Merge FreeBSD rev. 1.8:
[dragonfly.git] / sys / kern / vfs_subr.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
fb7518e5 40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.25 2004/02/10 07:34:42 dillon Exp $
984263bc
MD
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
984263bc 61#include <sys/proc.h>
dadab5e9 62#include <sys/namei.h>
984263bc
MD
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72
73#include <vm/vm.h>
74#include <vm/vm_object.h>
75#include <vm/vm_extern.h>
6ef943a3 76#include <vm/vm_kern.h>
984263bc
MD
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
3020e3be 84#include <sys/buf2.h>
f5865223 85#include <sys/thread2.h>
3020e3be 86
984263bc
MD
87static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88
402ed7e1
RG
89static void insmntque (struct vnode *vp, struct mount *mp);
90static void vclean (struct vnode *vp, int flags, struct thread *td);
984263bc
MD
91static unsigned long numvnodes;
92static void vlruvp(struct vnode *vp);
93SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
94
95enum vtype iftovt_tab[16] = {
96 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
97 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
98};
99int vttoif_tab[9] = {
100 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
101 S_IFSOCK, S_IFIFO, S_IFMT,
102};
103
104static TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
105
106static u_long wantfreevnodes = 25;
107SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
108static u_long freevnodes = 0;
109SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
110
111static int reassignbufcalls;
112SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
113static int reassignbufloops;
114SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
115static int reassignbufsortgood;
116SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
117static int reassignbufsortbad;
118SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
119static int reassignbufmethod = 1;
120SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
984263bc
MD
121
122#ifdef ENABLE_VFS_IOOPT
123int vfs_ioopt = 0;
124SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
125#endif
126
127struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
8a8d5d85
MD
128struct lwkt_token mountlist_token;
129struct lwkt_token mntvnode_token;
984263bc 130int nfs_mount_type = -1;
8a8d5d85
MD
131static struct lwkt_token mntid_token;
132static struct lwkt_token vnode_free_list_token;
133static struct lwkt_token spechash_token;
984263bc
MD
134struct nfs_public nfs_pub; /* publicly exported FS */
135static vm_zone_t vnode_zone;
136
137/*
138 * The workitem queue.
139 */
140#define SYNCER_MAXDELAY 32
141static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
142time_t syncdelay = 30; /* max time to delay syncing data */
99138c2f
HP
143SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW, &syncdelay, 0,
144 "VFS data synchronization delay");
984263bc 145time_t filedelay = 30; /* time to delay syncing files */
99138c2f
HP
146SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
147 "File synchronization delay");
984263bc 148time_t dirdelay = 29; /* time to delay syncing directories */
99138c2f
HP
149SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
150 "Directory synchronization delay");
984263bc 151time_t metadelay = 28; /* time to delay syncing metadata */
99138c2f
HP
152SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
153 "VFS metadata synchronization delay");
984263bc
MD
154static int rushjob; /* number of slots to run ASAP */
155static int stat_rush_requests; /* number of times I/O speeded up */
156SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
157
158static int syncer_delayno = 0;
159static long syncer_mask;
160LIST_HEAD(synclist, vnode);
161static struct synclist *syncer_workitem_pending;
162
163int desiredvnodes;
164SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
165 &desiredvnodes, 0, "Maximum number of vnodes");
166static int minvnodes;
167SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
168 &minvnodes, 0, "Minimum number of vnodes");
169static int vnlru_nowhere = 0;
170SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
171 "Number of times the vnlru process ran without success");
172
402ed7e1
RG
173static void vfs_free_addrlist (struct netexport *nep);
174static int vfs_free_netcred (struct radix_node *rn, void *w);
175static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
176 struct export_args *argp);
984263bc
MD
177
178/*
179 * Initialize the vnode management data structures.
180 */
181void
182vntblinit()
183{
184
6ef943a3
MD
185 /*
186 * Desired vnodes is a result of the physical page count
187 * and the size of kernel's heap. It scales in proportion
188 * to the amount of available physical memory. This can
189 * cause trouble on 64-bit and large memory platforms.
190 */
191 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
192 desiredvnodes =
193 min(maxproc + vmstats.v_page_count /4,
194 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
195 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
196
984263bc 197 minvnodes = desiredvnodes / 4;
fb7518e5 198 lwkt_inittoken(&mountlist_token);
8a8d5d85
MD
199 lwkt_inittoken(&mntvnode_token);
200 lwkt_inittoken(&mntid_token);
201 lwkt_inittoken(&spechash_token);
984263bc 202 TAILQ_INIT(&vnode_free_list);
8a8d5d85 203 lwkt_inittoken(&vnode_free_list_token);
984263bc
MD
204 vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
205 /*
206 * Initialize the filesystem syncer.
207 */
208 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
209 &syncer_mask);
210 syncer_maxdelay = syncer_mask + 1;
211}
212
213/*
214 * Mark a mount point as busy. Used to synchronize access and to delay
215 * unmounting. Interlock is not released on failure.
216 */
217int
8a8d5d85 218vfs_busy(struct mount *mp, int flags, struct lwkt_token *interlkp,
dadab5e9 219 struct thread *td)
984263bc
MD
220{
221 int lkflags;
222
223 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
224 if (flags & LK_NOWAIT)
225 return (ENOENT);
226 mp->mnt_kern_flag |= MNTK_MWAIT;
227 if (interlkp) {
8a8d5d85 228 lwkt_reltoken(interlkp);
984263bc
MD
229 }
230 /*
231 * Since all busy locks are shared except the exclusive
232 * lock granted when unmounting, the only place that a
233 * wakeup needs to be done is at the release of the
234 * exclusive lock at the end of dounmount.
235 */
377d4740 236 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
984263bc 237 if (interlkp) {
8a8d5d85 238 lwkt_gettoken(interlkp);
984263bc
MD
239 }
240 return (ENOENT);
241 }
242 lkflags = LK_SHARED | LK_NOPAUSE;
243 if (interlkp)
244 lkflags |= LK_INTERLOCK;
dadab5e9 245 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
984263bc
MD
246 panic("vfs_busy: unexpected lock failure");
247 return (0);
248}
249
250/*
251 * Free a busy filesystem.
252 */
253void
dadab5e9 254vfs_unbusy(struct mount *mp, struct thread *td)
984263bc 255{
dadab5e9 256 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
984263bc
MD
257}
258
259/*
260 * Lookup a filesystem type, and if found allocate and initialize
261 * a mount structure for it.
262 *
263 * Devname is usually updated by mount(8) after booting.
264 */
265int
dadab5e9 266vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
984263bc 267{
dadab5e9 268 struct thread *td = curthread; /* XXX */
984263bc
MD
269 struct vfsconf *vfsp;
270 struct mount *mp;
271
272 if (fstypename == NULL)
273 return (ENODEV);
274 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
275 if (!strcmp(vfsp->vfc_name, fstypename))
276 break;
277 if (vfsp == NULL)
278 return (ENODEV);
279 mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
280 bzero((char *)mp, (u_long)sizeof(struct mount));
377d4740 281 lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
dadab5e9 282 (void)vfs_busy(mp, LK_NOWAIT, 0, td);
984263bc
MD
283 TAILQ_INIT(&mp->mnt_nvnodelist);
284 TAILQ_INIT(&mp->mnt_reservedvnlist);
285 mp->mnt_nvnodelistsize = 0;
286 mp->mnt_vfc = vfsp;
287 mp->mnt_op = vfsp->vfc_vfsops;
288 mp->mnt_flag = MNT_RDONLY;
289 mp->mnt_vnodecovered = NULLVP;
290 vfsp->vfc_refcount++;
291 mp->mnt_iosize_max = DFLTPHYS;
292 mp->mnt_stat.f_type = vfsp->vfc_typenum;
293 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
294 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
295 mp->mnt_stat.f_mntonname[0] = '/';
296 mp->mnt_stat.f_mntonname[1] = 0;
297 (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
298 *mpp = mp;
299 return (0);
300}
301
302/*
303 * Find an appropriate filesystem to use for the root. If a filesystem
304 * has not been preselected, walk through the list of known filesystems
305 * trying those that have mountroot routines, and try them until one
306 * works or we have tried them all.
307 */
308#ifdef notdef /* XXX JH */
309int
310lite2_vfs_mountroot()
311{
312 struct vfsconf *vfsp;
402ed7e1 313 extern int (*lite2_mountroot) (void);
984263bc
MD
314 int error;
315
316 if (lite2_mountroot != NULL)
317 return ((*lite2_mountroot)());
318 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
319 if (vfsp->vfc_mountroot == NULL)
320 continue;
321 if ((error = (*vfsp->vfc_mountroot)()) == 0)
322 return (0);
323 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
324 }
325 return (ENODEV);
326}
327#endif
328
329/*
330 * Lookup a mount point by filesystem identifier.
331 */
332struct mount *
333vfs_getvfs(fsid)
334 fsid_t *fsid;
335{
1fd87d54 336 struct mount *mp;
984263bc 337
8a8d5d85 338 lwkt_gettoken(&mountlist_token);
984263bc
MD
339 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
340 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
341 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
8a8d5d85 342 lwkt_reltoken(&mountlist_token);
984263bc
MD
343 return (mp);
344 }
345 }
8a8d5d85 346 lwkt_reltoken(&mountlist_token);
984263bc
MD
347 return ((struct mount *) 0);
348}
349
350/*
351 * Get a new unique fsid. Try to make its val[0] unique, since this value
352 * will be used to create fake device numbers for stat(). Also try (but
353 * not so hard) make its val[0] unique mod 2^16, since some emulators only
354 * support 16-bit device numbers. We end up with unique val[0]'s for the
355 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
356 *
357 * Keep in mind that several mounts may be running in parallel. Starting
358 * the search one past where the previous search terminated is both a
359 * micro-optimization and a defense against returning the same fsid to
360 * different mounts.
361 */
362void
363vfs_getnewfsid(mp)
364 struct mount *mp;
365{
366 static u_int16_t mntid_base;
367 fsid_t tfsid;
368 int mtype;
369
8a8d5d85 370 lwkt_gettoken(&mntid_token);
984263bc
MD
371 mtype = mp->mnt_vfc->vfc_typenum;
372 tfsid.val[1] = mtype;
373 mtype = (mtype & 0xFF) << 24;
374 for (;;) {
375 tfsid.val[0] = makeudev(255,
376 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
377 mntid_base++;
378 if (vfs_getvfs(&tfsid) == NULL)
379 break;
380 }
381 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
382 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
8a8d5d85 383 lwkt_reltoken(&mntid_token);
984263bc
MD
384}
385
386/*
387 * Knob to control the precision of file timestamps:
388 *
389 * 0 = seconds only; nanoseconds zeroed.
390 * 1 = seconds and nanoseconds, accurate within 1/HZ.
391 * 2 = seconds and nanoseconds, truncated to microseconds.
392 * >=3 = seconds and nanoseconds, maximum precision.
393 */
394enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
395
396static int timestamp_precision = TSP_SEC;
397SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
398 &timestamp_precision, 0, "");
399
400/*
401 * Get a current timestamp.
402 */
403void
404vfs_timestamp(tsp)
405 struct timespec *tsp;
406{
407 struct timeval tv;
408
409 switch (timestamp_precision) {
410 case TSP_SEC:
411 tsp->tv_sec = time_second;
412 tsp->tv_nsec = 0;
413 break;
414 case TSP_HZ:
415 getnanotime(tsp);
416 break;
417 case TSP_USEC:
418 microtime(&tv);
419 TIMEVAL_TO_TIMESPEC(&tv, tsp);
420 break;
421 case TSP_NSEC:
422 default:
423 nanotime(tsp);
424 break;
425 }
426}
427
428/*
429 * Set vnode attributes to VNOVAL
430 */
431void
432vattr_null(vap)
1fd87d54 433 struct vattr *vap;
984263bc
MD
434{
435
436 vap->va_type = VNON;
437 vap->va_size = VNOVAL;
438 vap->va_bytes = VNOVAL;
439 vap->va_mode = VNOVAL;
440 vap->va_nlink = VNOVAL;
441 vap->va_uid = VNOVAL;
442 vap->va_gid = VNOVAL;
443 vap->va_fsid = VNOVAL;
444 vap->va_fileid = VNOVAL;
445 vap->va_blocksize = VNOVAL;
446 vap->va_rdev = VNOVAL;
447 vap->va_atime.tv_sec = VNOVAL;
448 vap->va_atime.tv_nsec = VNOVAL;
449 vap->va_mtime.tv_sec = VNOVAL;
450 vap->va_mtime.tv_nsec = VNOVAL;
451 vap->va_ctime.tv_sec = VNOVAL;
452 vap->va_ctime.tv_nsec = VNOVAL;
453 vap->va_flags = VNOVAL;
454 vap->va_gen = VNOVAL;
455 vap->va_vaflags = 0;
456}
457
458/*
459 * This routine is called when we have too many vnodes. It attempts
460 * to free <count> vnodes and will potentially free vnodes that still
461 * have VM backing store (VM backing store is typically the cause
462 * of a vnode blowout so we want to do this). Therefore, this operation
463 * is not considered cheap.
464 *
465 * A number of conditions may prevent a vnode from being reclaimed.
466 * the buffer cache may have references on the vnode, a directory
467 * vnode may still have references due to the namei cache representing
468 * underlying files, or the vnode may be in active use. It is not
469 * desireable to reuse such vnodes. These conditions may cause the
470 * number of vnodes to reach some minimum value regardless of what
471 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
472 */
473static int
474vlrureclaim(struct mount *mp)
475{
476 struct vnode *vp;
477 int done;
478 int trigger;
479 int usevnodes;
480 int count;
8a8d5d85 481 int gen;
984263bc
MD
482
483 /*
484 * Calculate the trigger point, don't allow user
485 * screwups to blow us up. This prevents us from
486 * recycling vnodes with lots of resident pages. We
487 * aren't trying to free memory, we are trying to
488 * free vnodes.
489 */
490 usevnodes = desiredvnodes;
491 if (usevnodes <= 0)
492 usevnodes = 1;
12e4aaff 493 trigger = vmstats.v_page_count * 2 / usevnodes;
984263bc
MD
494
495 done = 0;
8a8d5d85 496 gen = lwkt_gettoken(&mntvnode_token);
984263bc
MD
497 count = mp->mnt_nvnodelistsize / 10 + 1;
498 while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
499 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
500 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
501
502 if (vp->v_type != VNON &&
503 vp->v_type != VBAD &&
504 VMIGHTFREE(vp) && /* critical path opt */
8a8d5d85 505 (vp->v_object == NULL || vp->v_object->resident_page_count < trigger)
984263bc 506 ) {
8a8d5d85
MD
507 lwkt_gettoken(&vp->v_interlock);
508 if (lwkt_gentoken(&mntvnode_token, &gen) == 0) {
509 if (VMIGHTFREE(vp)) {
510 vgonel(vp, curthread);
511 done++;
512 } else {
513 lwkt_reltoken(&vp->v_interlock);
514 }
984263bc 515 } else {
8a8d5d85 516 lwkt_reltoken(&vp->v_interlock);
984263bc 517 }
984263bc
MD
518 }
519 --count;
520 }
8a8d5d85 521 lwkt_reltoken(&mntvnode_token);
984263bc
MD
522 return done;
523}
524
525/*
526 * Attempt to recycle vnodes in a context that is always safe to block.
527 * Calling vlrurecycle() from the bowels of file system code has some
528 * interesting deadlock problems.
529 */
bc6dffab 530static struct thread *vnlruthread;
984263bc
MD
531static int vnlruproc_sig;
532
533static void
534vnlru_proc(void)
535{
536 struct mount *mp, *nmp;
537 int s;
538 int done;
0cfcada1 539 struct thread *td = curthread;
984263bc 540
bc6dffab 541 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
984263bc
MD
542 SHUTDOWN_PRI_FIRST);
543
544 s = splbio();
545 for (;;) {
0cfcada1 546 kproc_suspend_loop();
984263bc
MD
547 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
548 vnlruproc_sig = 0;
549 wakeup(&vnlruproc_sig);
377d4740 550 tsleep(td, 0, "vlruwt", hz);
984263bc
MD
551 continue;
552 }
553 done = 0;
8a8d5d85 554 lwkt_gettoken(&mountlist_token);
984263bc 555 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
8a8d5d85 556 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, td)) {
984263bc
MD
557 nmp = TAILQ_NEXT(mp, mnt_list);
558 continue;
559 }
560 done += vlrureclaim(mp);
8a8d5d85 561 lwkt_gettoken(&mountlist_token);
984263bc 562 nmp = TAILQ_NEXT(mp, mnt_list);
dadab5e9 563 vfs_unbusy(mp, td);
984263bc 564 }
8a8d5d85 565 lwkt_reltoken(&mountlist_token);
984263bc
MD
566 if (done == 0) {
567 vnlru_nowhere++;
377d4740 568 tsleep(td, 0, "vlrup", hz * 3);
984263bc
MD
569 }
570 }
571 splx(s);
572}
573
574static struct kproc_desc vnlru_kp = {
575 "vnlru",
576 vnlru_proc,
bc6dffab 577 &vnlruthread
984263bc
MD
578};
579SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
580
581/*
582 * Routines having to do with the management of the vnode table.
583 */
584extern vop_t **dead_vnodeop_p;
585
586/*
587 * Return the next vnode from the free list.
588 */
589int
590getnewvnode(tag, mp, vops, vpp)
591 enum vtagtype tag;
592 struct mount *mp;
593 vop_t **vops;
594 struct vnode **vpp;
595{
596 int s;
8a8d5d85
MD
597 int gen;
598 int vgen;
dadab5e9 599 struct thread *td = curthread; /* XXX */
984263bc
MD
600 struct vnode *vp = NULL;
601 vm_object_t object;
602
603 s = splbio();
604
605 /*
606 * Try to reuse vnodes if we hit the max. This situation only
607 * occurs in certain large-memory (2G+) situations. We cannot
608 * attempt to directly reclaim vnodes due to nasty recursion
609 * problems.
610 */
611 while (numvnodes - freevnodes > desiredvnodes) {
612 if (vnlruproc_sig == 0) {
613 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
bc6dffab 614 wakeup(vnlruthread);
984263bc 615 }
377d4740 616 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
984263bc
MD
617 }
618
619
620 /*
621 * Attempt to reuse a vnode already on the free list, allocating
622 * a new vnode if we can't find one or if we have not reached a
623 * good minimum for good LRU performance.
624 */
8a8d5d85 625 gen = lwkt_gettoken(&vnode_free_list_token);
984263bc
MD
626 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
627 int count;
628
629 for (count = 0; count < freevnodes; count++) {
630 vp = TAILQ_FIRST(&vnode_free_list);
631 if (vp == NULL || vp->v_usecount)
632 panic("getnewvnode: free vnode isn't");
633
8a8d5d85
MD
634 /*
635 * Get the vnode's interlock, then re-obtain
636 * vnode_free_list_token in case we lost it. If we
637 * did lose it while getting the vnode interlock,
638 * even if we got it back again, then retry.
639 */
640 vgen = lwkt_gettoken(&vp->v_interlock);
641 if (lwkt_gentoken(&vnode_free_list_token, &gen) != 0) {
642 --count;
643 lwkt_reltoken(&vp->v_interlock);
644 vp = NULL;
645 continue;
646 }
647
648 /*
649 * Whew! We have both tokens. Since we didn't lose
650 * the free list VFREE had better still be set. But
651 * we aren't out of the woods yet. We have to get
652 * the object (may block). If the vnode is not
653 * suitable then move it to the end of the list
654 * if we can. If we can't move it to the end of the
655 * list retry again.
656 */
984263bc 657 if ((VOP_GETVOBJECT(vp, &object) == 0 &&
8a8d5d85
MD
658 (object->resident_page_count || object->ref_count))
659 ) {
660 if (lwkt_gentoken(&vp->v_interlock, &vgen) == 0 &&
661 lwkt_gentoken(&vnode_free_list_token, &gen) == 0
662 ) {
663 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
664 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
665 } else {
666 --count;
667 }
668 lwkt_reltoken(&vp->v_interlock);
669 vp = NULL;
670 continue;
671 }
672
673 /*
674 * Still not out of the woods. VOBJECT might have
675 * blocked, if we did not retain our tokens we have
676 * to retry.
677 */
678 if (lwkt_gentoken(&vp->v_interlock, &vgen) != 0 ||
679 lwkt_gentoken(&vnode_free_list_token, &gen) != 0) {
680 --count;
984263bc
MD
681 vp = NULL;
682 continue;
683 }
8a8d5d85
MD
684 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
685 KKASSERT(vp->v_flag & VFREE);
686
7ea21ed1
MD
687 /*
688 * If we have children in the namecache we cannot
689 * reuse the vnode yet because it will break the
690 * namecache chain (YYY use nc_refs for the check?)
691 */
692 if (TAILQ_FIRST(&vp->v_namecache)) {
693 if (cache_leaf_test(vp) < 0) {
8a8d5d85 694 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
695 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
696 vp = NULL;
697 continue;
698 }
699 }
700 break;
701 }
702 }
703
704 if (vp) {
705 vp->v_flag |= VDOOMED;
706 vp->v_flag &= ~VFREE;
707 freevnodes--;
8a8d5d85
MD
708 lwkt_reltoken(&vnode_free_list_token);
709 cache_purge(vp); /* YYY may block */
984263bc
MD
710 vp->v_lease = NULL;
711 if (vp->v_type != VBAD) {
dadab5e9 712 vgonel(vp, td);
984263bc 713 } else {
8a8d5d85 714 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
715 }
716
717#ifdef INVARIANTS
718 {
719 int s;
720
721 if (vp->v_data)
722 panic("cleaned vnode isn't");
723 s = splbio();
724 if (vp->v_numoutput)
725 panic("Clean vnode has pending I/O's");
726 splx(s);
727 }
728#endif
729 vp->v_flag = 0;
730 vp->v_lastw = 0;
731 vp->v_lasta = 0;
732 vp->v_cstart = 0;
733 vp->v_clen = 0;
734 vp->v_socket = 0;
735 vp->v_writecount = 0; /* XXX */
736 } else {
8a8d5d85 737 lwkt_reltoken(&vnode_free_list_token);
984263bc
MD
738 vp = (struct vnode *) zalloc(vnode_zone);
739 bzero((char *) vp, sizeof *vp);
8a8d5d85 740 lwkt_inittoken(&vp->v_interlock);
fb7518e5 741 lwkt_inittoken(&vp->v_pollinfo.vpi_token);
984263bc
MD
742 vp->v_dd = vp;
743 cache_purge(vp);
7ea21ed1 744 TAILQ_INIT(&vp->v_namecache);
984263bc
MD
745 numvnodes++;
746 }
747
748 TAILQ_INIT(&vp->v_cleanblkhd);
749 TAILQ_INIT(&vp->v_dirtyblkhd);
750 vp->v_type = VNON;
751 vp->v_tag = tag;
752 vp->v_op = vops;
753 insmntque(vp, mp);
754 *vpp = vp;
755 vp->v_usecount = 1;
756 vp->v_data = 0;
757 splx(s);
758
3b568787 759 vfs_object_create(vp, td);
984263bc
MD
760 return (0);
761}
762
763/*
764 * Move a vnode from one mount queue to another.
765 */
766static void
767insmntque(vp, mp)
1fd87d54
RG
768 struct vnode *vp;
769 struct mount *mp;
984263bc
MD
770{
771
8a8d5d85 772 lwkt_gettoken(&mntvnode_token);
984263bc
MD
773 /*
774 * Delete from old mount point vnode list, if on one.
775 */
776 if (vp->v_mount != NULL) {
777 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
778 ("bad mount point vnode list size"));
779 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
780 vp->v_mount->mnt_nvnodelistsize--;
781 }
782 /*
783 * Insert into list of vnodes for the new mount point, if available.
784 */
785 if ((vp->v_mount = mp) == NULL) {
8a8d5d85 786 lwkt_reltoken(&mntvnode_token);
984263bc
MD
787 return;
788 }
789 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
790 mp->mnt_nvnodelistsize++;
8a8d5d85 791 lwkt_reltoken(&mntvnode_token);
984263bc
MD
792}
793
794/*
795 * Update outstanding I/O count and do wakeup if requested.
796 */
797void
798vwakeup(bp)
1fd87d54 799 struct buf *bp;
984263bc 800{
1fd87d54 801 struct vnode *vp;
984263bc
MD
802
803 bp->b_flags &= ~B_WRITEINPROG;
804 if ((vp = bp->b_vp)) {
805 vp->v_numoutput--;
806 if (vp->v_numoutput < 0)
807 panic("vwakeup: neg numoutput");
808 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
809 vp->v_flag &= ~VBWAIT;
810 wakeup((caddr_t) &vp->v_numoutput);
811 }
812 }
813}
814
815/*
816 * Flush out and invalidate all buffers associated with a vnode.
817 * Called with the underlying object locked.
818 */
819int
3b568787
MD
820vinvalbuf(struct vnode *vp, int flags, struct thread *td,
821 int slpflag, int slptimeo)
984263bc 822{
1fd87d54 823 struct buf *bp;
984263bc
MD
824 struct buf *nbp, *blist;
825 int s, error;
826 vm_object_t object;
827
828 if (flags & V_SAVE) {
829 s = splbio();
830 while (vp->v_numoutput) {
831 vp->v_flag |= VBWAIT;
832 error = tsleep((caddr_t)&vp->v_numoutput,
377d4740 833 slpflag, "vinvlbuf", slptimeo);
984263bc
MD
834 if (error) {
835 splx(s);
836 return (error);
837 }
838 }
839 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
840 splx(s);
3b568787 841 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
984263bc
MD
842 return (error);
843 s = splbio();
844 if (vp->v_numoutput > 0 ||
845 !TAILQ_EMPTY(&vp->v_dirtyblkhd))
846 panic("vinvalbuf: dirty bufs");
847 }
848 splx(s);
849 }
850 s = splbio();
851 for (;;) {
852 blist = TAILQ_FIRST(&vp->v_cleanblkhd);
853 if (!blist)
854 blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
855 if (!blist)
856 break;
857
858 for (bp = blist; bp; bp = nbp) {
859 nbp = TAILQ_NEXT(bp, b_vnbufs);
860 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
861 error = BUF_TIMELOCK(bp,
862 LK_EXCLUSIVE | LK_SLEEPFAIL,
863 "vinvalbuf", slpflag, slptimeo);
864 if (error == ENOLCK)
865 break;
866 splx(s);
867 return (error);
868 }
869 /*
870 * XXX Since there are no node locks for NFS, I
871 * believe there is a slight chance that a delayed
872 * write will occur while sleeping just above, so
873 * check for it. Note that vfs_bio_awrite expects
874 * buffers to reside on a queue, while VOP_BWRITE and
875 * brelse do not.
876 */
877 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
878 (flags & V_SAVE)) {
879
880 if (bp->b_vp == vp) {
881 if (bp->b_flags & B_CLUSTEROK) {
882 BUF_UNLOCK(bp);
883 vfs_bio_awrite(bp);
884 } else {
885 bremfree(bp);
886 bp->b_flags |= B_ASYNC;
887 VOP_BWRITE(bp->b_vp, bp);
888 }
889 } else {
890 bremfree(bp);
891 (void) VOP_BWRITE(bp->b_vp, bp);
892 }
893 break;
894 }
895 bremfree(bp);
896 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
897 bp->b_flags &= ~B_ASYNC;
898 brelse(bp);
899 }
900 }
901
902 /*
903 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
904 * have write I/O in-progress but if there is a VM object then the
905 * VM object can also have read-I/O in-progress.
906 */
907 do {
908 while (vp->v_numoutput > 0) {
909 vp->v_flag |= VBWAIT;
377d4740 910 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
984263bc
MD
911 }
912 if (VOP_GETVOBJECT(vp, &object) == 0) {
913 while (object->paging_in_progress)
914 vm_object_pip_sleep(object, "vnvlbx");
915 }
916 } while (vp->v_numoutput > 0);
917
918 splx(s);
919
920 /*
921 * Destroy the copy in the VM cache, too.
922 */
8a8d5d85 923 lwkt_gettoken(&vp->v_interlock);
984263bc
MD
924 if (VOP_GETVOBJECT(vp, &object) == 0) {
925 vm_object_page_remove(object, 0, 0,
926 (flags & V_SAVE) ? TRUE : FALSE);
927 }
8a8d5d85 928 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
929
930 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
931 panic("vinvalbuf: flush failed");
932 return (0);
933}
934
935/*
936 * Truncate a file's buffer and pages to a specified length. This
937 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
938 * sync activity.
939 */
940int
3b568787 941vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
984263bc 942{
dadab5e9 943 struct buf *bp;
984263bc
MD
944 struct buf *nbp;
945 int s, anyfreed;
946 int trunclbn;
947
948 /*
949 * Round up to the *next* lbn.
950 */
951 trunclbn = (length + blksize - 1) / blksize;
952
953 s = splbio();
954restart:
955 anyfreed = 1;
956 for (;anyfreed;) {
957 anyfreed = 0;
958 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
959 nbp = TAILQ_NEXT(bp, b_vnbufs);
960 if (bp->b_lblkno >= trunclbn) {
961 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
962 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
963 goto restart;
964 } else {
965 bremfree(bp);
966 bp->b_flags |= (B_INVAL | B_RELBUF);
967 bp->b_flags &= ~B_ASYNC;
968 brelse(bp);
969 anyfreed = 1;
970 }
971 if (nbp &&
972 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
973 (nbp->b_vp != vp) ||
974 (nbp->b_flags & B_DELWRI))) {
975 goto restart;
976 }
977 }
978 }
979
980 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
981 nbp = TAILQ_NEXT(bp, b_vnbufs);
982 if (bp->b_lblkno >= trunclbn) {
983 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
984 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
985 goto restart;
986 } else {
987 bremfree(bp);
988 bp->b_flags |= (B_INVAL | B_RELBUF);
989 bp->b_flags &= ~B_ASYNC;
990 brelse(bp);
991 anyfreed = 1;
992 }
993 if (nbp &&
994 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
995 (nbp->b_vp != vp) ||
996 (nbp->b_flags & B_DELWRI) == 0)) {
997 goto restart;
998 }
999 }
1000 }
1001 }
1002
1003 if (length > 0) {
1004restartsync:
1005 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1006 nbp = TAILQ_NEXT(bp, b_vnbufs);
1007 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1008 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1009 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1010 goto restart;
1011 } else {
1012 bremfree(bp);
1013 if (bp->b_vp == vp) {
1014 bp->b_flags |= B_ASYNC;
1015 } else {
1016 bp->b_flags &= ~B_ASYNC;
1017 }
1018 VOP_BWRITE(bp->b_vp, bp);
1019 }
1020 goto restartsync;
1021 }
1022
1023 }
1024 }
1025
1026 while (vp->v_numoutput > 0) {
1027 vp->v_flag |= VBWAIT;
377d4740 1028 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
984263bc
MD
1029 }
1030
1031 splx(s);
1032
1033 vnode_pager_setsize(vp, length);
1034
1035 return (0);
1036}
1037
1038/*
1039 * Associate a buffer with a vnode.
1040 */
1041void
1042bgetvp(vp, bp)
1fd87d54
RG
1043 struct vnode *vp;
1044 struct buf *bp;
984263bc
MD
1045{
1046 int s;
1047
1048 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1049
1050 vhold(vp);
1051 bp->b_vp = vp;
1052 bp->b_dev = vn_todev(vp);
1053 /*
1054 * Insert onto list for new vnode.
1055 */
1056 s = splbio();
1057 bp->b_xflags |= BX_VNCLEAN;
1058 bp->b_xflags &= ~BX_VNDIRTY;
1059 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1060 splx(s);
1061}
1062
1063/*
1064 * Disassociate a buffer from a vnode.
1065 */
1066void
1067brelvp(bp)
1fd87d54 1068 struct buf *bp;
984263bc
MD
1069{
1070 struct vnode *vp;
1071 struct buflists *listheadp;
1072 int s;
1073
1074 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1075
1076 /*
1077 * Delete from old vnode list, if on one.
1078 */
1079 vp = bp->b_vp;
1080 s = splbio();
1081 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1082 if (bp->b_xflags & BX_VNDIRTY)
1083 listheadp = &vp->v_dirtyblkhd;
1084 else
1085 listheadp = &vp->v_cleanblkhd;
1086 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1087 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1088 }
1089 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1090 vp->v_flag &= ~VONWORKLST;
1091 LIST_REMOVE(vp, v_synclist);
1092 }
1093 splx(s);
1094 bp->b_vp = (struct vnode *) 0;
1095 vdrop(vp);
1096}
1097
1098/*
1099 * The workitem queue.
1100 *
1101 * It is useful to delay writes of file data and filesystem metadata
1102 * for tens of seconds so that quickly created and deleted files need
1103 * not waste disk bandwidth being created and removed. To realize this,
1104 * we append vnodes to a "workitem" queue. When running with a soft
1105 * updates implementation, most pending metadata dependencies should
1106 * not wait for more than a few seconds. Thus, mounted on block devices
1107 * are delayed only about a half the time that file data is delayed.
1108 * Similarly, directory updates are more critical, so are only delayed
1109 * about a third the time that file data is delayed. Thus, there are
1110 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1111 * one each second (driven off the filesystem syncer process). The
1112 * syncer_delayno variable indicates the next queue that is to be processed.
1113 * Items that need to be processed soon are placed in this queue:
1114 *
1115 * syncer_workitem_pending[syncer_delayno]
1116 *
1117 * A delay of fifteen seconds is done by placing the request fifteen
1118 * entries later in the queue:
1119 *
1120 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1121 *
1122 */
1123
1124/*
1125 * Add an item to the syncer work queue.
1126 */
1127static void
1128vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1129{
1130 int s, slot;
1131
1132 s = splbio();
1133
1134 if (vp->v_flag & VONWORKLST) {
1135 LIST_REMOVE(vp, v_synclist);
1136 }
1137
1138 if (delay > syncer_maxdelay - 2)
1139 delay = syncer_maxdelay - 2;
1140 slot = (syncer_delayno + delay) & syncer_mask;
1141
1142 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1143 vp->v_flag |= VONWORKLST;
1144 splx(s);
1145}
1146
bc6dffab 1147struct thread *updatethread;
402ed7e1 1148static void sched_sync (void);
984263bc
MD
1149static struct kproc_desc up_kp = {
1150 "syncer",
1151 sched_sync,
bc6dffab 1152 &updatethread
984263bc
MD
1153};
1154SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1155
1156/*
1157 * System filesystem synchronizer daemon.
1158 */
1159void
1160sched_sync(void)
1161{
1162 struct synclist *slp;
1163 struct vnode *vp;
1164 long starttime;
1165 int s;
0cfcada1 1166 struct thread *td = curthread;
984263bc 1167
bc6dffab 1168 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
984263bc
MD
1169 SHUTDOWN_PRI_LAST);
1170
1171 for (;;) {
0cfcada1 1172 kproc_suspend_loop();
984263bc
MD
1173
1174 starttime = time_second;
1175
1176 /*
1177 * Push files whose dirty time has expired. Be careful
1178 * of interrupt race on slp queue.
1179 */
1180 s = splbio();
1181 slp = &syncer_workitem_pending[syncer_delayno];
1182 syncer_delayno += 1;
1183 if (syncer_delayno == syncer_maxdelay)
1184 syncer_delayno = 0;
1185 splx(s);
1186
1187 while ((vp = LIST_FIRST(slp)) != NULL) {
1188 if (VOP_ISLOCKED(vp, NULL) == 0) {
dadab5e9 1189 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
3b568787 1190 (void) VOP_FSYNC(vp, MNT_LAZY, td);
dadab5e9 1191 VOP_UNLOCK(vp, 0, td);
984263bc
MD
1192 }
1193 s = splbio();
1194 if (LIST_FIRST(slp) == vp) {
1195 /*
1196 * Note: v_tag VT_VFS vps can remain on the
1197 * worklist too with no dirty blocks, but
1198 * since sync_fsync() moves it to a different
1199 * slot we are safe.
1200 */
1201 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1202 !vn_isdisk(vp, NULL))
1203 panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1204 /*
1205 * Put us back on the worklist. The worklist
1206 * routine will remove us from our current
1207 * position and then add us back in at a later
1208 * position.
1209 */
1210 vn_syncer_add_to_worklist(vp, syncdelay);
1211 }
1212 splx(s);
1213 }
1214
1215 /*
1216 * Do soft update processing.
1217 */
1218 if (bioops.io_sync)
1219 (*bioops.io_sync)(NULL);
1220
1221 /*
1222 * The variable rushjob allows the kernel to speed up the
1223 * processing of the filesystem syncer process. A rushjob
1224 * value of N tells the filesystem syncer to process the next
1225 * N seconds worth of work on its queue ASAP. Currently rushjob
1226 * is used by the soft update code to speed up the filesystem
1227 * syncer process when the incore state is getting so far
1228 * ahead of the disk that the kernel memory pool is being
1229 * threatened with exhaustion.
1230 */
1231 if (rushjob > 0) {
1232 rushjob -= 1;
1233 continue;
1234 }
1235 /*
1236 * If it has taken us less than a second to process the
1237 * current work, then wait. Otherwise start right over
1238 * again. We can still lose time if any single round
1239 * takes more than two seconds, but it does not really
1240 * matter as we are just trying to generally pace the
1241 * filesystem activity.
1242 */
1243 if (time_second == starttime)
377d4740 1244 tsleep(&lbolt, 0, "syncer", 0);
984263bc
MD
1245 }
1246}
1247
1248/*
1249 * Request the syncer daemon to speed up its work.
1250 * We never push it to speed up more than half of its
1251 * normal turn time, otherwise it could take over the cpu.
f5865223
MD
1252 *
1253 * YYY wchan field protected by the BGL.
984263bc
MD
1254 */
1255int
1256speedup_syncer()
1257{
f5865223
MD
1258 crit_enter();
1259 if (updatethread->td_wchan == &lbolt) { /* YYY */
1260 unsleep(updatethread);
1261 lwkt_schedule(updatethread);
1262 }
1263 crit_exit();
984263bc
MD
1264 if (rushjob < syncdelay / 2) {
1265 rushjob += 1;
1266 stat_rush_requests += 1;
1267 return (1);
1268 }
1269 return(0);
1270}
1271
1272/*
1273 * Associate a p-buffer with a vnode.
1274 *
1275 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1276 * with the buffer. i.e. the bp has not been linked into the vnode or
1277 * ref-counted.
1278 */
1279void
1280pbgetvp(vp, bp)
1fd87d54
RG
1281 struct vnode *vp;
1282 struct buf *bp;
984263bc
MD
1283{
1284
1285 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1286
1287 bp->b_vp = vp;
1288 bp->b_flags |= B_PAGING;
1289 bp->b_dev = vn_todev(vp);
1290}
1291
1292/*
1293 * Disassociate a p-buffer from a vnode.
1294 */
1295void
1296pbrelvp(bp)
1fd87d54 1297 struct buf *bp;
984263bc
MD
1298{
1299
1300 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1301
1302 /* XXX REMOVE ME */
1303 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1304 panic(
1305 "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1306 bp,
1307 (int)bp->b_flags
1308 );
1309 }
1310 bp->b_vp = (struct vnode *) 0;
1311 bp->b_flags &= ~B_PAGING;
1312}
1313
1314void
1315pbreassignbuf(bp, newvp)
1316 struct buf *bp;
1317 struct vnode *newvp;
1318{
1319 if ((bp->b_flags & B_PAGING) == 0) {
1320 panic(
1321 "pbreassignbuf() on non phys bp %p",
1322 bp
1323 );
1324 }
1325 bp->b_vp = newvp;
1326}
1327
1328/*
1329 * Reassign a buffer from one vnode to another.
1330 * Used to assign file specific control information
1331 * (indirect blocks) to the vnode to which they belong.
1332 */
1333void
1334reassignbuf(bp, newvp)
1fd87d54
RG
1335 struct buf *bp;
1336 struct vnode *newvp;
984263bc
MD
1337{
1338 struct buflists *listheadp;
1339 int delay;
1340 int s;
1341
1342 if (newvp == NULL) {
1343 printf("reassignbuf: NULL");
1344 return;
1345 }
1346 ++reassignbufcalls;
1347
1348 /*
1349 * B_PAGING flagged buffers cannot be reassigned because their vp
1350 * is not fully linked in.
1351 */
1352 if (bp->b_flags & B_PAGING)
1353 panic("cannot reassign paging buffer");
1354
1355 s = splbio();
1356 /*
1357 * Delete from old vnode list, if on one.
1358 */
1359 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1360 if (bp->b_xflags & BX_VNDIRTY)
1361 listheadp = &bp->b_vp->v_dirtyblkhd;
1362 else
1363 listheadp = &bp->b_vp->v_cleanblkhd;
1364 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1365 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1366 if (bp->b_vp != newvp) {
1367 vdrop(bp->b_vp);
1368 bp->b_vp = NULL; /* for clarification */
1369 }
1370 }
1371 /*
1372 * If dirty, put on list of dirty buffers; otherwise insert onto list
1373 * of clean buffers.
1374 */
1375 if (bp->b_flags & B_DELWRI) {
1376 struct buf *tbp;
1377
1378 listheadp = &newvp->v_dirtyblkhd;
1379 if ((newvp->v_flag & VONWORKLST) == 0) {
1380 switch (newvp->v_type) {
1381 case VDIR:
1382 delay = dirdelay;
1383 break;
1384 case VCHR:
1385 case VBLK:
1386 if (newvp->v_specmountpoint != NULL) {
1387 delay = metadelay;
1388 break;
1389 }
1390 /* fall through */
1391 default:
1392 delay = filedelay;
1393 }
1394 vn_syncer_add_to_worklist(newvp, delay);
1395 }
1396 bp->b_xflags |= BX_VNDIRTY;
1397 tbp = TAILQ_FIRST(listheadp);
1398 if (tbp == NULL ||
1399 bp->b_lblkno == 0 ||
1400 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1401 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1402 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1403 ++reassignbufsortgood;
1404 } else if (bp->b_lblkno < 0) {
1405 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1406 ++reassignbufsortgood;
1407 } else if (reassignbufmethod == 1) {
1408 /*
1409 * New sorting algorithm, only handle sequential case,
1410 * otherwise append to end (but before metadata)
1411 */
1412 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1413 (tbp->b_xflags & BX_VNDIRTY)) {
1414 /*
1415 * Found the best place to insert the buffer
1416 */
1417 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1418 ++reassignbufsortgood;
1419 } else {
1420 /*
1421 * Missed, append to end, but before meta-data.
1422 * We know that the head buffer in the list is
1423 * not meta-data due to prior conditionals.
1424 *
1425 * Indirect effects: NFS second stage write
1426 * tends to wind up here, giving maximum
1427 * distance between the unstable write and the
1428 * commit rpc.
1429 */
1430 tbp = TAILQ_LAST(listheadp, buflists);
1431 while (tbp && tbp->b_lblkno < 0)
1432 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1433 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1434 ++reassignbufsortbad;
1435 }
1436 } else {
1437 /*
1438 * Old sorting algorithm, scan queue and insert
1439 */
1440 struct buf *ttbp;
1441 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1442 (ttbp->b_lblkno < bp->b_lblkno)) {
1443 ++reassignbufloops;
1444 tbp = ttbp;
1445 }
1446 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1447 }
1448 } else {
1449 bp->b_xflags |= BX_VNCLEAN;
1450 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1451 if ((newvp->v_flag & VONWORKLST) &&
1452 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1453 newvp->v_flag &= ~VONWORKLST;
1454 LIST_REMOVE(newvp, v_synclist);
1455 }
1456 }
1457 if (bp->b_vp != newvp) {
1458 bp->b_vp = newvp;
1459 vhold(bp->b_vp);
1460 }
1461 splx(s);
1462}
1463
1464/*
1465 * Create a vnode for a block device.
1466 * Used for mounting the root file system.
1467 */
1468int
1469bdevvp(dev, vpp)
1470 dev_t dev;
1471 struct vnode **vpp;
1472{
1fd87d54 1473 struct vnode *vp;
984263bc
MD
1474 struct vnode *nvp;
1475 int error;
1476
1477 if (dev == NODEV) {
1478 *vpp = NULLVP;
1479 return (ENXIO);
1480 }
1481 error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1482 if (error) {
1483 *vpp = NULLVP;
1484 return (error);
1485 }
1486 vp = nvp;
1487 vp->v_type = VBLK;
1488 addalias(vp, dev);
1489 *vpp = vp;
1490 return (0);
1491}
1492
1493/*
7732c8cd 1494 * Add a vnode to the alias list hung off the dev_t.
984263bc
MD
1495 *
1496 * The reason for this gunk is that multiple vnodes can reference
1497 * the same physical device, so checking vp->v_usecount to see
1498 * how many users there are is inadequate; the v_usecount for
1499 * the vnodes need to be accumulated. vcount() does that.
1500 */
1501void
7732c8cd 1502addaliasu(struct vnode *nvp, udev_t nvp_rdev)
984263bc 1503{
7732c8cd 1504 dev_t dev;
984263bc
MD
1505
1506 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1507 panic("addaliasu on non-special vnode");
7732c8cd 1508 dev = udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0);
4908c260
JH
1509 if (dev != NODEV) {
1510 nvp->v_rdev = dev;
7732c8cd 1511 addalias(nvp, dev);
4908c260
JH
1512 } else
1513 nvp->v_rdev = NULL;
984263bc
MD
1514}
1515
1516void
7732c8cd 1517addalias(struct vnode *nvp, dev_t dev)
984263bc
MD
1518{
1519
1520 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1521 panic("addalias on non-special vnode");
1522
1523 nvp->v_rdev = dev;
8a8d5d85 1524 lwkt_gettoken(&spechash_token);
984263bc 1525 SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
8a8d5d85 1526 lwkt_reltoken(&spechash_token);
984263bc
MD
1527}
1528
1529/*
1530 * Grab a particular vnode from the free list, increment its
1531 * reference count and lock it. The vnode lock bit is set if the
1532 * vnode is being eliminated in vgone. The process is awakened
1533 * when the transition is completed, and an error returned to
1534 * indicate that the vnode is no longer usable (possibly having
1535 * been changed to a new file system type).
1536 */
1537int
dadab5e9
MD
1538vget(vp, flags, td)
1539 struct vnode *vp;
984263bc 1540 int flags;
dadab5e9 1541 struct thread *td;
984263bc
MD
1542{
1543 int error;
1544
1545 /*
1546 * If the vnode is in the process of being cleaned out for
1547 * another use, we wait for the cleaning to finish and then
1548 * return failure. Cleaning is determined by checking that
1549 * the VXLOCK flag is set.
1550 */
984263bc
MD
1551 if (vp->v_flag & VXLOCK) {
1552 if (vp->v_vxproc == curproc) {
1553#if 0
1554 /* this can now occur in normal operation */
1555 log(LOG_INFO, "VXLOCK interlock avoided\n");
1556#endif
1557 } else {
1558 vp->v_flag |= VXWANT;
377d4740 1559 tsleep((caddr_t)vp, 0, "vget", 0);
984263bc
MD
1560 return (ENOENT);
1561 }
1562 }
1563
2811dfbd
MD
1564 /*
1565 * Bump v_usecount to prevent the vnode from being cleaned. If the
1566 * vnode gets cleaned unexpectedly we could wind up calling lockmgr
1567 * on a lock embedded in an inode which is then ripped out from
1568 * it.
1569 */
1570 vp->v_usecount++; /* XXX MP */
1571
1572 if ((flags & LK_INTERLOCK) == 0) {
1573 lwkt_gettoken(&vp->v_interlock);
1574 }
984263bc
MD
1575
1576 if (VSHOULDBUSY(vp))
1577 vbusy(vp);
1578 if (flags & LK_TYPE_MASK) {
dadab5e9 1579 if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
984263bc
MD
1580 /*
1581 * must expand vrele here because we do not want
1582 * to call VOP_INACTIVE if the reference count
1583 * drops back to zero since it was never really
1584 * active. We must remove it from the free list
1585 * before sleeping so that multiple processes do
1586 * not try to recycle it.
1587 */
8a8d5d85 1588 lwkt_gettoken(&vp->v_interlock);
984263bc
MD
1589 vp->v_usecount--;
1590 if (VSHOULDFREE(vp))
1591 vfree(vp);
1592 else
1593 vlruvp(vp);
8a8d5d85 1594 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
1595 }
1596 return (error);
1597 }
8a8d5d85 1598 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
1599 return (0);
1600}
1601
1602void
1603vref(struct vnode *vp)
1604{
2811dfbd 1605 vp->v_usecount++; /* XXX MP */
984263bc
MD
1606}
1607
1608/*
1609 * Vnode put/release.
1610 * If count drops to zero, call inactive routine and return to freelist.
1611 */
1612void
dadab5e9 1613vrele(struct vnode *vp)
984263bc 1614{
dadab5e9 1615 struct thread *td = curthread; /* XXX */
984263bc
MD
1616
1617 KASSERT(vp != NULL, ("vrele: null vp"));
1618
8a8d5d85 1619 lwkt_gettoken(&vp->v_interlock);
984263bc
MD
1620
1621 if (vp->v_usecount > 1) {
1622
1623 vp->v_usecount--;
8a8d5d85 1624 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
1625
1626 return;
1627 }
1628
1629 if (vp->v_usecount == 1) {
1630 vp->v_usecount--;
1631 /*
1632 * We must call VOP_INACTIVE with the node locked.
1633 * If we are doing a vpu, the node is already locked,
1634 * but, in the case of vrele, we must explicitly lock
1635 * the vnode before calling VOP_INACTIVE
1636 */
1637
dadab5e9
MD
1638 if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0)
1639 VOP_INACTIVE(vp, td);
984263bc
MD
1640 if (VSHOULDFREE(vp))
1641 vfree(vp);
1642 else
1643 vlruvp(vp);
1644 } else {
1645#ifdef DIAGNOSTIC
1646 vprint("vrele: negative ref count", vp);
8a8d5d85 1647 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
1648#endif
1649 panic("vrele: negative ref cnt");
1650 }
1651}
1652
1653void
dadab5e9 1654vput(struct vnode *vp)
984263bc 1655{
dadab5e9 1656 struct thread *td = curthread; /* XXX */
984263bc
MD
1657
1658 KASSERT(vp != NULL, ("vput: null vp"));
1659
8a8d5d85 1660 lwkt_gettoken(&vp->v_interlock);
984263bc
MD
1661
1662 if (vp->v_usecount > 1) {
1663 vp->v_usecount--;
dadab5e9 1664 VOP_UNLOCK(vp, LK_INTERLOCK, td);
984263bc
MD
1665 return;
1666 }
1667
1668 if (vp->v_usecount == 1) {
1669 vp->v_usecount--;
1670 /*
1671 * We must call VOP_INACTIVE with the node locked.
1672 * If we are doing a vpu, the node is already locked,
1673 * so we just need to release the vnode mutex.
1674 */
8a8d5d85 1675 lwkt_reltoken(&vp->v_interlock);
dadab5e9 1676 VOP_INACTIVE(vp, td);
984263bc
MD
1677 if (VSHOULDFREE(vp))
1678 vfree(vp);
1679 else
1680 vlruvp(vp);
1681 } else {
1682#ifdef DIAGNOSTIC
1683 vprint("vput: negative ref count", vp);
1684#endif
1685 panic("vput: negative ref cnt");
1686 }
1687}
1688
1689/*
1690 * Somebody doesn't want the vnode recycled.
1691 */
1692void
1693vhold(vp)
1fd87d54 1694 struct vnode *vp;
984263bc
MD
1695{
1696 int s;
1697
1698 s = splbio();
1699 vp->v_holdcnt++;
1700 if (VSHOULDBUSY(vp))
1701 vbusy(vp);
1702 splx(s);
1703}
1704
1705/*
1706 * One less who cares about this vnode.
1707 */
1708void
1709vdrop(vp)
1fd87d54 1710 struct vnode *vp;
984263bc
MD
1711{
1712 int s;
1713
1714 s = splbio();
1715 if (vp->v_holdcnt <= 0)
1716 panic("vdrop: holdcnt");
1717 vp->v_holdcnt--;
1718 if (VSHOULDFREE(vp))
1719 vfree(vp);
1720 splx(s);
1721}
1722
1723/*
1724 * Remove any vnodes in the vnode table belonging to mount point mp.
1725 *
1726 * If FORCECLOSE is not specified, there should not be any active ones,
1727 * return error if any are found (nb: this is a user error, not a
1728 * system error). If FORCECLOSE is specified, detach any active vnodes
1729 * that are found.
1730 *
1731 * If WRITECLOSE is set, only flush out regular file vnodes open for
1732 * writing.
1733 *
1734 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1735 *
1736 * `rootrefs' specifies the base reference count for the root vnode
1737 * of this filesystem. The root vnode is considered busy if its
1738 * v_usecount exceeds this value. On a successful return, vflush()
1739 * will call vrele() on the root vnode exactly rootrefs times.
1740 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1741 * be zero.
1742 */
1743#ifdef DIAGNOSTIC
1744static int busyprt = 0; /* print out busy vnodes */
1745SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1746#endif
1747
1748int
1749vflush(mp, rootrefs, flags)
1750 struct mount *mp;
1751 int rootrefs;
1752 int flags;
1753{
dadab5e9 1754 struct thread *td = curthread; /* XXX */
984263bc
MD
1755 struct vnode *vp, *nvp, *rootvp = NULL;
1756 struct vattr vattr;
1757 int busy = 0, error;
1758
1759 if (rootrefs > 0) {
1760 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1761 ("vflush: bad args"));
1762 /*
1763 * Get the filesystem root vnode. We can vput() it
1764 * immediately, since with rootrefs > 0, it won't go away.
1765 */
1766 if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1767 return (error);
1768 vput(rootvp);
1769 }
8a8d5d85 1770 lwkt_gettoken(&mntvnode_token);
984263bc
MD
1771loop:
1772 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
1773 /*
1774 * Make sure this vnode wasn't reclaimed in getnewvnode().
1775 * Start over if it has (it won't be on the list anymore).
1776 */
1777 if (vp->v_mount != mp)
1778 goto loop;
1779 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
1780
8a8d5d85 1781 lwkt_gettoken(&vp->v_interlock);
984263bc
MD
1782 /*
1783 * Skip over a vnodes marked VSYSTEM.
1784 */
1785 if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
8a8d5d85 1786 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
1787 continue;
1788 }
1789 /*
1790 * If WRITECLOSE is set, flush out unlinked but still open
1791 * files (even if open only for reading) and regular file
1792 * vnodes open for writing.
1793 */
1794 if ((flags & WRITECLOSE) &&
1795 (vp->v_type == VNON ||
3b568787 1796 (VOP_GETATTR(vp, &vattr, td) == 0 &&
984263bc
MD
1797 vattr.va_nlink > 0)) &&
1798 (vp->v_writecount == 0 || vp->v_type != VREG)) {
8a8d5d85 1799 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
1800 continue;
1801 }
1802
1803 /*
1804 * With v_usecount == 0, all we need to do is clear out the
1805 * vnode data structures and we are done.
1806 */
1807 if (vp->v_usecount == 0) {
8a8d5d85 1808 lwkt_reltoken(&mntvnode_token);
dadab5e9 1809 vgonel(vp, td);
8a8d5d85 1810 lwkt_gettoken(&mntvnode_token);
984263bc
MD
1811 continue;
1812 }
1813
1814 /*
1815 * If FORCECLOSE is set, forcibly close the vnode. For block
1816 * or character devices, revert to an anonymous device. For
1817 * all other files, just kill them.
1818 */
1819 if (flags & FORCECLOSE) {
8a8d5d85 1820 lwkt_reltoken(&mntvnode_token);
984263bc 1821 if (vp->v_type != VBLK && vp->v_type != VCHR) {
dadab5e9 1822 vgonel(vp, td);
984263bc 1823 } else {
dadab5e9 1824 vclean(vp, 0, td);
984263bc
MD
1825 vp->v_op = spec_vnodeop_p;
1826 insmntque(vp, (struct mount *) 0);
1827 }
8a8d5d85 1828 lwkt_gettoken(&mntvnode_token);
984263bc
MD
1829 continue;
1830 }
1831#ifdef DIAGNOSTIC
1832 if (busyprt)
1833 vprint("vflush: busy vnode", vp);
1834#endif
8a8d5d85 1835 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
1836 busy++;
1837 }
8a8d5d85 1838 lwkt_reltoken(&mntvnode_token);
984263bc
MD
1839 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1840 /*
1841 * If just the root vnode is busy, and if its refcount
1842 * is equal to `rootrefs', then go ahead and kill it.
1843 */
8a8d5d85 1844 lwkt_gettoken(&rootvp->v_interlock);
984263bc
MD
1845 KASSERT(busy > 0, ("vflush: not busy"));
1846 KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1847 if (busy == 1 && rootvp->v_usecount == rootrefs) {
dadab5e9 1848 vgonel(rootvp, td);
984263bc
MD
1849 busy = 0;
1850 } else
8a8d5d85 1851 lwkt_reltoken(&rootvp->v_interlock);
984263bc
MD
1852 }
1853 if (busy)
1854 return (EBUSY);
1855 for (; rootrefs > 0; rootrefs--)
1856 vrele(rootvp);
1857 return (0);
1858}
1859
1860/*
1861 * We do not want to recycle the vnode too quickly.
1862 *
1863 * XXX we can't move vp's around the nvnodelist without really screwing
1864 * up the efficiency of filesystem SYNC and friends. This code is
1865 * disabled until we fix the syncing code's scanning algorithm.
1866 */
1867static void
1868vlruvp(struct vnode *vp)
1869{
1870#if 0
1871 struct mount *mp;
1872
1873 if ((mp = vp->v_mount) != NULL) {
8a8d5d85 1874 lwkt_gettoken(&mntvnode_token);
984263bc
MD
1875 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1876 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
8a8d5d85 1877 lwkt_reltoken(&mntvnode_token);
984263bc
MD
1878 }
1879#endif
1880}
1881
1882/*
1883 * Disassociate the underlying file system from a vnode.
1884 */
1885static void
dadab5e9 1886vclean(struct vnode *vp, int flags, struct thread *td)
984263bc
MD
1887{
1888 int active;
1889
1890 /*
1891 * Check to see if the vnode is in use. If so we have to reference it
1892 * before we clean it out so that its count cannot fall to zero and
1893 * generate a race against ourselves to recycle it.
1894 */
1895 if ((active = vp->v_usecount))
1896 vp->v_usecount++;
1897
1898 /*
1899 * Prevent the vnode from being recycled or brought into use while we
1900 * clean it out.
1901 */
1902 if (vp->v_flag & VXLOCK)
1903 panic("vclean: deadlock");
1904 vp->v_flag |= VXLOCK;
1905 vp->v_vxproc = curproc;
1906 /*
1907 * Even if the count is zero, the VOP_INACTIVE routine may still
1908 * have the object locked while it cleans it out. The VOP_LOCK
1909 * ensures that the VOP_INACTIVE routine is done with its work.
1910 * For active vnodes, it ensures that no other activity can
1911 * occur while the underlying object is being cleaned out.
1912 */
dadab5e9 1913 VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
984263bc
MD
1914
1915 /*
1916 * Clean out any buffers associated with the vnode.
1917 */
3b568787 1918 vinvalbuf(vp, V_SAVE, td, 0, 0);
984263bc
MD
1919
1920 VOP_DESTROYVOBJECT(vp);
1921
1922 /*
1923 * If purging an active vnode, it must be closed and
1924 * deactivated before being reclaimed. Note that the
1925 * VOP_INACTIVE will unlock the vnode.
1926 */
1927 if (active) {
1928 if (flags & DOCLOSE)
3b568787 1929 VOP_CLOSE(vp, FNONBLOCK, td);
dadab5e9 1930 VOP_INACTIVE(vp, td);
984263bc
MD
1931 } else {
1932 /*
1933 * Any other processes trying to obtain this lock must first
1934 * wait for VXLOCK to clear, then call the new lock operation.
1935 */
dadab5e9 1936 VOP_UNLOCK(vp, 0, td);
984263bc
MD
1937 }
1938 /*
1939 * Reclaim the vnode.
1940 */
dadab5e9 1941 if (VOP_RECLAIM(vp, td))
984263bc
MD
1942 panic("vclean: cannot reclaim");
1943
1944 if (active) {
1945 /*
1946 * Inline copy of vrele() since VOP_INACTIVE
1947 * has already been called.
1948 */
8a8d5d85 1949 lwkt_gettoken(&vp->v_interlock);
984263bc
MD
1950 if (--vp->v_usecount <= 0) {
1951#ifdef DIAGNOSTIC
1952 if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1953 vprint("vclean: bad ref count", vp);
1954 panic("vclean: ref cnt");
1955 }
1956#endif
1957 vfree(vp);
1958 }
8a8d5d85 1959 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
1960 }
1961
1962 cache_purge(vp);
1963 vp->v_vnlock = NULL;
1964
1965 if (VSHOULDFREE(vp))
1966 vfree(vp);
1967
1968 /*
1969 * Done with purge, notify sleepers of the grim news.
1970 */
1971 vp->v_op = dead_vnodeop_p;
1972 vn_pollgone(vp);
1973 vp->v_tag = VT_NON;
1974 vp->v_flag &= ~VXLOCK;
1975 vp->v_vxproc = NULL;
1976 if (vp->v_flag & VXWANT) {
1977 vp->v_flag &= ~VXWANT;
1978 wakeup((caddr_t) vp);
1979 }
1980}
1981
1982/*
1983 * Eliminate all activity associated with the requested vnode
1984 * and with all vnodes aliased to the requested vnode.
1985 */
1986int
1987vop_revoke(ap)
1988 struct vop_revoke_args /* {
1989 struct vnode *a_vp;
1990 int a_flags;
1991 } */ *ap;
1992{
1993 struct vnode *vp, *vq;
1994 dev_t dev;
1995
1996 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1997
1998 vp = ap->a_vp;
1999 /*
2000 * If a vgone (or vclean) is already in progress,
2001 * wait until it is done and return.
2002 */
2003 if (vp->v_flag & VXLOCK) {
2004 vp->v_flag |= VXWANT;
8a8d5d85 2005 lwkt_reltoken(&vp->v_interlock);
377d4740 2006 tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
984263bc
MD
2007 return (0);
2008 }
2009 dev = vp->v_rdev;
2010 for (;;) {
8a8d5d85 2011 lwkt_gettoken(&spechash_token);
984263bc 2012 vq = SLIST_FIRST(&dev->si_hlist);
8a8d5d85 2013 lwkt_reltoken(&spechash_token);
984263bc
MD
2014 if (!vq)
2015 break;
2016 vgone(vq);
2017 }
2018 return (0);
2019}
2020
2021/*
2022 * Recycle an unused vnode to the front of the free list.
2023 * Release the passed interlock if the vnode will be recycled.
2024 */
2025int
8a8d5d85 2026vrecycle(struct vnode *vp, struct lwkt_token *inter_lkp, struct thread *td)
984263bc 2027{
8a8d5d85 2028 lwkt_gettoken(&vp->v_interlock);
984263bc
MD
2029 if (vp->v_usecount == 0) {
2030 if (inter_lkp) {
8a8d5d85 2031 lwkt_reltoken(inter_lkp);
984263bc 2032 }
dadab5e9 2033 vgonel(vp, td);
984263bc
MD
2034 return (1);
2035 }
8a8d5d85 2036 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
2037 return (0);
2038}
2039
2040/*
2041 * Eliminate all activity associated with a vnode
2042 * in preparation for reuse.
2043 */
2044void
dadab5e9 2045vgone(struct vnode *vp)
984263bc 2046{
dadab5e9 2047 struct thread *td = curthread; /* XXX */
984263bc 2048
8a8d5d85 2049 lwkt_gettoken(&vp->v_interlock);
dadab5e9 2050 vgonel(vp, td);
984263bc
MD
2051}
2052
2053/*
2054 * vgone, with the vp interlock held.
2055 */
2056void
dadab5e9 2057vgonel(struct vnode *vp, struct thread *td)
984263bc
MD
2058{
2059 int s;
2060
2061 /*
2062 * If a vgone (or vclean) is already in progress,
2063 * wait until it is done and return.
2064 */
2065 if (vp->v_flag & VXLOCK) {
2066 vp->v_flag |= VXWANT;
8a8d5d85 2067 lwkt_reltoken(&vp->v_interlock);
377d4740 2068 tsleep((caddr_t)vp, 0, "vgone", 0);
984263bc
MD
2069 return;
2070 }
2071
2072 /*
2073 * Clean out the filesystem specific data.
2074 */
dadab5e9 2075 vclean(vp, DOCLOSE, td);
8a8d5d85 2076 lwkt_gettoken(&vp->v_interlock);
984263bc
MD
2077
2078 /*
2079 * Delete from old mount point vnode list, if on one.
2080 */
2081 if (vp->v_mount != NULL)
2082 insmntque(vp, (struct mount *)0);
2083 /*
2084 * If special device, remove it from special device alias list
2085 * if it is on one.
2086 */
2087 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
8a8d5d85 2088 lwkt_gettoken(&spechash_token);
984263bc
MD
2089 SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
2090 freedev(vp->v_rdev);
8a8d5d85 2091 lwkt_reltoken(&spechash_token);
984263bc
MD
2092 vp->v_rdev = NULL;
2093 }
2094
2095 /*
2096 * If it is on the freelist and not already at the head,
2097 * move it to the head of the list. The test of the
2098 * VDOOMED flag and the reference count of zero is because
2099 * it will be removed from the free list by getnewvnode,
2100 * but will not have its reference count incremented until
2101 * after calling vgone. If the reference count were
2102 * incremented first, vgone would (incorrectly) try to
2103 * close the previous instance of the underlying object.
2104 */
2105 if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2106 s = splbio();
8a8d5d85 2107 lwkt_gettoken(&vnode_free_list_token);
984263bc
MD
2108 if (vp->v_flag & VFREE)
2109 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2110 else
2111 freevnodes++;
2112 vp->v_flag |= VFREE;
2113 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
8a8d5d85 2114 lwkt_reltoken(&vnode_free_list_token);
984263bc
MD
2115 splx(s);
2116 }
2117
2118 vp->v_type = VBAD;
8a8d5d85 2119 lwkt_reltoken(&vp->v_interlock);
984263bc
MD
2120}
2121
2122/*
2123 * Lookup a vnode by device number.
2124 */
2125int
2126vfinddev(dev, type, vpp)
2127 dev_t dev;
2128 enum vtype type;
2129 struct vnode **vpp;
2130{
2131 struct vnode *vp;
2132
8a8d5d85 2133 lwkt_gettoken(&spechash_token);
984263bc
MD
2134 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2135 if (type == vp->v_type) {
2136 *vpp = vp;
8a8d5d85 2137 lwkt_reltoken(&spechash_token);
984263bc
MD
2138 return (1);
2139 }
2140 }
8a8d5d85 2141 lwkt_reltoken(&spechash_token);
984263bc
MD
2142 return (0);
2143}
2144
2145/*
2146 * Calculate the total number of references to a special device.
2147 */
2148int
2149vcount(vp)
2150 struct vnode *vp;
2151{
2152 struct vnode *vq;
2153 int count;
2154
2155 count = 0;
8a8d5d85 2156 lwkt_gettoken(&spechash_token);
984263bc
MD
2157 SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
2158 count += vq->v_usecount;
8a8d5d85 2159 lwkt_reltoken(&spechash_token);
984263bc
MD
2160 return (count);
2161}
2162
2163/*
2164 * Same as above, but using the dev_t as argument
2165 */
2166
2167int
2168count_dev(dev)
2169 dev_t dev;
2170{
2171 struct vnode *vp;
2172
2173 vp = SLIST_FIRST(&dev->si_hlist);
2174 if (vp == NULL)
2175 return (0);
2176 return(vcount(vp));
2177}
2178
2179/*
2180 * Print out a description of a vnode.
2181 */
2182static char *typename[] =
2183{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2184
2185void
2186vprint(label, vp)
2187 char *label;
2188 struct vnode *vp;
2189{
2190 char buf[96];
2191
2192 if (label != NULL)
2193 printf("%s: %p: ", label, (void *)vp);
2194 else
2195 printf("%p: ", (void *)vp);
2196 printf("type %s, usecount %d, writecount %d, refcount %d,",
2197 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2198 vp->v_holdcnt);
2199 buf[0] = '\0';
2200 if (vp->v_flag & VROOT)
2201 strcat(buf, "|VROOT");
2202 if (vp->v_flag & VTEXT)
2203 strcat(buf, "|VTEXT");
2204 if (vp->v_flag & VSYSTEM)
2205 strcat(buf, "|VSYSTEM");
2206 if (vp->v_flag & VXLOCK)
2207 strcat(buf, "|VXLOCK");
2208 if (vp->v_flag & VXWANT)
2209 strcat(buf, "|VXWANT");
2210 if (vp->v_flag & VBWAIT)
2211 strcat(buf, "|VBWAIT");
2212 if (vp->v_flag & VDOOMED)
2213 strcat(buf, "|VDOOMED");
2214 if (vp->v_flag & VFREE)
2215 strcat(buf, "|VFREE");
2216 if (vp->v_flag & VOBJBUF)
2217 strcat(buf, "|VOBJBUF");
2218 if (buf[0] != '\0')
2219 printf(" flags (%s)", &buf[1]);
2220 if (vp->v_data == NULL) {
2221 printf("\n");
2222 } else {
2223 printf("\n\t");
2224 VOP_PRINT(vp);
2225 }
2226}
2227
2228#ifdef DDB
2229#include <ddb/ddb.h>
2230/*
2231 * List all of the locked vnodes in the system.
2232 * Called when debugging the kernel.
2233 */
2234DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2235{
dadab5e9 2236 struct thread *td = curthread; /* XXX */
984263bc
MD
2237 struct mount *mp, *nmp;
2238 struct vnode *vp;
2239
2240 printf("Locked vnodes\n");
8a8d5d85 2241 lwkt_gettoken(&mountlist_token);
984263bc 2242 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
8a8d5d85 2243 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, td)) {
984263bc
MD
2244 nmp = TAILQ_NEXT(mp, mnt_list);
2245 continue;
2246 }
2247 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2248 if (VOP_ISLOCKED(vp, NULL))
2249 vprint((char *)0, vp);
2250 }
8a8d5d85 2251 lwkt_gettoken(&mountlist_token);
984263bc 2252 nmp = TAILQ_NEXT(mp, mnt_list);
dadab5e9 2253 vfs_unbusy(mp, td);
984263bc 2254 }
8a8d5d85 2255 lwkt_reltoken(&mountlist_token);
984263bc
MD
2256}
2257#endif
2258
2259/*
2260 * Top level filesystem related information gathering.
2261 */
402ed7e1 2262static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
984263bc
MD
2263
2264static int
2265vfs_sysctl(SYSCTL_HANDLER_ARGS)
2266{
2267 int *name = (int *)arg1 - 1; /* XXX */
2268 u_int namelen = arg2 + 1; /* XXX */
2269 struct vfsconf *vfsp;
2270
2271#if 1 || defined(COMPAT_PRELITE2)
2272 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2273 if (namelen == 1)
2274 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2275#endif
2276
2277#ifdef notyet
2278 /* all sysctl names at this level are at least name and field */
2279 if (namelen < 2)
2280 return (ENOTDIR); /* overloaded */
2281 if (name[0] != VFS_GENERIC) {
2282 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2283 if (vfsp->vfc_typenum == name[0])
2284 break;
2285 if (vfsp == NULL)
2286 return (EOPNOTSUPP);
2287 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2288 oldp, oldlenp, newp, newlen, p));
2289 }
2290#endif
2291 switch (name[1]) {
2292 case VFS_MAXTYPENUM:
2293 if (namelen != 2)
2294 return (ENOTDIR);
2295 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2296 case VFS_CONF:
2297 if (namelen != 3)
2298 return (ENOTDIR); /* overloaded */
2299 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2300 if (vfsp->vfc_typenum == name[2])
2301 break;
2302 if (vfsp == NULL)
2303 return (EOPNOTSUPP);
2304 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2305 }
2306 return (EOPNOTSUPP);
2307}
2308
2309SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2310 "Generic filesystem");
2311
2312#if 1 || defined(COMPAT_PRELITE2)
2313
2314static int
2315sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2316{
2317 int error;
2318 struct vfsconf *vfsp;
2319 struct ovfsconf ovfs;
2320
2321 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2322 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
2323 strcpy(ovfs.vfc_name, vfsp->vfc_name);
2324 ovfs.vfc_index = vfsp->vfc_typenum;
2325 ovfs.vfc_refcount = vfsp->vfc_refcount;
2326 ovfs.vfc_flags = vfsp->vfc_flags;
2327 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2328 if (error)
2329 return error;
2330 }
2331 return 0;
2332}
2333
2334#endif /* 1 || COMPAT_PRELITE2 */
2335
2336#if 0
2337#define KINFO_VNODESLOP 10
2338/*
2339 * Dump vnode list (via sysctl).
2340 * Copyout address of vnode followed by vnode.
2341 */
2342/* ARGSUSED */
2343static int
2344sysctl_vnode(SYSCTL_HANDLER_ARGS)
2345{
2346 struct proc *p = curproc; /* XXX */
2347 struct mount *mp, *nmp;
2348 struct vnode *nvp, *vp;
2349 int error;
2350
2351#define VPTRSZ sizeof (struct vnode *)
2352#define VNODESZ sizeof (struct vnode)
2353
2354 req->lock = 0;
2355 if (!req->oldptr) /* Make an estimate */
2356 return (SYSCTL_OUT(req, 0,
2357 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2358
8a8d5d85 2359 lwkt_gettoken(&mountlist_token);
984263bc 2360 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
8a8d5d85 2361 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, p)) {
984263bc
MD
2362 nmp = TAILQ_NEXT(mp, mnt_list);
2363 continue;
2364 }
2365again:
8a8d5d85 2366 lwkt_gettoken(&mntvnode_token);
984263bc
MD
2367 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2368 vp != NULL;
2369 vp = nvp) {
2370 /*
2371 * Check that the vp is still associated with
2372 * this filesystem. RACE: could have been
2373 * recycled onto the same filesystem.
2374 */
2375 if (vp->v_mount != mp) {
8a8d5d85 2376 lwkt_reltoken(&mntvnode_token);
984263bc
MD
2377 goto again;
2378 }
2379 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
8a8d5d85 2380 lwkt_reltoken(&mntvnode_token);
984263bc
MD
2381 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2382 (error = SYSCTL_OUT(req, vp, VNODESZ)))
2383 return (error);
8a8d5d85 2384 lwkt_gettoken(&mntvnode_token);
984263bc 2385 }
8a8d5d85
MD
2386 lwkt_reltoken(&mntvnode_token);
2387 lwkt_gettoken(&mountlist_token);
984263bc
MD
2388 nmp = TAILQ_NEXT(mp, mnt_list);
2389 vfs_unbusy(mp, p);
2390 }
8a8d5d85 2391 lwkt_reltoken(&mountlist_token);
984263bc
MD
2392
2393 return (0);
2394}
2395#endif
2396
2397/*
2398 * XXX
2399 * Exporting the vnode list on large systems causes them to crash.
2400 * Exporting the vnode list on medium systems causes sysctl to coredump.
2401 */
2402#if 0
2403SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2404 0, 0, sysctl_vnode, "S,vnode", "");
2405#endif
2406
2407/*
2408 * Check to see if a filesystem is mounted on a block device.
2409 */
2410int
2411vfs_mountedon(vp)
2412 struct vnode *vp;
2413{
2414
2415 if (vp->v_specmountpoint != NULL)
2416 return (EBUSY);
2417 return (0);
2418}
2419
2420/*
2421 * Unmount all filesystems. The list is traversed in reverse order
2422 * of mounting to avoid dependencies.
2423 */
2424void
2425vfs_unmountall()
2426{
2427 struct mount *mp;
dadab5e9 2428 struct thread *td = curthread;
984263bc
MD
2429 int error;
2430
dadab5e9
MD
2431 if (td->td_proc == NULL)
2432 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
2433
984263bc
MD
2434 /*
2435 * Since this only runs when rebooting, it is not interlocked.
2436 */
2437 while(!TAILQ_EMPTY(&mountlist)) {
2438 mp = TAILQ_LAST(&mountlist, mntlist);
dadab5e9 2439 error = dounmount(mp, MNT_FORCE, td);
984263bc
MD
2440 if (error) {
2441 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2442 printf("unmount of %s failed (",
2443 mp->mnt_stat.f_mntonname);
2444 if (error == EBUSY)
2445 printf("BUSY)\n");
2446 else
2447 printf("%d)\n", error);
2448 } else {
2449 /* The unmount has removed mp from the mountlist */
2450 }
2451 }
2452}
2453
2454/*
2455 * Build hash lists of net addresses and hang them off the mount point.
2456 * Called by ufs_mount() to set up the lists of export addresses.
2457 */
2458static int
2459vfs_hang_addrlist(mp, nep, argp)
2460 struct mount *mp;
2461 struct netexport *nep;
2462 struct export_args *argp;
2463{
1fd87d54
RG
2464 struct netcred *np;
2465 struct radix_node_head *rnh;
2466 int i;
984263bc
MD
2467 struct radix_node *rn;
2468 struct sockaddr *saddr, *smask = 0;
2469 struct domain *dom;
2470 int error;
2471
2472 if (argp->ex_addrlen == 0) {
2473 if (mp->mnt_flag & MNT_DEFEXPORTED)
2474 return (EPERM);
2475 np = &nep->ne_defexported;
2476 np->netc_exflags = argp->ex_flags;
2477 np->netc_anon = argp->ex_anon;
2478 np->netc_anon.cr_ref = 1;
2479 mp->mnt_flag |= MNT_DEFEXPORTED;
2480 return (0);
2481 }
2482
0260ddf9
MD
2483 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2484 return (EINVAL);
2485 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
984263bc
MD
2486 return (EINVAL);
2487
2488 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2489 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2490 bzero((caddr_t) np, i);
2491 saddr = (struct sockaddr *) (np + 1);
2492 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2493 goto out;
2494 if (saddr->sa_len > argp->ex_addrlen)
2495 saddr->sa_len = argp->ex_addrlen;
2496 if (argp->ex_masklen) {
2497 smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2498 error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2499 if (error)
2500 goto out;
2501 if (smask->sa_len > argp->ex_masklen)
2502 smask->sa_len = argp->ex_masklen;
2503 }
2504 i = saddr->sa_family;
2505 if ((rnh = nep->ne_rtable[i]) == 0) {
2506 /*
2507 * Seems silly to initialize every AF when most are not used,
2508 * do so on demand here
2509 */
2510 for (dom = domains; dom; dom = dom->dom_next)
2511 if (dom->dom_family == i && dom->dom_rtattach) {
2512 dom->dom_rtattach((void **) &nep->ne_rtable[i],
2513 dom->dom_rtoffset);
2514 break;
2515 }
2516 if ((rnh = nep->ne_rtable[i]) == 0) {
2517 error = ENOBUFS;
2518 goto out;
2519 }
2520 }
2521 rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2522 np->netc_rnodes);
2523 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
2524 error = EPERM;
2525 goto out;
2526 }
2527 np->netc_exflags = argp->ex_flags;
2528 np->netc_anon = argp->ex_anon;
2529 np->netc_anon.cr_ref = 1;
2530 return (0);
2531out:
2532 free(np, M_NETADDR);
2533 return (error);
2534}
2535
2536/* ARGSUSED */
2537static int
2538vfs_free_netcred(rn, w)
2539 struct radix_node *rn;
2540 void *w;
2541{
1fd87d54 2542 struct radix_node_head *rnh = (struct radix_node_head *) w;
984263bc
MD
2543
2544 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2545 free((caddr_t) rn, M_NETADDR);
2546 return (0);
2547}
2548
2549/*
2550 * Free the net address hash lists that are hanging off the mount points.
2551 */
2552static void
2553vfs_free_addrlist(nep)
2554 struct netexport *nep;
2555{
1fd87d54
RG
2556 int i;
2557 struct radix_node_head *rnh;
984263bc
MD
2558
2559 for (i = 0; i <= AF_MAX; i++)
2560 if ((rnh = nep->ne_rtable[i])) {
2561 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2562 (caddr_t) rnh);
2563 free((caddr_t) rnh, M_RTABLE);
2564 nep->ne_rtable[i] = 0;
2565 }
2566}
2567
2568int
2569vfs_export(mp, nep, argp)
2570 struct mount *mp;
2571 struct netexport *nep;
2572 struct export_args *argp;
2573{
2574 int error;
2575
2576 if (argp->ex_flags & MNT_DELEXPORT) {
2577 if (mp->mnt_flag & MNT_EXPUBLIC) {
2578 vfs_setpublicfs(NULL, NULL, NULL);
2579 mp->mnt_flag &= ~MNT_EXPUBLIC;
2580 }
2581 vfs_free_addrlist(nep);
2582 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2583 }
2584 if (argp->ex_flags & MNT_EXPORTED) {
2585 if (argp->ex_flags & MNT_EXPUBLIC) {
2586 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2587 return (error);
2588 mp->mnt_flag |= MNT_EXPUBLIC;
2589 }
2590 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2591 return (error);
2592 mp->mnt_flag |= MNT_EXPORTED;
2593 }
2594 return (0);
2595}
2596
2597
2598/*
2599 * Set the publicly exported filesystem (WebNFS). Currently, only
2600 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2601 */
2602int
2603vfs_setpublicfs(mp, nep, argp)
2604 struct mount *mp;
2605 struct netexport *nep;
2606 struct export_args *argp;
2607{
2608 int error;
2609 struct vnode *rvp;
2610 char *cp;
2611
2612 /*
2613 * mp == NULL -> invalidate the current info, the FS is
2614 * no longer exported. May be called from either vfs_export
2615 * or unmount, so check if it hasn't already been done.
2616 */
2617 if (mp == NULL) {
2618 if (nfs_pub.np_valid) {
2619 nfs_pub.np_valid = 0;
2620 if (nfs_pub.np_index != NULL) {
2621 FREE(nfs_pub.np_index, M_TEMP);
2622 nfs_pub.np_index = NULL;
2623 }
2624 }
2625 return (0);
2626 }
2627
2628 /*
2629 * Only one allowed at a time.
2630 */
2631 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2632 return (EBUSY);
2633
2634 /*
2635 * Get real filehandle for root of exported FS.
2636 */
2637 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2638 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2639
2640 if ((error = VFS_ROOT(mp, &rvp)))
2641 return (error);
2642
2643 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2644 return (error);
2645
2646 vput(rvp);
2647
2648 /*
2649 * If an indexfile was specified, pull it in.
2650 */
2651 if (argp->ex_indexfile != NULL) {
2652 MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2653 M_WAITOK);
2654 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2655 MAXNAMLEN, (size_t *)0);
2656 if (!error) {
2657 /*
2658 * Check for illegal filenames.
2659 */
2660 for (cp = nfs_pub.np_index; *cp; cp++) {
2661 if (*cp == '/') {
2662 error = EINVAL;
2663 break;
2664 }
2665 }
2666 }
2667 if (error) {
2668 FREE(nfs_pub.np_index, M_TEMP);
2669 return (error);
2670 }
2671 }
2672
2673 nfs_pub.np_mount = mp;
2674 nfs_pub.np_valid = 1;
2675 return (0);
2676}
2677
2678struct netcred *
2679vfs_export_lookup(mp, nep, nam)
1fd87d54 2680 struct mount *mp;
984263bc
MD
2681 struct netexport *nep;
2682 struct sockaddr *nam;
2683{
1fd87d54
RG
2684 struct netcred *np;
2685 struct radix_node_head *rnh;
984263bc
MD
2686 struct sockaddr *saddr;
2687
2688 np = NULL;
2689 if (mp->mnt_flag & MNT_EXPORTED) {
2690 /*
2691 * Lookup in the export list first.
2692 */
2693 if (nam != NULL) {
2694 saddr = nam;
2695 rnh = nep->ne_rtable[saddr->sa_family];
2696 if (rnh != NULL) {
2697 np = (struct netcred *)
2698 (*rnh->rnh_matchaddr)((caddr_t)saddr,
2699 rnh);
2700 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2701 np = NULL;
2702 }
2703 }
2704 /*
2705 * If no address match, use the default if it exists.
2706 */
2707 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2708 np = &nep->ne_defexported;
2709 }
2710 return (np);
2711}
2712
2713/*
2714 * perform msync on all vnodes under a mount point
2715 * the mount point must be locked.
2716 */
2717void
2718vfs_msync(struct mount *mp, int flags)
2719{
dadab5e9 2720 struct thread *td = curthread; /* XXX */
984263bc
MD
2721 struct vnode *vp, *nvp;
2722 struct vm_object *obj;
2723 int tries;
2724
2725 tries = 5;
8a8d5d85 2726 lwkt_gettoken(&mntvnode_token);
984263bc
MD
2727loop:
2728 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
2729 if (vp->v_mount != mp) {
2730 if (--tries > 0)
2731 goto loop;
2732 break;
2733 }
2734 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2735
2736 if (vp->v_flag & VXLOCK) /* XXX: what if MNT_WAIT? */
2737 continue;
2738
2739 /*
2740 * There could be hundreds of thousands of vnodes, we cannot
2741 * afford to do anything heavy-weight until we have a fairly
2742 * good indication that there is something to do.
2743 */
2744 if ((vp->v_flag & VOBJDIRTY) &&
2745 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
8a8d5d85 2746 lwkt_reltoken(&mntvnode_token);
984263bc 2747 if (!vget(vp,
dadab5e9 2748 LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, td)) {
984263bc
MD
2749 if (VOP_GETVOBJECT(vp, &obj) == 0) {
2750 vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2751 }
2752 vput(vp);
2753 }
8a8d5d85 2754 lwkt_gettoken(&mntvnode_token);
984263bc
MD
2755 if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2756 if (--tries > 0)
2757 goto loop;
2758 break;
2759 }
2760 }
2761 }
8a8d5d85 2762 lwkt_reltoken(&mntvnode_token);
984263bc
MD
2763}
2764
2765/*
2766 * Create the VM object needed for VMIO and mmap support. This
2767 * is done for all VREG files in the system. Some filesystems might
2768 * afford the additional metadata buffering capability of the
2769 * VMIO code by making the device node be VMIO mode also.
2770 *
2771 * vp must be locked when vfs_object_create is called.
2772 */
2773int
3b568787 2774vfs_object_create(struct vnode *vp, struct thread *td)
984263bc 2775{
3b568787 2776 return (VOP_CREATEVOBJECT(vp, td));
984263bc
MD
2777}
2778
2779void
2780vfree(vp)
2781 struct vnode *vp;
2782{
2783 int s;
2784
2785 s = splbio();
8a8d5d85 2786 lwkt_gettoken(&vnode_free_list_token);
984263bc
MD
2787 KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2788 if (vp->v_flag & VAGE) {
2789 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2790 } else {
2791 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2792 }
2793 freevnodes++;
8a8d5d85 2794 lwkt_reltoken(&vnode_free_list_token);
984263bc
MD
2795 vp->v_flag &= ~VAGE;
2796 vp->v_flag |= VFREE;
2797 splx(s);
2798}
2799
2800void
2801vbusy(vp)
2802 struct vnode *vp;
2803{
2804 int s;
2805
2806 s = splbio();
8a8d5d85 2807 lwkt_gettoken(&vnode_free_list_token);
984263bc
MD
2808 KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2809 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2810 freevnodes--;
8a8d5d85 2811 lwkt_reltoken(&vnode_free_list_token);
984263bc
MD
2812 vp->v_flag &= ~(VFREE|VAGE);
2813 splx(s);
2814}
2815
2816/*
2817 * Record a process's interest in events which might happen to
2818 * a vnode. Because poll uses the historic select-style interface
2819 * internally, this routine serves as both the ``check for any
2820 * pending events'' and the ``record my interest in future events''
2821 * functions. (These are done together, while the lock is held,
2822 * to avoid race conditions.)
2823 */
2824int
dadab5e9 2825vn_pollrecord(struct vnode *vp, struct thread *td, int events)
984263bc 2826{
8a8d5d85 2827 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
984263bc
MD
2828 if (vp->v_pollinfo.vpi_revents & events) {
2829 /*
2830 * This leaves events we are not interested
2831 * in available for the other process which
2832 * which presumably had requested them
2833 * (otherwise they would never have been
2834 * recorded).
2835 */
2836 events &= vp->v_pollinfo.vpi_revents;
2837 vp->v_pollinfo.vpi_revents &= ~events;
2838
8a8d5d85 2839 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
984263bc
MD
2840 return events;
2841 }
2842 vp->v_pollinfo.vpi_events |= events;
dadab5e9 2843 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
8a8d5d85 2844 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
984263bc
MD
2845 return 0;
2846}
2847
2848/*
2849 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
2850 * it is possible for us to miss an event due to race conditions, but
2851 * that condition is expected to be rare, so for the moment it is the
2852 * preferred interface.
2853 */
2854void
2855vn_pollevent(vp, events)
2856 struct vnode *vp;
2857 short events;
2858{
8a8d5d85 2859 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
984263bc
MD
2860 if (vp->v_pollinfo.vpi_events & events) {
2861 /*
2862 * We clear vpi_events so that we don't
2863 * call selwakeup() twice if two events are
2864 * posted before the polling process(es) is
2865 * awakened. This also ensures that we take at
2866 * most one selwakeup() if the polling process
2867 * is no longer interested. However, it does
2868 * mean that only one event can be noticed at
2869 * a time. (Perhaps we should only clear those
2870 * event bits which we note?) XXX
2871 */
2872 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
2873 vp->v_pollinfo.vpi_revents |= events;
2874 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2875 }
8a8d5d85 2876 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
984263bc
MD
2877}
2878
2879/*
2880 * Wake up anyone polling on vp because it is being revoked.
2881 * This depends on dead_poll() returning POLLHUP for correct
2882 * behavior.
2883 */
2884void
2885vn_pollgone(vp)
2886 struct vnode *vp;
2887{
8a8d5d85 2888 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
984263bc
MD
2889 if (vp->v_pollinfo.vpi_events) {
2890 vp->v_pollinfo.vpi_events = 0;
2891 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2892 }
8a8d5d85 2893 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
984263bc
MD
2894}
2895
2896
2897
2898/*
2899 * Routine to create and manage a filesystem syncer vnode.
2900 */
402ed7e1
RG
2901#define sync_close ((int (*) (struct vop_close_args *))nullop)
2902static int sync_fsync (struct vop_fsync_args *);
2903static int sync_inactive (struct vop_inactive_args *);
2904static int sync_reclaim (struct vop_reclaim_args *);
2905#define sync_lock ((int (*) (struct vop_lock_args *))vop_nolock)
2906#define sync_unlock ((int (*) (struct vop_unlock_args *))vop_nounlock)
2907static int sync_print (struct vop_print_args *);
2908#define sync_islocked ((int(*) (struct vop_islocked_args *))vop_noislocked)
984263bc
MD
2909
2910static vop_t **sync_vnodeop_p;
2911static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2912 { &vop_default_desc, (vop_t *) vop_eopnotsupp },
2913 { &vop_close_desc, (vop_t *) sync_close }, /* close */
2914 { &vop_fsync_desc, (vop_t *) sync_fsync }, /* fsync */
2915 { &vop_inactive_desc, (vop_t *) sync_inactive }, /* inactive */
2916 { &vop_reclaim_desc, (vop_t *) sync_reclaim }, /* reclaim */
2917 { &vop_lock_desc, (vop_t *) sync_lock }, /* lock */
2918 { &vop_unlock_desc, (vop_t *) sync_unlock }, /* unlock */
2919 { &vop_print_desc, (vop_t *) sync_print }, /* print */
2920 { &vop_islocked_desc, (vop_t *) sync_islocked }, /* islocked */
2921 { NULL, NULL }
2922};
2923static struct vnodeopv_desc sync_vnodeop_opv_desc =
2924 { &sync_vnodeop_p, sync_vnodeop_entries };
2925
2926VNODEOP_SET(sync_vnodeop_opv_desc);
2927
2928/*
2929 * Create a new filesystem syncer vnode for the specified mount point.
2930 */
2931int
2932vfs_allocate_syncvnode(mp)
2933 struct mount *mp;
2934{
2935 struct vnode *vp;
2936 static long start, incr, next;
2937 int error;
2938
2939 /* Allocate a new vnode */
2940 if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2941 mp->mnt_syncer = NULL;
2942 return (error);
2943 }
2944 vp->v_type = VNON;
2945 /*
2946 * Place the vnode onto the syncer worklist. We attempt to
2947 * scatter them about on the list so that they will go off
2948 * at evenly distributed times even if all the filesystems
2949 * are mounted at once.
2950 */
2951 next += incr;
2952 if (next == 0 || next > syncer_maxdelay) {
2953 start /= 2;
2954 incr /= 2;
2955 if (start == 0) {
2956 start = syncer_maxdelay / 2;
2957 incr = syncer_maxdelay;
2958 }
2959 next = start;
2960 }
2961 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2962 mp->mnt_syncer = vp;
2963 return (0);
2964}
2965
2966/*
2967 * Do a lazy sync of the filesystem.
2968 */
2969static int
2970sync_fsync(ap)
2971 struct vop_fsync_args /* {
2972 struct vnode *a_vp;
2973 struct ucred *a_cred;
2974 int a_waitfor;
dadab5e9 2975 struct thread *a_td;
984263bc
MD
2976 } */ *ap;
2977{
2978 struct vnode *syncvp = ap->a_vp;
2979 struct mount *mp = syncvp->v_mount;
dadab5e9 2980 struct thread *td = ap->a_td;
984263bc
MD
2981 int asyncflag;
2982
2983 /*
2984 * We only need to do something if this is a lazy evaluation.
2985 */
2986 if (ap->a_waitfor != MNT_LAZY)
2987 return (0);
2988
2989 /*
2990 * Move ourselves to the back of the sync list.
2991 */
2992 vn_syncer_add_to_worklist(syncvp, syncdelay);
2993
2994 /*
2995 * Walk the list of vnodes pushing all that are dirty and
2996 * not already on the sync list.
2997 */
8a8d5d85
MD
2998 lwkt_gettoken(&mountlist_token);
2999 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_token, td) != 0) {
3000 lwkt_reltoken(&mountlist_token);
984263bc
MD
3001 return (0);
3002 }
3003 asyncflag = mp->mnt_flag & MNT_ASYNC;
3004 mp->mnt_flag &= ~MNT_ASYNC;
3005 vfs_msync(mp, MNT_NOWAIT);
3b568787 3006 VFS_SYNC(mp, MNT_LAZY, td);
984263bc
MD
3007 if (asyncflag)
3008 mp->mnt_flag |= MNT_ASYNC;
dadab5e9 3009 vfs_unbusy(mp, td);
984263bc
MD
3010 return (0);
3011}
3012
3013/*
3014 * The syncer vnode is no referenced.
3015 */
3016static int
3017sync_inactive(ap)
3018 struct vop_inactive_args /* {
3019 struct vnode *a_vp;
3020 struct proc *a_p;
3021 } */ *ap;
3022{
3023
3024 vgone(ap->a_vp);
3025 return (0);
3026}
3027
3028/*
3029 * The syncer vnode is no longer needed and is being decommissioned.
3030 *
3031 * Modifications to the worklist must be protected at splbio().
3032 */
3033static int
3034sync_reclaim(ap)
3035 struct vop_reclaim_args /* {
3036 struct vnode *a_vp;
3037 } */ *ap;
3038{
3039 struct vnode *vp = ap->a_vp;
3040 int s;
3041
3042 s = splbio();
3043 vp->v_mount->mnt_syncer = NULL;
3044 if (vp->v_flag & VONWORKLST) {
3045 LIST_REMOVE(vp, v_synclist);
3046 vp->v_flag &= ~VONWORKLST;
3047 }
3048 splx(s);
3049
3050 return (0);
3051}
3052
3053/*
3054 * Print out a syncer vnode.
3055 */
3056static int
3057sync_print(ap)
3058 struct vop_print_args /* {
3059 struct vnode *a_vp;
3060 } */ *ap;
3061{
3062 struct vnode *vp = ap->a_vp;
3063
3064 printf("syncer vnode");
3065 if (vp->v_vnlock != NULL)
3066 lockmgr_printinfo(vp->v_vnlock);
3067 printf("\n");
3068 return (0);
3069}
3070
3071/*
3072 * extract the dev_t from a VBLK or VCHR
3073 */
3074dev_t
3075vn_todev(vp)
3076 struct vnode *vp;
3077{
3078 if (vp->v_type != VBLK && vp->v_type != VCHR)
3079 return (NODEV);
3080 return (vp->v_rdev);
3081}
3082
3083/*
3084 * Check if vnode represents a disk device
3085 */
3086int
3087vn_isdisk(vp, errp)
3088 struct vnode *vp;
3089 int *errp;
3090{
3091 if (vp->v_type != VBLK && vp->v_type != VCHR) {
3092 if (errp != NULL)
3093 *errp = ENOTBLK;
3094 return (0);
3095 }
3096 if (vp->v_rdev == NULL) {
3097 if (errp != NULL)
3098 *errp = ENXIO;
3099 return (0);
3100 }
335dda38 3101 if (!dev_dport(vp->v_rdev)) {
984263bc
MD
3102 if (errp != NULL)
3103 *errp = ENXIO;
3104 return (0);
3105 }
335dda38 3106 if (!(dev_dflags(vp->v_rdev) & D_DISK)) {
984263bc
MD
3107 if (errp != NULL)
3108 *errp = ENOTBLK;
3109 return (0);
3110 }
3111 if (errp != NULL)
3112 *errp = 0;
3113 return (1);
3114}
3115
3116void
3117NDFREE(ndp, flags)
3118 struct nameidata *ndp;
3119 const uint flags;
3120{
3121 if (!(flags & NDF_NO_FREE_PNBUF) &&
2b69e610 3122 (ndp->ni_cnd.cn_flags & CNP_HASBUF)) {
984263bc 3123 zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2b69e610 3124 ndp->ni_cnd.cn_flags &= ~CNP_HASBUF;
984263bc 3125 }
bc0c094e
MD
3126 if (!(flags & NDF_NO_DNCP_RELE) &&
3127 (ndp->ni_cnd.cn_flags & CNP_WANTDNCP) &&
3128 ndp->ni_dncp) {
3129 cache_drop(ndp->ni_dncp);
3130 ndp->ni_dncp = NULL;
3131 }
3132 if (!(flags & NDF_NO_NCP_RELE) &&
3133 (ndp->ni_cnd.cn_flags & CNP_WANTNCP) &&
3134 ndp->ni_ncp) {
3135 cache_drop(ndp->ni_ncp);
3136 ndp->ni_ncp = NULL;
3137 }
984263bc 3138 if (!(flags & NDF_NO_DVP_UNLOCK) &&
2b69e610 3139 (ndp->ni_cnd.cn_flags & CNP_LOCKPARENT) &&
bc0c094e 3140 ndp->ni_dvp != ndp->ni_vp) {
dadab5e9 3141 VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_td);
bc0c094e 3142 }
984263bc 3143 if (!(flags & NDF_NO_DVP_RELE) &&
2b69e610 3144 (ndp->ni_cnd.cn_flags & (CNP_LOCKPARENT|CNP_WANTPARENT))) {
984263bc
MD
3145 vrele(ndp->ni_dvp);
3146 ndp->ni_dvp = NULL;
3147 }
3148 if (!(flags & NDF_NO_VP_UNLOCK) &&
bc0c094e 3149 (ndp->ni_cnd.cn_flags & CNP_LOCKLEAF) && ndp->ni_vp) {
dadab5e9 3150 VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_td);
bc0c094e 3151 }
984263bc
MD
3152 if (!(flags & NDF_NO_VP_RELE) &&
3153 ndp->ni_vp) {
3154 vrele(ndp->ni_vp);
3155 ndp->ni_vp = NULL;
3156 }
3157 if (!(flags & NDF_NO_STARTDIR_RELE) &&
2b69e610 3158 (ndp->ni_cnd.cn_flags & CNP_SAVESTART)) {
984263bc
MD
3159 vrele(ndp->ni_startdir);
3160 ndp->ni_startdir = NULL;
3161 }
3162}
bc0c094e 3163