IP6A_SWAP is never set in our code base and this fragment doesn't even
[dragonfly.git] / sys / dev / netif / an / if_an.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
f8ef32e3 33 * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.14 2004/07/27 14:06:14 joerg Exp $
1de703da
MD
34 *
35 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
984263bc
MD
36 */
37
38/*
39 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Electrical Engineering Department
43 * Columbia University, New York City
44 */
45
46/*
47 * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
48 * This driver supports all three device types (PCI devices are supported
49 * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
50 * supported either using hard-coded IO port/IRQ settings or via Plug
51 * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
52 * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
53 *
54 * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
55 * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
56 * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
57 * a couple of important differences though:
58 *
59 * - Lucent ISA card looks to the host like a PCMCIA controller with
60 * a PCMCIA WaveLAN card inserted. This means that even desktop
61 * machines need to be configured with PCMCIA support in order to
62 * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
63 * actually look like normal ISA and PCI devices to the host, so
64 * no PCMCIA controller support is needed
65 *
66 * The latter point results in a small gotcha. The Aironet PCMCIA
67 * cards can be configured for one of two operating modes depending
68 * on how the Vpp1 and Vpp2 programming voltages are set when the
69 * card is activated. In order to put the card in proper PCMCIA
70 * operation (where the CIS table is visible and the interface is
71 * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
72 * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
73 * which leaves the card in ISA/PCI mode, which prevents it from
74 * being activated as an PCMCIA device.
75 *
76 * Note that some PCMCIA controller software packages for Windows NT
77 * fail to set the voltages as well.
78 *
79 * The Aironet devices can operate in both station mode and access point
80 * mode. Typically, when programmed for station mode, the card can be set
81 * to automatically perform encapsulation/decapsulation of Ethernet II
82 * and 802.3 frames within 802.11 frames so that the host doesn't have
83 * to do it itself. This driver doesn't program the card that way: the
84 * driver handles all of the encapsulation/decapsulation itself.
85 */
86
87#include "opt_inet.h"
88
89#ifdef INET
90#define ANCACHE /* enable signal strength cache */
91#endif
92
93#include <sys/param.h>
94#include <sys/systm.h>
95#include <sys/sockio.h>
96#include <sys/mbuf.h>
97#include <sys/proc.h>
98#include <sys/kernel.h>
99#include <sys/proc.h>
100#include <sys/ucred.h>
101#include <sys/socket.h>
102#ifdef ANCACHE
103#include <sys/syslog.h>
104#endif
105#include <sys/sysctl.h>
106#include <machine/clock.h> /* for DELAY */
107
108#include <sys/module.h>
109#include <sys/sysctl.h>
110#include <sys/bus.h>
111#include <machine/bus.h>
112#include <sys/rman.h>
113#include <machine/resource.h>
114#include <sys/malloc.h>
115
116#include <net/if.h>
117#include <net/if_arp.h>
118#include <net/ethernet.h>
119#include <net/if_dl.h>
120#include <net/if_types.h>
984263bc 121#include <net/if_media.h>
f8ef32e3
JS
122#include <netproto/802_11/ieee80211.h>
123#include <netproto/802_11/ieee80211_ioctl.h>
984263bc
MD
124
125#ifdef INET
126#include <netinet/in.h>
127#include <netinet/in_systm.h>
128#include <netinet/in_var.h>
129#include <netinet/ip.h>
130#endif
131
132#include <net/bpf.h>
133
134#include <machine/md_var.h>
135
1f2de5d4
MD
136#include "if_aironet_ieee.h"
137#include "if_anreg.h"
984263bc 138
984263bc 139/* These are global because we need them in sys/pci/if_an_p.c. */
b5101a88
RG
140static void an_reset (struct an_softc *);
141static int an_init_mpi350_desc (struct an_softc *);
bd4539cc
JH
142static int an_ioctl (struct ifnet *, u_long, caddr_t,
143 struct ucred *);
b5101a88
RG
144static void an_init (void *);
145static int an_init_tx_ring (struct an_softc *);
146static void an_start (struct ifnet *);
147static void an_watchdog (struct ifnet *);
148static void an_rxeof (struct an_softc *);
149static void an_txeof (struct an_softc *, int);
150
151static void an_promisc (struct an_softc *, int);
152static int an_cmd (struct an_softc *, int, int);
153static int an_cmd_struct (struct an_softc *, struct an_command *,
154 struct an_reply *);
155static int an_read_record (struct an_softc *, struct an_ltv_gen *);
156static int an_write_record (struct an_softc *, struct an_ltv_gen *);
157static int an_read_data (struct an_softc *, int,
158 int, caddr_t, int);
159static int an_write_data (struct an_softc *, int,
160 int, caddr_t, int);
161static int an_seek (struct an_softc *, int, int, int);
162static int an_alloc_nicmem (struct an_softc *, int, int *);
163static int an_dma_malloc (struct an_softc *, bus_size_t,
164 struct an_dma_alloc *, int);
165static void an_dma_free (struct an_softc *,
166 struct an_dma_alloc *);
167static void an_dma_malloc_cb (void *, bus_dma_segment_t *, int, int);
168static void an_stats_update (void *);
169static void an_setdef (struct an_softc *, struct an_req *);
984263bc 170#ifdef ANCACHE
3013ac0e
JS
171static void an_cache_store (struct an_softc *, struct mbuf *,
172 uint8_t, uint8_t);
984263bc
MD
173#endif
174
175/* function definitions for use with the Cisco's Linux configuration
176 utilities
177*/
178
b5101a88
RG
179static int readrids (struct ifnet*, struct aironet_ioctl*);
180static int writerids (struct ifnet*, struct aironet_ioctl*);
181static int flashcard (struct ifnet*, struct aironet_ioctl*);
984263bc 182
b5101a88
RG
183static int cmdreset (struct ifnet *);
184static int setflashmode (struct ifnet *);
185static int flashgchar (struct ifnet *,int,int);
186static int flashpchar (struct ifnet *,int,int);
187static int flashputbuf (struct ifnet *);
188static int flashrestart (struct ifnet *);
189static int WaitBusy (struct ifnet *, int);
190static int unstickbusy (struct ifnet *);
984263bc 191
b5101a88
RG
192static void an_dump_record (struct an_softc *,struct an_ltv_gen *,
193 char *);
984263bc 194
b5101a88
RG
195static int an_media_change (struct ifnet *);
196static void an_media_status (struct ifnet *, struct ifmediareq *);
984263bc
MD
197
198static int an_dump = 0;
199static int an_cache_mode = 0;
200
201#define DBM 0
202#define PERCENT 1
203#define RAW 2
204
205static char an_conf[256];
206static char an_conf_cache[256];
207
32832096
MD
208DECLARE_DUMMY_MODULE(if_an);
209
984263bc
MD
210/* sysctl vars */
211
212SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
213
214static int
215sysctl_an_dump(SYSCTL_HANDLER_ARGS)
216{
217 int error, r, last;
218 char *s = an_conf;
219
220 last = an_dump;
221
222 switch (an_dump) {
223 case 0:
224 strcpy(an_conf, "off");
225 break;
226 case 1:
227 strcpy(an_conf, "type");
228 break;
229 case 2:
230 strcpy(an_conf, "dump");
231 break;
232 default:
233 snprintf(an_conf, 5, "%x", an_dump);
234 break;
235 }
236
237 error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
238
239 if (strncmp(an_conf,"off", 3) == 0) {
240 an_dump = 0;
241 }
242 if (strncmp(an_conf,"dump", 4) == 0) {
243 an_dump = 1;
244 }
245 if (strncmp(an_conf,"type", 4) == 0) {
246 an_dump = 2;
247 }
248 if (*s == 'f') {
249 r = 0;
250 for (;;s++) {
251 if ((*s >= '0') && (*s <= '9')) {
252 r = r * 16 + (*s - '0');
253 } else if ((*s >= 'a') && (*s <= 'f')) {
254 r = r * 16 + (*s - 'a' + 10);
255 } else {
256 break;
257 }
258 }
259 an_dump = r;
260 }
261 if (an_dump != last)
262 printf("Sysctl changed for Aironet driver\n");
263
264 return error;
265}
266
267SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
268 0, sizeof(an_conf), sysctl_an_dump, "A", "");
269
270static int
271sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
272{
273 int error, last;
274
275 last = an_cache_mode;
276
277 switch (an_cache_mode) {
278 case 1:
279 strcpy(an_conf_cache, "per");
280 break;
281 case 2:
282 strcpy(an_conf_cache, "raw");
283 break;
284 default:
285 strcpy(an_conf_cache, "dbm");
286 break;
287 }
288
289 error = sysctl_handle_string(oidp, an_conf_cache,
290 sizeof(an_conf_cache), req);
291
292 if (strncmp(an_conf_cache,"dbm", 3) == 0) {
293 an_cache_mode = 0;
294 }
295 if (strncmp(an_conf_cache,"per", 3) == 0) {
296 an_cache_mode = 1;
297 }
298 if (strncmp(an_conf_cache,"raw", 3) == 0) {
299 an_cache_mode = 2;
300 }
301
302 return error;
303}
304
305SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
306 0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
307
308/*
309 * We probe for an Aironet 4500/4800 card by attempting to
310 * read the default SSID list. On reset, the first entry in
311 * the SSID list will contain the name "tsunami." If we don't
312 * find this, then there's no card present.
313 */
314int
315an_probe(dev)
316 device_t dev;
317{
318 struct an_softc *sc = device_get_softc(dev);
319 struct an_ltv_ssidlist ssid;
320 int error;
321
322 bzero((char *)&ssid, sizeof(ssid));
323
324 error = an_alloc_port(dev, 0, AN_IOSIZ);
325 if (error != 0)
326 return (0);
327
328 /* can't do autoprobing */
329 if (rman_get_start(sc->port_res) == -1)
330 return(0);
331
332 /*
333 * We need to fake up a softc structure long enough
334 * to be able to issue commands and call some of the
335 * other routines.
336 */
337 sc->an_bhandle = rman_get_bushandle(sc->port_res);
338 sc->an_btag = rman_get_bustag(sc->port_res);
339 sc->an_unit = device_get_unit(dev);
340
341 ssid.an_len = sizeof(ssid);
342 ssid.an_type = AN_RID_SSIDLIST;
343
344 /* Make sure interrupts are disabled. */
345 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
346 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
347
348 an_reset(sc);
349 /* No need for an_init_mpi350_desc since it will be done in attach */
350
351 if (an_cmd(sc, AN_CMD_READCFG, 0))
352 return(0);
353
354 if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
355 return(0);
356
357 /* See if the ssid matches what we expect ... but doesn't have to */
358 if (strcmp(ssid.an_ssid1, AN_DEF_SSID))
359 return(0);
360
361 return(AN_IOSIZ);
362}
363
364/*
365 * Allocate a port resource with the given resource id.
366 */
367int
368an_alloc_port(dev, rid, size)
369 device_t dev;
370 int rid;
371 int size;
372{
373 struct an_softc *sc = device_get_softc(dev);
374 struct resource *res;
375
376 res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
377 0ul, ~0ul, size, RF_ACTIVE);
378 if (res) {
379 sc->port_rid = rid;
380 sc->port_res = res;
381 return (0);
382 } else {
383 return (ENOENT);
384 }
385}
386
387/*
388 * Allocate a memory resource with the given resource id.
389 */
390int an_alloc_memory(device_t dev, int rid, int size)
391{
392 struct an_softc *sc = device_get_softc(dev);
393 struct resource *res;
394
395 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
396 0ul, ~0ul, size, RF_ACTIVE);
397 if (res) {
398 sc->mem_rid = rid;
399 sc->mem_res = res;
400 sc->mem_used = size;
401 return (0);
402 } else {
403 return (ENOENT);
404 }
405}
406
407/*
408 * Allocate a auxilary memory resource with the given resource id.
409 */
410int an_alloc_aux_memory(device_t dev, int rid, int size)
411{
412 struct an_softc *sc = device_get_softc(dev);
413 struct resource *res;
414
415 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
416 0ul, ~0ul, size, RF_ACTIVE);
417 if (res) {
418 sc->mem_aux_rid = rid;
419 sc->mem_aux_res = res;
420 sc->mem_aux_used = size;
421 return (0);
422 } else {
423 return (ENOENT);
424 }
425}
426
427/*
428 * Allocate an irq resource with the given resource id.
429 */
430int
431an_alloc_irq(dev, rid, flags)
432 device_t dev;
433 int rid;
434 int flags;
435{
436 struct an_softc *sc = device_get_softc(dev);
437 struct resource *res;
438
439 res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
440 0ul, ~0ul, 1, (RF_ACTIVE | flags));
441 if (res) {
442 sc->irq_rid = rid;
443 sc->irq_res = res;
444 return (0);
445 } else {
446 return (ENOENT);
447 }
448}
449
450static void
451an_dma_malloc_cb(arg, segs, nseg, error)
452 void *arg;
453 bus_dma_segment_t *segs;
454 int nseg;
455 int error;
456{
457 bus_addr_t *paddr = (bus_addr_t*) arg;
458 *paddr = segs->ds_addr;
459}
460
461/*
462 * Alloc DMA memory and set the pointer to it
463 */
464static int
465an_dma_malloc(sc, size, dma, mapflags)
466 struct an_softc *sc;
467 bus_size_t size;
468 struct an_dma_alloc *dma;
469 int mapflags;
470{
471 int r;
472
473 r = bus_dmamap_create(sc->an_dtag, BUS_DMA_NOWAIT, &dma->an_dma_map);
474 if (r != 0)
475 goto fail_0;
476
477 r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
478 BUS_DMA_NOWAIT, &dma->an_dma_map);
479 if (r != 0)
480 goto fail_1;
481
482 r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
483 size,
484 an_dma_malloc_cb,
485 &dma->an_dma_paddr,
486 mapflags | BUS_DMA_NOWAIT);
487 if (r != 0)
488 goto fail_2;
489
490 dma->an_dma_size = size;
491 return (0);
492
493fail_2:
494 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
495fail_1:
496 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
497fail_0:
498 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
499 dma->an_dma_map = NULL;
500 return (r);
501}
502
503static void
504an_dma_free(sc, dma)
505 struct an_softc *sc;
506 struct an_dma_alloc *dma;
507{
508 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
509 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
510 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
511}
512
513/*
514 * Release all resources
515 */
516void
517an_release_resources(dev)
518 device_t dev;
519{
520 struct an_softc *sc = device_get_softc(dev);
521 int i;
522
523 if (sc->port_res) {
524 bus_release_resource(dev, SYS_RES_IOPORT,
525 sc->port_rid, sc->port_res);
526 sc->port_res = 0;
527 }
528 if (sc->mem_res) {
529 bus_release_resource(dev, SYS_RES_MEMORY,
530 sc->mem_rid, sc->mem_res);
531 sc->mem_res = 0;
532 }
533 if (sc->mem_aux_res) {
534 bus_release_resource(dev, SYS_RES_MEMORY,
535 sc->mem_aux_rid, sc->mem_aux_res);
536 sc->mem_aux_res = 0;
537 }
538 if (sc->irq_res) {
539 bus_release_resource(dev, SYS_RES_IRQ,
540 sc->irq_rid, sc->irq_res);
541 sc->irq_res = 0;
542 }
543 if (sc->an_rid_buffer.an_dma_paddr) {
544 an_dma_free(sc, &sc->an_rid_buffer);
545 }
546 for (i = 0; i < AN_MAX_RX_DESC; i++)
547 if (sc->an_rx_buffer[i].an_dma_paddr) {
548 an_dma_free(sc, &sc->an_rx_buffer[i]);
549 }
550 for (i = 0; i < AN_MAX_TX_DESC; i++)
551 if (sc->an_tx_buffer[i].an_dma_paddr) {
552 an_dma_free(sc, &sc->an_tx_buffer[i]);
553 }
554 if (sc->an_dtag) {
555 bus_dma_tag_destroy(sc->an_dtag);
556 }
557
558}
559
560int
561an_init_mpi350_desc(sc)
562 struct an_softc *sc;
563{
564 struct an_command cmd_struct;
565 struct an_reply reply;
566 struct an_card_rid_desc an_rid_desc;
567 struct an_card_rx_desc an_rx_desc;
568 struct an_card_tx_desc an_tx_desc;
569 int i, desc;
570
571 if(!sc->an_rid_buffer.an_dma_paddr)
572 an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
573 &sc->an_rid_buffer, 0);
574 for (i = 0; i < AN_MAX_RX_DESC; i++)
575 if(!sc->an_rx_buffer[i].an_dma_paddr)
576 an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
577 &sc->an_rx_buffer[i], 0);
578 for (i = 0; i < AN_MAX_TX_DESC; i++)
579 if(!sc->an_tx_buffer[i].an_dma_paddr)
580 an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
581 &sc->an_tx_buffer[i], 0);
582
583 /*
584 * Allocate RX descriptor
585 */
586 bzero(&reply,sizeof(reply));
587 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
588 cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
589 cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
590 cmd_struct.an_parm2 = AN_MAX_RX_DESC;
591 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
592 printf("an%d: failed to allocate RX descriptor\n",
593 sc->an_unit);
594 return(EIO);
595 }
596
597 for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
598 bzero(&an_rx_desc, sizeof(an_rx_desc));
599 an_rx_desc.an_valid = 1;
600 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
601 an_rx_desc.an_done = 0;
602 an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
603
604 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
605 CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET
606 + (desc * sizeof(an_rx_desc))
607 + (i * 4),
608 ((u_int32_t*)&an_rx_desc)[i]);
609 }
610
611 /*
612 * Allocate TX descriptor
613 */
614
615 bzero(&reply,sizeof(reply));
616 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
617 cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
618 cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
619 cmd_struct.an_parm2 = AN_MAX_TX_DESC;
620 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
621 printf("an%d: failed to allocate TX descriptor\n",
622 sc->an_unit);
623 return(EIO);
624 }
625
626 for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
627 bzero(&an_tx_desc, sizeof(an_tx_desc));
628 an_tx_desc.an_offset = 0;
629 an_tx_desc.an_eoc = 0;
630 an_tx_desc.an_valid = 0;
631 an_tx_desc.an_len = 0;
632 an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
633
634 for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
635 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
636 + (desc * sizeof(an_tx_desc))
637 + (i * 4),
638 ((u_int32_t*)&an_tx_desc)[i]);
639 }
640
641 /*
642 * Allocate RID descriptor
643 */
644
645 bzero(&reply,sizeof(reply));
646 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
647 cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
648 cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
649 cmd_struct.an_parm2 = 1;
650 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
651 printf("an%d: failed to allocate host descriptor\n",
652 sc->an_unit);
653 return(EIO);
654 }
655
656 bzero(&an_rid_desc, sizeof(an_rid_desc));
657 an_rid_desc.an_valid = 1;
658 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
659 an_rid_desc.an_rid = 0;
660 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
661
662 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
663 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
664 ((u_int32_t*)&an_rid_desc)[i]);
665
666 return(0);
667}
668
669int
670an_attach(sc, unit, flags)
671 struct an_softc *sc;
672 int unit;
673 int flags;
674{
675 struct ifnet *ifp = &sc->arpcom.ac_if;
676 int error;
677
678 sc->an_gone = 0;
679 sc->an_associated = 0;
680 sc->an_monitor = 0;
681 sc->an_was_monitor = 0;
682 sc->an_flash_buffer = NULL;
683
684 /* Reset the NIC. */
685 an_reset(sc);
686 if (sc->mpi350) {
687 error = an_init_mpi350_desc(sc);
688 if (error)
689 return(error);
690 }
691
692 /* Load factory config */
693 if (an_cmd(sc, AN_CMD_READCFG, 0)) {
694 printf("an%d: failed to load config data\n", sc->an_unit);
695 return(EIO);
696 }
697
698 /* Read the current configuration */
699 sc->an_config.an_type = AN_RID_GENCONFIG;
700 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
701 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
702 printf("an%d: read record failed\n", sc->an_unit);
703 return(EIO);
704 }
705
706 /* Read the card capabilities */
707 sc->an_caps.an_type = AN_RID_CAPABILITIES;
708 sc->an_caps.an_len = sizeof(struct an_ltv_caps);
709 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
710 printf("an%d: read record failed\n", sc->an_unit);
711 return(EIO);
712 }
713
714 /* Read ssid list */
715 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
716 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
717 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
718 printf("an%d: read record failed\n", sc->an_unit);
719 return(EIO);
720 }
721
722 /* Read AP list */
723 sc->an_aplist.an_type = AN_RID_APLIST;
724 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
725 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
726 printf("an%d: read record failed\n", sc->an_unit);
727 return(EIO);
728 }
729
730#ifdef ANCACHE
731 /* Read the RSSI <-> dBm map */
732 sc->an_have_rssimap = 0;
733 if (sc->an_caps.an_softcaps & 8) {
734 sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
735 sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
736 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
737 printf("an%d: unable to get RSSI <-> dBM map\n", sc->an_unit);
738 } else {
739 printf("an%d: got RSSI <-> dBM map\n", sc->an_unit);
740 sc->an_have_rssimap = 1;
741 }
742 } else {
743 printf("an%d: no RSSI <-> dBM map\n", sc->an_unit);
744 }
745#endif
746
984263bc 747 ifp->if_softc = sc;
cdb7d804 748 if_initname(ifp, "an", unit);
984263bc
MD
749 ifp->if_mtu = ETHERMTU;
750 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751 ifp->if_ioctl = an_ioctl;
984263bc
MD
752 ifp->if_start = an_start;
753 ifp->if_watchdog = an_watchdog;
754 ifp->if_init = an_init;
755 ifp->if_baudrate = 10000000;
756 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
757
758 bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
759 bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
760 sizeof(AN_DEFAULT_NODENAME) - 1);
761
762 bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1));
763 bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1,
764 sizeof(AN_DEFAULT_NETNAME) - 1);
765 sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME);
766
767 sc->an_config.an_opmode =
768 AN_OPMODE_INFRASTRUCTURE_STATION;
769
770 sc->an_tx_rate = 0;
771 bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
772
773 ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
774#define ADD(m, c) ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
775 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
776 IFM_IEEE80211_ADHOC, 0), 0);
777 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
778 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
779 IFM_IEEE80211_ADHOC, 0), 0);
780 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
781 if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
782 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
783 IFM_IEEE80211_ADHOC, 0), 0);
784 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
785 }
786 if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
787 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
788 IFM_IEEE80211_ADHOC, 0), 0);
789 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
790 }
791 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
792 IFM_IEEE80211_ADHOC, 0), 0);
793 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
794#undef ADD
795 ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
796 0, 0));
797
798 /*
799 * Call MI attach routine.
800 */
0a8b5977 801 ether_ifattach(ifp, sc->an_caps.an_oemaddr);
984263bc
MD
802 callout_handle_init(&sc->an_stat_ch);
803
804 return(0);
805}
806
807static void
808an_rxeof(sc)
809 struct an_softc *sc;
810{
811 struct ifnet *ifp;
812 struct ether_header *eh;
813 struct ieee80211_frame *ih;
814 struct an_rxframe rx_frame;
815 struct an_rxframe_802_3 rx_frame_802_3;
816 struct mbuf *m;
817 int len, id, error = 0, i, count = 0;
818 int ieee80211_header_len;
819 u_char *bpf_buf;
820 u_short fc1;
821 struct an_card_rx_desc an_rx_desc;
822 u_int8_t *buf;
823
824 ifp = &sc->arpcom.ac_if;
825
826 if (!sc->mpi350) {
827 id = CSR_READ_2(sc, AN_RX_FID);
828
829 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
830 /* read raw 802.11 packet */
831 bpf_buf = sc->buf_802_11;
832
833 /* read header */
834 if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
835 sizeof(rx_frame))) {
836 ifp->if_ierrors++;
837 return;
838 }
839
840 /*
841 * skip beacon by default since this increases the
842 * system load a lot
843 */
844
845 if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
846 (rx_frame.an_frame_ctl &
847 IEEE80211_FC0_SUBTYPE_BEACON)) {
848 return;
849 }
850
851 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
852 len = rx_frame.an_rx_payload_len
853 + sizeof(rx_frame);
854 /* Check for insane frame length */
855 if (len > sizeof(sc->buf_802_11)) {
856 printf("an%d: oversized packet "
857 "received (%d, %d)\n",
858 sc->an_unit, len, MCLBYTES);
859 ifp->if_ierrors++;
860 return;
861 }
862
863 bcopy((char *)&rx_frame,
864 bpf_buf, sizeof(rx_frame));
865
866 error = an_read_data(sc, id, sizeof(rx_frame),
867 (caddr_t)bpf_buf+sizeof(rx_frame),
868 rx_frame.an_rx_payload_len);
869 } else {
870 fc1=rx_frame.an_frame_ctl >> 8;
871 ieee80211_header_len =
872 sizeof(struct ieee80211_frame);
873 if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
874 (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
875 ieee80211_header_len += ETHER_ADDR_LEN;
876 }
877
878 len = rx_frame.an_rx_payload_len
879 + ieee80211_header_len;
880 /* Check for insane frame length */
881 if (len > sizeof(sc->buf_802_11)) {
882 printf("an%d: oversized packet "
883 "received (%d, %d)\n",
884 sc->an_unit, len, MCLBYTES);
885 ifp->if_ierrors++;
886 return;
887 }
888
889 ih = (struct ieee80211_frame *)bpf_buf;
890
891 bcopy((char *)&rx_frame.an_frame_ctl,
892 (char *)ih, ieee80211_header_len);
893
894 error = an_read_data(sc, id, sizeof(rx_frame) +
895 rx_frame.an_gaplen,
896 (caddr_t)ih +ieee80211_header_len,
897 rx_frame.an_rx_payload_len);
898 }
899 /* dump raw 802.11 packet to bpf and skip ip stack */
900 if (ifp->if_bpf != NULL) {
901 bpf_tap(ifp, bpf_buf, len);
902 }
903 } else {
904 MGETHDR(m, M_NOWAIT, MT_DATA);
905 if (m == NULL) {
906 ifp->if_ierrors++;
907 return;
908 }
909 MCLGET(m, M_NOWAIT);
910 if (!(m->m_flags & M_EXT)) {
911 m_freem(m);
912 ifp->if_ierrors++;
913 return;
914 }
915 m->m_pkthdr.rcvif = ifp;
916 /* Read Ethernet encapsulated packet */
917
918#ifdef ANCACHE
919 /* Read NIC frame header */
920 if (an_read_data(sc, id, 0, (caddr_t)&rx_frame,
921 sizeof(rx_frame))) {
922 ifp->if_ierrors++;
923 return;
924 }
925#endif
926 /* Read in the 802_3 frame header */
927 if (an_read_data(sc, id, 0x34,
928 (caddr_t)&rx_frame_802_3,
929 sizeof(rx_frame_802_3))) {
930 ifp->if_ierrors++;
931 return;
932 }
933 if (rx_frame_802_3.an_rx_802_3_status != 0) {
934 ifp->if_ierrors++;
935 return;
936 }
937 /* Check for insane frame length */
938 len = rx_frame_802_3.an_rx_802_3_payload_len;
939 if (len > sizeof(sc->buf_802_11)) {
940 printf("an%d: oversized packet "
941 "received (%d, %d)\n",
942 sc->an_unit, len, MCLBYTES);
943 ifp->if_ierrors++;
944 return;
945 }
946 m->m_pkthdr.len = m->m_len =
947 rx_frame_802_3.an_rx_802_3_payload_len + 12;
948
949 eh = mtod(m, struct ether_header *);
950
951 bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
952 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
953 bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
954 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
955
956 /* in mbuf header type is just before payload */
957 error = an_read_data(sc, id, 0x44,
958 (caddr_t)&(eh->ether_type),
959 rx_frame_802_3.an_rx_802_3_payload_len);
960
961 if (error) {
962 m_freem(m);
963 ifp->if_ierrors++;
964 return;
965 }
966 ifp->if_ipackets++;
967
984263bc 968#ifdef ANCACHE
3013ac0e 969 an_cache_store(sc, m,
984263bc
MD
970 rx_frame.an_rx_signal_strength,
971 rx_frame.an_rsvd0);
972#endif
3013ac0e 973 (*ifp->if_input)(ifp, m);
984263bc
MD
974 }
975
976 } else { /* MPI-350 */
977 for (count = 0; count < AN_MAX_RX_DESC; count++){
978 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
979 ((u_int32_t*)&an_rx_desc)[i]
980 = CSR_MEM_AUX_READ_4(sc,
981 AN_RX_DESC_OFFSET
982 + (count * sizeof(an_rx_desc))
983 + (i * 4));
984
985 if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
986 buf = sc->an_rx_buffer[count].an_dma_vaddr;
987
988 MGETHDR(m, M_NOWAIT, MT_DATA);
989 if (m == NULL) {
990 ifp->if_ierrors++;
991 return;
992 }
993 MCLGET(m, M_NOWAIT);
994 if (!(m->m_flags & M_EXT)) {
995 m_freem(m);
996 ifp->if_ierrors++;
997 return;
998 }
999 m->m_pkthdr.rcvif = ifp;
1000 /* Read Ethernet encapsulated packet */
1001
1002 /*
1003 * No ANCACHE support since we just get back
1004 * an Ethernet packet no 802.11 info
1005 */
1006#if 0
1007#ifdef ANCACHE
1008 /* Read NIC frame header */
1009 bcopy(buf, (caddr_t)&rx_frame,
1010 sizeof(rx_frame));
1011#endif
1012#endif
1013 /* Check for insane frame length */
1014 len = an_rx_desc.an_len + 12;
1015 if (len > MCLBYTES) {
1016 printf("an%d: oversized packet "
1017 "received (%d, %d)\n",
1018 sc->an_unit, len, MCLBYTES);
1019 ifp->if_ierrors++;
1020 return;
1021 }
1022
1023 m->m_pkthdr.len = m->m_len =
1024 an_rx_desc.an_len + 12;
1025
1026 eh = mtod(m, struct ether_header *);
1027
1028 bcopy(buf, (char *)eh,
1029 m->m_pkthdr.len);
1030
1031 ifp->if_ipackets++;
1032
984263bc
MD
1033#if 0
1034#ifdef ANCACHE
3013ac0e 1035 an_cache_store(sc, m,
984263bc
MD
1036 rx_frame.an_rx_signal_strength,
1037 rx_frame.an_rsvd0);
1038#endif
1039#endif
3013ac0e 1040 (*ifp->if_input)(ifp, m);
984263bc
MD
1041
1042 an_rx_desc.an_valid = 1;
1043 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1044 an_rx_desc.an_done = 0;
1045 an_rx_desc.an_phys =
1046 sc->an_rx_buffer[count].an_dma_paddr;
1047
1048 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1049 CSR_MEM_AUX_WRITE_4(sc,
1050 AN_RX_DESC_OFFSET
1051 + (count * sizeof(an_rx_desc))
1052 + (i * 4),
1053 ((u_int32_t*)&an_rx_desc)[i]);
1054
1055 } else {
1056 printf("an%d: Didn't get valid RX packet "
1057 "%x %x %d\n",
1058 sc->an_unit,
1059 an_rx_desc.an_done,
1060 an_rx_desc.an_valid, an_rx_desc.an_len);
1061 }
1062 }
1063 }
1064}
1065
1066static void
1067an_txeof(sc, status)
1068 struct an_softc *sc;
1069 int status;
1070{
1071 struct ifnet *ifp;
1072 int id, i;
1073
1074 ifp = &sc->arpcom.ac_if;
1075
1076 ifp->if_timer = 0;
1077 ifp->if_flags &= ~IFF_OACTIVE;
1078
1079 if (!sc->mpi350) {
1080 id = CSR_READ_2(sc, AN_TX_CMP_FID);
1081
1082 if (status & AN_EV_TX_EXC) {
1083 ifp->if_oerrors++;
1084 } else
1085 ifp->if_opackets++;
1086
1087 for (i = 0; i < AN_TX_RING_CNT; i++) {
1088 if (id == sc->an_rdata.an_tx_ring[i]) {
1089 sc->an_rdata.an_tx_ring[i] = 0;
1090 break;
1091 }
1092 }
1093
1094 AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1095 } else { /* MPI 350 */
1096 AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1097 if (sc->an_rdata.an_tx_prod ==
1098 sc->an_rdata.an_tx_cons)
1099 sc->an_rdata.an_tx_empty = 1;
1100 }
1101
1102 return;
1103}
1104
1105/*
1106 * We abuse the stats updater to check the current NIC status. This
1107 * is important because we don't want to allow transmissions until
1108 * the NIC has synchronized to the current cell (either as the master
1109 * in an ad-hoc group, or as a station connected to an access point).
1110 */
1111static void
1112an_stats_update(xsc)
1113 void *xsc;
1114{
1115 struct an_softc *sc;
1116 struct ifnet *ifp;
1117 int s;
1118
1119 s = splimp();
1120
1121 sc = xsc;
1122 ifp = &sc->arpcom.ac_if;
1123
1124 sc->an_status.an_type = AN_RID_STATUS;
1125 sc->an_status.an_len = sizeof(struct an_ltv_status);
1126 an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
1127
1128 if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1129 sc->an_associated = 1;
1130 else
1131 sc->an_associated = 0;
1132
1133 /* Don't do this while we're transmitting */
1134 if (ifp->if_flags & IFF_OACTIVE) {
1135 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
1136 splx(s);
1137 return;
1138 }
1139
1140 sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1141 sc->an_stats.an_type = AN_RID_32BITS_CUM;
1142 an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
1143
1144 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
1145 splx(s);
1146
1147 return;
1148}
1149
1150void
1151an_intr(xsc)
1152 void *xsc;
1153{
1154 struct an_softc *sc;
1155 struct ifnet *ifp;
1156 u_int16_t status;
1157
1158 sc = (struct an_softc*)xsc;
1159
1160 if (sc->an_gone)
1161 return;
1162
1163 ifp = &sc->arpcom.ac_if;
1164
1165 /* Disable interrupts. */
1166 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1167
1168 status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1169 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS);
1170
1171 if (status & AN_EV_AWAKE) {
1172 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_AWAKE);
1173 }
1174
1175 if (status & AN_EV_LINKSTAT) {
1176 if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350))
1177 == AN_LINKSTAT_ASSOCIATED)
1178 sc->an_associated = 1;
1179 else
1180 sc->an_associated = 0;
1181 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1182 }
1183
1184 if (status & AN_EV_RX) {
1185 an_rxeof(sc);
1186 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1187 }
1188
1189 if (status & AN_EV_TX) {
1190 an_txeof(sc, status);
1191 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1192 }
1193
1194 if (status & AN_EV_TX_EXC) {
1195 an_txeof(sc, status);
1196 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1197 }
1198
1199 if (status & AN_EV_ALLOC)
1200 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1201
1202 /* Re-enable interrupts. */
1203 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS);
1204
1205 if ((ifp->if_flags & IFF_UP) && (ifp->if_snd.ifq_head != NULL))
1206 an_start(ifp);
1207
1208 return;
1209}
1210
1211static int
1212an_cmd_struct(sc, cmd, reply)
1213 struct an_softc *sc;
1214 struct an_command *cmd;
1215 struct an_reply *reply;
1216{
1217 int i;
1218
1219 for (i = 0; i != AN_TIMEOUT; i++) {
1220 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1221 DELAY(1000);
1222 } else
1223 break;
1224 }
1225 if( i == AN_TIMEOUT) {
1226 printf("BUSY\n");
1227 return(ETIMEDOUT);
1228 }
1229
1230 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1231 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1232 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1233 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1234
1235 for (i = 0; i < AN_TIMEOUT; i++) {
1236 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1237 break;
1238 DELAY(1000);
1239 }
1240
1241 reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1242 reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1243 reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1244 reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1245
1246 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1247 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1248
1249 /* Ack the command */
1250 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1251
1252 if (i == AN_TIMEOUT)
1253 return(ETIMEDOUT);
1254
1255 return(0);
1256}
1257
1258static int
1259an_cmd(sc, cmd, val)
1260 struct an_softc *sc;
1261 int cmd;
1262 int val;
1263{
1264 int i, s = 0;
1265
1266 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1267 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1268 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1269 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1270
1271 for (i = 0; i < AN_TIMEOUT; i++) {
1272 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1273 break;
1274 else {
1275 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1276 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1277 }
1278 }
1279
1280 for (i = 0; i < AN_TIMEOUT; i++) {
1281 CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1282 CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1283 CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1284 s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1285 if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1286 break;
1287 }
1288
1289 /* Ack the command */
1290 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1291
1292 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1293 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1294
1295 if (i == AN_TIMEOUT)
1296 return(ETIMEDOUT);
1297
1298 return(0);
1299}
1300
1301/*
1302 * This reset sequence may look a little strange, but this is the
1303 * most reliable method I've found to really kick the NIC in the
1304 * head and force it to reboot correctly.
1305 */
1306static void
1307an_reset(sc)
1308 struct an_softc *sc;
1309{
1310 if (sc->an_gone)
1311 return;
1312
1313 an_cmd(sc, AN_CMD_ENABLE, 0);
1314 an_cmd(sc, AN_CMD_FW_RESTART, 0);
1315 an_cmd(sc, AN_CMD_NOOP2, 0);
1316
1317 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1318 printf("an%d: reset failed\n", sc->an_unit);
1319
1320 an_cmd(sc, AN_CMD_DISABLE, 0);
1321
1322 return;
1323}
1324
1325/*
1326 * Read an LTV record from the NIC.
1327 */
1328static int
1329an_read_record(sc, ltv)
1330 struct an_softc *sc;
1331 struct an_ltv_gen *ltv;
1332{
1333 struct an_ltv_gen *an_ltv;
1334 struct an_card_rid_desc an_rid_desc;
1335 struct an_command cmd;
1336 struct an_reply reply;
1337 u_int16_t *ptr;
1338 u_int8_t *ptr2;
1339 int i, len;
1340
1341 if (ltv->an_len < 4 || ltv->an_type == 0)
1342 return(EINVAL);
1343
1344 if (!sc->mpi350){
1345 /* Tell the NIC to enter record read mode. */
1346 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1347 printf("an%d: RID access failed\n", sc->an_unit);
1348 return(EIO);
1349 }
1350
1351 /* Seek to the record. */
1352 if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1353 printf("an%d: seek to record failed\n", sc->an_unit);
1354 return(EIO);
1355 }
1356
1357 /*
1358 * Read the length and record type and make sure they
1359 * match what we expect (this verifies that we have enough
1360 * room to hold all of the returned data).
1361 * Length includes type but not length.
1362 */
1363 len = CSR_READ_2(sc, AN_DATA1);
1364 if (len > (ltv->an_len - 2)) {
1365 printf("an%d: record length mismatch -- expected %d, "
1366 "got %d for Rid %x\n", sc->an_unit,
1367 ltv->an_len - 2, len, ltv->an_type);
1368 len = ltv->an_len - 2;
1369 } else {
1370 ltv->an_len = len + 2;
1371 }
1372
1373 /* Now read the data. */
1374 len -= 2; /* skip the type */
1375 ptr = &ltv->an_val;
1376 for (i = len; i > 1; i -= 2)
1377 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1378 if (i) {
1379 ptr2 = (u_int8_t *)ptr;
1380 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1381 }
1382 } else { /* MPI-350 */
1383 an_rid_desc.an_valid = 1;
1384 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1385 an_rid_desc.an_rid = 0;
1386 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1387 bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1388
1389 bzero(&cmd, sizeof(cmd));
1390 bzero(&reply, sizeof(reply));
1391 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1392 cmd.an_parm0 = ltv->an_type;
1393
1394 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1395 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1396 ((u_int32_t*)&an_rid_desc)[i]);
1397
1398 if (an_cmd_struct(sc, &cmd, &reply)
1399 || reply.an_status & AN_CMD_QUAL_MASK) {
1400 printf("an%d: failed to read RID %x %x %x %x %x, %d\n",
1401 sc->an_unit, ltv->an_type,
1402 reply.an_status,
1403 reply.an_resp0,
1404 reply.an_resp1,
1405 reply.an_resp2,
1406 i);
1407 return(EIO);
1408 }
1409
1410 an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1411 if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1412 an_rid_desc.an_len = an_ltv->an_len;
1413 }
1414
1415 if (an_rid_desc.an_len > 2)
1416 bcopy(&an_ltv->an_type,
1417 &ltv->an_val,
1418 an_rid_desc.an_len - 2);
1419 ltv->an_len = an_rid_desc.an_len + 2;
1420 }
1421
1422 if (an_dump)
1423 an_dump_record(sc, ltv, "Read");
1424
1425 return(0);
1426}
1427
1428/*
1429 * Same as read, except we inject data instead of reading it.
1430 */
1431static int
1432an_write_record(sc, ltv)
1433 struct an_softc *sc;
1434 struct an_ltv_gen *ltv;
1435{
1436 struct an_card_rid_desc an_rid_desc;
1437 struct an_command cmd;
1438 struct an_reply reply;
1439 char *buf;
1440 u_int16_t *ptr;
1441 u_int8_t *ptr2;
1442 int i, len;
1443
1444 if (an_dump)
1445 an_dump_record(sc, ltv, "Write");
1446
1447 if (!sc->mpi350){
1448 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1449 return(EIO);
1450
1451 if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1452 return(EIO);
1453
1454 /*
1455 * Length includes type but not length.
1456 */
1457 len = ltv->an_len - 2;
1458 CSR_WRITE_2(sc, AN_DATA1, len);
1459
1460 len -= 2; /* skip the type */
1461 ptr = &ltv->an_val;
1462 for (i = len; i > 1; i -= 2)
1463 CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1464 if (i) {
1465 ptr2 = (u_int8_t *)ptr;
1466 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1467 }
1468
1469 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1470 return(EIO);
1471 } else {
1472 /* MPI-350 */
1473
1474 for (i = 0; i != AN_TIMEOUT; i++) {
1475 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350))
1476 & AN_CMD_BUSY) {
1477 DELAY(10);
1478 } else
1479 break;
1480 }
1481 if (i == AN_TIMEOUT) {
1482 printf("BUSY\n");
1483 }
1484
1485 an_rid_desc.an_valid = 1;
1486 an_rid_desc.an_len = ltv->an_len - 2;
1487 an_rid_desc.an_rid = ltv->an_type;
1488 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1489
1490 bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1491 an_rid_desc.an_len);
1492
1493 bzero(&cmd,sizeof(cmd));
1494 bzero(&reply,sizeof(reply));
1495 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1496 cmd.an_parm0 = ltv->an_type;
1497
1498 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1499 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1500 ((u_int32_t*)&an_rid_desc)[i]);
1501
1502 if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1503 printf("an%d: failed to write RID 1 %x %x %x %x %x, %d\n",
1504 sc->an_unit, ltv->an_type,
1505 reply.an_status,
1506 reply.an_resp0,
1507 reply.an_resp1,
1508 reply.an_resp2,
1509 i);
1510 return(EIO);
1511 }
1512
1513 ptr = (u_int16_t *)buf;
1514
1515 if (reply.an_status & AN_CMD_QUAL_MASK) {
1516 printf("an%d: failed to write RID 2 %x %x %x %x %x, %d\n",
1517 sc->an_unit, ltv->an_type,
1518 reply.an_status,
1519 reply.an_resp0,
1520 reply.an_resp1,
1521 reply.an_resp2,
1522 i);
1523 return(EIO);
1524 }
1525 }
1526
1527 return(0);
1528}
1529
1530static void
1531an_dump_record(sc, ltv, string)
1532 struct an_softc *sc;
1533 struct an_ltv_gen *ltv;
1534 char *string;
1535{
1536 u_int8_t *ptr2;
1537 int len;
1538 int i;
1539 int count = 0;
1540 char buf[17], temp;
1541
1542 len = ltv->an_len - 4;
1543 printf("an%d: RID %4x, Length %4d, Mode %s\n",
1544 sc->an_unit, ltv->an_type, ltv->an_len - 4, string);
1545
1546 if (an_dump == 1 || (an_dump == ltv->an_type)) {
1547 printf("an%d:\t", sc->an_unit);
1548 bzero(buf,sizeof(buf));
1549
1550 ptr2 = (u_int8_t *)&ltv->an_val;
1551 for (i = len; i > 0; i--) {
1552 printf("%02x ", *ptr2);
1553
1554 temp = *ptr2++;
1555 if (temp >= ' ' && temp <= '~')
1556 buf[count] = temp;
1557 else if (temp >= 'A' && temp <= 'Z')
1558 buf[count] = temp;
1559 else
1560 buf[count] = '.';
1561 if (++count == 16) {
1562 count = 0;
1563 printf("%s\n",buf);
1564 printf("an%d:\t", sc->an_unit);
1565 bzero(buf,sizeof(buf));
1566 }
1567 }
1568 for (; count != 16; count++) {
1569 printf(" ");
1570 }
1571 printf(" %s\n",buf);
1572 }
1573}
1574
1575static int
1576an_seek(sc, id, off, chan)
1577 struct an_softc *sc;
1578 int id, off, chan;
1579{
1580 int i;
1581 int selreg, offreg;
1582
1583 switch (chan) {
1584 case AN_BAP0:
1585 selreg = AN_SEL0;
1586 offreg = AN_OFF0;
1587 break;
1588 case AN_BAP1:
1589 selreg = AN_SEL1;
1590 offreg = AN_OFF1;
1591 break;
1592 default:
1593 printf("an%d: invalid data path: %x\n", sc->an_unit, chan);
1594 return(EIO);
1595 }
1596
1597 CSR_WRITE_2(sc, selreg, id);
1598 CSR_WRITE_2(sc, offreg, off);
1599
1600 for (i = 0; i < AN_TIMEOUT; i++) {
1601 if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1602 break;
1603 }
1604
1605 if (i == AN_TIMEOUT)
1606 return(ETIMEDOUT);
1607
1608 return(0);
1609}
1610
1611static int
1612an_read_data(sc, id, off, buf, len)
1613 struct an_softc *sc;
1614 int id, off;
1615 caddr_t buf;
1616 int len;
1617{
1618 int i;
1619 u_int16_t *ptr;
1620 u_int8_t *ptr2;
1621
1622 if (off != -1) {
1623 if (an_seek(sc, id, off, AN_BAP1))
1624 return(EIO);
1625 }
1626
1627 ptr = (u_int16_t *)buf;
1628 for (i = len; i > 1; i -= 2)
1629 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1630 if (i) {
1631 ptr2 = (u_int8_t *)ptr;
1632 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1633 }
1634
1635 return(0);
1636}
1637
1638static int
1639an_write_data(sc, id, off, buf, len)
1640 struct an_softc *sc;
1641 int id, off;
1642 caddr_t buf;
1643 int len;
1644{
1645 int i;
1646 u_int16_t *ptr;
1647 u_int8_t *ptr2;
1648
1649 if (off != -1) {
1650 if (an_seek(sc, id, off, AN_BAP0))
1651 return(EIO);
1652 }
1653
1654 ptr = (u_int16_t *)buf;
1655 for (i = len; i > 1; i -= 2)
1656 CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1657 if (i) {
1658 ptr2 = (u_int8_t *)ptr;
1659 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1660 }
1661
1662 return(0);
1663}
1664
1665/*
1666 * Allocate a region of memory inside the NIC and zero
1667 * it out.
1668 */
1669static int
1670an_alloc_nicmem(sc, len, id)
1671 struct an_softc *sc;
1672 int len;
1673 int *id;
1674{
1675 int i;
1676
1677 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1678 printf("an%d: failed to allocate %d bytes on NIC\n",
1679 sc->an_unit, len);
1680 return(ENOMEM);
1681 }
1682
1683 for (i = 0; i < AN_TIMEOUT; i++) {
1684 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1685 break;
1686 }
1687
1688 if (i == AN_TIMEOUT)
1689 return(ETIMEDOUT);
1690
1691 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1692 *id = CSR_READ_2(sc, AN_ALLOC_FID);
1693
1694 if (an_seek(sc, *id, 0, AN_BAP0))
1695 return(EIO);
1696
1697 for (i = 0; i < len / 2; i++)
1698 CSR_WRITE_2(sc, AN_DATA0, 0);
1699
1700 return(0);
1701}
1702
1703static void
1704an_setdef(sc, areq)
1705 struct an_softc *sc;
1706 struct an_req *areq;
1707{
1708 struct sockaddr_dl *sdl;
1709 struct ifaddr *ifa;
1710 struct ifnet *ifp;
1711 struct an_ltv_genconfig *cfg;
1712 struct an_ltv_ssidlist *ssid;
1713 struct an_ltv_aplist *ap;
1714 struct an_ltv_gen *sp;
1715
1716 ifp = &sc->arpcom.ac_if;
1717
1718 switch (areq->an_type) {
1719 case AN_RID_GENCONFIG:
1720 cfg = (struct an_ltv_genconfig *)areq;
1721
1722 ifa = ifnet_addrs[ifp->if_index - 1];
1723 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1724 bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1725 ETHER_ADDR_LEN);
1726 bcopy((char *)&cfg->an_macaddr, LLADDR(sdl), ETHER_ADDR_LEN);
1727
1728 bcopy((char *)cfg, (char *)&sc->an_config,
1729 sizeof(struct an_ltv_genconfig));
1730 break;
1731 case AN_RID_SSIDLIST:
1732 ssid = (struct an_ltv_ssidlist *)areq;
1733 bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1734 sizeof(struct an_ltv_ssidlist));
1735 break;
1736 case AN_RID_APLIST:
1737 ap = (struct an_ltv_aplist *)areq;
1738 bcopy((char *)ap, (char *)&sc->an_aplist,
1739 sizeof(struct an_ltv_aplist));
1740 break;
1741 case AN_RID_TX_SPEED:
1742 sp = (struct an_ltv_gen *)areq;
1743 sc->an_tx_rate = sp->an_val;
1744
1745 /* Read the current configuration */
1746 sc->an_config.an_type = AN_RID_GENCONFIG;
1747 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1748 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1749 cfg = &sc->an_config;
1750
1751 /* clear other rates and set the only one we want */
1752 bzero(cfg->an_rates, sizeof(cfg->an_rates));
1753 cfg->an_rates[0] = sc->an_tx_rate;
1754
1755 /* Save the new rate */
1756 sc->an_config.an_type = AN_RID_GENCONFIG;
1757 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1758 break;
1759 case AN_RID_WEP_TEMP:
1760 /* Cache the temp keys */
1761 bcopy(areq,
1762 &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex],
1763 sizeof(struct an_ltv_key));
1764 case AN_RID_WEP_PERM:
1765 case AN_RID_LEAPUSERNAME:
1766 case AN_RID_LEAPPASSWORD:
1767 /* Disable the MAC. */
1768 an_cmd(sc, AN_CMD_DISABLE, 0);
1769
1770 /* Write the key */
1771 an_write_record(sc, (struct an_ltv_gen *)areq);
1772
1773 /* Turn the MAC back on. */
1774 an_cmd(sc, AN_CMD_ENABLE, 0);
1775
1776 break;
1777 case AN_RID_MONITOR_MODE:
1778 cfg = (struct an_ltv_genconfig *)areq;
1779 bpfdetach(ifp);
1780 if (ng_ether_detach_p != NULL)
1781 (*ng_ether_detach_p) (ifp);
1782 sc->an_monitor = cfg->an_len;
1783
1784 if (sc->an_monitor & AN_MONITOR) {
1785 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1786 bpfattach(ifp, DLT_AIRONET_HEADER,
1787 sizeof(struct ether_header));
1788 } else {
1789 bpfattach(ifp, DLT_IEEE802_11,
1790 sizeof(struct ether_header));
1791 }
1792 } else {
1793 bpfattach(ifp, DLT_EN10MB,
1794 sizeof(struct ether_header));
1795 if (ng_ether_attach_p != NULL)
1796 (*ng_ether_attach_p) (ifp);
1797 }
1798 break;
1799 default:
1800 printf("an%d: unknown RID: %x\n", sc->an_unit, areq->an_type);
1801 return;
1802 break;
1803 }
1804
1805
1806 /* Reinitialize the card. */
1807 if (ifp->if_flags)
1808 an_init(sc);
1809
1810 return;
1811}
1812
1813/*
1814 * Derived from Linux driver to enable promiscious mode.
1815 */
1816
1817static void
1818an_promisc(sc, promisc)
1819 struct an_softc *sc;
1820 int promisc;
1821{
1822 if (sc->an_was_monitor)
1823 an_reset(sc);
1824 if (sc->mpi350)
1825 an_init_mpi350_desc(sc);
1826 if (sc->an_monitor || sc->an_was_monitor)
1827 an_init(sc);
1828
1829 sc->an_was_monitor = sc->an_monitor;
1830 an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1831
1832 return;
1833}
1834
1835static int
bd4539cc 1836an_ioctl(ifp, command, data, cr)
984263bc
MD
1837 struct ifnet *ifp;
1838 u_long command;
1839 caddr_t data;
bd4539cc 1840 struct ucred *cr;
984263bc
MD
1841{
1842 int s, error = 0;
1843 int len;
1844 int i;
1845 struct an_softc *sc;
1846 struct ifreq *ifr;
984263bc
MD
1847 struct ieee80211req *ireq;
1848 u_int8_t tmpstr[IEEE80211_NWID_LEN*2];
1849 u_int8_t *tmpptr;
1850 struct an_ltv_genconfig *config;
1851 struct an_ltv_key *key;
1852 struct an_ltv_status *status;
1853 struct an_ltv_ssidlist *ssids;
1854 int mode;
1855 struct aironet_ioctl l_ioctl;
1856
1857 sc = ifp->if_softc;
1858 s = splimp();
1859 ifr = (struct ifreq *)data;
1860 ireq = (struct ieee80211req *)data;
1861
1862 config = (struct an_ltv_genconfig *)&sc->areq;
1863 key = (struct an_ltv_key *)&sc->areq;
1864 status = (struct an_ltv_status *)&sc->areq;
1865 ssids = (struct an_ltv_ssidlist *)&sc->areq;
1866
1867 if (sc->an_gone) {
1868 error = ENODEV;
1869 goto out;
1870 }
1871
1872 switch (command) {
1873 case SIOCSIFADDR:
1874 case SIOCGIFADDR:
1875 case SIOCSIFMTU:
1876 error = ether_ioctl(ifp, command, data);
1877 break;
1878 case SIOCSIFFLAGS:
1879 if (ifp->if_flags & IFF_UP) {
1880 if (ifp->if_flags & IFF_RUNNING &&
1881 ifp->if_flags & IFF_PROMISC &&
1882 !(sc->an_if_flags & IFF_PROMISC)) {
1883 an_promisc(sc, 1);
1884 } else if (ifp->if_flags & IFF_RUNNING &&
1885 !(ifp->if_flags & IFF_PROMISC) &&
1886 sc->an_if_flags & IFF_PROMISC) {
1887 an_promisc(sc, 0);
1888 } else
1889 an_init(sc);
1890 } else {
1891 if (ifp->if_flags & IFF_RUNNING)
1892 an_stop(sc);
1893 }
1894 sc->an_if_flags = ifp->if_flags;
1895 error = 0;
1896 break;
1897 case SIOCSIFMEDIA:
1898 case SIOCGIFMEDIA:
1899 error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1900 break;
1901 case SIOCADDMULTI:
1902 case SIOCDELMULTI:
1903 /* The Aironet has no multicast filter. */
1904 error = 0;
1905 break;
1906 case SIOCGAIRONET:
1907 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1908 if (error != 0)
1909 break;
1910#ifdef ANCACHE
1911 if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
bd4539cc 1912 error = suser_cred(cr, NULL_CRED_OKAY);
984263bc
MD
1913 if (error)
1914 break;
1915 sc->an_sigitems = sc->an_nextitem = 0;
1916 break;
1917 } else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1918 char *pt = (char *)&sc->areq.an_val;
1919 bcopy((char *)&sc->an_sigitems, (char *)pt,
1920 sizeof(int));
1921 pt += sizeof(int);
1922 sc->areq.an_len = sizeof(int) / 2;
1923 bcopy((char *)&sc->an_sigcache, (char *)pt,
1924 sizeof(struct an_sigcache) * sc->an_sigitems);
1925 sc->areq.an_len += ((sizeof(struct an_sigcache) *
1926 sc->an_sigitems) / 2) + 1;
1927 } else
1928#endif
1929 if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1930 error = EINVAL;
1931 break;
1932 }
1933 error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1934 break;
1935 case SIOCSAIRONET:
bd4539cc 1936 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
984263bc
MD
1937 goto out;
1938 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1939 if (error != 0)
1940 break;
1941 an_setdef(sc, &sc->areq);
1942 break;
1943 case SIOCGPRIVATE_0: /* used by Cisco client utility */
bd4539cc 1944 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
984263bc
MD
1945 goto out;
1946 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1947 mode = l_ioctl.command;
1948
1949 if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1950 error = readrids(ifp, &l_ioctl);
1951 } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1952 error = writerids(ifp, &l_ioctl);
1953 } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1954 error = flashcard(ifp, &l_ioctl);
1955 } else {
1956 error =-1;
1957 }
1958
1959 /* copy out the updated command info */
1960 copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1961
1962 break;
1963 case SIOCGPRIVATE_1: /* used by Cisco client utility */
bd4539cc 1964 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
984263bc
MD
1965 goto out;
1966 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1967 l_ioctl.command = 0;
1968 error = AIROMAGIC;
1969 copyout(&error, l_ioctl.data, sizeof(error));
1970 error = 0;
1971 break;
1972 case SIOCG80211:
1973 sc->areq.an_len = sizeof(sc->areq);
1974 /* was that a good idea DJA we are doing a short-cut */
1975 switch (ireq->i_type) {
1976 case IEEE80211_IOC_SSID:
1977 if (ireq->i_val == -1) {
1978 sc->areq.an_type = AN_RID_STATUS;
1979 if (an_read_record(sc,
1980 (struct an_ltv_gen *)&sc->areq)) {
1981 error = EINVAL;
1982 break;
1983 }
1984 len = status->an_ssidlen;
1985 tmpptr = status->an_ssid;
1986 } else if (ireq->i_val >= 0) {
1987 sc->areq.an_type = AN_RID_SSIDLIST;
1988 if (an_read_record(sc,
1989 (struct an_ltv_gen *)&sc->areq)) {
1990 error = EINVAL;
1991 break;
1992 }
1993 if (ireq->i_val == 0) {
1994 len = ssids->an_ssid1_len;
1995 tmpptr = ssids->an_ssid1;
1996 } else if (ireq->i_val == 1) {
1997 len = ssids->an_ssid2_len;
1998 tmpptr = ssids->an_ssid2;
1999 } else if (ireq->i_val == 2) {
2000 len = ssids->an_ssid3_len;
2001 tmpptr = ssids->an_ssid3;
2002 } else {
2003 error = EINVAL;
2004 break;
2005 }
2006 } else {
2007 error = EINVAL;
2008 break;
2009 }
2010 if (len > IEEE80211_NWID_LEN) {
2011 error = EINVAL;
2012 break;
2013 }
2014 ireq->i_len = len;
2015 bzero(tmpstr, IEEE80211_NWID_LEN);
2016 bcopy(tmpptr, tmpstr, len);
2017 error = copyout(tmpstr, ireq->i_data,
2018 IEEE80211_NWID_LEN);
2019 break;
2020 case IEEE80211_IOC_NUMSSIDS:
2021 ireq->i_val = 3;
2022 break;
2023 case IEEE80211_IOC_WEP:
2024 sc->areq.an_type = AN_RID_ACTUALCFG;
2025 if (an_read_record(sc,
2026 (struct an_ltv_gen *)&sc->areq)) {
2027 error = EINVAL;
2028 break;
2029 }
2030 if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2031 if (config->an_authtype &
2032 AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2033 ireq->i_val = IEEE80211_WEP_MIXED;
2034 else
2035 ireq->i_val = IEEE80211_WEP_ON;
2036 } else {
2037 ireq->i_val = IEEE80211_WEP_OFF;
2038 }
2039 break;
2040 case IEEE80211_IOC_WEPKEY:
2041 /*
2042 * XXX: I'm not entierly convinced this is
2043 * correct, but it's what is implemented in
2044 * ancontrol so it will have to do until we get
2045 * access to actual Cisco code.
2046 */
2047 if (ireq->i_val < 0 || ireq->i_val > 8) {
2048 error = EINVAL;
2049 break;
2050 }
2051 len = 0;
2052 if (ireq->i_val < 5) {
2053 sc->areq.an_type = AN_RID_WEP_TEMP;
2054 for (i = 0; i < 5; i++) {
2055 if (an_read_record(sc,
2056 (struct an_ltv_gen *)&sc->areq)) {
2057 error = EINVAL;
2058 break;
2059 }
2060 if (key->kindex == 0xffff)
2061 break;
2062 if (key->kindex == ireq->i_val)
2063 len = key->klen;
2064 /* Required to get next entry */
2065 sc->areq.an_type = AN_RID_WEP_PERM;
2066 }
2067 if (error != 0)
2068 break;
2069 }
2070 /* We aren't allowed to read the value of the
2071 * key from the card so we just output zeros
2072 * like we would if we could read the card, but
2073 * denied the user access.
2074 */
2075 bzero(tmpstr, len);
2076 ireq->i_len = len;
2077 error = copyout(tmpstr, ireq->i_data, len);
2078 break;
2079 case IEEE80211_IOC_NUMWEPKEYS:
2080 ireq->i_val = 9; /* include home key */
2081 break;
2082 case IEEE80211_IOC_WEPTXKEY:
2083 /*
2084 * For some strange reason, you have to read all
2085 * keys before you can read the txkey.
2086 */
2087 sc->areq.an_type = AN_RID_WEP_TEMP;
2088 for (i = 0; i < 5; i++) {
2089 if (an_read_record(sc,
2090 (struct an_ltv_gen *) &sc->areq)) {
2091 error = EINVAL;
2092 break;
2093 }
2094 if (key->kindex == 0xffff)
2095 break;
2096 /* Required to get next entry */
2097 sc->areq.an_type = AN_RID_WEP_PERM;
2098 }
2099 if (error != 0)
2100 break;
2101
2102 sc->areq.an_type = AN_RID_WEP_PERM;
2103 key->kindex = 0xffff;
2104 if (an_read_record(sc,
2105 (struct an_ltv_gen *)&sc->areq)) {
2106 error = EINVAL;
2107 break;
2108 }
2109 ireq->i_val = key->mac[0];
2110 /*
2111 * Check for home mode. Map home mode into
2112 * 5th key since that is how it is stored on
2113 * the card
2114 */
2115 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2116 sc->areq.an_type = AN_RID_GENCONFIG;
2117 if (an_read_record(sc,
2118 (struct an_ltv_gen *)&sc->areq)) {
2119 error = EINVAL;
2120 break;
2121 }
2122 if (config->an_home_product & AN_HOME_NETWORK)
2123 ireq->i_val = 4;
2124 break;
2125 case IEEE80211_IOC_AUTHMODE:
2126 sc->areq.an_type = AN_RID_ACTUALCFG;
2127 if (an_read_record(sc,
2128 (struct an_ltv_gen *)&sc->areq)) {
2129 error = EINVAL;
2130 break;
2131 }
2132 if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2133 AN_AUTHTYPE_NONE) {
2134 ireq->i_val = IEEE80211_AUTH_NONE;
2135 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2136 AN_AUTHTYPE_OPEN) {
2137 ireq->i_val = IEEE80211_AUTH_OPEN;
2138 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2139 AN_AUTHTYPE_SHAREDKEY) {
2140 ireq->i_val = IEEE80211_AUTH_SHARED;
2141 } else
2142 error = EINVAL;
2143 break;
2144 case IEEE80211_IOC_STATIONNAME:
2145 sc->areq.an_type = AN_RID_ACTUALCFG;
2146 if (an_read_record(sc,
2147 (struct an_ltv_gen *)&sc->areq)) {
2148 error = EINVAL;
2149 break;
2150 }
2151 ireq->i_len = sizeof(config->an_nodename);
2152 tmpptr = config->an_nodename;
2153 bzero(tmpstr, IEEE80211_NWID_LEN);
2154 bcopy(tmpptr, tmpstr, ireq->i_len);
2155 error = copyout(tmpstr, ireq->i_data,
2156 IEEE80211_NWID_LEN);
2157 break;
2158 case IEEE80211_IOC_CHANNEL:
2159 sc->areq.an_type = AN_RID_STATUS;
2160 if (an_read_record(sc,
2161 (struct an_ltv_gen *)&sc->areq)) {
2162 error = EINVAL;
2163 break;
2164 }
2165 ireq->i_val = status->an_cur_channel;
2166 break;
2167 case IEEE80211_IOC_POWERSAVE:
2168 sc->areq.an_type = AN_RID_ACTUALCFG;
2169 if (an_read_record(sc,
2170 (struct an_ltv_gen *)&sc->areq)) {
2171 error = EINVAL;
2172 break;
2173 }
2174 if (config->an_psave_mode == AN_PSAVE_NONE) {
2175 ireq->i_val = IEEE80211_POWERSAVE_OFF;
2176 } else if (config->an_psave_mode == AN_PSAVE_CAM) {
2177 ireq->i_val = IEEE80211_POWERSAVE_CAM;
2178 } else if (config->an_psave_mode == AN_PSAVE_PSP) {
2179 ireq->i_val = IEEE80211_POWERSAVE_PSP;
2180 } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2181 ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2182 } else
2183 error = EINVAL;
2184 break;
2185 case IEEE80211_IOC_POWERSAVESLEEP:
2186 sc->areq.an_type = AN_RID_ACTUALCFG;
2187 if (an_read_record(sc,
2188 (struct an_ltv_gen *)&sc->areq)) {
2189 error = EINVAL;
2190 break;
2191 }
2192 ireq->i_val = config->an_listen_interval;
2193 break;
2194 }
2195 break;
2196 case SIOCS80211:
bd4539cc 2197 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
984263bc
MD
2198 goto out;
2199 sc->areq.an_len = sizeof(sc->areq);
2200 /*
2201 * We need a config structure for everything but the WEP
2202 * key management and SSIDs so we get it now so avoid
2203 * duplicating this code every time.
2204 */
2205 if (ireq->i_type != IEEE80211_IOC_SSID &&
2206 ireq->i_type != IEEE80211_IOC_WEPKEY &&
2207 ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2208 sc->areq.an_type = AN_RID_GENCONFIG;
2209 if (an_read_record(sc,
2210 (struct an_ltv_gen *)&sc->areq)) {
2211 error = EINVAL;
2212 break;
2213 }
2214 }
2215 switch (ireq->i_type) {
2216 case IEEE80211_IOC_SSID:
2217 sc->areq.an_type = AN_RID_SSIDLIST;
2218 if (an_read_record(sc,
2219 (struct an_ltv_gen *)&sc->areq)) {
2220 error = EINVAL;
2221 break;
2222 }
2223 if (ireq->i_len > IEEE80211_NWID_LEN) {
2224 error = EINVAL;
2225 break;
2226 }
2227 switch (ireq->i_val) {
2228 case 0:
2229 error = copyin(ireq->i_data,
2230 ssids->an_ssid1, ireq->i_len);
2231 ssids->an_ssid1_len = ireq->i_len;
2232 break;
2233 case 1:
2234 error = copyin(ireq->i_data,
2235 ssids->an_ssid2, ireq->i_len);
2236 ssids->an_ssid2_len = ireq->i_len;
2237 break;
2238 case 2:
2239 error = copyin(ireq->i_data,
2240 ssids->an_ssid3, ireq->i_len);
2241 ssids->an_ssid3_len = ireq->i_len;
2242 break;
2243 default:
2244 error = EINVAL;
2245 break;
2246 }
2247 break;
2248 case IEEE80211_IOC_WEP:
2249 switch (ireq->i_val) {
2250 case IEEE80211_WEP_OFF:
2251 config->an_authtype &=
2252 ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2253 AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2254 break;
2255 case IEEE80211_WEP_ON:
2256 config->an_authtype |=
2257 AN_AUTHTYPE_PRIVACY_IN_USE;
2258 config->an_authtype &=
2259 ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2260 break;
2261 case IEEE80211_WEP_MIXED:
2262 config->an_authtype |=
2263 AN_AUTHTYPE_PRIVACY_IN_USE |
2264 AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2265 break;
2266 default:
2267 error = EINVAL;
2268 break;
2269 }
2270 break;
2271 case IEEE80211_IOC_WEPKEY:
2272 if (ireq->i_val < 0 || ireq->i_val > 8 ||
2273 ireq->i_len > 13) {
2274 error = EINVAL;
2275 break;
2276 }
2277 error = copyin(ireq->i_data, tmpstr, 13);
2278 if (error != 0)
2279 break;
2280 /*
2281 * Map the 9th key into the home mode
2282 * since that is how it is stored on
2283 * the card
2284 */
2285 bzero(&sc->areq, sizeof(struct an_ltv_key));
2286 sc->areq.an_len = sizeof(struct an_ltv_key);
2287 key->mac[0] = 1; /* The others are 0. */
2288 if (ireq->i_val < 4) {
2289 sc->areq.an_type = AN_RID_WEP_TEMP;
2290 key->kindex = ireq->i_val;
2291 } else {
2292 sc->areq.an_type = AN_RID_WEP_PERM;
2293 key->kindex = ireq->i_val - 4;
2294 }
2295 key->klen = ireq->i_len;
2296 bcopy(tmpstr, key->key, key->klen);
2297 break;
2298 case IEEE80211_IOC_WEPTXKEY:
2299 if (ireq->i_val < 0 || ireq->i_val > 4) {
2300 error = EINVAL;
2301 break;
2302 }
2303
2304 /*
2305 * Map the 5th key into the home mode
2306 * since that is how it is stored on
2307 * the card
2308 */
2309 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2310 sc->areq.an_type = AN_RID_ACTUALCFG;
2311 if (an_read_record(sc,
2312 (struct an_ltv_gen *)&sc->areq)) {
2313 error = EINVAL;
2314 break;
2315 }
2316 if (ireq->i_val == 4) {
2317 config->an_home_product |= AN_HOME_NETWORK;
2318 ireq->i_val = 0;
2319 } else {
2320 config->an_home_product &= ~AN_HOME_NETWORK;
2321 }
2322
2323 sc->an_config.an_home_product
2324 = config->an_home_product;
2325
2326 /* update configuration */
2327 an_init(sc);
2328
2329 bzero(&sc->areq, sizeof(struct an_ltv_key));
2330 sc->areq.an_len = sizeof(struct an_ltv_key);
2331 sc->areq.an_type = AN_RID_WEP_PERM;
2332 key->kindex = 0xffff;
2333 key->mac[0] = ireq->i_val;
2334 break;
2335 case IEEE80211_IOC_AUTHMODE:
2336 switch (ireq->i_val) {
2337 case IEEE80211_AUTH_NONE:
2338 config->an_authtype = AN_AUTHTYPE_NONE |
2339 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2340 break;
2341 case IEEE80211_AUTH_OPEN:
2342 config->an_authtype = AN_AUTHTYPE_OPEN |
2343 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2344 break;
2345 case IEEE80211_AUTH_SHARED:
2346 config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2347 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2348 break;
2349 default:
2350 error = EINVAL;
2351 }
2352 break;
2353 case IEEE80211_IOC_STATIONNAME:
2354 if (ireq->i_len > 16) {
2355 error = EINVAL;
2356 break;
2357 }
2358 bzero(config->an_nodename, 16);
2359 error = copyin(ireq->i_data,
2360 config->an_nodename, ireq->i_len);
2361 break;
2362 case IEEE80211_IOC_CHANNEL:
2363 /*
2364 * The actual range is 1-14, but if you set it
2365 * to 0 you get the default so we let that work
2366 * too.
2367 */
2368 if (ireq->i_val < 0 || ireq->i_val >14) {
2369 error = EINVAL;
2370 break;
2371 }
2372 config->an_ds_channel = ireq->i_val;
2373 break;
2374 case IEEE80211_IOC_POWERSAVE:
2375 switch (ireq->i_val) {
2376 case IEEE80211_POWERSAVE_OFF:
2377 config->an_psave_mode = AN_PSAVE_NONE;
2378 break;
2379 case IEEE80211_POWERSAVE_CAM:
2380 config->an_psave_mode = AN_PSAVE_CAM;
2381 break;
2382 case IEEE80211_POWERSAVE_PSP:
2383 config->an_psave_mode = AN_PSAVE_PSP;
2384 break;
2385 case IEEE80211_POWERSAVE_PSP_CAM:
2386 config->an_psave_mode = AN_PSAVE_PSP_CAM;
2387 break;
2388 default:
2389 error = EINVAL;
2390 break;
2391 }
2392 break;
2393 case IEEE80211_IOC_POWERSAVESLEEP:
2394 config->an_listen_interval = ireq->i_val;
2395 break;
2396 }
2397
2398 if (!error)
2399 an_setdef(sc, &sc->areq);
2400 break;
2401 default:
2402 error = EINVAL;
2403 break;
2404 }
2405out:
2406 splx(s);
2407
2408 return(error != 0);
2409}
2410
2411static int
2412an_init_tx_ring(sc)
2413 struct an_softc *sc;
2414{
2415 int i;
2416 int id;
2417
2418 if (sc->an_gone)
2419 return (0);
2420
2421 if (!sc->mpi350) {
2422 for (i = 0; i < AN_TX_RING_CNT; i++) {
2423 if (an_alloc_nicmem(sc, 1518 +
2424 0x44, &id))
2425 return(ENOMEM);
2426 sc->an_rdata.an_tx_fids[i] = id;
2427 sc->an_rdata.an_tx_ring[i] = 0;
2428 }
2429 }
2430
2431 sc->an_rdata.an_tx_prod = 0;
2432 sc->an_rdata.an_tx_cons = 0;
2433 sc->an_rdata.an_tx_empty = 1;
2434
2435 return(0);
2436}
2437
2438static void
2439an_init(xsc)
2440 void *xsc;
2441{
2442 struct an_softc *sc = xsc;
2443 struct ifnet *ifp = &sc->arpcom.ac_if;
2444 int s;
2445
2446 s = splimp();
2447
2448 if (sc->an_gone) {
2449 splx(s);
2450 return;
2451 }
2452
2453 if (ifp->if_flags & IFF_RUNNING)
2454 an_stop(sc);
2455
2456 sc->an_associated = 0;
2457
2458 /* Allocate the TX buffers */
2459 if (an_init_tx_ring(sc)) {
2460 an_reset(sc);
2461 if (sc->mpi350)
2462 an_init_mpi350_desc(sc);
2463 if (an_init_tx_ring(sc)) {
2464 printf("an%d: tx buffer allocation "
2465 "failed\n", sc->an_unit);
2466 splx(s);
2467 return;
2468 }
2469 }
2470
2471 /* Set our MAC address. */
2472 bcopy((char *)&sc->arpcom.ac_enaddr,
2473 (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2474
2475 if (ifp->if_flags & IFF_BROADCAST)
2476 sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2477 else
2478 sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2479
2480 if (ifp->if_flags & IFF_MULTICAST)
2481 sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2482
2483 if (ifp->if_flags & IFF_PROMISC) {
2484 if (sc->an_monitor & AN_MONITOR) {
2485 if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2486 sc->an_config.an_rxmode |=
2487 AN_RXMODE_80211_MONITOR_ANYBSS |
2488 AN_RXMODE_NO_8023_HEADER;
2489 } else {
2490 sc->an_config.an_rxmode |=
2491 AN_RXMODE_80211_MONITOR_CURBSS |
2492 AN_RXMODE_NO_8023_HEADER;
2493 }
2494 }
2495 }
2496
2497 if (sc->an_have_rssimap)
2498 sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2499
2500 /* Set the ssid list */
2501 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2502 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
2503 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2504 printf("an%d: failed to set ssid list\n", sc->an_unit);
2505 splx(s);
2506 return;
2507 }
2508
2509 /* Set the AP list */
2510 sc->an_aplist.an_type = AN_RID_APLIST;
2511 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2512 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2513 printf("an%d: failed to set AP list\n", sc->an_unit);
2514 splx(s);
2515 return;
2516 }
2517
2518 /* Set the configuration in the NIC */
2519 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2520 sc->an_config.an_type = AN_RID_GENCONFIG;
2521 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2522 printf("an%d: failed to set configuration\n", sc->an_unit);
2523 splx(s);
2524 return;
2525 }
2526
2527 /* Enable the MAC */
2528 if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2529 printf("an%d: failed to enable MAC\n", sc->an_unit);
2530 splx(s);
2531 return;
2532 }
2533
2534 if (ifp->if_flags & IFF_PROMISC)
2535 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2536
2537 /* enable interrupts */
2538 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS);
2539
2540 ifp->if_flags |= IFF_RUNNING;
2541 ifp->if_flags &= ~IFF_OACTIVE;
2542
2543 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
2544 splx(s);
2545
2546 return;
2547}
2548
2549static void
2550an_start(ifp)
2551 struct ifnet *ifp;
2552{
2553 struct an_softc *sc;
2554 struct mbuf *m0 = NULL;
2555 struct an_txframe_802_3 tx_frame_802_3;
2556 struct ether_header *eh;
2557 int id, idx, i;
2558 unsigned char txcontrol;
2559 struct an_card_tx_desc an_tx_desc;
2560 u_int8_t *ptr;
2561 u_int8_t *buf;
2562
2563 sc = ifp->if_softc;
2564
2565 if (sc->an_gone)
2566 return;
2567
2568 if (ifp->if_flags & IFF_OACTIVE)
2569 return;
2570
2571 if (!sc->an_associated)
2572 return;
2573
2574 /* We can't send in monitor mode so toss any attempts. */
2575 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2576 for (;;) {
2577 IF_DEQUEUE(&ifp->if_snd, m0);
2578 if (m0 == NULL)
2579 break;
2580 m_freem(m0);
2581 }
2582 return;
2583 }
2584
2585 idx = sc->an_rdata.an_tx_prod;
2586
2587 if (!sc->mpi350) {
2588 bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2589
2590 while (sc->an_rdata.an_tx_ring[idx] == 0) {
2591 IF_DEQUEUE(&ifp->if_snd, m0);
2592 if (m0 == NULL)
2593 break;
2594
2595 id = sc->an_rdata.an_tx_fids[idx];
2596 eh = mtod(m0, struct ether_header *);
2597
2598 bcopy((char *)&eh->ether_dhost,
2599 (char *)&tx_frame_802_3.an_tx_dst_addr,
2600 ETHER_ADDR_LEN);
2601 bcopy((char *)&eh->ether_shost,
2602 (char *)&tx_frame_802_3.an_tx_src_addr,
2603 ETHER_ADDR_LEN);
2604
2605 /* minus src/dest mac & type */
2606 tx_frame_802_3.an_tx_802_3_payload_len =
2607 m0->m_pkthdr.len - 12;
2608
2609 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2610 tx_frame_802_3.an_tx_802_3_payload_len,
2611 (caddr_t)&sc->an_txbuf);
2612
2613 txcontrol = AN_TXCTL_8023;
2614 /* write the txcontrol only */
2615 an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2616 sizeof(txcontrol));
2617
2618 /* 802_3 header */
2619 an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2620 sizeof(struct an_txframe_802_3));
2621
2622 /* in mbuf header type is just before payload */
2623 an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2624 tx_frame_802_3.an_tx_802_3_payload_len);
2625
2626 /*
2627 * If there's a BPF listner, bounce a copy of
2628 * this frame to him.
2629 */
2630 if (ifp->if_bpf)
2631 bpf_mtap(ifp, m0);
2632
2633 m_freem(m0);
2634 m0 = NULL;
2635
2636 sc->an_rdata.an_tx_ring[idx] = id;
2637 if (an_cmd(sc, AN_CMD_TX, id))
2638 printf("an%d: xmit failed\n", sc->an_unit);
2639
2640 AN_INC(idx, AN_TX_RING_CNT);
2641 }
2642 } else { /* MPI-350 */
2643 while (sc->an_rdata.an_tx_empty ||
2644 idx != sc->an_rdata.an_tx_cons) {
2645 IF_DEQUEUE(&ifp->if_snd, m0);
2646 if (m0 == NULL) {
2647 break;
2648 }
2649 buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2650
2651 eh = mtod(m0, struct ether_header *);
2652
2653 /* DJA optimize this to limit bcopy */
2654 bcopy((char *)&eh->ether_dhost,
2655 (char *)&tx_frame_802_3.an_tx_dst_addr,
2656 ETHER_ADDR_LEN);
2657 bcopy((char *)&eh->ether_shost,
2658 (char *)&tx_frame_802_3.an_tx_src_addr,
2659 ETHER_ADDR_LEN);
2660
2661 /* minus src/dest mac & type */
2662 tx_frame_802_3.an_tx_802_3_payload_len =
2663 m0->m_pkthdr.len - 12;
2664
2665 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2666 tx_frame_802_3.an_tx_802_3_payload_len,
2667 (caddr_t)&sc->an_txbuf);
2668
2669 txcontrol = AN_TXCTL_8023;
2670 /* write the txcontrol only */
2671 bcopy((caddr_t)&txcontrol, &buf[0x08],
2672 sizeof(txcontrol));
2673
2674 /* 802_3 header */
2675 bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2676 sizeof(struct an_txframe_802_3));
2677
2678 /* in mbuf header type is just before payload */
2679 bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2680 tx_frame_802_3.an_tx_802_3_payload_len);
2681
2682
2683 bzero(&an_tx_desc, sizeof(an_tx_desc));
2684 an_tx_desc.an_offset = 0;
2685 an_tx_desc.an_eoc = 1;
2686 an_tx_desc.an_valid = 1;
2687 an_tx_desc.an_len = 0x44 +
2688 tx_frame_802_3.an_tx_802_3_payload_len;
2689 an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr;
2690 ptr = (u_int8_t*)&an_tx_desc;
2691 for (i = 0; i < sizeof(an_tx_desc); i++) {
2692 CSR_MEM_AUX_WRITE_1(sc, AN_TX_DESC_OFFSET + i,
2693 ptr[i]);
2694 }
2695
2696 /*
2697 * If there's a BPF listner, bounce a copy of
2698 * this frame to him.
2699 */
2700 if (ifp->if_bpf)
2701 bpf_mtap(ifp, m0);
2702
2703 m_freem(m0);
2704 m0 = NULL;
2705
2706 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2707
2708 AN_INC(idx, AN_MAX_TX_DESC);
2709 sc->an_rdata.an_tx_empty = 0;
2710 }
2711 }
2712
2713 if (m0 != NULL)
2714 ifp->if_flags |= IFF_OACTIVE;
2715
2716 sc->an_rdata.an_tx_prod = idx;
2717
2718 /*
2719 * Set a timeout in case the chip goes out to lunch.
2720 */
2721 ifp->if_timer = 5;
2722
2723 return;
2724}
2725
2726void
2727an_stop(sc)
2728 struct an_softc *sc;
2729{
2730 struct ifnet *ifp;
2731 int i;
2732 int s;
2733
2734 s = splimp();
2735
2736 if (sc->an_gone) {
2737 splx(s);
2738 return;
2739 }
2740
2741 ifp = &sc->arpcom.ac_if;
2742
2743 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2744 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2745 an_cmd(sc, AN_CMD_DISABLE, 0);
2746
2747 for (i = 0; i < AN_TX_RING_CNT; i++)
2748 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2749
2750 untimeout(an_stats_update, sc, sc->an_stat_ch);
2751
2752 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2753
2754 if (sc->an_flash_buffer) {
2755 free(sc->an_flash_buffer, M_DEVBUF);
2756 sc->an_flash_buffer = NULL;
2757 }
2758
2759 splx(s);
2760
2761 return;
2762}
2763
2764static void
2765an_watchdog(ifp)
2766 struct ifnet *ifp;
2767{
2768 struct an_softc *sc;
2769 int s;
2770
2771 sc = ifp->if_softc;
2772 s = splimp();
2773
2774 if (sc->an_gone) {
2775 splx(s);
2776 return;
2777 }
2778
2779 printf("an%d: device timeout\n", sc->an_unit);
2780
2781 an_reset(sc);
2782 if (sc->mpi350)
2783 an_init_mpi350_desc(sc);
2784 an_init(sc);
2785
2786 ifp->if_oerrors++;
2787 splx(s);
2788
2789 return;
2790}
2791
2792void
2793an_shutdown(dev)
2794 device_t dev;
2795{
2796 struct an_softc *sc;
2797
2798 sc = device_get_softc(dev);
2799 an_stop(sc);
2800
2801 return;
2802}
2803
2804void
2805an_resume(dev)
2806 device_t dev;
2807{
2808 struct an_softc *sc;
2809 struct ifnet *ifp;
2810 int i;
2811
2812 sc = device_get_softc(dev);
2813 ifp = &sc->arpcom.ac_if;
2814
2815 an_reset(sc);
2816 if (sc->mpi350)
2817 an_init_mpi350_desc(sc);
2818 an_init(sc);
2819
2820 /* Recovery temporary keys */
2821 for (i = 0; i < 4; i++) {
2822 sc->areq.an_type = AN_RID_WEP_TEMP;
2823 sc->areq.an_len = sizeof(struct an_ltv_key);
2824 bcopy(&sc->an_temp_keys[i],
2825 &sc->areq, sizeof(struct an_ltv_key));
2826 an_setdef(sc, &sc->areq);
2827 }
2828
2829 if (ifp->if_flags & IFF_UP)
2830 an_start(ifp);
2831
2832 return;
2833}
2834
2835#ifdef ANCACHE
2836/* Aironet signal strength cache code.
2837 * store signal/noise/quality on per MAC src basis in
2838 * a small fixed cache. The cache wraps if > MAX slots
2839 * used. The cache may be zeroed out to start over.
2840 * Two simple filters exist to reduce computation:
2841 * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2842 * to ignore some packets. It defaults to ip only.
2843 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2844 * 2. multicast/broadcast only. This may be used to
2845 * ignore unicast packets and only cache signal strength
2846 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2847 * beacons and not unicast traffic.
2848 *
2849 * The cache stores (MAC src(index), IP src (major clue), signal,
2850 * quality, noise)
2851 *
2852 * No apologies for storing IP src here. It's easy and saves much
2853 * trouble elsewhere. The cache is assumed to be INET dependent,
2854 * although it need not be.
2855 *
2856 * Note: the Aironet only has a single byte of signal strength value
2857 * in the rx frame header, and it's not scaled to anything sensible.
2858 * This is kind of lame, but it's all we've got.
2859 */
2860
2861#ifdef documentation
2862
2863int an_sigitems; /* number of cached entries */
2864struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */
2865int an_nextitem; /* index/# of entries */
2866
2867
2868#endif
2869
2870/* control variables for cache filtering. Basic idea is
2871 * to reduce cost (e.g., to only Mobile-IP agent beacons
2872 * which are broadcast or multicast). Still you might
2873 * want to measure signal strength anth unicast ping packets
2874 * on a pt. to pt. ant. setup.
2875 */
2876/* set true if you want to limit cache items to broadcast/mcast
2877 * only packets (not unicast). Useful for mobile-ip beacons which
2878 * are broadcast/multicast at network layer. Default is all packets
2879 * so ping/unicast anll work say anth pt. to pt. antennae setup.
2880 */
2881static int an_cache_mcastonly = 0;
2882SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2883 &an_cache_mcastonly, 0, "");
2884
2885/* set true if you want to limit cache items to IP packets only
2886*/
2887static int an_cache_iponly = 1;
2888SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2889 &an_cache_iponly, 0, "");
2890
2891/*
2892 * an_cache_store, per rx packet store signal
2893 * strength in MAC (src) indexed cache.
2894 */
2895static void
3013ac0e 2896an_cache_store (sc, m, rx_rssi, rx_quality)
984263bc 2897 struct an_softc *sc;
984263bc
MD
2898 struct mbuf *m;
2899 u_int8_t rx_rssi;
2900 u_int8_t rx_quality;
2901{
3013ac0e
JS
2902 struct ether_header *eh = mtod(m, struct ether_header *);
2903 struct ip *ip = NULL;
984263bc
MD
2904 int i;
2905 static int cache_slot = 0; /* use this cache entry */
2906 static int wrapindex = 0; /* next "free" cache entry */
984263bc
MD
2907
2908 /* filters:
2909 * 1. ip only
2910 * 2. configurable filter to throw out unicast packets,
2911 * keep multicast only.
2912 */
2913
3013ac0e
JS
2914 if ((ntohs(eh->ether_type) == ETHERTYPE_IP))
2915 ip = (struct ip *)(mtod(m, uint8_t *) + ETHER_HDR_LEN);
2916 else if (an_cache_iponly)
984263bc 2917 return;
984263bc
MD
2918
2919 /* filter for broadcast/multicast only
2920 */
2921 if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2922 return;
2923 }
2924
2925#ifdef SIGDEBUG
2926 printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n",
2927 rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
2928#endif
2929
984263bc
MD
2930 /* do a linear search for a matching MAC address
2931 * in the cache table
2932 * . MAC address is 6 bytes,
2933 * . var w_nextitem holds total number of entries already cached
2934 */
2935 for (i = 0; i < sc->an_nextitem; i++) {
2936 if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) {
2937 /* Match!,
2938 * so we already have this entry,
2939 * update the data
2940 */
2941 break;
2942 }
2943 }
2944
2945 /* did we find a matching mac address?
2946 * if yes, then overwrite a previously existing cache entry
2947 */
2948 if (i < sc->an_nextitem ) {
2949 cache_slot = i;
2950 }
2951 /* else, have a new address entry,so
2952 * add this new entry,
2953 * if table full, then we need to replace LRU entry
2954 */
2955 else {
2956
2957 /* check for space in cache table
2958 * note: an_nextitem also holds number of entries
2959 * added in the cache table
2960 */
2961 if ( sc->an_nextitem < MAXANCACHE ) {
2962 cache_slot = sc->an_nextitem;
2963 sc->an_nextitem++;
2964 sc->an_sigitems = sc->an_nextitem;
2965 }
2966 /* no space found, so simply wrap anth wrap index
2967 * and "zap" the next entry
2968 */
2969 else {
2970 if (wrapindex == MAXANCACHE) {
2971 wrapindex = 0;
2972 }
2973 cache_slot = wrapindex++;
2974 }
2975 }
2976
2977 /* invariant: cache_slot now points at some slot
2978 * in cache.
2979 */
2980 if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
2981 log(LOG_ERR, "an_cache_store, bad index: %d of "
2982 "[0..%d], gross cache error\n",
2983 cache_slot, MAXANCACHE);
2984 return;
2985 }
2986
2987 /* store items in cache
2988 * .ip source address
2989 * .mac src
2990 * .signal, etc.
2991 */
3013ac0e 2992 if (ip != NULL) {
984263bc
MD
2993 sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2994 }
2995 bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6);
2996
2997
2998 switch (an_cache_mode) {
2999 case DBM:
3000 if (sc->an_have_rssimap) {
3001 sc->an_sigcache[cache_slot].signal =
3002 - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
3003 sc->an_sigcache[cache_slot].quality =
3004 - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
3005 } else {
3006 sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
3007 sc->an_sigcache[cache_slot].quality = rx_quality - 100;
3008 }
3009 break;
3010 case PERCENT:
3011 if (sc->an_have_rssimap) {
3012 sc->an_sigcache[cache_slot].signal =
3013 sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
3014 sc->an_sigcache[cache_slot].quality =
3015 sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
3016 } else {
3017 if (rx_rssi > 100)
3018 rx_rssi = 100;
3019 if (rx_quality > 100)
3020 rx_quality = 100;
3021 sc->an_sigcache[cache_slot].signal = rx_rssi;
3022 sc->an_sigcache[cache_slot].quality = rx_quality;
3023 }
3024 break;
3025 case RAW:
3026 sc->an_sigcache[cache_slot].signal = rx_rssi;
3027 sc->an_sigcache[cache_slot].quality = rx_quality;
3028 break;
3029 }
3030
3031 sc->an_sigcache[cache_slot].noise = 0;
3032
3033 return;
3034}
3035#endif
3036
3037static int
3038an_media_change(ifp)
3039 struct ifnet *ifp;
3040{
3041 struct an_softc *sc = ifp->if_softc;
3042 struct an_ltv_genconfig *cfg;
3043 int otype = sc->an_config.an_opmode;
3044 int orate = sc->an_tx_rate;
3045
3046 if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
3047 sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
3048 else
3049 sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION;
3050
3051 switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
3052 case IFM_IEEE80211_DS1:
3053 sc->an_tx_rate = AN_RATE_1MBPS;
3054 break;
3055 case IFM_IEEE80211_DS2:
3056 sc->an_tx_rate = AN_RATE_2MBPS;
3057 break;
3058 case IFM_IEEE80211_DS5:
3059 sc->an_tx_rate = AN_RATE_5_5MBPS;
3060 break;
3061 case IFM_IEEE80211_DS11:
3062 sc->an_tx_rate = AN_RATE_11MBPS;
3063 break;
3064 case IFM_AUTO:
3065 sc->an_tx_rate = 0;
3066 break;
3067 }
3068
3069 if (orate != sc->an_tx_rate) {
3070 /* Read the current configuration */
3071 sc->an_config.an_type = AN_RID_GENCONFIG;
3072 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3073 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3074 cfg = &sc->an_config;
3075
3076 /* clear other rates and set the only one we want */
3077 bzero(cfg->an_rates, sizeof(cfg->an_rates));
3078 cfg->an_rates[0] = sc->an_tx_rate;
3079
3080 /* Save the new rate */
3081 sc->an_config.an_type = AN_RID_GENCONFIG;
3082 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3083 }
3084
3085 if (otype != sc->an_config.an_opmode ||
3086 orate != sc->an_tx_rate)
3087 an_init(sc);
3088
3089 return(0);
3090}
3091
3092static void
3093an_media_status(ifp, imr)
3094 struct ifnet *ifp;
3095 struct ifmediareq *imr;
3096{
3097 struct an_ltv_status status;
3098 struct an_softc *sc = ifp->if_softc;
3099
3100 status.an_len = sizeof(status);
3101 status.an_type = AN_RID_STATUS;
3102 if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3103 /* If the status read fails, just lie. */
3104 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3105 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3106 }
3107
3108 if (sc->an_tx_rate == 0) {
3109 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3110 if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3111 imr->ifm_active |= IFM_IEEE80211_ADHOC;
3112 switch (status.an_current_tx_rate) {
3113 case AN_RATE_1MBPS:
3114 imr->ifm_active |= IFM_IEEE80211_DS1;
3115 break;
3116 case AN_RATE_2MBPS:
3117 imr->ifm_active |= IFM_IEEE80211_DS2;
3118 break;
3119 case AN_RATE_5_5MBPS:
3120 imr->ifm_active |= IFM_IEEE80211_DS5;
3121 break;
3122 case AN_RATE_11MBPS:
3123 imr->ifm_active |= IFM_IEEE80211_DS11;
3124 break;
3125 }
3126 } else {
3127 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3128 }
3129
3130 imr->ifm_status = IFM_AVALID;
3131 if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3132 imr->ifm_status |= IFM_ACTIVE;
3133}
3134
3135/********************** Cisco utility support routines *************/
3136
3137/*
3138 * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3139 * Linux driver
3140 */
3141
3142static int
3143readrids(ifp, l_ioctl)
3144 struct ifnet *ifp;
3145 struct aironet_ioctl *l_ioctl;
3146{
3147 unsigned short rid;
3148 struct an_softc *sc;
3149
3150 switch (l_ioctl->command) {
3151 case AIROGCAP:
3152 rid = AN_RID_CAPABILITIES;
3153 break;
3154 case AIROGCFG:
3155 rid = AN_RID_GENCONFIG;
3156 break;
3157 case AIROGSLIST:
3158 rid = AN_RID_SSIDLIST;
3159 break;
3160 case AIROGVLIST:
3161 rid = AN_RID_APLIST;
3162 break;
3163 case AIROGDRVNAM:
3164 rid = AN_RID_DRVNAME;
3165 break;
3166 case AIROGEHTENC:
3167 rid = AN_RID_ENCAPPROTO;
3168 break;
3169 case AIROGWEPKTMP:
3170 rid = AN_RID_WEP_TEMP;
3171 break;
3172 case AIROGWEPKNV:
3173 rid = AN_RID_WEP_PERM;
3174 break;
3175 case AIROGSTAT:
3176 rid = AN_RID_STATUS;
3177 break;
3178 case AIROGSTATSD32:
3179 rid = AN_RID_32BITS_DELTA;
3180 break;
3181 case AIROGSTATSC32:
3182 rid = AN_RID_32BITS_CUM;
3183 break;
3184 default:
3185 rid = 999;
3186 break;
3187 }
3188
3189 if (rid == 999) /* Is bad command */
3190 return -EINVAL;
3191
3192 sc = ifp->if_softc;
3193 sc->areq.an_len = AN_MAX_DATALEN;
3194 sc->areq.an_type = rid;
3195
3196 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3197
3198 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3199
3200 /* the data contains the length at first */
3201 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3202 sizeof(sc->areq.an_len))) {
3203 return -EFAULT;
3204 }
3205 /* Just copy the data back */
3206 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3207 l_ioctl->len)) {
3208 return -EFAULT;
3209 }
3210 return 0;
3211}
3212
3213static int
3214writerids(ifp, l_ioctl)
3215 struct ifnet *ifp;
3216 struct aironet_ioctl *l_ioctl;
3217{
3218 struct an_softc *sc;
3219 int rid, command;
3220
3221 sc = ifp->if_softc;
3222 rid = 0;
3223 command = l_ioctl->command;
3224
3225 switch (command) {
3226 case AIROPSIDS:
3227 rid = AN_RID_SSIDLIST;
3228 break;
3229 case AIROPCAP:
3230 rid = AN_RID_CAPABILITIES;
3231 break;
3232 case AIROPAPLIST:
3233 rid = AN_RID_APLIST;
3234 break;
3235 case AIROPCFG:
3236 rid = AN_RID_GENCONFIG;
3237 break;
3238 case AIROPMACON:
3239 an_cmd(sc, AN_CMD_ENABLE, 0);
3240 return 0;
3241 break;
3242 case AIROPMACOFF:
3243 an_cmd(sc, AN_CMD_DISABLE, 0);
3244 return 0;
3245 break;
3246 case AIROPSTCLR:
3247 /*
3248 * This command merely clears the counts does not actually
3249 * store any data only reads rid. But as it changes the cards
3250 * state, I put it in the writerid routines.
3251 */
3252
3253 rid = AN_RID_32BITS_DELTACLR;
3254 sc = ifp->if_softc;
3255 sc->areq.an_len = AN_MAX_DATALEN;
3256 sc->areq.an_type = rid;
3257
3258 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3259 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3260
3261 /* the data contains the length at first */
3262 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3263 sizeof(sc->areq.an_len))) {
3264 return -EFAULT;
3265 }
3266 /* Just copy the data */
3267 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3268 l_ioctl->len)) {
3269 return -EFAULT;
3270 }
3271 return 0;
3272 break;
3273 case AIROPWEPKEY:
3274 rid = AN_RID_WEP_TEMP;
3275 break;
3276 case AIROPWEPKEYNV:
3277 rid = AN_RID_WEP_PERM;
3278 break;
3279 case AIROPLEAPUSR:
3280 rid = AN_RID_LEAPUSERNAME;
3281 break;
3282 case AIROPLEAPPWD:
3283 rid = AN_RID_LEAPPASSWORD;
3284 break;
3285 default:
3286 return -EOPNOTSUPP;
3287 }
3288
3289 if (rid) {
3290 if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3291 return -EINVAL;
3292 sc->areq.an_len = l_ioctl->len + 4; /* add type & length */
3293 sc->areq.an_type = rid;
3294
3295 /* Just copy the data back */
3296 copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3297 l_ioctl->len);
3298
3299 an_cmd(sc, AN_CMD_DISABLE, 0);
3300 an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3301 an_cmd(sc, AN_CMD_ENABLE, 0);
3302 return 0;
3303 }
3304 return -EOPNOTSUPP;
3305}
3306
3307/*
3308 * General Flash utilities derived from Cisco driver additions to Ben Reed's
3309 * Linux driver
3310 */
3311
377d4740 3312#define FLASH_DELAY(x) tsleep(ifp, 0, "flash", ((x) / hz) + 1);
984263bc
MD
3313#define FLASH_COMMAND 0x7e7e
3314#define FLASH_SIZE 32 * 1024
3315
3316static int
3317unstickbusy(ifp)
3318 struct ifnet *ifp;
3319{
3320 struct an_softc *sc = ifp->if_softc;
3321
3322 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3323 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
3324 AN_EV_CLR_STUCK_BUSY);
3325 return 1;
3326 }
3327 return 0;
3328}
3329
3330/*
3331 * Wait for busy completion from card wait for delay uSec's Return true for
3332 * success meaning command reg is clear
3333 */
3334
3335static int
3336WaitBusy(ifp, uSec)
3337 struct ifnet *ifp;
3338 int uSec;
3339{
3340 int statword = 0xffff;
3341 int delay = 0;
3342 struct an_softc *sc = ifp->if_softc;
3343
3344 while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3345 FLASH_DELAY(10);
3346 delay += 10;
3347 statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3348
3349 if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3350 unstickbusy(ifp);
3351 }
3352 }
3353
3354 return 0 == (AN_CMD_BUSY & statword);
3355}
3356
3357/*
3358 * STEP 1) Disable MAC and do soft reset on card.
3359 */
3360
3361static int
3362cmdreset(ifp)
3363 struct ifnet *ifp;
3364{
3365 int status;
3366 struct an_softc *sc = ifp->if_softc;
3367
3368 an_stop(sc);
3369
3370 an_cmd(sc, AN_CMD_DISABLE, 0);
3371
3372 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3373 printf("an%d: Waitbusy hang b4 RESET =%d\n",
3374 sc->an_unit, status);
3375 return -EBUSY;
3376 }
3377 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3378
3379 FLASH_DELAY(1000); /* WAS 600 12/7/00 */
3380
3381
3382 if (!(status = WaitBusy(ifp, 100))) {
3383 printf("an%d: Waitbusy hang AFTER RESET =%d\n",
3384 sc->an_unit, status);
3385 return -EBUSY;
3386 }
3387 return 0;
3388}
3389
3390/*
3391 * STEP 2) Put the card in legendary flash mode
3392 */
3393
3394static int
3395setflashmode(ifp)
3396 struct ifnet *ifp;
3397{
3398 int status;
3399 struct an_softc *sc = ifp->if_softc;
3400
3401 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3402 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3403 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3404 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3405
3406 /*
3407 * mdelay(500); // 500ms delay
3408 */
3409
3410 FLASH_DELAY(500);
3411
3412 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3413 printf("Waitbusy hang after setflash mode\n");
3414 return -EIO;
3415 }
3416 return 0;
3417}
3418
3419/*
3420 * Get a character from the card matching matchbyte Step 3)
3421 */
3422
3423static int
3424flashgchar(ifp, matchbyte, dwelltime)
3425 struct ifnet *ifp;
3426 int matchbyte;
3427 int dwelltime;
3428{
3429 int rchar;
3430 unsigned char rbyte = 0;
3431 int success = -1;
3432 struct an_softc *sc = ifp->if_softc;
3433
3434
3435 do {
3436 rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3437
3438 if (dwelltime && !(0x8000 & rchar)) {
3439 dwelltime -= 10;
3440 FLASH_DELAY(10);
3441 continue;
3442 }
3443 rbyte = 0xff & rchar;
3444
3445 if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3446 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3447 success = 1;
3448 break;
3449 }
3450 if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3451 break;
3452 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3453
3454 } while (dwelltime > 0);
3455 return success;
3456}
3457
3458/*
3459 * Put character to SWS0 wait for dwelltime x 50us for echo .
3460 */
3461
3462static int
3463flashpchar(ifp, byte, dwelltime)
3464 struct ifnet *ifp;
3465 int byte;
3466 int dwelltime;
3467{
3468 int echo;
3469 int pollbusy, waittime;
3470 struct an_softc *sc = ifp->if_softc;
3471
3472 byte |= 0x8000;
3473
3474 if (dwelltime == 0)
3475 dwelltime = 200;
3476
3477 waittime = dwelltime;
3478
3479 /*
3480 * Wait for busy bit d15 to go false indicating buffer empty
3481 */
3482 do {
3483 pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3484
3485 if (pollbusy & 0x8000) {
3486 FLASH_DELAY(50);
3487 waittime -= 50;
3488 continue;
3489 } else
3490 break;
3491 }
3492 while (waittime >= 0);
3493
3494 /* timeout for busy clear wait */
3495
3496 if (waittime <= 0) {
3497 printf("an%d: flash putchar busywait timeout! \n",
3498 sc->an_unit);
3499 return -1;
3500 }
3501 /*
3502 * Port is clear now write byte and wait for it to echo back
3503 */
3504 do {
3505 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3506 FLASH_DELAY(50);
3507 dwelltime -= 50;
3508 echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3509 } while (dwelltime >= 0 && echo != byte);
3510
3511
3512 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3513
3514 return echo == byte;
3515}
3516
3517/*
3518 * Transfer 32k of firmware data from user buffer to our buffer and send to
3519 * the card
3520 */
3521
3522static int
3523flashputbuf(ifp)
3524 struct ifnet *ifp;
3525{
3526 unsigned short *bufp;
3527 int nwords;
3528 struct an_softc *sc = ifp->if_softc;
3529
3530 /* Write stuff */
3531
3532 bufp = sc->an_flash_buffer;
3533
3534 if (!sc->mpi350) {
3535 CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3536 CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3537
3538 for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3539 CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3540 }
3541 } else {
3542 for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3543 CSR_MEM_AUX_WRITE_4(sc, 0x8000,
3544 ((u_int32_t *)bufp)[nwords] & 0xffff);
3545 }
3546 }
3547
3548 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3549
3550 return 0;
3551}
3552
3553/*
3554 * After flashing restart the card.
3555 */
3556
3557static int
3558flashrestart(ifp)
3559 struct ifnet *ifp;
3560{
3561 int status = 0;
3562 struct an_softc *sc = ifp->if_softc;
3563
3564 FLASH_DELAY(1024); /* Added 12/7/00 */
3565
3566 an_init(sc);
3567
3568 FLASH_DELAY(1024); /* Added 12/7/00 */
3569 return status;
3570}
3571
3572/*
3573 * Entry point for flash ioclt.
3574 */
3575
3576static int
3577flashcard(ifp, l_ioctl)
3578 struct ifnet *ifp;
3579 struct aironet_ioctl *l_ioctl;
3580{
3581 int z = 0, status;
3582 struct an_softc *sc;
3583
3584 sc = ifp->if_softc;
3585 if (sc->mpi350) {
3586 printf("an%d: flashing not supported on MPI 350 yet\n",
3587 sc->an_unit);
3588 return(-1);
3589 }
3590 status = l_ioctl->command;
3591
3592 switch (l_ioctl->command) {
3593 case AIROFLSHRST:
3594 return cmdreset(ifp);
3595 break;
3596 case AIROFLSHSTFL:
3597 if (sc->an_flash_buffer) {
3598 free(sc->an_flash_buffer, M_DEVBUF);
3599 sc->an_flash_buffer = NULL;
3600 }
3601 sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, 0);
3602 if (sc->an_flash_buffer)
3603 return setflashmode(ifp);
3604 else
3605 return ENOBUFS;
3606 break;
3607 case AIROFLSHGCHR: /* Get char from aux */
3608 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3609 z = *(int *)&sc->areq;
3610 if ((status = flashgchar(ifp, z, 8000)) == 1)
3611 return 0;
3612 else
3613 return -1;
3614 break;
3615 case AIROFLSHPCHR: /* Send char to card. */
3616 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3617 z = *(int *)&sc->areq;
3618 if ((status = flashpchar(ifp, z, 8000)) == -1)
3619 return -EIO;
3620 else
3621 return 0;
3622 break;
3623 case AIROFLPUTBUF: /* Send 32k to card */
3624 if (l_ioctl->len > FLASH_SIZE) {
3625 printf("an%d: Buffer to big, %x %x\n", sc->an_unit,
3626 l_ioctl->len, FLASH_SIZE);
3627 return -EINVAL;
3628 }
3629 copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3630
3631 if ((status = flashputbuf(ifp)) != 0)
3632 return -EIO;
3633 else
3634 return 0;
3635 break;
3636 case AIRORESTART:
3637 if ((status = flashrestart(ifp)) != 0) {
3638 printf("an%d: FLASHRESTART returned %d\n",
3639 sc->an_unit, status);
3640 return -EIO;
3641 } else
3642 return 0;
3643
3644 break;
3645 default:
3646 return -EINVAL;
3647 }
3648
3649 return -EINVAL;
3650}