kernel - reduce kern.maxvnodes default on 32 bit systems
[dragonfly.git] / sys / kern / vfs_subr.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/buf.h>
50#include <sys/conf.h>
51#include <sys/dirent.h>
52#include <sys/domain.h>
53#include <sys/eventhandler.h>
54#include <sys/fcntl.h>
b8477cda 55#include <sys/file.h>
984263bc
MD
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
3b0783db 61#include <sys/priv.h>
984263bc
MD
62#include <sys/proc.h>
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
5d72d6ed 68#include <sys/unistd.h>
984263bc
MD
69#include <sys/vmmeter.h>
70#include <sys/vnode.h>
71
72#include <machine/limits.h>
73
74#include <vm/vm.h>
75#include <vm/vm_object.h>
76#include <vm/vm_extern.h>
6ef943a3 77#include <vm/vm_kern.h>
984263bc
MD
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_page.h>
81#include <vm/vm_pager.h>
82#include <vm/vnode_pager.h>
83#include <vm/vm_zone.h>
84
3020e3be 85#include <sys/buf2.h>
f5865223 86#include <sys/thread2.h>
3c37c940 87#include <sys/sysref2.h>
2247fe02 88#include <sys/mplock2.h>
3020e3be 89
984263bc
MD
90static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
91
5fd012e0 92int numvnodes;
0c52fa62
SG
93SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
94 "Number of vnodes allocated");
28271622
MD
95int verbose_reclaims;
96SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
97 "Output filename of reclaimed vnode(s)");
984263bc
MD
98
99enum vtype iftovt_tab[16] = {
100 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
101 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
102};
103int vttoif_tab[9] = {
104 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
105 S_IFSOCK, S_IFIFO, S_IFMT,
106};
107
984263bc 108static int reassignbufcalls;
093e85dc
SG
109SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
110 0, "Number of times buffers have been reassigned to the proper list");
111
7608650f 112static int check_buf_overlap = 2; /* invasive check */
093e85dc
SG
113SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
114 0, "Enable overlapping buffer checks");
984263bc 115
984263bc 116int nfs_mount_type = -1;
8a8d5d85 117static struct lwkt_token spechash_token;
984263bc 118struct nfs_public nfs_pub; /* publicly exported FS */
984263bc
MD
119
120int desiredvnodes;
121SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
dd98570a 122 &desiredvnodes, 0, "Maximum number of vnodes");
984263bc 123
402ed7e1
RG
124static void vfs_free_addrlist (struct netexport *nep);
125static int vfs_free_netcred (struct radix_node *rn, void *w);
126static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
1aa89f17 127 const struct export_args *argp);
984263bc 128
41a01a4d 129/*
6bae6177
MD
130 * Red black tree functions
131 */
132static int rb_buf_compare(struct buf *b1, struct buf *b2);
54078292
MD
133RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
134RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
6bae6177
MD
135
136static int
137rb_buf_compare(struct buf *b1, struct buf *b2)
138{
54078292 139 if (b1->b_loffset < b2->b_loffset)
6bae6177 140 return(-1);
54078292 141 if (b1->b_loffset > b2->b_loffset)
6bae6177
MD
142 return(1);
143 return(0);
144}
145
146/*
44b1cf3d 147 * Returns non-zero if the vnode is a candidate for lazy msyncing.
aed76ef1
MD
148 *
149 * NOTE: v_object is not stable (this scan can race), however the
150 * mntvnodescan code holds vmobj_token so any VM object we
151 * do find will remain stable storage.
41a01a4d 152 */
5fd012e0 153static __inline int
3c37c940 154vshouldmsync(struct vnode *vp)
41a01a4d 155{
aed76ef1
MD
156 vm_object_t object;
157
3c37c940 158 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
44b1cf3d 159 return (0); /* other holders */
aed76ef1
MD
160 object = vp->v_object;
161 cpu_ccfence();
162 if (object && (object->ref_count || object->resident_page_count))
163 return(0);
5fd012e0 164 return (1);
41a01a4d 165}
5fd012e0 166
984263bc 167/*
5fd012e0
MD
168 * Initialize the vnode management data structures.
169 *
170 * Called from vfsinit()
984263bc
MD
171 */
172void
5fd012e0 173vfs_subr_init(void)
984263bc 174{
7c457ac8
MD
175 int factor1;
176 int factor2;
177
6ef943a3 178 /*
55d3a838
MD
179 * Desiredvnodes is kern.maxvnodes. We want to scale it
180 * according to available system memory but we may also have
181 * to limit it based on available KVM, which is capped on 32 bit
61c07505 182 * systems, to ~80K vnodes or so.
b867f3d9
MD
183 *
184 * WARNING! For machines with 64-256M of ram we have to be sure
185 * that the default limit scales down well due to HAMMER
186 * taking up significantly more memory per-vnode vs UFS.
187 * We want around ~5800 on a 128M machine.
6ef943a3 188 */
7c457ac8 189 factor1 = 20 * (sizeof(struct vm_object) + sizeof(struct vnode));
61c07505 190 factor2 = 25 * (sizeof(struct vm_object) + sizeof(struct vnode));
7c457ac8
MD
191 desiredvnodes =
192 imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1,
193 KvaSize / factor2);
194 desiredvnodes = imax(desiredvnodes, maxproc * 8);
6ef943a3 195
a3c18566 196 lwkt_token_init(&spechash_token, "spechash");
984263bc
MD
197}
198
199/*
200 * Knob to control the precision of file timestamps:
201 *
202 * 0 = seconds only; nanoseconds zeroed.
203 * 1 = seconds and nanoseconds, accurate within 1/HZ.
204 * 2 = seconds and nanoseconds, truncated to microseconds.
205 * >=3 = seconds and nanoseconds, maximum precision.
206 */
207enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
208
209static int timestamp_precision = TSP_SEC;
210SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
093e85dc 211 &timestamp_precision, 0, "Precision of file timestamps");
984263bc
MD
212
213/*
214 * Get a current timestamp.
627531fa
MD
215 *
216 * MPSAFE
984263bc
MD
217 */
218void
dd98570a 219vfs_timestamp(struct timespec *tsp)
984263bc
MD
220{
221 struct timeval tv;
222
223 switch (timestamp_precision) {
224 case TSP_SEC:
225 tsp->tv_sec = time_second;
226 tsp->tv_nsec = 0;
227 break;
228 case TSP_HZ:
229 getnanotime(tsp);
230 break;
231 case TSP_USEC:
232 microtime(&tv);
233 TIMEVAL_TO_TIMESPEC(&tv, tsp);
234 break;
235 case TSP_NSEC:
236 default:
237 nanotime(tsp);
238 break;
239 }
240}
241
242/*
243 * Set vnode attributes to VNOVAL
244 */
245void
dd98570a 246vattr_null(struct vattr *vap)
984263bc 247{
984263bc
MD
248 vap->va_type = VNON;
249 vap->va_size = VNOVAL;
250 vap->va_bytes = VNOVAL;
251 vap->va_mode = VNOVAL;
252 vap->va_nlink = VNOVAL;
253 vap->va_uid = VNOVAL;
254 vap->va_gid = VNOVAL;
255 vap->va_fsid = VNOVAL;
256 vap->va_fileid = VNOVAL;
257 vap->va_blocksize = VNOVAL;
0e9b9130
MD
258 vap->va_rmajor = VNOVAL;
259 vap->va_rminor = VNOVAL;
984263bc
MD
260 vap->va_atime.tv_sec = VNOVAL;
261 vap->va_atime.tv_nsec = VNOVAL;
262 vap->va_mtime.tv_sec = VNOVAL;
263 vap->va_mtime.tv_nsec = VNOVAL;
264 vap->va_ctime.tv_sec = VNOVAL;
265 vap->va_ctime.tv_nsec = VNOVAL;
266 vap->va_flags = VNOVAL;
267 vap->va_gen = VNOVAL;
268 vap->va_vaflags = 0;
50626622 269 /* va_*_uuid fields are only valid if related flags are set */
984263bc
MD
270}
271
272/*
984263bc 273 * Flush out and invalidate all buffers associated with a vnode.
5fd012e0
MD
274 *
275 * vp must be locked.
984263bc 276 */
6bae6177
MD
277static int vinvalbuf_bp(struct buf *bp, void *data);
278
279struct vinvalbuf_bp_info {
280 struct vnode *vp;
281 int slptimeo;
f2770c70 282 int lkflags;
6bae6177 283 int flags;
c5724852 284 int clean;
6bae6177
MD
285};
286
984263bc 287int
87de5057 288vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
984263bc 289{
6bae6177 290 struct vinvalbuf_bp_info info;
984263bc 291 vm_object_t object;
0202303b
MD
292 int error;
293
3b998fa9 294 lwkt_gettoken(&vp->v_token);
984263bc 295
6bae6177
MD
296 /*
297 * If we are being asked to save, call fsync to ensure that the inode
298 * is updated.
299 */
984263bc 300 if (flags & V_SAVE) {
a9a20f98 301 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
0202303b 302 if (error)
a9a20f98 303 goto done;
6bae6177 304 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
52174f71 305 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
a9a20f98 306 goto done;
1bb61199
MD
307
308 /*
309 * Dirty bufs may be left or generated via races
310 * in circumstances where vinvalbuf() is called on
311 * a vnode not undergoing reclamation. Only
312 * panic if we are trying to reclaim the vnode.
313 */
314 if ((vp->v_flag & VRECLAIMED) &&
a9a20f98 315 (bio_track_active(&vp->v_track_write) ||
1bb61199 316 !RB_EMPTY(&vp->v_rbdirty_tree))) {
984263bc 317 panic("vinvalbuf: dirty bufs");
1bb61199 318 }
984263bc 319 }
984263bc 320 }
6bae6177 321 info.slptimeo = slptimeo;
f2770c70
MD
322 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
323 if (slpflag & PCATCH)
324 info.lkflags |= LK_PCATCH;
6bae6177
MD
325 info.flags = flags;
326 info.vp = vp;
327
328 /*
329 * Flush the buffer cache until nothing is left.
330 */
331 while (!RB_EMPTY(&vp->v_rbclean_tree) ||
0202303b 332 !RB_EMPTY(&vp->v_rbdirty_tree)) {
c5724852 333 info.clean = 1;
6bae6177 334 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
65c6c519 335 vinvalbuf_bp, &info);
6bae6177 336 if (error == 0) {
c5724852 337 info.clean = 0;
6bae6177
MD
338 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
339 vinvalbuf_bp, &info);
984263bc
MD
340 }
341 }
342
343 /*
a9a20f98
MD
344 * Wait for I/O completion. We may block in the pip code so we have
345 * to re-check.
984263bc
MD
346 */
347 do {
a9a20f98 348 bio_track_wait(&vp->v_track_write, 0, 0);
7540ab49 349 if ((object = vp->v_object) != NULL) {
00db03f1 350 refcount_wait(&object->paging_in_progress, "vnvlbx");
984263bc 351 }
a9a20f98 352 } while (bio_track_active(&vp->v_track_write));
984263bc 353
984263bc
MD
354 /*
355 * Destroy the copy in the VM cache, too.
356 */
7540ab49 357 if ((object = vp->v_object) != NULL) {
984263bc
MD
358 vm_object_page_remove(object, 0, 0,
359 (flags & V_SAVE) ? TRUE : FALSE);
360 }
984263bc 361
6bae6177 362 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
984263bc 363 panic("vinvalbuf: flush failed");
1f1ea522
MD
364 if (!RB_EMPTY(&vp->v_rbhash_tree))
365 panic("vinvalbuf: flush failed, buffers still present");
a9a20f98
MD
366 error = 0;
367done:
3b998fa9 368 lwkt_reltoken(&vp->v_token);
a9a20f98 369 return (error);
984263bc
MD
370}
371
6bae6177
MD
372static int
373vinvalbuf_bp(struct buf *bp, void *data)
374{
375 struct vinvalbuf_bp_info *info = data;
376 int error;
377
378 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
c5724852 379 atomic_add_int(&bp->b_refs, 1);
f2770c70
MD
380 error = BUF_TIMELOCK(bp, info->lkflags,
381 "vinvalbuf", info->slptimeo);
c5724852 382 atomic_subtract_int(&bp->b_refs, 1);
6bae6177
MD
383 if (error == 0) {
384 BUF_UNLOCK(bp);
385 error = ENOLCK;
386 }
387 if (error == ENOLCK)
388 return(0);
389 return (-error);
390 }
65c6c519
MD
391 KKASSERT(bp->b_vp == info->vp);
392
6bae6177 393 /*
c5724852
MD
394 * Must check clean/dirty status after successfully locking as
395 * it may race.
396 */
397 if ((info->clean && (bp->b_flags & B_DELWRI)) ||
398 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
399 BUF_UNLOCK(bp);
400 return(0);
401 }
402
403 /*
27bc0cb1
MD
404 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
405 * check. This code will write out the buffer, period.
6bae6177 406 */
9de13b88 407 bremfree(bp);
6bae6177
MD
408 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
409 (info->flags & V_SAVE)) {
9de13b88 410 cluster_awrite(bp);
135bd6a8
MD
411 } else if (info->flags & V_SAVE) {
412 /*
413 * Cannot set B_NOCACHE on a clean buffer as this will
414 * destroy the VM backing store which might actually
415 * be dirty (and unsynchronized).
416 */
135bd6a8 417 bp->b_flags |= (B_INVAL | B_RELBUF);
135bd6a8 418 brelse(bp);
6bae6177 419 } else {
6bae6177 420 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
6bae6177
MD
421 brelse(bp);
422 }
423 return(0);
424}
425
984263bc
MD
426/*
427 * Truncate a file's buffer and pages to a specified length. This
428 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
429 * sync activity.
5fd012e0
MD
430 *
431 * The vnode must be locked.
984263bc 432 */
6bae6177
MD
433static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
434static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
435static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
436static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
437
c5724852
MD
438struct vtruncbuf_info {
439 struct vnode *vp;
440 off_t truncloffset;
441 int clean;
442};
443
984263bc 444int
87de5057 445vtruncbuf(struct vnode *vp, off_t length, int blksize)
984263bc 446{
c5724852 447 struct vtruncbuf_info info;
c4b46cb4 448 const char *filename;
0202303b 449 int count;
984263bc
MD
450
451 /*
54078292 452 * Round up to the *next* block, then destroy the buffers in question.
6bae6177
MD
453 * Since we are only removing some of the buffers we must rely on the
454 * scan count to determine whether a loop is necessary.
984263bc 455 */
54078292 456 if ((count = (int)(length % blksize)) != 0)
c5724852 457 info.truncloffset = length + (blksize - count);
54078292 458 else
c5724852
MD
459 info.truncloffset = length;
460 info.vp = vp;
984263bc 461
3b998fa9 462 lwkt_gettoken(&vp->v_token);
6bae6177 463 do {
c5724852 464 info.clean = 1;
6bae6177
MD
465 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
466 vtruncbuf_bp_trunc_cmp,
c5724852
MD
467 vtruncbuf_bp_trunc, &info);
468 info.clean = 0;
6bae6177
MD
469 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
470 vtruncbuf_bp_trunc_cmp,
c5724852 471 vtruncbuf_bp_trunc, &info);
6bae6177 472 } while(count);
984263bc 473
6bae6177
MD
474 /*
475 * For safety, fsync any remaining metadata if the file is not being
476 * truncated to 0. Since the metadata does not represent the entire
477 * dirty list we have to rely on the hit count to ensure that we get
478 * all of it.
479 */
984263bc 480 if (length > 0) {
6bae6177
MD
481 do {
482 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
483 vtruncbuf_bp_metasync_cmp,
c5724852 484 vtruncbuf_bp_metasync, &info);
6bae6177 485 } while (count);
984263bc
MD
486 }
487
6bae6177 488 /*
c4b46cb4 489 * Clean out any left over VM backing store.
0202303b 490 *
135bd6a8
MD
491 * It is possible to have in-progress I/O from buffers that were
492 * not part of the truncation. This should not happen if we
493 * are truncating to 0-length.
6bae6177 494 */
0202303b
MD
495 vnode_pager_setsize(vp, length);
496 bio_track_wait(&vp->v_track_write, 0, 0);
497
f63911bf
MD
498 /*
499 * Debugging only
500 */
b12defdc 501 spin_lock(&vp->v_spin);
c4b46cb4
MD
502 filename = TAILQ_FIRST(&vp->v_namecache) ?
503 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
b12defdc 504 spin_unlock(&vp->v_spin);
c4b46cb4 505
c4b46cb4
MD
506 /*
507 * Make sure no buffers were instantiated while we were trying
508 * to clean out the remaining VM pages. This could occur due
509 * to busy dirty VM pages being flushed out to disk.
510 */
511 do {
c5724852 512 info.clean = 1;
c4b46cb4
MD
513 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
514 vtruncbuf_bp_trunc_cmp,
c5724852
MD
515 vtruncbuf_bp_trunc, &info);
516 info.clean = 0;
c4b46cb4
MD
517 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
518 vtruncbuf_bp_trunc_cmp,
c5724852 519 vtruncbuf_bp_trunc, &info);
c4b46cb4 520 if (count) {
6ea70f76 521 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
c4b46cb4
MD
522 "left over buffers in %s\n", count, filename);
523 }
524 } while(count);
984263bc 525
3b998fa9 526 lwkt_reltoken(&vp->v_token);
b1f72a5c 527
984263bc
MD
528 return (0);
529}
530
531/*
6bae6177
MD
532 * The callback buffer is beyond the new file EOF and must be destroyed.
533 * Note that the compare function must conform to the RB_SCAN's requirements.
534 */
535static
536int
537vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
538{
c5724852
MD
539 struct vtruncbuf_info *info = data;
540
541 if (bp->b_loffset >= info->truncloffset)
6bae6177
MD
542 return(0);
543 return(-1);
544}
545
546static
547int
548vtruncbuf_bp_trunc(struct buf *bp, void *data)
549{
c5724852
MD
550 struct vtruncbuf_info *info = data;
551
6bae6177
MD
552 /*
553 * Do not try to use a buffer we cannot immediately lock, but sleep
554 * anyway to prevent a livelock. The code will loop until all buffers
555 * can be acted upon.
c5724852
MD
556 *
557 * We must always revalidate the buffer after locking it to deal
558 * with MP races.
6bae6177
MD
559 */
560 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
c5724852 561 atomic_add_int(&bp->b_refs, 1);
6bae6177
MD
562 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
563 BUF_UNLOCK(bp);
c5724852
MD
564 atomic_subtract_int(&bp->b_refs, 1);
565 } else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
566 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
567 bp->b_vp != info->vp ||
568 vtruncbuf_bp_trunc_cmp(bp, data)) {
569 BUF_UNLOCK(bp);
6bae6177
MD
570 } else {
571 bremfree(bp);
135bd6a8 572 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
6bae6177
MD
573 brelse(bp);
574 }
575 return(1);
576}
577
578/*
579 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
54078292 580 * blocks (with a negative loffset) are scanned.
6bae6177
MD
581 * Note that the compare function must conform to the RB_SCAN's requirements.
582 */
583static int
c5724852 584vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
6bae6177 585{
54078292 586 if (bp->b_loffset < 0)
6bae6177
MD
587 return(0);
588 return(1);
589}
590
591static int
592vtruncbuf_bp_metasync(struct buf *bp, void *data)
593{
c5724852 594 struct vtruncbuf_info *info = data;
6bae6177 595
c5724852
MD
596 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
597 atomic_add_int(&bp->b_refs, 1);
598 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
599 BUF_UNLOCK(bp);
600 atomic_subtract_int(&bp->b_refs, 1);
601 } else if ((bp->b_flags & B_DELWRI) == 0 ||
602 bp->b_vp != info->vp ||
603 vtruncbuf_bp_metasync_cmp(bp, data)) {
604 BUF_UNLOCK(bp);
6bae6177 605 } else {
c5724852
MD
606 bremfree(bp);
607 if (bp->b_vp == info->vp)
608 bawrite(bp);
609 else
610 bwrite(bp);
6bae6177 611 }
c5724852 612 return(1);
6bae6177
MD
613}
614
615/*
616 * vfsync - implements a multipass fsync on a file which understands
617 * dependancies and meta-data. The passed vnode must be locked. The
618 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
619 *
620 * When fsyncing data asynchronously just do one consolidated pass starting
621 * with the most negative block number. This may not get all the data due
622 * to dependancies.
623 *
624 * When fsyncing data synchronously do a data pass, then a metadata pass,
625 * then do additional data+metadata passes to try to get all the data out.
626 */
627static int vfsync_wait_output(struct vnode *vp,
628 int (*waitoutput)(struct vnode *, struct thread *));
c5724852 629static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
6bae6177
MD
630static int vfsync_data_only_cmp(struct buf *bp, void *data);
631static int vfsync_meta_only_cmp(struct buf *bp, void *data);
632static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
633static int vfsync_bp(struct buf *bp, void *data);
634
635struct vfsync_info {
636 struct vnode *vp;
637 int synchronous;
638 int syncdeps;
639 int lazycount;
640 int lazylimit;
54078292 641 int skippedbufs;
6bae6177 642 int (*checkdef)(struct buf *);
c5724852 643 int (*cmpfunc)(struct buf *, void *);
6bae6177
MD
644};
645
646int
4e0ecc94 647vfsync(struct vnode *vp, int waitfor, int passes,
6bae6177
MD
648 int (*checkdef)(struct buf *),
649 int (*waitoutput)(struct vnode *, struct thread *))
650{
651 struct vfsync_info info;
652 int error;
653
654 bzero(&info, sizeof(info));
655 info.vp = vp;
6bae6177
MD
656 if ((info.checkdef = checkdef) == NULL)
657 info.syncdeps = 1;
658
3b998fa9 659 lwkt_gettoken(&vp->v_token);
e43a034f 660
6bae6177 661 switch(waitfor) {
28271622 662 case MNT_LAZY | MNT_NOWAIT:
6bae6177
MD
663 case MNT_LAZY:
664 /*
665 * Lazy (filesystem syncer typ) Asynchronous plus limit the
666 * number of data (not meta) pages we try to flush to 1MB.
667 * A non-zero return means that lazy limit was reached.
668 */
669 info.lazylimit = 1024 * 1024;
670 info.syncdeps = 1;
c5724852 671 info.cmpfunc = vfsync_lazy_range_cmp;
6bae6177
MD
672 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
673 vfsync_lazy_range_cmp, vfsync_bp, &info);
c5724852 674 info.cmpfunc = vfsync_meta_only_cmp;
6bae6177 675 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
c5724852 676 vfsync_meta_only_cmp, vfsync_bp, &info);
6bae6177
MD
677 if (error == 0)
678 vp->v_lazyw = 0;
679 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
77912481 680 vn_syncer_add(vp, 1);
6bae6177
MD
681 error = 0;
682 break;
683 case MNT_NOWAIT:
684 /*
685 * Asynchronous. Do a data-only pass and a meta-only pass.
686 */
687 info.syncdeps = 1;
c5724852 688 info.cmpfunc = vfsync_data_only_cmp;
6bae6177
MD
689 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
690 vfsync_bp, &info);
c5724852 691 info.cmpfunc = vfsync_meta_only_cmp;
6bae6177
MD
692 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
693 vfsync_bp, &info);
694 error = 0;
695 break;
696 default:
697 /*
698 * Synchronous. Do a data-only pass, then a meta-data+data
699 * pass, then additional integrated passes to try to get
700 * all the dependancies flushed.
701 */
c5724852 702 info.cmpfunc = vfsync_data_only_cmp;
6bae6177
MD
703 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
704 vfsync_bp, &info);
705 error = vfsync_wait_output(vp, waitoutput);
706 if (error == 0) {
54078292 707 info.skippedbufs = 0;
c5724852 708 info.cmpfunc = vfsync_dummy_cmp;
6bae6177
MD
709 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
710 vfsync_bp, &info);
711 error = vfsync_wait_output(vp, waitoutput);
20045e8c
MD
712 if (info.skippedbufs) {
713 kprintf("Warning: vfsync skipped %d dirty "
714 "bufs in pass2!\n", info.skippedbufs);
715 }
6bae6177
MD
716 }
717 while (error == 0 && passes > 0 &&
0202303b
MD
718 !RB_EMPTY(&vp->v_rbdirty_tree)
719 ) {
6bae6177
MD
720 if (--passes == 0) {
721 info.synchronous = 1;
722 info.syncdeps = 1;
723 }
c5724852 724 info.cmpfunc = vfsync_dummy_cmp;
6bae6177 725 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
c5724852 726 vfsync_bp, &info);
6bae6177
MD
727 if (error < 0)
728 error = -error;
729 info.syncdeps = 1;
730 if (error == 0)
731 error = vfsync_wait_output(vp, waitoutput);
732 }
733 break;
734 }
3b998fa9 735 lwkt_reltoken(&vp->v_token);
6bae6177
MD
736 return(error);
737}
738
739static int
a9a20f98
MD
740vfsync_wait_output(struct vnode *vp,
741 int (*waitoutput)(struct vnode *, struct thread *))
6bae6177 742{
a9a20f98 743 int error;
6bae6177 744
a9a20f98 745 error = bio_track_wait(&vp->v_track_write, 0, 0);
6bae6177
MD
746 if (waitoutput)
747 error = waitoutput(vp, curthread);
748 return(error);
749}
750
751static int
c5724852
MD
752vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
753{
754 return(0);
755}
756
757static int
6bae6177
MD
758vfsync_data_only_cmp(struct buf *bp, void *data)
759{
54078292 760 if (bp->b_loffset < 0)
6bae6177
MD
761 return(-1);
762 return(0);
763}
764
765static int
766vfsync_meta_only_cmp(struct buf *bp, void *data)
767{
54078292 768 if (bp->b_loffset < 0)
6bae6177
MD
769 return(0);
770 return(1);
771}
772
773static int
774vfsync_lazy_range_cmp(struct buf *bp, void *data)
775{
776 struct vfsync_info *info = data;
c5724852 777
54078292 778 if (bp->b_loffset < info->vp->v_lazyw)
6bae6177
MD
779 return(-1);
780 return(0);
781}
782
783static int
784vfsync_bp(struct buf *bp, void *data)
785{
786 struct vfsync_info *info = data;
787 struct vnode *vp = info->vp;
788 int error;
789
790 /*
c5724852
MD
791 * Ignore buffers that we cannot immediately lock.
792 */
793 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
c5724852
MD
794 ++info->skippedbufs;
795 return(0);
796 }
797
798 /*
799 * We must revalidate the buffer after locking.
6bae6177 800 */
c5724852
MD
801 if ((bp->b_flags & B_DELWRI) == 0 ||
802 bp->b_vp != info->vp ||
803 info->cmpfunc(bp, data)) {
804 BUF_UNLOCK(bp);
6bae6177 805 return(0);
c5724852 806 }
6bae6177
MD
807
808 /*
c5724852
MD
809 * If syncdeps is not set we do not try to write buffers which have
810 * dependancies.
6bae6177 811 */
c5724852
MD
812 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
813 BUF_UNLOCK(bp);
6bae6177 814 return(0);
54078292 815 }
6bae6177
MD
816
817 /*
818 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
819 * has been written but an additional handshake with the device
820 * is required before we can dispose of the buffer. We have no idea
821 * how to do this so we have to skip these buffers.
822 */
823 if (bp->b_flags & B_NEEDCOMMIT) {
824 BUF_UNLOCK(bp);
825 return(0);
826 }
827
17a8ba12 828 /*
c5724852
MD
829 * Ask bioops if it is ok to sync. If not the VFS may have
830 * set B_LOCKED so we have to cycle the buffer.
17a8ba12
MD
831 */
832 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
833 bremfree(bp);
834 brelse(bp);
835 return(0);
836 }
837
6bae6177
MD
838 if (info->synchronous) {
839 /*
840 * Synchronous flushing. An error may be returned.
841 */
842 bremfree(bp);
6bae6177 843 error = bwrite(bp);
6bae6177
MD
844 } else {
845 /*
846 * Asynchronous flushing. A negative return value simply
847 * stops the scan and is not considered an error. We use
848 * this to support limited MNT_LAZY flushes.
849 */
54078292 850 vp->v_lazyw = bp->b_loffset;
9de13b88
MD
851 bremfree(bp);
852 info->lazycount += cluster_awrite(bp);
aa1bfd98 853 waitrunningbufspace();
55b50bd5 854 vm_wait_nominal();
6bae6177
MD
855 if (info->lazylimit && info->lazycount >= info->lazylimit)
856 error = 1;
857 else
858 error = 0;
859 }
860 return(-error);
861}
862
863/*
984263bc 864 * Associate a buffer with a vnode.
b1c20cfa
MD
865 *
866 * MPSAFE
984263bc 867 */
b1c20cfa 868int
7608650f 869bgetvp(struct vnode *vp, struct buf *bp, int testsize)
984263bc 870{
984263bc 871 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
9e45bec7 872 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
984263bc 873
0202303b 874 /*
984263bc
MD
875 * Insert onto list for new vnode.
876 */
3b998fa9 877 lwkt_gettoken(&vp->v_token);
c5724852 878
b1c20cfa 879 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
3b998fa9 880 lwkt_reltoken(&vp->v_token);
b1c20cfa
MD
881 return (EEXIST);
882 }
7608650f
MD
883
884 /*
885 * Diagnostics (mainly for HAMMER debugging). Check for
886 * overlapping buffers.
887 */
888 if (check_buf_overlap) {
889 struct buf *bx;
890 bx = buf_rb_hash_RB_PREV(bp);
891 if (bx) {
892 if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
893 kprintf("bgetvp: overlapl %016jx/%d %016jx "
894 "bx %p bp %p\n",
895 (intmax_t)bx->b_loffset,
896 bx->b_bufsize,
897 (intmax_t)bp->b_loffset,
898 bx, bp);
899 if (check_buf_overlap > 1)
900 panic("bgetvp - overlapping buffer");
901 }
902 }
903 bx = buf_rb_hash_RB_NEXT(bp);
904 if (bx) {
905 if (bp->b_loffset + testsize > bx->b_loffset) {
906 kprintf("bgetvp: overlapr %016jx/%d %016jx "
907 "bp %p bx %p\n",
908 (intmax_t)bp->b_loffset,
909 testsize,
910 (intmax_t)bx->b_loffset,
911 bp, bx);
912 if (check_buf_overlap > 1)
913 panic("bgetvp - overlapping buffer");
914 }
915 }
916 }
1f1ea522
MD
917 bp->b_vp = vp;
918 bp->b_flags |= B_HASHED;
9e45bec7 919 bp->b_flags |= B_VNCLEAN;
6bae6177 920 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
1f1ea522 921 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
b1c20cfa 922 vhold(vp);
3b998fa9 923 lwkt_reltoken(&vp->v_token);
b1c20cfa 924 return(0);
984263bc
MD
925}
926
927/*
928 * Disassociate a buffer from a vnode.
77912481
MD
929 *
930 * MPSAFE
984263bc
MD
931 */
932void
dd98570a 933brelvp(struct buf *bp)
984263bc
MD
934{
935 struct vnode *vp;
984263bc
MD
936
937 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
938
939 /*
940 * Delete from old vnode list, if on one.
941 */
942 vp = bp->b_vp;
3b998fa9 943 lwkt_gettoken(&vp->v_token);
9e45bec7
MD
944 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
945 if (bp->b_flags & B_VNDIRTY)
6bae6177
MD
946 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
947 else
948 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
9e45bec7 949 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
984263bc 950 }
1f1ea522
MD
951 if (bp->b_flags & B_HASHED) {
952 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
953 bp->b_flags &= ~B_HASHED;
954 }
77912481
MD
955 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree))
956 vn_syncer_remove(vp);
5fd012e0 957 bp->b_vp = NULL;
77912481 958
3b998fa9 959 lwkt_reltoken(&vp->v_token);
0202303b 960
5fd012e0 961 vdrop(vp);
984263bc
MD
962}
963
964/*
1f1ea522
MD
965 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
966 * This routine is called when the state of the B_DELWRI bit is changed.
b1c20cfa 967 *
c5724852 968 * Must be called with vp->v_token held.
b1c20cfa 969 * MPSAFE
984263bc
MD
970 */
971void
1f1ea522 972reassignbuf(struct buf *bp)
984263bc 973{
1f1ea522 974 struct vnode *vp = bp->b_vp;
984263bc 975 int delay;
984263bc 976
c5724852 977 ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
984263bc
MD
978 ++reassignbufcalls;
979
980 /*
981 * B_PAGING flagged buffers cannot be reassigned because their vp
982 * is not fully linked in.
983 */
984 if (bp->b_flags & B_PAGING)
985 panic("cannot reassign paging buffer");
986
984263bc 987 if (bp->b_flags & B_DELWRI) {
1f1ea522
MD
988 /*
989 * Move to the dirty list, add the vnode to the worklist
990 */
9e45bec7 991 if (bp->b_flags & B_VNCLEAN) {
1f1ea522 992 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
9e45bec7 993 bp->b_flags &= ~B_VNCLEAN;
1f1ea522 994 }
9e45bec7 995 if ((bp->b_flags & B_VNDIRTY) == 0) {
1f1ea522
MD
996 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
997 panic("reassignbuf: dup lblk vp %p bp %p",
998 vp, bp);
999 }
9e45bec7 1000 bp->b_flags |= B_VNDIRTY;
1f1ea522
MD
1001 }
1002 if ((vp->v_flag & VONWORKLST) == 0) {
1003 switch (vp->v_type) {
984263bc
MD
1004 case VDIR:
1005 delay = dirdelay;
1006 break;
1007 case VCHR:
1008 case VBLK:
1f1ea522
MD
1009 if (vp->v_rdev &&
1010 vp->v_rdev->si_mountpoint != NULL) {
984263bc
MD
1011 delay = metadelay;
1012 break;
1013 }
1014 /* fall through */
1015 default:
1016 delay = filedelay;
1017 }
77912481 1018 vn_syncer_add(vp, delay);
984263bc 1019 }
984263bc 1020 } else {
1f1ea522
MD
1021 /*
1022 * Move to the clean list, remove the vnode from the worklist
1023 * if no dirty blocks remain.
1024 */
9e45bec7 1025 if (bp->b_flags & B_VNDIRTY) {
1f1ea522 1026 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
9e45bec7 1027 bp->b_flags &= ~B_VNDIRTY;
1f1ea522 1028 }
9e45bec7 1029 if ((bp->b_flags & B_VNCLEAN) == 0) {
1f1ea522
MD
1030 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1031 panic("reassignbuf: dup lblk vp %p bp %p",
1032 vp, bp);
1033 }
9e45bec7 1034 bp->b_flags |= B_VNCLEAN;
1f1ea522
MD
1035 }
1036 if ((vp->v_flag & VONWORKLST) &&
1037 RB_EMPTY(&vp->v_rbdirty_tree)) {
77912481 1038 vn_syncer_remove(vp);
984263bc 1039 }
984263bc 1040 }
984263bc
MD
1041}
1042
1043/*
2d5beb81
MD
1044 * Create a vnode for a block device. Used for mounting the root file
1045 * system.
1046 *
1047 * A vref()'d vnode is returned.
984263bc 1048 */
cd29885a 1049extern struct vop_ops *devfs_vnode_dev_vops_p;
984263bc 1050int
b13267a5 1051bdevvp(cdev_t dev, struct vnode **vpp)
984263bc 1052{
1fd87d54 1053 struct vnode *vp;
984263bc
MD
1054 struct vnode *nvp;
1055 int error;
1056
028066b1 1057 if (dev == NULL) {
984263bc
MD
1058 *vpp = NULLVP;
1059 return (ENXIO);
1060 }
aec8eea4
MD
1061 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1062 &nvp, 0, 0);
984263bc
MD
1063 if (error) {
1064 *vpp = NULLVP;
1065 return (error);
1066 }
1067 vp = nvp;
e4c9c0c8 1068 vp->v_type = VCHR;
9b823501 1069#if 0
cd29885a 1070 vp->v_rdev = dev;
9b823501
AH
1071#endif
1072 v_associate_rdev(vp, dev);
0e9b9130
MD
1073 vp->v_umajor = dev->si_umajor;
1074 vp->v_uminor = dev->si_uminor;
5fd012e0 1075 vx_unlock(vp);
984263bc
MD
1076 *vpp = vp;
1077 return (0);
5fd012e0 1078}
41a01a4d 1079
984263bc 1080int
b13267a5 1081v_associate_rdev(struct vnode *vp, cdev_t dev)
984263bc 1082{
0e9b9130 1083 if (dev == NULL)
5fd012e0
MD
1084 return(ENXIO);
1085 if (dev_is_good(dev) == 0)
1086 return(ENXIO);
1087 KKASSERT(vp->v_rdev == NULL);
5fd012e0 1088 vp->v_rdev = reference_dev(dev);
3b998fa9 1089 lwkt_gettoken(&spechash_token);
0de08e6d 1090 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
3b998fa9 1091 lwkt_reltoken(&spechash_token);
5fd012e0
MD
1092 return(0);
1093}
984263bc 1094
5fd012e0
MD
1095void
1096v_release_rdev(struct vnode *vp)
1097{
b13267a5 1098 cdev_t dev;
984263bc 1099
5fd012e0 1100 if ((dev = vp->v_rdev) != NULL) {
3b998fa9 1101 lwkt_gettoken(&spechash_token);
0de08e6d 1102 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
5fd012e0 1103 vp->v_rdev = NULL;
5fd012e0 1104 release_dev(dev);
3b998fa9 1105 lwkt_reltoken(&spechash_token);
984263bc 1106 }
984263bc
MD
1107}
1108
1109/*
b13267a5 1110 * Add a vnode to the alias list hung off the cdev_t. We only associate
5fd012e0
MD
1111 * the device number with the vnode. The actual device is not associated
1112 * until the vnode is opened (usually in spec_open()), and will be
1113 * disassociated on last close.
984263bc 1114 */
5fd012e0 1115void
0e9b9130 1116addaliasu(struct vnode *nvp, int x, int y)
984263bc 1117{
5fd012e0
MD
1118 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1119 panic("addaliasu on non-special vnode");
0e9b9130
MD
1120 nvp->v_umajor = x;
1121 nvp->v_uminor = y;
984263bc
MD
1122}
1123
1124/*
cf683bae
MD
1125 * Simple call that a filesystem can make to try to get rid of a
1126 * vnode. It will fail if anyone is referencing the vnode (including
1127 * the caller).
1128 *
1129 * The filesystem can check whether its in-memory inode structure still
1130 * references the vp on return.
1131 */
1132void
1133vclean_unlocked(struct vnode *vp)
1134{
1135 vx_get(vp);
1136 if (sysref_isactive(&vp->v_sysref) == 0)
2b4ed70b 1137 vgone_vxlocked(vp);
cf683bae
MD
1138 vx_put(vp);
1139}
1140
1141/*
5fd012e0
MD
1142 * Disassociate a vnode from its underlying filesystem.
1143 *
3c37c940
MD
1144 * The vnode must be VX locked and referenced. In all normal situations
1145 * there are no active references. If vclean_vxlocked() is called while
1146 * there are active references, the vnode is being ripped out and we have
1147 * to call VOP_CLOSE() as appropriate before we can reclaim it.
984263bc 1148 */
5fd012e0 1149void
3c37c940 1150vclean_vxlocked(struct vnode *vp, int flags)
984263bc
MD
1151{
1152 int active;
8ddc6004 1153 int n;
7540ab49 1154 vm_object_t object;
28271622 1155 struct namecache *ncp;
984263bc
MD
1156
1157 /*
5fd012e0 1158 * If the vnode has already been reclaimed we have nothing to do.
984263bc 1159 */
3c37c940 1160 if (vp->v_flag & VRECLAIMED)
5fd012e0 1161 return;
2247fe02 1162 vsetflags(vp, VRECLAIMED);
984263bc 1163
28271622
MD
1164 if (verbose_reclaims) {
1165 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1166 kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1167 }
1168
984263bc 1169 /*
5fd012e0 1170 * Scrap the vfs cache
984263bc 1171 */
6b008938 1172 while (cache_inval_vp(vp, 0) != 0) {
28271622
MD
1173 kprintf("Warning: vnode %p clean/cache_resolution "
1174 "race detected\n", vp);
25cb3304
MD
1175 tsleep(vp, 0, "vclninv", 2);
1176 }
41a01a4d 1177
984263bc 1178 /*
5fd012e0
MD
1179 * Check to see if the vnode is in use. If so we have to reference it
1180 * before we clean it out so that its count cannot fall to zero and
1181 * generate a race against ourselves to recycle it.
984263bc 1182 */
3c37c940 1183 active = sysref_isactive(&vp->v_sysref);
984263bc
MD
1184
1185 /*
5fd012e0 1186 * Clean out any buffers associated with the vnode and destroy its
7540ab49 1187 * object, if it has one.
984263bc 1188 */
87de5057 1189 vinvalbuf(vp, V_SAVE, 0, 0);
7540ab49 1190
984263bc 1191 /*
8ddc6004
MD
1192 * If purging an active vnode (typically during a forced unmount
1193 * or reboot), it must be closed and deactivated before being
1194 * reclaimed. This isn't really all that safe, but what can
1195 * we do? XXX.
5fd012e0
MD
1196 *
1197 * Note that neither of these routines unlocks the vnode.
984263bc 1198 */
8ddc6004
MD
1199 if (active && (flags & DOCLOSE)) {
1200 while ((n = vp->v_opencount) != 0) {
1201 if (vp->v_writecount)
87de5057 1202 VOP_CLOSE(vp, FWRITE|FNONBLOCK);
8ddc6004 1203 else
87de5057 1204 VOP_CLOSE(vp, FNONBLOCK);
8ddc6004 1205 if (vp->v_opencount == n) {
6ea70f76 1206 kprintf("Warning: unable to force-close"
8ddc6004
MD
1207 " vnode %p\n", vp);
1208 break;
1209 }
1210 }
5fd012e0
MD
1211 }
1212
1213 /*
64e0b2d3 1214 * If the vnode has not been deactivated, deactivated it. Deactivation
e3bc9a94
MD
1215 * can create new buffers and VM pages so we have to call vinvalbuf()
1216 * again to make sure they all get flushed.
1217 *
1218 * This can occur if a file with a link count of 0 needs to be
1219 * truncated.
2247fe02
MD
1220 *
1221 * If the vnode is already dead don't try to deactivate it.
5fd012e0
MD
1222 */
1223 if ((vp->v_flag & VINACTIVE) == 0) {
2247fe02
MD
1224 vsetflags(vp, VINACTIVE);
1225 if (vp->v_mount)
1226 VOP_INACTIVE(vp);
e3bc9a94
MD
1227 vinvalbuf(vp, V_SAVE, 0, 0);
1228 }
1229
1230 /*
1231 * If the vnode has an object, destroy it.
1232 */
b12defdc
MD
1233 while ((object = vp->v_object) != NULL) {
1234 vm_object_hold(object);
1235 if (object == vp->v_object)
1236 break;
1237 vm_object_drop(object);
1238 }
1239
398c240d 1240 if (object != NULL) {
e3bc9a94 1241 if (object->ref_count == 0) {
b12defdc 1242 if ((object->flags & OBJ_DEAD) == 0)
e3bc9a94 1243 vm_object_terminate(object);
b12defdc 1244 vm_object_drop(object);
212f39f5 1245 vclrflags(vp, VOBJBUF);
e3bc9a94
MD
1246 } else {
1247 vm_pager_deallocate(object);
212f39f5 1248 vclrflags(vp, VOBJBUF);
b12defdc 1249 vm_object_drop(object);
e3bc9a94 1250 }
984263bc 1251 }
e3bc9a94
MD
1252 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1253
984263bc 1254 /*
2247fe02 1255 * Reclaim the vnode if not already dead.
984263bc 1256 */
2247fe02 1257 if (vp->v_mount && VOP_RECLAIM(vp))
984263bc
MD
1258 panic("vclean: cannot reclaim");
1259
984263bc
MD
1260 /*
1261 * Done with purge, notify sleepers of the grim news.
1262 */
66a1ddf5 1263 vp->v_ops = &dead_vnode_vops_p;
22a90887 1264 vn_gone(vp);
984263bc 1265 vp->v_tag = VT_NON;
64e0b2d3
MD
1266
1267 /*
1268 * If we are destroying an active vnode, reactivate it now that
1269 * we have reassociated it with deadfs. This prevents the system
1270 * from crashing on the vnode due to it being unexpectedly marked
1271 * as inactive or reclaimed.
1272 */
1273 if (active && (flags & DOCLOSE)) {
2247fe02 1274 vclrflags(vp, VINACTIVE | VRECLAIMED);
64e0b2d3 1275 }
984263bc
MD
1276}
1277
1278/*
1279 * Eliminate all activity associated with the requested vnode
1280 * and with all vnodes aliased to the requested vnode.
dd98570a 1281 *
b8477cda 1282 * The vnode must be referenced but should not be locked.
984263bc
MD
1283 */
1284int
b8477cda 1285vrevoke(struct vnode *vp, struct ucred *cred)
984263bc 1286{
b8477cda 1287 struct vnode *vq;
a32446b7 1288 struct vnode *vqn;
b13267a5 1289 cdev_t dev;
b8477cda 1290 int error;
e4c9c0c8
MD
1291
1292 /*
1293 * If the vnode has a device association, scrap all vnodes associated
1294 * with the device. Don't let the device disappear on us while we
1295 * are scrapping the vnodes.
5fd012e0
MD
1296 *
1297 * The passed vp will probably show up in the list, do not VX lock
1298 * it twice!
a32446b7
MD
1299 *
1300 * Releasing the vnode's rdev here can mess up specfs's call to
1301 * device close, so don't do it. The vnode has been disassociated
1302 * and the device will be closed after the last ref on the related
1303 * fp goes away (if not still open by e.g. the kernel).
e4c9c0c8 1304 */
b8477cda
MD
1305 if (vp->v_type != VCHR) {
1306 error = fdrevoke(vp, DTYPE_VNODE, cred);
1307 return (error);
1308 }
e4c9c0c8 1309 if ((dev = vp->v_rdev) == NULL) {
cd29885a 1310 return(0);
e4c9c0c8
MD
1311 }
1312 reference_dev(dev);
3b998fa9 1313 lwkt_gettoken(&spechash_token);
a32446b7 1314
d557dd6d 1315restart:
a32446b7
MD
1316 vqn = SLIST_FIRST(&dev->si_hlist);
1317 if (vqn)
d557dd6d 1318 vhold(vqn);
a32446b7 1319 while ((vq = vqn) != NULL) {
d557dd6d
MD
1320 if (sysref_isactive(&vq->v_sysref)) {
1321 vref(vq);
1322 fdrevoke(vq, DTYPE_VNODE, cred);
1323 /*v_release_rdev(vq);*/
1324 vrele(vq);
1325 if (vq->v_rdev != dev) {
1326 vdrop(vq);
1327 goto restart;
1328 }
1329 }
1330 vqn = SLIST_NEXT(vq, v_cdevnext);
a32446b7 1331 if (vqn)
d557dd6d
MD
1332 vhold(vqn);
1333 vdrop(vq);
984263bc 1334 }
3b998fa9 1335 lwkt_reltoken(&spechash_token);
a32446b7 1336 dev_drevoke(dev);
9b823501 1337 release_dev(dev);
984263bc
MD
1338 return (0);
1339}
1340
1341/*
3c37c940
MD
1342 * This is called when the object underlying a vnode is being destroyed,
1343 * such as in a remove(). Try to recycle the vnode immediately if the
1344 * only active reference is our reference.
c0c70b27
MD
1345 *
1346 * Directory vnodes in the namecache with children cannot be immediately
1347 * recycled because numerous VOP_N*() ops require them to be stable.
1b7df30a
MD
1348 *
1349 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1350 * function is a NOP if VRECLAIMED is already set.
984263bc
MD
1351 */
1352int
87de5057 1353vrecycle(struct vnode *vp)
984263bc 1354{
1b7df30a 1355 if (vp->v_sysref.refcnt <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
c0c70b27
MD
1356 if (cache_inval_vp_nonblock(vp))
1357 return(0);
3c37c940 1358 vgone_vxlocked(vp);
984263bc
MD
1359 return (1);
1360 }
984263bc
MD
1361 return (0);
1362}
1363
1364/*
2ec4b00d
MD
1365 * Return the maximum I/O size allowed for strategy calls on VP.
1366 *
1367 * If vp is VCHR or VBLK we dive the device, otherwise we use
1368 * the vp's mount info.
201cd612
MD
1369 *
1370 * The returned value is clamped at MAXPHYS as most callers cannot use
1371 * buffers larger than that size.
2ec4b00d
MD
1372 */
1373int
1374vmaxiosize(struct vnode *vp)
1375{
201cd612
MD
1376 int maxiosize;
1377
1378 if (vp->v_type == VBLK || vp->v_type == VCHR)
1379 maxiosize = vp->v_rdev->si_iosize_max;
1380 else
1381 maxiosize = vp->v_mount->mnt_iosize_max;
1382
1383 if (maxiosize > MAXPHYS)
1384 maxiosize = MAXPHYS;
1385 return (maxiosize);
2ec4b00d
MD
1386}
1387
1388/*
5fd012e0
MD
1389 * Eliminate all activity associated with a vnode in preparation for reuse.
1390 *
57ac0c99
MD
1391 * The vnode must be VX locked and refd and will remain VX locked and refd
1392 * on return. This routine may be called with the vnode in any state, as
1393 * long as it is VX locked. The vnode will be cleaned out and marked
1394 * VRECLAIMED but will not actually be reused until all existing refs and
1395 * holds go away.
5fd012e0
MD
1396 *
1397 * NOTE: This routine may be called on a vnode which has not yet been
1398 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1399 * already been reclaimed.
1400 *
1401 * This routine is not responsible for placing us back on the freelist.
1402 * Instead, it happens automatically when the caller releases the VX lock
1403 * (assuming there aren't any other references).
984263bc 1404 */
e3332475 1405void
3c37c940 1406vgone_vxlocked(struct vnode *vp)
e3332475 1407{
984263bc 1408 /*
5fd012e0 1409 * assert that the VX lock is held. This is an absolute requirement
3c37c940 1410 * now for vgone_vxlocked() to be called.
984263bc 1411 */
5fd012e0 1412 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
984263bc
MD
1413
1414 /*
5fd012e0 1415 * Clean out the filesystem specific data and set the VRECLAIMED
e3332475 1416 * bit. Also deactivate the vnode if necessary.
984263bc 1417 */
3c37c940 1418 vclean_vxlocked(vp, DOCLOSE);
984263bc
MD
1419
1420 /*
1421 * Delete from old mount point vnode list, if on one.
1422 */
1b7df30a
MD
1423 if (vp->v_mount != NULL) {
1424 KKASSERT(vp->v_data == NULL);
5fd012e0 1425 insmntque(vp, NULL);
1b7df30a 1426 }
dd98570a 1427
984263bc
MD
1428 /*
1429 * If special device, remove it from special device alias list
1fbb5fc0
MD
1430 * if it is on one. This should normally only occur if a vnode is
1431 * being revoked as the device should otherwise have been released
1432 * naturally.
984263bc
MD
1433 */
1434 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
e4c9c0c8 1435 v_release_rdev(vp);
984263bc
MD
1436 }
1437
1438 /*
5fd012e0 1439 * Set us to VBAD
984263bc 1440 */
984263bc 1441 vp->v_type = VBAD;
984263bc
MD
1442}
1443
1444/*
1445 * Lookup a vnode by device number.
3875f5b0
MD
1446 *
1447 * Returns non-zero and *vpp set to a vref'd vnode on success.
1448 * Returns zero on failure.
984263bc
MD
1449 */
1450int
b13267a5 1451vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
984263bc
MD
1452{
1453 struct vnode *vp;
1454
3b998fa9 1455 lwkt_gettoken(&spechash_token);
0de08e6d 1456 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
984263bc
MD
1457 if (type == vp->v_type) {
1458 *vpp = vp;
3875f5b0 1459 vref(vp);
3b998fa9 1460 lwkt_reltoken(&spechash_token);
984263bc
MD
1461 return (1);
1462 }
1463 }
3b998fa9 1464 lwkt_reltoken(&spechash_token);
984263bc
MD
1465 return (0);
1466}
1467
1468/*
e4c9c0c8
MD
1469 * Calculate the total number of references to a special device. This
1470 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
028066b1 1471 * an overloaded field. Since udev2dev can now return NULL, we have
e4c9c0c8 1472 * to check for a NULL v_rdev.
984263bc
MD
1473 */
1474int
b13267a5 1475count_dev(cdev_t dev)
984263bc 1476{
e4c9c0c8
MD
1477 struct vnode *vp;
1478 int count = 0;
984263bc 1479
e4c9c0c8 1480 if (SLIST_FIRST(&dev->si_hlist)) {
3b998fa9 1481 lwkt_gettoken(&spechash_token);
0de08e6d 1482 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
9b823501 1483 count += vp->v_opencount;
e4c9c0c8 1484 }
3b998fa9 1485 lwkt_reltoken(&spechash_token);
e4c9c0c8
MD
1486 }
1487 return(count);
984263bc
MD
1488}
1489
984263bc 1490int
e4c9c0c8
MD
1491vcount(struct vnode *vp)
1492{
1493 if (vp->v_rdev == NULL)
1494 return(0);
1495 return(count_dev(vp->v_rdev));
984263bc
MD
1496}
1497
1498/*
1c843a13
MD
1499 * Initialize VMIO for a vnode. This routine MUST be called before a
1500 * VFS can issue buffer cache ops on a vnode. It is typically called
1501 * when a vnode is initialized from its inode.
7540ab49
MD
1502 */
1503int
b0d18f7d 1504vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
7540ab49 1505{
7540ab49
MD
1506 vm_object_t object;
1507 int error = 0;
1508
1509retry:
b12defdc
MD
1510 while ((object = vp->v_object) != NULL) {
1511 vm_object_hold(object);
1512 if (object == vp->v_object)
1513 break;
1514 vm_object_drop(object);
1515 }
1516
1517 if (object == NULL) {
b0d18f7d 1518 object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
b12defdc 1519
7540ab49
MD
1520 /*
1521 * Dereference the reference we just created. This assumes
1522 * that the object is associated with the vp.
1523 */
b12defdc 1524 vm_object_hold(object);
7540ab49 1525 object->ref_count--;
3c37c940 1526 vrele(vp);
7540ab49
MD
1527 } else {
1528 if (object->flags & OBJ_DEAD) {
a11aaa81 1529 vn_unlock(vp);
2de4f77e
MD
1530 if (vp->v_object == object)
1531 vm_object_dead_sleep(object, "vodead");
ca466bae 1532 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
b12defdc 1533 vm_object_drop(object);
7540ab49
MD
1534 goto retry;
1535 }
1536 }
1537 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
2247fe02 1538 vsetflags(vp, VOBJBUF);
b12defdc 1539 vm_object_drop(object);
2de4f77e 1540
7540ab49
MD
1541 return (error);
1542}
1543
1544
1545/*
984263bc
MD
1546 * Print out a description of a vnode.
1547 */
1548static char *typename[] =
1549{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1550
1551void
dd98570a 1552vprint(char *label, struct vnode *vp)
984263bc
MD
1553{
1554 char buf[96];
1555
1556 if (label != NULL)
6ea70f76 1557 kprintf("%s: %p: ", label, (void *)vp);
984263bc 1558 else
6ea70f76 1559 kprintf("%p: ", (void *)vp);
3c37c940
MD
1560 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1561 typename[vp->v_type],
1562 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
984263bc
MD
1563 buf[0] = '\0';
1564 if (vp->v_flag & VROOT)
1565 strcat(buf, "|VROOT");
67863d04
MD
1566 if (vp->v_flag & VPFSROOT)
1567 strcat(buf, "|VPFSROOT");
984263bc
MD
1568 if (vp->v_flag & VTEXT)
1569 strcat(buf, "|VTEXT");
1570 if (vp->v_flag & VSYSTEM)
1571 strcat(buf, "|VSYSTEM");
984263bc
MD
1572 if (vp->v_flag & VFREE)
1573 strcat(buf, "|VFREE");
1574 if (vp->v_flag & VOBJBUF)
1575 strcat(buf, "|VOBJBUF");
1576 if (buf[0] != '\0')
6ea70f76 1577 kprintf(" flags (%s)", &buf[1]);
984263bc 1578 if (vp->v_data == NULL) {
6ea70f76 1579 kprintf("\n");
984263bc 1580 } else {
6ea70f76 1581 kprintf("\n\t");
984263bc
MD
1582 VOP_PRINT(vp);
1583 }
1584}
1585
3b0783db
SK
1586/*
1587 * Do the usual access checking.
1588 * file_mode, uid and gid are from the vnode in question,
1589 * while acc_mode and cred are from the VOP_ACCESS parameter list
1590 */
1591int
1592vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1593 mode_t acc_mode, struct ucred *cred)
1594{
1595 mode_t mask;
aa8969cf 1596 int ismember;
3b0783db
SK
1597
1598 /*
1599 * Super-user always gets read/write access, but execute access depends
1600 * on at least one execute bit being set.
1601 */
1602 if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1603 if ((acc_mode & VEXEC) && type != VDIR &&
1604 (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1605 return (EACCES);
1606 return (0);
1607 }
1608
1609 mask = 0;
1610
1611 /* Otherwise, check the owner. */
1612 if (cred->cr_uid == uid) {
1613 if (acc_mode & VEXEC)
1614 mask |= S_IXUSR;
1615 if (acc_mode & VREAD)
1616 mask |= S_IRUSR;
1617 if (acc_mode & VWRITE)
1618 mask |= S_IWUSR;
1619 return ((file_mode & mask) == mask ? 0 : EACCES);
1620 }
1621
1622 /* Otherwise, check the groups. */
1623 ismember = groupmember(gid, cred);
1624 if (cred->cr_svgid == gid || ismember) {
1625 if (acc_mode & VEXEC)
1626 mask |= S_IXGRP;
1627 if (acc_mode & VREAD)
1628 mask |= S_IRGRP;
1629 if (acc_mode & VWRITE)
1630 mask |= S_IWGRP;
1631 return ((file_mode & mask) == mask ? 0 : EACCES);
1632 }
1633
1634 /* Otherwise, check everyone else. */
1635 if (acc_mode & VEXEC)
1636 mask |= S_IXOTH;
1637 if (acc_mode & VREAD)
1638 mask |= S_IROTH;
1639 if (acc_mode & VWRITE)
1640 mask |= S_IWOTH;
1641 return ((file_mode & mask) == mask ? 0 : EACCES);
1642}
1643
984263bc
MD
1644#ifdef DDB
1645#include <ddb/ddb.h>
861905fb
MD
1646
1647static int db_show_locked_vnodes(struct mount *mp, void *data);
1648
984263bc
MD
1649/*
1650 * List all of the locked vnodes in the system.
1651 * Called when debugging the kernel.
1652 */
1653DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1654{
6ea70f76 1655 kprintf("Locked vnodes\n");
861905fb
MD
1656 mountlist_scan(db_show_locked_vnodes, NULL,
1657 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1658}
1659
1660static int
1661db_show_locked_vnodes(struct mount *mp, void *data __unused)
1662{
984263bc
MD
1663 struct vnode *vp;
1664
861905fb 1665 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
a11aaa81 1666 if (vn_islocked(vp))
60233e58 1667 vprint(NULL, vp);
984263bc 1668 }
861905fb 1669 return(0);
984263bc
MD
1670}
1671#endif
1672
1673/*
1674 * Top level filesystem related information gathering.
1675 */
402ed7e1 1676static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
984263bc
MD
1677
1678static int
1679vfs_sysctl(SYSCTL_HANDLER_ARGS)
1680{
1681 int *name = (int *)arg1 - 1; /* XXX */
1682 u_int namelen = arg2 + 1; /* XXX */
1683 struct vfsconf *vfsp;
2613053d 1684 int maxtypenum;
984263bc
MD
1685
1686#if 1 || defined(COMPAT_PRELITE2)
1687 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1688 if (namelen == 1)
1689 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1690#endif
1691
1692#ifdef notyet
1693 /* all sysctl names at this level are at least name and field */
1694 if (namelen < 2)
1695 return (ENOTDIR); /* overloaded */
1696 if (name[0] != VFS_GENERIC) {
2613053d 1697 vfsp = vfsconf_find_by_typenum(name[0]);
984263bc
MD
1698 if (vfsp == NULL)
1699 return (EOPNOTSUPP);
1700 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1701 oldp, oldlenp, newp, newlen, p));
1702 }
1703#endif
1704 switch (name[1]) {
1705 case VFS_MAXTYPENUM:
1706 if (namelen != 2)
1707 return (ENOTDIR);
2613053d
MN
1708 maxtypenum = vfsconf_get_maxtypenum();
1709 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
984263bc
MD
1710 case VFS_CONF:
1711 if (namelen != 3)
1712 return (ENOTDIR); /* overloaded */
2613053d 1713 vfsp = vfsconf_find_by_typenum(name[2]);
984263bc
MD
1714 if (vfsp == NULL)
1715 return (EOPNOTSUPP);
1716 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1717 }
1718 return (EOPNOTSUPP);
1719}
1720
1721SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1722 "Generic filesystem");
1723
1724#if 1 || defined(COMPAT_PRELITE2)
1725
1726static int
2613053d 1727sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
984263bc
MD
1728{
1729 int error;
984263bc 1730 struct ovfsconf ovfs;
2613053d
MN
1731 struct sysctl_req *req = (struct sysctl_req*) data;
1732
1733 bzero(&ovfs, sizeof(ovfs));
1734 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1735 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1736 ovfs.vfc_index = vfsp->vfc_typenum;
1737 ovfs.vfc_refcount = vfsp->vfc_refcount;
1738 ovfs.vfc_flags = vfsp->vfc_flags;
1739 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1740 if (error)
1741 return error; /* abort iteration with error code */
1742 else
1743 return 0; /* continue iterating with next element */
1744}
984263bc 1745
2613053d
MN
1746static int
1747sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1748{
1749 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
984263bc
MD
1750}
1751
1752#endif /* 1 || COMPAT_PRELITE2 */
1753
984263bc
MD
1754/*
1755 * Check to see if a filesystem is mounted on a block device.
1756 */
1757int
e4c9c0c8 1758vfs_mountedon(struct vnode *vp)
984263bc 1759{
b13267a5 1760 cdev_t dev;
984263bc 1761
0e9b9130 1762 if ((dev = vp->v_rdev) == NULL) {
cd29885a
MD
1763/* if (vp->v_type != VBLK)
1764 dev = get_dev(vp->v_uminor, vp->v_umajor); */
0e9b9130 1765 }
028066b1 1766 if (dev != NULL && dev->si_mountpoint)
984263bc
MD
1767 return (EBUSY);
1768 return (0);
1769}
1770
1771/*
1772 * Unmount all filesystems. The list is traversed in reverse order
1773 * of mounting to avoid dependencies.
1774 */
861905fb
MD
1775
1776static int vfs_umountall_callback(struct mount *mp, void *data);
1777
984263bc 1778void
dd98570a 1779vfs_unmountall(void)
984263bc 1780{
861905fb 1781 int count;
984263bc 1782
861905fb
MD
1783 do {
1784 count = mountlist_scan(vfs_umountall_callback,
acde96db 1785 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
861905fb
MD
1786 } while (count);
1787}
1788
1789static
1790int
1791vfs_umountall_callback(struct mount *mp, void *data)
1792{
861905fb
MD
1793 int error;
1794
acde96db 1795 error = dounmount(mp, MNT_FORCE);
861905fb
MD
1796 if (error) {
1797 mountlist_remove(mp);
6ea70f76 1798 kprintf("unmount of filesystem mounted from %s failed (",
861905fb
MD
1799 mp->mnt_stat.f_mntfromname);
1800 if (error == EBUSY)
6ea70f76 1801 kprintf("BUSY)\n");
861905fb 1802 else
6ea70f76 1803 kprintf("%d)\n", error);
984263bc 1804 }
861905fb 1805 return(1);
984263bc
MD
1806}
1807
1808/*
177403a9
MD
1809 * Checks the mount flags for parameter mp and put the names comma-separated
1810 * into a string buffer buf with a size limit specified by len.
1811 *
1812 * It returns the number of bytes written into buf, and (*errorp) will be
1813 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1814 * not large enough). The buffer will be 0-terminated if len was not 0.
1815 */
177403a9 1816size_t
dad088a5
MD
1817vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1818 char *buf, size_t len, int *errorp)
177403a9
MD
1819{
1820 static const struct mountctl_opt optnames[] = {
1821 { MNT_ASYNC, "asynchronous" },
1822 { MNT_EXPORTED, "NFS exported" },
1823 { MNT_LOCAL, "local" },
1824 { MNT_NOATIME, "noatime" },
1825 { MNT_NODEV, "nodev" },
1826 { MNT_NOEXEC, "noexec" },
1827 { MNT_NOSUID, "nosuid" },
1828 { MNT_NOSYMFOLLOW, "nosymfollow" },
1829 { MNT_QUOTA, "with-quotas" },
1830 { MNT_RDONLY, "read-only" },
1831 { MNT_SYNCHRONOUS, "synchronous" },
1832 { MNT_UNION, "union" },
1833 { MNT_NOCLUSTERR, "noclusterr" },
1834 { MNT_NOCLUSTERW, "noclusterw" },
1835 { MNT_SUIDDIR, "suiddir" },
1836 { MNT_SOFTDEP, "soft-updates" },
dad088a5
MD
1837 { MNT_IGNORE, "ignore" },
1838 { 0, NULL}
177403a9 1839 };
177403a9
MD
1840 int bwritten;
1841 int bleft;
1842 int optlen;
eac446c5 1843 int actsize;
dad088a5 1844
177403a9 1845 *errorp = 0;
177403a9
MD
1846 bwritten = 0;
1847 bleft = len - 1; /* leave room for trailing \0 */
eac446c5
MD
1848
1849 /*
1850 * Checks the size of the string. If it contains
1851 * any data, then we will append the new flags to
1852 * it.
1853 */
1854 actsize = strlen(buf);
1855 if (actsize > 0)
1856 buf += actsize;
1857
1858 /* Default flags if no flags passed */
1859 if (optp == NULL)
1860 optp = optnames;
1861
177403a9
MD
1862 if (bleft < 0) { /* degenerate case, 0-length buffer */
1863 *errorp = EINVAL;
1864 return(0);
1865 }
1866
dad088a5
MD
1867 for (; flags && optp->o_opt; ++optp) {
1868 if ((flags & optp->o_opt) == 0)
177403a9 1869 continue;
dad088a5 1870 optlen = strlen(optp->o_name);
eac446c5 1871 if (bwritten || actsize > 0) {
dad088a5 1872 if (bleft < 2) {
177403a9
MD
1873 *errorp = ENOSPC;
1874 break;
1875 }
1876 buf[bwritten++] = ',';
dad088a5
MD
1877 buf[bwritten++] = ' ';
1878 bleft -= 2;
177403a9
MD
1879 }
1880 if (bleft < optlen) {
1881 *errorp = ENOSPC;
1882 break;
1883 }
dad088a5 1884 bcopy(optp->o_name, buf + bwritten, optlen);
177403a9
MD
1885 bwritten += optlen;
1886 bleft -= optlen;
dad088a5 1887 flags &= ~optp->o_opt;
177403a9
MD
1888 }
1889
1890 /*
1891 * Space already reserved for trailing \0
1892 */
1893 buf[bwritten] = 0;
1894 return (bwritten);
1895}
1896
177403a9 1897/*
984263bc
MD
1898 * Build hash lists of net addresses and hang them off the mount point.
1899 * Called by ufs_mount() to set up the lists of export addresses.
1900 */
1901static int
dd98570a 1902vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1aa89f17 1903 const struct export_args *argp)
984263bc 1904{
1fd87d54
RG
1905 struct netcred *np;
1906 struct radix_node_head *rnh;
1907 int i;
984263bc 1908 struct radix_node *rn;
4090d6ff 1909 struct sockaddr *saddr, *smask = NULL;
984263bc
MD
1910 struct domain *dom;
1911 int error;
1912
1913 if (argp->ex_addrlen == 0) {
1914 if (mp->mnt_flag & MNT_DEFEXPORTED)
1915 return (EPERM);
1916 np = &nep->ne_defexported;
1917 np->netc_exflags = argp->ex_flags;
1918 np->netc_anon = argp->ex_anon;
1919 np->netc_anon.cr_ref = 1;
1920 mp->mnt_flag |= MNT_DEFEXPORTED;
1921 return (0);
1922 }
1923
0260ddf9
MD
1924 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1925 return (EINVAL);
1926 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
984263bc
MD
1927 return (EINVAL);
1928
1929 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
e7b4468c 1930 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
984263bc
MD
1931 saddr = (struct sockaddr *) (np + 1);
1932 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1933 goto out;
1934 if (saddr->sa_len > argp->ex_addrlen)
1935 saddr->sa_len = argp->ex_addrlen;
1936 if (argp->ex_masklen) {
dd98570a
MD
1937 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1938 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
984263bc
MD
1939 if (error)
1940 goto out;
1941 if (smask->sa_len > argp->ex_masklen)
1942 smask->sa_len = argp->ex_masklen;
1943 }
1944 i = saddr->sa_family;
4090d6ff 1945 if ((rnh = nep->ne_rtable[i]) == NULL) {
984263bc
MD
1946 /*
1947 * Seems silly to initialize every AF when most are not used,
1948 * do so on demand here
1949 */
9c70fe43 1950 SLIST_FOREACH(dom, &domains, dom_next)
984263bc
MD
1951 if (dom->dom_family == i && dom->dom_rtattach) {
1952 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1953 dom->dom_rtoffset);
1954 break;
1955 }
4090d6ff 1956 if ((rnh = nep->ne_rtable[i]) == NULL) {
984263bc
MD
1957 error = ENOBUFS;
1958 goto out;
1959 }
1960 }
2e9572df 1961 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
984263bc 1962 np->netc_rnodes);
4090d6ff 1963 if (rn == NULL || np != (struct netcred *) rn) { /* already exists */
984263bc
MD
1964 error = EPERM;
1965 goto out;
1966 }
1967 np->netc_exflags = argp->ex_flags;
1968 np->netc_anon = argp->ex_anon;
1969 np->netc_anon.cr_ref = 1;
1970 return (0);
1971out:
efda3bd0 1972 kfree(np, M_NETADDR);
984263bc
MD
1973 return (error);
1974}
1975
1976/* ARGSUSED */
1977static int
dd98570a 1978vfs_free_netcred(struct radix_node *rn, void *w)
984263bc 1979{
1fd87d54 1980 struct radix_node_head *rnh = (struct radix_node_head *) w;
984263bc
MD
1981
1982 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
efda3bd0 1983 kfree((caddr_t) rn, M_NETADDR);
984263bc
MD
1984 return (0);
1985}
1986
1987/*
1988 * Free the net address hash lists that are hanging off the mount points.
1989 */
1990static void
dd98570a 1991vfs_free_addrlist(struct netexport *nep)
984263bc 1992{
1fd87d54
RG
1993 int i;
1994 struct radix_node_head *rnh;
984263bc
MD
1995
1996 for (i = 0; i <= AF_MAX; i++)
1997 if ((rnh = nep->ne_rtable[i])) {
1998 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1999 (caddr_t) rnh);
efda3bd0 2000 kfree((caddr_t) rnh, M_RTABLE);
984263bc
MD
2001 nep->ne_rtable[i] = 0;
2002 }
2003}
2004
2005int
1aa89f17
MD
2006vfs_export(struct mount *mp, struct netexport *nep,
2007 const struct export_args *argp)
984263bc
MD
2008{
2009 int error;
2010
2011 if (argp->ex_flags & MNT_DELEXPORT) {
2012 if (mp->mnt_flag & MNT_EXPUBLIC) {
2013 vfs_setpublicfs(NULL, NULL, NULL);
2014 mp->mnt_flag &= ~MNT_EXPUBLIC;
2015 }
2016 vfs_free_addrlist(nep);
2017 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2018 }
2019 if (argp->ex_flags & MNT_EXPORTED) {
2020 if (argp->ex_flags & MNT_EXPUBLIC) {
2021 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2022 return (error);
2023 mp->mnt_flag |= MNT_EXPUBLIC;
2024 }
2025 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2026 return (error);
2027 mp->mnt_flag |= MNT_EXPORTED;
2028 }
2029 return (0);
2030}
2031
2032
2033/*
2034 * Set the publicly exported filesystem (WebNFS). Currently, only
2035 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2036 */
2037int
dd98570a 2038vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1aa89f17 2039 const struct export_args *argp)
984263bc
MD
2040{
2041 int error;
2042 struct vnode *rvp;
2043 char *cp;
2044
2045 /*
2046 * mp == NULL -> invalidate the current info, the FS is
2047 * no longer exported. May be called from either vfs_export
2048 * or unmount, so check if it hasn't already been done.
2049 */
2050 if (mp == NULL) {
2051 if (nfs_pub.np_valid) {
2052 nfs_pub.np_valid = 0;
2053 if (nfs_pub.np_index != NULL) {
884717e1 2054 kfree(nfs_pub.np_index, M_TEMP);
984263bc
MD
2055 nfs_pub.np_index = NULL;
2056 }
2057 }
2058 return (0);
2059 }
2060
2061 /*
2062 * Only one allowed at a time.
2063 */
2064 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2065 return (EBUSY);
2066
2067 /*
2068 * Get real filehandle for root of exported FS.
2069 */
2070 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2071 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2072
2073 if ((error = VFS_ROOT(mp, &rvp)))
2074 return (error);
2075
2076 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2077 return (error);
2078
2079 vput(rvp);
2080
2081 /*
2082 * If an indexfile was specified, pull it in.
2083 */
2084 if (argp->ex_indexfile != NULL) {
b80c9733
JS
2085 int namelen;
2086
2087 error = vn_get_namelen(rvp, &namelen);
2088 if (error)
2089 return (error);
884717e1 2090 nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
984263bc 2091 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
60233e58 2092 namelen, NULL);
984263bc
MD
2093 if (!error) {
2094 /*
2095 * Check for illegal filenames.
2096 */
2097 for (cp = nfs_pub.np_index; *cp; cp++) {
2098 if (*cp == '/') {
2099 error = EINVAL;
2100 break;
2101 }
2102 }
2103 }
2104 if (error) {
884717e1 2105 kfree(nfs_pub.np_index, M_TEMP);
984263bc
MD
2106 return (error);
2107 }
2108 }
2109
2110 nfs_pub.np_mount = mp;
2111 nfs_pub.np_valid = 1;
2112 return (0);
2113}
2114
2115struct netcred *
dd98570a
MD
2116vfs_export_lookup(struct mount *mp, struct netexport *nep,
2117 struct sockaddr *nam)
984263bc 2118{
1fd87d54
RG
2119 struct netcred *np;
2120 struct radix_node_head *rnh;
984263bc
MD
2121 struct sockaddr *saddr;
2122
2123 np = NULL;
2124 if (mp->mnt_flag & MNT_EXPORTED) {
2125 /*
2126 * Lookup in the export list first.
2127 */
2128 if (nam != NULL) {
2129 saddr = nam;
2130 rnh = nep->ne_rtable[saddr->sa_family];
2131 if (rnh != NULL) {
2132 np = (struct netcred *)
2e9572df 2133 (*rnh->rnh_matchaddr)((char *)saddr,
984263bc
MD
2134 rnh);
2135 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2136 np = NULL;
2137 }
2138 }
2139 /*
2140 * If no address match, use the default if it exists.
2141 */
2142 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2143 np = &nep->ne_defexported;
2144 }
2145 return (np);
2146}
2147
2148/*
41a01a4d
MD
2149 * perform msync on all vnodes under a mount point. The mount point must
2150 * be locked. This code is also responsible for lazy-freeing unreferenced
2151 * vnodes whos VM objects no longer contain pages.
2152 *
2153 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
03a964e9
MD
2154 *
2155 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2156 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2157 * way up in this high level function.
984263bc 2158 */
41a01a4d 2159static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
5fd012e0 2160static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
41a01a4d 2161
984263bc
MD
2162void
2163vfs_msync(struct mount *mp, int flags)
2164{
03a964e9
MD
2165 int vmsc_flags;
2166
2bc7505b
MD
2167 /*
2168 * tmpfs sets this flag to prevent msync(), sync, and the
2169 * filesystem periodic syncer from trying to flush VM pages
2170 * to swap. Only pure memory pressure flushes tmpfs VM pages
2171 * to swap.
2172 */
2173 if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2174 return;
2175
2176 /*
2177 * Ok, scan the vnodes for work.
2178 */
03a964e9
MD
2179 vmsc_flags = VMSC_GETVP;
2180 if (flags != MNT_WAIT)
2181 vmsc_flags |= VMSC_NOWAIT;
72a0763a
MD
2182 vmntvnodescan(mp, vmsc_flags,
2183 vfs_msync_scan1, vfs_msync_scan2,
2184 (void *)(intptr_t)flags);
41a01a4d 2185}
984263bc 2186
41a01a4d
MD
2187/*
2188 * scan1 is a fast pre-check. There could be hundreds of thousands of
2189 * vnodes, we cannot afford to do anything heavy weight until we have a
2190 * fairly good indication that there is work to do.
2191 */
2192static
2193int
2194vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2195{
973c11b9 2196 int flags = (int)(intptr_t)data;
984263bc 2197
5fd012e0 2198 if ((vp->v_flag & VRECLAIMED) == 0) {
3c37c940 2199 if (vshouldmsync(vp))
5fd012e0 2200 return(0); /* call scan2 */
41a01a4d
MD
2201 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2202 (vp->v_flag & VOBJDIRTY) &&
a11aaa81 2203 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
5fd012e0 2204 return(0); /* call scan2 */
41a01a4d
MD
2205 }
2206 }
5fd012e0
MD
2207
2208 /*
2209 * do not call scan2, continue the loop
2210 */
41a01a4d
MD
2211 return(-1);
2212}
2213
03a964e9
MD
2214/*
2215 * This callback is handed a locked vnode.
2216 */
41a01a4d
MD
2217static
2218int
5fd012e0 2219vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
41a01a4d
MD
2220{
2221 vm_object_t obj;
973c11b9 2222 int flags = (int)(intptr_t)data;
41a01a4d 2223
5fd012e0 2224 if (vp->v_flag & VRECLAIMED)
41a01a4d
MD
2225 return(0);
2226
7540ab49
MD
2227 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2228 if ((obj = vp->v_object) != NULL) {
5fd012e0
MD
2229 vm_object_page_clean(obj, 0, 0,
2230 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
984263bc
MD
2231 }
2232 }
41a01a4d 2233 return(0);
984263bc
MD
2234}
2235
2236/*
22a90887 2237 * Wake up anyone interested in vp because it is being revoked.
984263bc
MD
2238 */
2239void
22a90887 2240vn_gone(struct vnode *vp)
984263bc 2241{
3b998fa9 2242 lwkt_gettoken(&vp->v_token);
5b22f1a7 2243 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
3b998fa9 2244 lwkt_reltoken(&vp->v_token);
984263bc
MD
2245}
2246
984263bc 2247/*
b13267a5 2248 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
e4c9c0c8 2249 * (or v_rdev might be NULL).
984263bc 2250 */
b13267a5 2251cdev_t
e4c9c0c8 2252vn_todev(struct vnode *vp)
984263bc
MD
2253{
2254 if (vp->v_type != VBLK && vp->v_type != VCHR)
028066b1 2255 return (NULL);
e4c9c0c8 2256 KKASSERT(vp->v_rdev != NULL);
984263bc
MD
2257 return (vp->v_rdev);
2258}
2259
2260/*
e4c9c0c8
MD
2261 * Check if vnode represents a disk device. The vnode does not need to be
2262 * opened.
2ad080fe
MD
2263 *
2264 * MPALMOSTSAFE
984263bc
MD
2265 */
2266int
e4c9c0c8 2267vn_isdisk(struct vnode *vp, int *errp)
984263bc 2268{
b13267a5 2269 cdev_t dev;
e4c9c0c8 2270
0e9b9130 2271 if (vp->v_type != VCHR) {
984263bc
MD
2272 if (errp != NULL)
2273 *errp = ENOTBLK;
2274 return (0);
2275 }
e4c9c0c8 2276
cd29885a 2277 dev = vp->v_rdev;
0e9b9130 2278
028066b1 2279 if (dev == NULL) {
984263bc
MD
2280 if (errp != NULL)
2281 *errp = ENXIO;
2282 return (0);
2283 }
e4c9c0c8 2284 if (dev_is_good(dev) == 0) {
984263bc
MD
2285 if (errp != NULL)
2286 *errp = ENXIO;
2287 return (0);
2288 }
e4c9c0c8 2289 if ((dev_dflags(dev) & D_DISK) == 0) {
984263bc
MD
2290 if (errp != NULL)
2291 *errp = ENOTBLK;
2292 return (0);
2293 }
2294 if (errp != NULL)
2295 *errp = 0;
2296 return (1);
2297}
2298
5d72d6ed
JS
2299int
2300vn_get_namelen(struct vnode *vp, int *namelen)
2301{
973c11b9
MD
2302 int error;
2303 register_t retval[2];
5d72d6ed
JS
2304
2305 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2306 if (error)
2307 return (error);
973c11b9 2308 *namelen = (int)retval[0];
5d72d6ed
JS
2309 return (0);
2310}
fc46f680
JS
2311
2312int
b45c5139
MD
2313vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2314 uint16_t d_namlen, const char *d_name)
fc46f680 2315{
01f31ab3
JS
2316 struct dirent *dp;
2317 size_t len;
fc46f680 2318
01f31ab3
JS
2319 len = _DIRENT_RECLEN(d_namlen);
2320 if (len > uio->uio_resid)
fc46f680
JS
2321 return(1);
2322
efda3bd0 2323 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
01f31ab3
JS
2324
2325 dp->d_ino = d_ino;
2326 dp->d_namlen = d_namlen;
fc46f680
JS
2327 dp->d_type = d_type;
2328 bcopy(d_name, dp->d_name, d_namlen);
fc46f680 2329
01f31ab3
JS
2330 *error = uiomove((caddr_t)dp, len, uio);
2331
efda3bd0 2332 kfree(dp, M_TEMP);
fc46f680
JS
2333
2334 return(0);
2335}
7540ab49 2336
349433c9
MD
2337void
2338vn_mark_atime(struct vnode *vp, struct thread *td)
2339{
2340 struct proc *p = td->td_proc;
2341 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2342
2343 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2344 VOP_MARKATIME(vp, cred);
2345 }
2346}