, struct intrframe *frame);
240static void schedclock(systimer_t info, int, struct intrframe *frame);
5eb5a6bc 241static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
88c4d2f6
MD
242
243int ticks; /* system master ticks at hz */
da3639ef 244int clocks_running; /* tsleep/timeout clocks operational */
88c4d2f6
MD
245int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
246int64_t nsec_acc; /* accumulator */
984263bc 247
4026c000
JS
248/* NTPD time correction fields */
249int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
250int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
251int64_t ntp_delta; /* one-time correction in nsec */
252int64_t ntp_big_delta = 1000000000;
253int32_t ntp_tick_delta; /* current adjustment rate */
254int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
48590578
JS
255time_t ntp_leap_second; /* time of next leap second */
256int ntp_leap_insert; /* whether to insert or remove a second */
4026c000 257
984263bc 258/*
88c4d2f6 259 * Finish initializing clock frequencies and start all clocks running.
984263bc 260 */
88c4d2f6
MD
261/* ARGSUSED*/
262static void
263initclocks(void *dummy)
984263bc 264{
88c4d2f6
MD
265 /*psratio = profhz / stathz;*/
266 initclocks_pcpu();
da3639ef 267 clocks_running = 1;
984263bc
MD
268}
269
88c4d2f6
MD
270/*
271 * Called on a per-cpu basis
272 */
273void
274initclocks_pcpu(void)
275{
276 struct globaldata *gd = mycpu;
984263bc 277
88c4d2f6
MD
278 crit_enter();
279 if (gd->gd_cpuid == 0) {
280 gd->gd_time_seconds = 1;
044ee7c4 281 gd->gd_cpuclock_base = sys_cputimer->count();
88c4d2f6
MD
282 } else {
283 /* XXX */
284 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
285 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
286 }
0d1dffdf 287
43adde98
SZ
288 systimer_intr_enable();
289
94ebffcd
SZ
290#ifdef DEVICE_POLLING
291 init_device_poll_pcpu(gd->gd_cpuid);
292#endif
293
b3a7093f
SZ
294#ifdef IFPOLL_ENABLE
295 ifpoll_init_pcpu(gd->gd_cpuid);
296#endif
297
0d1dffdf
MD
298 /*
299 * Use a non-queued periodic systimer to prevent multiple ticks from
300 * building up if the sysclock jumps forward (8254 gets reset). The
301 * sysclock will never jump backwards. Our time sync is based on
302 * the actual sysclock, not the ticks count.
303 */
304 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
305 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
88c4d2f6 306 /* XXX correct the frequency for scheduler / estcpu tests */
0d1dffdf 307 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
8478264a 308 NULL, ESTCPUFREQ);
88c4d2f6
MD
309 crit_exit();
310}
984263bc
MD
311
312/*
88c4d2f6
MD
313 * This sets the current real time of day. Timespecs are in seconds and
314 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
315 * instead we adjust basetime so basetime + gd_* results in the current
316 * time of day. This way the gd_* fields are guarenteed to represent
317 * a monotonically increasing 'uptime' value.
5eb5a6bc
MD
318 *
319 * When set_timeofday() is called from userland, the system call forces it
320 * onto cpu #0 since only cpu #0 can update basetime_index.
984263bc 321 */
88c4d2f6
MD
322void
323set_timeofday(struct timespec *ts)
324{
5eb5a6bc
MD
325 struct timespec *nbt;
326 int ni;
984263bc 327
88c4d2f6
MD
328 /*
329 * XXX SMP / non-atomic basetime updates
330 */
331 crit_enter();
5eb5a6bc
MD
332 ni = (basetime_index + 1) & BASETIME_ARYMASK;
333 nbt = &basetime[ni];
334 nanouptime(nbt);
335 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
336 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
337 if (nbt->tv_nsec < 0) {
338 nbt->tv_nsec += 1000000000;
339 --nbt->tv_sec;
88c4d2f6 340 }
a81931cc
MD
341
342 /*
343 * Note that basetime diverges from boottime as the clock drift is
344 * compensated for, so we cannot do away with boottime. When setting
345 * the absolute time of day the drift is 0 (for an instant) and we
346 * can simply assign boottime to basetime.
347 *
348 * Note that nanouptime() is based on gd_time_seconds which is drift
349 * compensated up to a point (it is guarenteed to remain monotonically
350 * increasing). gd_time_seconds is thus our best uptime guess and
351 * suitable for use in the boottime calculation. It is already taken
352 * into account in the basetime calculation above.
353 */
5eb5a6bc 354 boottime.tv_sec = nbt->tv_sec;
4026c000 355 ntp_delta = 0;
5eb5a6bc
MD
356
357 /*
35238fa5
MD
358 * We now have a new basetime, make sure all other cpus have it,
359 * then update the index.
5eb5a6bc 360 */
35238fa5 361 cpu_sfence();
5eb5a6bc
MD
362 basetime_index = ni;
363
88c4d2f6
MD
364 crit_exit();
365}
366
984263bc 367/*
88c4d2f6
MD
368 * Each cpu has its own hardclock, but we only increments ticks and softticks
369 * on cpu #0.
370 *
371 * NOTE! systimer! the MP lock might not be held here. We can only safely
372 * manipulate objects owned by the current cpu.
984263bc 373 */
984263bc 374static void
96d52ac8 375hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
984263bc 376{
88c4d2f6
MD
377 sysclock_t cputicks;
378 struct proc *p;
88c4d2f6 379 struct globaldata *gd = mycpu;
984263bc
MD
380
381 /*
88c4d2f6
MD
382 * Realtime updates are per-cpu. Note that timer corrections as
383 * returned by microtime() and friends make an additional adjustment
384 * using a system-wise 'basetime', but the running time is always
385 * taken from the per-cpu globaldata area. Since the same clock
386 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
387 * stay in synch.
388 *
389 * Note that we never allow info->time (aka gd->gd_hardclock.time)
fad57d0e
MD
390 * to reverse index gd_cpuclock_base, but that it is possible for
391 * it to temporarily get behind in the seconds if something in the
392 * system locks interrupts for a long period of time. Since periodic
393 * timers count events, though everything should resynch again
394 * immediately.
984263bc 395 */
88c4d2f6 396 cputicks = info->time - gd->gd_cpuclock_base;
044ee7c4 397 if (cputicks >= sys_cputimer->freq) {
88c4d2f6 398 ++gd->gd_time_seconds;
044ee7c4 399 gd->gd_cpuclock_base += sys_cputimer->freq;
88c4d2f6 400 }
984263bc
MD
401
402 /*
92b561b7
MD
403 * The system-wide ticks counter and NTP related timedelta/tickdelta
404 * adjustments only occur on cpu #0. NTP adjustments are accomplished
405 * by updating basetime.
984263bc 406 */
88c4d2f6 407 if (gd->gd_cpuid == 0) {
5eb5a6bc 408 struct timespec *nbt;
88c4d2f6
MD
409 struct timespec nts;
410 int leap;
5eb5a6bc 411 int ni;
984263bc 412
88c4d2f6 413 ++ticks;
984263bc 414
88c4d2f6
MD
415#if 0
416 if (tco->tc_poll_pps)
417 tco->tc_poll_pps(tco);
418#endif
5eb5a6bc 419
88c4d2f6 420 /*
5eb5a6bc
MD
421 * Calculate the new basetime index. We are in a critical section
422 * on cpu #0 and can safely play with basetime_index. Start
423 * with the current basetime and then make adjustments.
424 */
425 ni = (basetime_index + 1) & BASETIME_ARYMASK;
426 nbt = &basetime[ni];
427 *nbt = basetime[basetime_index];
428
429 /*
430 * Apply adjtime corrections. (adjtime() API)
431 *
432 * adjtime() only runs on cpu #0 so our critical section is
433 * sufficient to access these variables.
88c4d2f6 434 */
4026c000 435 if (ntp_delta != 0) {
5eb5a6bc 436 nbt->tv_nsec += ntp_tick_delta;
4026c000
JS
437 ntp_delta -= ntp_tick_delta;
438 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
439 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
5eb5a6bc 440 ntp_tick_delta = ntp_delta;
4026c000
JS
441 }
442 }
443
5eb5a6bc
MD
444 /*
445 * Apply permanent frequency corrections. (sysctl API)
446 */
4026c000
JS
447 if (ntp_tick_permanent != 0) {
448 ntp_tick_acc += ntp_tick_permanent;
449 if (ntp_tick_acc >= (1LL << 32)) {
5eb5a6bc 450 nbt->tv_nsec += ntp_tick_acc >> 32;
331bc6f8 451 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
4026c000 452 } else if (ntp_tick_acc <= -(1LL << 32)) {
331bc6f8 453 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
5eb5a6bc 454 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
331bc6f8 455 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
4026c000
JS
456 }
457 }
458
5eb5a6bc
MD
459 if (nbt->tv_nsec >= 1000000000) {
460 nbt->tv_sec++;
461 nbt->tv_nsec -= 1000000000;
462 } else if (nbt->tv_nsec < 0) {
463 nbt->tv_sec--;
464 nbt->tv_nsec += 1000000000;
88c4d2f6
MD
465 }
466
467 /*
5eb5a6bc 468 * Another per-tick compensation. (for ntp_adjtime() API)
88c4d2f6 469 */
5eb5a6bc 470 if (nsec_adj != 0) {
88c4d2f6
MD
471 nsec_acc += nsec_adj;
472 if (nsec_acc >= 0x100000000LL) {
5eb5a6bc 473 nbt->tv_nsec += nsec_acc >> 32;
88c4d2f6
MD
474 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
475 } else if (nsec_acc <= -0x100000000LL) {
5eb5a6bc 476 nbt->tv_nsec -= -nsec_acc >> 32;
88c4d2f6
MD
477 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
478 }
5eb5a6bc
MD
479 if (nbt->tv_nsec >= 1000000000) {
480 nbt->tv_nsec -= 1000000000;
481 ++nbt->tv_sec;
482 } else if (nbt->tv_nsec < 0) {
483 nbt->tv_nsec += 1000000000;
484 --nbt->tv_sec;
485 }
486 }
487
488 /************************************************************
489 * LEAP SECOND CORRECTION *
490 ************************************************************
491 *
492 * Taking into account all the corrections made above, figure
493 * out the new real time. If the seconds field has changed
494 * then apply any pending leap-second corrections.
495 */
496 getnanotime_nbt(nbt, &nts);
497
32040d57
MD
498 if (time_second != nts.tv_sec) {
499 /*
500 * Apply leap second (sysctl API). Adjust nts for changes
501 * so we do not have to call getnanotime_nbt again.
502 */
503 if (ntp_leap_second) {
504 if (ntp_leap_second == nts.tv_sec) {
505 if (ntp_leap_insert) {
506 nbt->tv_sec++;
507 nts.tv_sec++;
508 } else {
509 nbt->tv_sec--;
510 nts.tv_sec--;
511 }
5eb5a6bc 512 ntp_leap_second--;
32040d57 513 }
88c4d2f6 514 }
88c4d2f6 515
32040d57
MD
516 /*
517 * Apply leap second (ntp_adjtime() API), calculate a new
518 * nsec_adj field. ntp_update_second() returns nsec_adj
519 * as a per-second value but we need it as a per-tick value.
520 */
88c4d2f6 521 leap = ntp_update_second(time_second, &nsec_adj);
88c4d2f6 522 nsec_adj /= hz;
32040d57
MD
523 nbt->tv_sec += leap;
524 nts.tv_sec += leap;
525
526 /*
527 * Update the time_second 'approximate time' global.
528 */
529 time_second = nts.tv_sec;
88c4d2f6 530 }
5eb5a6bc
MD
531
532 /*
533 * Finally, our new basetime is ready to go live!
534 */
35238fa5 535 cpu_sfence();
5eb5a6bc 536 basetime_index = ni;
88c4d2f6
MD
537 }
538
539 /*
f9235b6d
MD
540 * lwkt thread scheduler fair queueing
541 */
85946b6c 542 lwkt_schedulerclock(curthread);
f9235b6d
MD
543
544 /*
92b561b7
MD
545 * softticks are handled for all cpus
546 */
547 hardclock_softtick(gd);
548
549 /*
8582ec21
MD
550 * ITimer handling is per-tick, per-cpu.
551 *
552 * We must acquire the per-process token in order for ksignal()
898e34b3
MD
553 * to be non-blocking. For the moment this requires an AST fault,
554 * the ksignal() cannot be safely issued from this hard interrupt.
555 *
556 * XXX Even the trytoken here isn't right, and itimer operation in
557 * a multi threaded environment is going to be weird at the
558 * very least.
88c4d2f6 559 */
8582ec21 560 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
3dbbd6dd 561 crit_enter_hard();
88c4d2f6 562 if (frame && CLKF_USERMODE(frame) &&
93328593 563 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
898e34b3 564 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
4643740a 565 p->p_flags |= P_SIGVTALRM;
898e34b3
MD
566 need_user_resched();
567 }
93328593 568 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
898e34b3 569 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
4643740a 570 p->p_flags |= P_SIGPROF;
898e34b3
MD
571 need_user_resched();
572 }
3dbbd6dd 573 crit_exit_hard();
8582ec21 574 lwkt_reltoken(&p->p_token);
984263bc 575 }
604e1e09 576 setdelayed();
88c4d2f6 577}
984263bc 578
88c4d2f6
MD
579/*
580 * The statistics clock typically runs at a 125Hz rate, and is intended
581 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
582 *
583 * NOTE! systimer! the MP lock might not be held here. We can only safely
584 * manipulate objects owned by the current cpu.
585 *
586 * The stats clock is responsible for grabbing a profiling sample.
587 * Most of the statistics are only used by user-level statistics programs.
588 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
589 * p->p_estcpu.
590 *
591 * Like the other clocks, the stat clock is called from what is effectively
592 * a fast interrupt, so the context should be the thread/process that got
593 * interrupted.
594 */
595static void
96d52ac8 596statclock(systimer_t info, int in_ipi, struct intrframe *frame)
88c4d2f6
MD
597{
598#ifdef GPROF
599 struct gmonparam *g;
600 int i;
984263bc 601#endif
88c4d2f6
MD
602 thread_t td;
603 struct proc *p;
604 int bump;
605 struct timeval tv;
606 struct timeval *stv;
984263bc
MD
607
608 /*
88c4d2f6 609 * How big was our timeslice relative to the last time?
984263bc 610 */
88c4d2f6
MD
611 microuptime(&tv); /* mpsafe */
612 stv = &mycpu->gd_stattv;
613 if (stv->tv_sec == 0) {
614 bump = 1;
615 } else {
616 bump = tv.tv_usec - stv->tv_usec +
617 (tv.tv_sec - stv->tv_sec) * 1000000;
618 if (bump < 0)
619 bump = 0;
620 if (bump > 1000000)
621 bump = 1000000;
622 }
623 *stv = tv;
984263bc 624
88c4d2f6
MD
625 td = curthread;
626 p = td->td_proc;
984263bc 627
88c4d2f6
MD
628 if (frame && CLKF_USERMODE(frame)) {
629 /*
630 * Came from userland, handle user time and deal with
631 * possible process.
632 */
4643740a 633 if (p && (p->p_flags & P_PROFIL))
88c4d2f6
MD
634 addupc_intr(p, CLKF_PC(frame), 1);
635 td->td_uticks += bump;
984263bc 636
88c4d2f6
MD
637 /*
638 * Charge the time as appropriate
639 */
640 if (p && p->p_nice > NZERO)
9eea7f0c 641 cpu_time.cp_nice += bump;
88c4d2f6 642 else
9eea7f0c 643 cpu_time.cp_user += bump;
88c4d2f6 644 } else {
96d52ac8
SZ
645 int intr_nest = mycpu->gd_intr_nesting_level;
646
647 if (in_ipi) {
648 /*
649 * IPI processing code will bump gd_intr_nesting_level
650 * up by one, which breaks following CLKF_INTR testing,
651 * so we substract it by one here.
652 */
653 --intr_nest;
654 }
88c4d2f6
MD
655#ifdef GPROF
656 /*
657 * Kernel statistics are just like addupc_intr, only easier.
658 */
659 g = &_gmonparam;
660 if (g->state == GMON_PROF_ON && frame) {
661 i = CLKF_PC(frame) - g->lowpc;
662 if (i < g->textsize) {
663 i /= HISTFRACTION * sizeof(*g->kcount);
664 g->kcount[i]++;
665 }
666 }
667#endif
6026c54d
SZ
668
669#define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
670
88c4d2f6
MD
671 /*
672 * Came from kernel mode, so we were:
673 * - handling an interrupt,
674 * - doing syscall or trap work on behalf of the current
675 * user process, or
676 * - spinning in the idle loop.
677 * Whichever it is, charge the time as appropriate.
678 * Note that we charge interrupts to the current process,
679 * regardless of whether they are ``for'' that process,
680 * so that we know how much of its real time was spent
681 * in ``non-process'' (i.e., interrupt) work.
682 *
683 * XXX assume system if frame is NULL. A NULL frame
e43a034f 684 * can occur if ipi processing is done from a crit_exit().
88c4d2f6 685 */
6026c54d 686 if (IS_INTR_RUNNING)
88c4d2f6
MD
687 td->td_iticks += bump;
688 else
689 td->td_sticks += bump;
690
6026c54d 691 if (IS_INTR_RUNNING) {
07522099 692#ifdef DEBUG_PCTRACK
6026c54d
SZ
693 if (frame)
694 do_pctrack(frame, PCTRACK_INT);
07522099 695#endif
9eea7f0c 696 cpu_time.cp_intr += bump;
88c4d2f6 697 } else {
07522099 698 if (td == &mycpu->gd_idlethread) {
9eea7f0c 699 cpu_time.cp_idle += bump;
07522099
MD
700 } else {
701#ifdef DEBUG_PCTRACK
702 if (frame)
703 do_pctrack(frame, PCTRACK_SYS);
704#endif
9eea7f0c 705 cpu_time.cp_sys += bump;
07522099 706 }
88c4d2f6 707 }
6026c54d
SZ
708
709#undef IS_INTR_RUNNING
88c4d2f6
MD
710 }
711}
712
07522099
MD
713#ifdef DEBUG_PCTRACK
714/*
715 * Sample the PC when in the kernel or in an interrupt. User code can
716 * retrieve the information and generate a histogram or other output.
717 */
718
719static void
720do_pctrack(struct intrframe *frame, int which)
721{
722 struct kinfo_pctrack *pctrack;
723
724 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
725 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
726 (void *)CLKF_PC(frame);
727 ++pctrack->pc_index;
728}
729
730static int
731sysctl_pctrack(SYSCTL_HANDLER_ARGS)
732{
733 struct kinfo_pcheader head;
734 int error;
735 int cpu;
736 int ntrack;
737
738 head.pc_ntrack = PCTRACK_SIZE;
739 head.pc_arysize = PCTRACK_ARYSIZE;
740
741 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
742 return (error);
743
744 for (cpu = 0; cpu < ncpus; ++cpu) {
745 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
746 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
747 sizeof(struct kinfo_pctrack));
748 if (error)
749 break;
750 }
751 if (error)
752 break;
753 }
754 return (error);
755}
756SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
757 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
758
759#endif
760
88c4d2f6 761/*
dcc99b62 762 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
88c4d2f6
MD
763 * the MP lock might not be held. We can safely manipulate parts of curproc
764 * but that's about it.
dcc99b62
MD
765 *
766 * Each cpu has its own scheduler clock.
88c4d2f6
MD
767 */
768static void
96d52ac8 769schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
88c4d2f6 770{
553ea3c8 771 struct lwp *lp;
88c4d2f6
MD
772 struct rusage *ru;
773 struct vmspace *vm;
774 long rss;
775
553ea3c8 776 if ((lp = lwkt_preempted_proc()) != NULL) {
dcc99b62
MD
777 /*
778 * Account for cpu time used and hit the scheduler. Note
779 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
780 * HERE.
781 */
553ea3c8 782 ++lp->lwp_cpticks;
5681a38a
MD
783 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
784 info->time);
dcc99b62 785 }
553ea3c8 786 if ((lp = curthread->td_lwp) != NULL) {
dcc99b62
MD
787 /*
788 * Update resource usage integrals and maximums.
789 */
fde7ac71 790 if ((ru = &lp->lwp_proc->p_ru) &&
553ea3c8 791 (vm = lp->lwp_proc->p_vmspace) != NULL) {
88c4d2f6
MD
792 ru->ru_ixrss += pgtok(vm->vm_tsize);
793 ru->ru_idrss += pgtok(vm->vm_dsize);
794 ru->ru_isrss += pgtok(vm->vm_ssize);
b12defdc
MD
795 if (lwkt_trytoken(&vm->vm_map.token)) {
796 rss = pgtok(vmspace_resident_count(vm));
797 if (ru->ru_maxrss < rss)
798 ru->ru_maxrss = rss;
799 lwkt_reltoken(&vm->vm_map.token);
800 }
88c4d2f6 801 }
b68b7282 802 }
984263bc
MD
803}
804
805/*
a94976ad
MD
806 * Compute number of ticks for the specified amount of time. The
807 * return value is intended to be used in a clock interrupt timed
808 * operation and guarenteed to meet or exceed the requested time.
809 * If the representation overflows, return INT_MAX. The minimum return
810 * value is 1 ticks and the function will average the calculation up.
811 * If any value greater then 0 microseconds is supplied, a value
812 * of at least 2 will be returned to ensure that a near-term clock
813 * interrupt does not cause the timeout to occur (degenerately) early.
814 *
815 * Note that limit checks must take into account microseconds, which is
816 * done simply by using the smaller signed long maximum instead of
817 * the unsigned long maximum.
818 *
819 * If ints have 32 bits, then the maximum value for any timeout in
820 * 10ms ticks is 248 days.
984263bc
MD
821 */
822int
a94976ad 823tvtohz_high(struct timeval *tv)
984263bc 824{
a94976ad 825 int ticks;
1fd87d54 826 long sec, usec;
984263bc 827
984263bc
MD
828 sec = tv->tv_sec;
829 usec = tv->tv_usec;
830 if (usec < 0) {
831 sec--;
832 usec += 1000000;
833 }
834 if (sec < 0) {
835#ifdef DIAGNOSTIC
836 if (usec > 0) {
837 sec++;
838 usec -= 1000000;
839 }
a591f597
MD
840 kprintf("tvtohz_high: negative time difference "
841 "%ld sec %ld usec\n",
842 sec, usec);
984263bc
MD
843#endif
844 ticks = 1;
a94976ad
MD
845 } else if (sec <= INT_MAX / hz) {
846 ticks = (int)(sec * hz +
a591f597 847 ((u_long)usec + (ustick - 1)) / ustick) + 1;
a94976ad
MD
848 } else {
849 ticks = INT_MAX;
850 }
851 return (ticks);
852}
853
a591f597
MD
854int
855tstohz_high(struct timespec *ts)
856{
857 int ticks;
858 long sec, nsec;
859
860 sec = ts->tv_sec;
861 nsec = ts->tv_nsec;
862 if (nsec < 0) {
863 sec--;
864 nsec += 1000000000;
865 }
866 if (sec < 0) {
867#ifdef DIAGNOSTIC
868 if (nsec > 0) {
869 sec++;
870 nsec -= 1000000000;
871 }
872 kprintf("tstohz_high: negative time difference "
873 "%ld sec %ld nsec\n",
874 sec, nsec);
875#endif
876 ticks = 1;
877 } else if (sec <= INT_MAX / hz) {
878 ticks = (int)(sec * hz +
879 ((u_long)nsec + (nstick - 1)) / nstick) + 1;
880 } else {
881 ticks = INT_MAX;
882 }
883 return (ticks);
884}
885
886
a94976ad
MD
887/*
888 * Compute number of ticks for the specified amount of time, erroring on
889 * the side of it being too low to ensure that sleeping the returned number
890 * of ticks will not result in a late return.
891 *
892 * The supplied timeval may not be negative and should be normalized. A
893 * return value of 0 is possible if the timeval converts to less then
894 * 1 tick.
895 *
896 * If ints have 32 bits, then the maximum value for any timeout in
897 * 10ms ticks is 248 days.
898 */
899int
900tvtohz_low(struct timeval *tv)
901{
902 int ticks;
903 long sec;
904
905 sec = tv->tv_sec;
906 if (sec <= INT_MAX / hz)
a591f597 907 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
984263bc 908 else
984263bc 909 ticks = INT_MAX;
a94976ad 910 return (ticks);
984263bc
MD
911}
912
a591f597
MD
913int
914tstohz_low(struct timespec *ts)
915{
916 int ticks;
917 long sec;
918
919 sec = ts->tv_sec;
920 if (sec <= INT_MAX / hz)
921 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
922 else
923 ticks = INT_MAX;
924 return (ticks);
925}
a94976ad 926
984263bc
MD
927/*
928 * Start profiling on a process.
929 *
930 * Kernel profiling passes proc0 which never exits and hence
931 * keeps the profile clock running constantly.
932 */
933void
88c4d2f6 934startprofclock(struct proc *p)
984263bc 935{
4643740a
MD
936 if ((p->p_flags & P_PROFIL) == 0) {
937 p->p_flags |= P_PROFIL;
88c4d2f6 938#if 0 /* XXX */
984263bc 939 if (++profprocs == 1 && stathz != 0) {
e43a034f 940 crit_enter();
6ad39cae 941 psdiv = psratio;
984263bc 942 setstatclockrate(profhz);
e43a034f 943 crit_exit();
984263bc 944 }
88c4d2f6 945#endif
984263bc
MD
946 }
947}
948
949/*
950 * Stop profiling on a process.
616516c8
MD
951 *
952 * caller must hold p->p_token
984263bc
MD
953 */
954void
88c4d2f6 955stopprofclock(struct proc *p)
984263bc 956{
4643740a
MD
957 if (p->p_flags & P_PROFIL) {
958 p->p_flags &= ~P_PROFIL;
88c4d2f6 959#if 0 /* XXX */
984263bc 960 if (--profprocs == 0 && stathz != 0) {
e43a034f 961 crit_enter();
6ad39cae 962 psdiv = 1;
984263bc 963 setstatclockrate(stathz);
e43a034f 964 crit_exit();
984263bc 965 }
984263bc 966#endif
984263bc
MD
967 }
968}
969
970/*
971 * Return information about system clocks.
972 */
973static int
974sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
975{
f5d21610 976 struct kinfo_clockinfo clkinfo;
984263bc
MD
977 /*
978 * Construct clockinfo structure.
979 */
f5d21610 980 clkinfo.ci_hz = hz;
a591f597 981 clkinfo.ci_tick = ustick;
4026c000 982 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
f5d21610
JS
983 clkinfo.ci_profhz = profhz;
984 clkinfo.ci_stathz = stathz ? stathz : hz;
984263bc
MD
985 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
986}
987
988SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
989 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
990
984263bc
MD
991/*
992 * We have eight functions for looking at the clock, four for
993 * microseconds and four for nanoseconds. For each there is fast
994 * but less precise version "get{nano|micro}[up]time" which will
995 * return a time which is up to 1/HZ previous to the call, whereas
996 * the raw version "{nano|micro}[up]time" will return a timestamp
997 * which is as precise as possible. The "up" variants return the
998 * time relative to system boot, these are well suited for time
999 * interval measurements.
88c4d2f6
MD
1000 *
1001 * Each cpu independantly maintains the current time of day, so all
1002 * we need to do to protect ourselves from changes is to do a loop
1003 * check on the seconds field changing out from under us.
fad57d0e
MD
1004 *
1005 * The system timer maintains a 32 bit count and due to various issues
1006 * it is possible for the calculated delta to occassionally exceed
044ee7c4
MD
1007 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
1008 * multiplication can easily overflow, so we deal with the case. For
1009 * uniformity we deal with the case in the usec case too.
627531fa
MD
1010 *
1011 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
984263bc 1012 */
984263bc
MD
1013void
1014getmicrouptime(struct timeval *tvp)
1015{
88c4d2f6
MD
1016 struct globaldata *gd = mycpu;
1017 sysclock_t delta;
1018
1019 do {
1020 tvp->tv_sec = gd->gd_time_seconds;
1021 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1022 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1023
044ee7c4
MD
1024 if (delta >= sys_cputimer->freq) {
1025 tvp->tv_sec += delta / sys_cputimer->freq;
1026 delta %= sys_cputimer->freq;
fad57d0e 1027 }
044ee7c4 1028 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
88c4d2f6
MD
1029 if (tvp->tv_usec >= 1000000) {
1030 tvp->tv_usec -= 1000000;
1031 ++tvp->tv_sec;
984263bc
MD
1032 }
1033}
1034
1035void
1036getnanouptime(struct timespec *tsp)
1037{
88c4d2f6
MD
1038 struct globaldata *gd = mycpu;
1039 sysclock_t delta;
1040
1041 do {
1042 tsp->tv_sec = gd->gd_time_seconds;
1043 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1044 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1045
044ee7c4
MD
1046 if (delta >= sys_cputimer->freq) {
1047 tsp->tv_sec += delta / sys_cputimer->freq;
1048 delta %= sys_cputimer->freq;
984263bc 1049 }
044ee7c4 1050 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc
MD
1051}
1052
1053void
88c4d2f6 1054microuptime(struct timeval *tvp)
984263bc 1055{
88c4d2f6
MD
1056 struct globaldata *gd = mycpu;
1057 sysclock_t delta;
1058
1059 do {
1060 tvp->tv_sec = gd->gd_time_seconds;
044ee7c4 1061 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1062 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1063
044ee7c4
MD
1064 if (delta >= sys_cputimer->freq) {
1065 tvp->tv_sec += delta / sys_cputimer->freq;
1066 delta %= sys_cputimer->freq;
984263bc 1067 }
044ee7c4 1068 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc
MD
1069}
1070
1071void
88c4d2f6 1072nanouptime(struct timespec *tsp)
984263bc 1073{
88c4d2f6
MD
1074 struct globaldata *gd = mycpu;
1075 sysclock_t delta;
1076
1077 do {
1078 tsp->tv_sec = gd->gd_time_seconds;
044ee7c4 1079 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1080 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1081
044ee7c4
MD
1082 if (delta >= sys_cputimer->freq) {
1083 tsp->tv_sec += delta / sys_cputimer->freq;
1084 delta %= sys_cputimer->freq;
984263bc 1085 }
044ee7c4 1086 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc
MD
1087}
1088
88c4d2f6
MD
1089/*
1090 * realtime routines
1091 */
984263bc 1092void
88c4d2f6 1093getmicrotime(struct timeval *tvp)
984263bc 1094{
88c4d2f6 1095 struct globaldata *gd = mycpu;
5eb5a6bc 1096 struct timespec *bt;
88c4d2f6 1097 sysclock_t delta;
984263bc 1098
88c4d2f6
MD
1099 do {
1100 tvp->tv_sec = gd->gd_time_seconds;
1101 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1102 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1103
044ee7c4
MD
1104 if (delta >= sys_cputimer->freq) {
1105 tvp->tv_sec += delta / sys_cputimer->freq;
1106 delta %= sys_cputimer->freq;
fad57d0e 1107 }
044ee7c4 1108 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc 1109
5eb5a6bc
MD
1110 bt = &basetime[basetime_index];
1111 tvp->tv_sec += bt->tv_sec;
1112 tvp->tv_usec += bt->tv_nsec / 1000;
88c4d2f6
MD
1113 while (tvp->tv_usec >= 1000000) {
1114 tvp->tv_usec -= 1000000;
1115 ++tvp->tv_sec;
984263bc 1116 }
984263bc
MD
1117}
1118
1119void
88c4d2f6 1120getnanotime(struct timespec *tsp)
984263bc 1121{
88c4d2f6 1122 struct globaldata *gd = mycpu;
5eb5a6bc 1123 struct timespec *bt;
88c4d2f6 1124 sysclock_t delta;
984263bc 1125
88c4d2f6
MD
1126 do {
1127 tsp->tv_sec = gd->gd_time_seconds;
1128 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1129 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1130
044ee7c4
MD
1131 if (delta >= sys_cputimer->freq) {
1132 tsp->tv_sec += delta / sys_cputimer->freq;
1133 delta %= sys_cputimer->freq;
fad57d0e 1134 }
044ee7c4 1135 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc 1136
5eb5a6bc
MD
1137 bt = &basetime[basetime_index];
1138 tsp->tv_sec += bt->tv_sec;
1139 tsp->tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1140 while (tsp->tv_nsec >= 1000000000) {
1141 tsp->tv_nsec -= 1000000000;
1142 ++tsp->tv_sec;
984263bc 1143 }
984263bc
MD
1144}
1145
5eb5a6bc
MD
1146static void
1147getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1148{
1149 struct globaldata *gd = mycpu;
1150 sysclock_t delta;
1151
1152 do {
1153 tsp->tv_sec = gd->gd_time_seconds;
1154 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1155 } while (tsp->tv_sec != gd->gd_time_seconds);
1156
044ee7c4
MD
1157 if (delta >= sys_cputimer->freq) {
1158 tsp->tv_sec += delta / sys_cputimer->freq;
1159 delta %= sys_cputimer->freq;
5eb5a6bc 1160 }
044ee7c4 1161 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
5eb5a6bc
MD
1162
1163 tsp->tv_sec += nbt->tv_sec;
1164 tsp->tv_nsec += nbt->tv_nsec;
1165 while (tsp->tv_nsec >= 1000000000) {
1166 tsp->tv_nsec -= 1000000000;
1167 ++tsp->tv_sec;
1168 }
1169}
1170
1171
88c4d2f6
MD
1172void
1173microtime(struct timeval *tvp)
984263bc 1174{
88c4d2f6 1175 struct globaldata *gd = mycpu;
5eb5a6bc 1176 struct timespec *bt;
88c4d2f6 1177 sysclock_t delta;
984263bc 1178
88c4d2f6
MD
1179 do {
1180 tvp->tv_sec = gd->gd_time_seconds;
044ee7c4 1181 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1182 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1183
044ee7c4
MD
1184 if (delta >= sys_cputimer->freq) {
1185 tvp->tv_sec += delta / sys_cputimer->freq;
1186 delta %= sys_cputimer->freq;
fad57d0e 1187 }
044ee7c4 1188 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc 1189
5eb5a6bc
MD
1190 bt = &basetime[basetime_index];
1191 tvp->tv_sec += bt->tv_sec;
1192 tvp->tv_usec += bt->tv_nsec / 1000;
88c4d2f6
MD
1193 while (tvp->tv_usec >= 1000000) {
1194 tvp->tv_usec -= 1000000;
1195 ++tvp->tv_sec;
984263bc 1196 }
984263bc
MD
1197}
1198
88c4d2f6
MD
1199void
1200nanotime(struct timespec *tsp)
1201{
1202 struct globaldata *gd = mycpu;
5eb5a6bc 1203 struct timespec *bt;
88c4d2f6 1204 sysclock_t delta;
984263bc 1205
88c4d2f6
MD
1206 do {
1207 tsp->tv_sec = gd->gd_time_seconds;
044ee7c4 1208 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1209 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1210
044ee7c4
MD
1211 if (delta >= sys_cputimer->freq) {
1212 tsp->tv_sec += delta / sys_cputimer->freq;
1213 delta %= sys_cputimer->freq;
fad57d0e 1214 }
044ee7c4 1215 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc 1216
5eb5a6bc
MD
1217 bt = &basetime[basetime_index];
1218 tsp->tv_sec += bt->tv_sec;
1219 tsp->tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1220 while (tsp->tv_nsec >= 1000000000) {
1221 tsp->tv_nsec -= 1000000000;
1222 ++tsp->tv_sec;
984263bc 1223 }
984263bc
MD
1224}
1225
25b804e7
MD
1226/*
1227 * note: this is not exactly synchronized with real time. To do that we
1228 * would have to do what microtime does and check for a nanoseconds overflow.
1229 */
1230time_t
1231get_approximate_time_t(void)
1232{
1233 struct globaldata *gd = mycpu;
5eb5a6bc
MD
1234 struct timespec *bt;
1235
1236 bt = &basetime[basetime_index];
1237 return(gd->gd_time_seconds + bt->tv_sec);
25b804e7
MD
1238}
1239
984263bc
MD
1240int
1241pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1242{
1243 pps_params_t *app;
1244 struct pps_fetch_args *fapi;
1245#ifdef PPS_SYNC
1246 struct pps_kcbind_args *kapi;
1247#endif
1248
1249 switch (cmd) {
1250 case PPS_IOC_CREATE:
1251 return (0);
1252 case PPS_IOC_DESTROY:
1253 return (0);
1254 case PPS_IOC_SETPARAMS:
1255 app = (pps_params_t *)data;
1256 if (app->mode & ~pps->ppscap)
1257 return (EINVAL);
1258 pps->ppsparam = *app;
1259 return (0);
1260 case PPS_IOC_GETPARAMS:
1261 app = (pps_params_t *)data;
1262 *app = pps->ppsparam;
1263 app->api_version = PPS_API_VERS_1;
1264 return (0);
1265 case PPS_IOC_GETCAP:
1266 *(int*)data = pps->ppscap;
1267 return (0);
1268 case PPS_IOC_FETCH:
1269 fapi = (struct pps_fetch_args *)data;
1270 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1271 return (EINVAL);
1272 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1273 return (EOPNOTSUPP);
1274 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1275 fapi->pps_info_buf = pps->ppsinfo;
1276 return (0);
1277 case PPS_IOC_KCBIND:
1278#ifdef PPS_SYNC
1279 kapi = (struct pps_kcbind_args *)data;
1280 /* XXX Only root should be able to do this */
1281 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1282 return (EINVAL);
1283 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1284 return (EINVAL);
1285 if (kapi->edge & ~pps->ppscap)
1286 return (EINVAL);
1287 pps->kcmode = kapi->edge;
1288 return (0);
1289#else
1290 return (EOPNOTSUPP);
1291#endif
1292 default:
1293 return (ENOTTY);
1294 }
1295}
1296
1297void
1298pps_init(struct pps_state *pps)
1299{
1300 pps->ppscap |= PPS_TSFMT_TSPEC;
1301 if (pps->ppscap & PPS_CAPTUREASSERT)
1302 pps->ppscap |= PPS_OFFSETASSERT;
1303 if (pps->ppscap & PPS_CAPTURECLEAR)
1304 pps->ppscap |= PPS_OFFSETCLEAR;
1305}
1306
1307void
88c4d2f6 1308pps_event(struct pps_state *pps, sysclock_t count, int event)
984263bc 1309{
88c4d2f6
MD
1310 struct globaldata *gd;
1311 struct timespec *tsp;
1312 struct timespec *osp;
5eb5a6bc 1313 struct timespec *bt;
88c4d2f6
MD
1314 struct timespec ts;
1315 sysclock_t *pcount;
1316#ifdef PPS_SYNC
1317 sysclock_t tcount;
1318#endif
1319 sysclock_t delta;
1320 pps_seq_t *pseq;
1321 int foff;
1322 int fhard;
1323
1324 gd = mycpu;
984263bc
MD
1325
1326 /* Things would be easier with arrays... */
1327 if (event == PPS_CAPTUREASSERT) {
1328 tsp = &pps->ppsinfo.assert_timestamp;
1329 osp = &pps->ppsparam.assert_offset;
1330 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1331 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1332 pcount = &pps->ppscount[0];
1333 pseq = &pps->ppsinfo.assert_sequence;
1334 } else {
1335 tsp = &pps->ppsinfo.clear_timestamp;
1336 osp = &pps->ppsparam.clear_offset;
1337 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1338 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1339 pcount = &pps->ppscount[1];
1340 pseq = &pps->ppsinfo.clear_sequence;
1341 }
1342
984263bc
MD
1343 /* Nothing really happened */
1344 if (*pcount == count)
1345 return;
1346
1347 *pcount = count;
1348
88c4d2f6
MD
1349 do {
1350 ts.tv_sec = gd->gd_time_seconds;
1351 delta = count - gd->gd_cpuclock_base;
1352 } while (ts.tv_sec != gd->gd_time_seconds);
fad57d0e 1353
044ee7c4
MD
1354 if (delta >= sys_cputimer->freq) {
1355 ts.tv_sec += delta / sys_cputimer->freq;
1356 delta %= sys_cputimer->freq;
88c4d2f6 1357 }
044ee7c4 1358 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
5eb5a6bc
MD
1359 bt = &basetime[basetime_index];
1360 ts.tv_sec += bt->tv_sec;
1361 ts.tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1362 while (ts.tv_nsec >= 1000000000) {
1363 ts.tv_nsec -= 1000000000;
1364 ++ts.tv_sec;
984263bc 1365 }
984263bc
MD
1366
1367 (*pseq)++;
1368 *tsp = ts;
1369
1370 if (foff) {
1371 timespecadd(tsp, osp);
1372 if (tsp->tv_nsec < 0) {
1373 tsp->tv_nsec += 1000000000;
1374 tsp->tv_sec -= 1;
1375 }
1376 }
1377#ifdef PPS_SYNC
1378 if (fhard) {
1379 /* magic, at its best... */
1380 tcount = count - pps->ppscount[2];
1381 pps->ppscount[2] = count;
044ee7c4
MD
1382 if (tcount >= sys_cputimer->freq) {
1383 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1384 sys_cputimer->freq64_nsec *
1385 (tcount % sys_cputimer->freq)) >> 32;
fad57d0e 1386 } else {
044ee7c4 1387 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
fad57d0e 1388 }
984263bc
MD
1389 hardpps(tsp, delta);
1390 }
1391#endif
1392}
88c4d2f6 1393
d2412a2e
MD
1394/*
1395 * Return the tsc target value for a delay of (ns).
1396 *
1397 * Returns -1 if the TSC is not supported.
1398 */
1399int64_t
1400tsc_get_target(int ns)
1401{
1402#if defined(_RDTSC_SUPPORTED_)
1403 if (cpu_feature & CPUID_TSC) {
1404 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1405 }
1406#endif
1407 return(-1);
1408}
1409
1410/*
1411 * Compare the tsc against the passed target
1412 *
1413 * Returns +1 if the target has been reached
1414 * Returns 0 if the target has not yet been reached
1415 * Returns -1 if the TSC is not supported.
1416 *
1417 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1418 */
1419int
1420tsc_test_target(int64_t target)
1421{
1422#if defined(_RDTSC_SUPPORTED_)
1423 if (cpu_feature & CPUID_TSC) {
1424 if ((int64_t)(target - rdtsc()) <= 0)
1425 return(1);
1426 return(0);
1427 }
d2412a2e 1428#endif
2e537993 1429 return(-1);
d2412a2e 1430}
b12defdc
MD
1431
1432/*
1433 * Delay the specified number of nanoseconds using the tsc. This function
1434 * returns immediately if the TSC is not supported. At least one cpu_pause()
1435 * will be issued.
1436 */
1437void
1438tsc_delay(int ns)
1439{
1440 int64_t clk;
1441
1442 clk = tsc_get_target(ns);
1443 cpu_pause();
1444 while (tsc_test_target(clk) == 0)
1445 cpu_pause();
1446}