Merge FreeBSD rev. 1.8:
[dragonfly.git] / sys / vm / vm_pageout.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
41 *
42 *
43 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44 * All rights reserved.
45 *
46 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 *
68 * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
1388df65 69 * $DragonFly: src/sys/vm/vm_pageout.c,v 1.8 2003/08/20 08:03:01 rob Exp $
984263bc
MD
70 */
71
72/*
73 * The proverbial page-out daemon.
74 */
75
76#include "opt_vm.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/proc.h>
81#include <sys/kthread.h>
82#include <sys/resourcevar.h>
83#include <sys/signalvar.h>
84#include <sys/vnode.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87
88#include <vm/vm.h>
89#include <vm/vm_param.h>
90#include <sys/lock.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/vm_extern.h>
12e4aaff 98#include <vm/vm_page2.h>
984263bc
MD
99
100/*
101 * System initialization
102 */
103
104/* the kernel process "vm_pageout"*/
1388df65
RG
105static void vm_pageout (void);
106static int vm_pageout_clean (vm_page_t);
107static void vm_pageout_scan (int pass);
108static int vm_pageout_free_page_calc (vm_size_t count);
bc6dffab 109struct thread *pagethread;
984263bc
MD
110
111static struct kproc_desc page_kp = {
112 "pagedaemon",
113 vm_pageout,
bc6dffab 114 &pagethread
984263bc
MD
115};
116SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
117
118#if !defined(NO_SWAPPING)
119/* the kernel process "vm_daemon"*/
1388df65 120static void vm_daemon (void);
bc6dffab 121static struct thread *vmthread;
984263bc
MD
122
123static struct kproc_desc vm_kp = {
124 "vmdaemon",
125 vm_daemon,
bc6dffab 126 &vmthread
984263bc
MD
127};
128SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
129#endif
130
131
132int vm_pages_needed=0; /* Event on which pageout daemon sleeps */
133int vm_pageout_deficit=0; /* Estimated number of pages deficit */
134int vm_pageout_pages_needed=0; /* flag saying that the pageout daemon needs pages */
135
136#if !defined(NO_SWAPPING)
137static int vm_pageout_req_swapout; /* XXX */
138static int vm_daemon_needed;
139#endif
140extern int vm_swap_size;
141static int vm_max_launder = 32;
142static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
143static int vm_pageout_full_stats_interval = 0;
144static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
145static int defer_swap_pageouts=0;
146static int disable_swap_pageouts=0;
147
148#if defined(NO_SWAPPING)
149static int vm_swap_enabled=0;
150static int vm_swap_idle_enabled=0;
151#else
152static int vm_swap_enabled=1;
153static int vm_swap_idle_enabled=0;
154#endif
155
156SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
157 CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
158
159SYSCTL_INT(_vm, OID_AUTO, max_launder,
160 CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
161
162SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
163 CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
164
165SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
166 CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
167
168SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
169 CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
170
171SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
172 CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
173
174#if defined(NO_SWAPPING)
175SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
176 CTLFLAG_RD, &vm_swap_enabled, 0, "");
177SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
178 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
179#else
180SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
182SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
184#endif
185
186SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
187 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
188
189SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
190 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
191
192static int pageout_lock_miss;
193SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
194 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
195
196#define VM_PAGEOUT_PAGE_COUNT 16
197int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
198
199int vm_page_max_wired; /* XXX max # of wired pages system-wide */
200
201#if !defined(NO_SWAPPING)
1388df65
RG
202typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
203static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
984263bc 204static freeer_fcn_t vm_pageout_object_deactivate_pages;
1388df65 205static void vm_req_vmdaemon (void);
984263bc
MD
206#endif
207static void vm_pageout_page_stats(void);
208
209/*
210 * vm_pageout_clean:
211 *
212 * Clean the page and remove it from the laundry.
213 *
214 * We set the busy bit to cause potential page faults on this page to
215 * block. Note the careful timing, however, the busy bit isn't set till
216 * late and we cannot do anything that will mess with the page.
217 */
218
219static int
220vm_pageout_clean(m)
221 vm_page_t m;
222{
5f910b2f 223 vm_object_t object;
984263bc
MD
224 vm_page_t mc[2*vm_pageout_page_count];
225 int pageout_count;
226 int ib, is, page_base;
227 vm_pindex_t pindex = m->pindex;
228
229 object = m->object;
230
231 /*
232 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
233 * with the new swapper, but we could have serious problems paging
234 * out other object types if there is insufficient memory.
235 *
236 * Unfortunately, checking free memory here is far too late, so the
237 * check has been moved up a procedural level.
238 */
239
240 /*
241 * Don't mess with the page if it's busy, held, or special
242 */
243 if ((m->hold_count != 0) ||
244 ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
245 return 0;
246 }
247
248 mc[vm_pageout_page_count] = m;
249 pageout_count = 1;
250 page_base = vm_pageout_page_count;
251 ib = 1;
252 is = 1;
253
254 /*
255 * Scan object for clusterable pages.
256 *
257 * We can cluster ONLY if: ->> the page is NOT
258 * clean, wired, busy, held, or mapped into a
259 * buffer, and one of the following:
260 * 1) The page is inactive, or a seldom used
261 * active page.
262 * -or-
263 * 2) we force the issue.
264 *
265 * During heavy mmap/modification loads the pageout
266 * daemon can really fragment the underlying file
267 * due to flushing pages out of order and not trying
268 * align the clusters (which leave sporatic out-of-order
269 * holes). To solve this problem we do the reverse scan
270 * first and attempt to align our cluster, then do a
271 * forward scan if room remains.
272 */
273
274more:
275 while (ib && pageout_count < vm_pageout_page_count) {
276 vm_page_t p;
277
278 if (ib > pindex) {
279 ib = 0;
280 break;
281 }
282
283 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
284 ib = 0;
285 break;
286 }
287 if (((p->queue - p->pc) == PQ_CACHE) ||
288 (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
289 ib = 0;
290 break;
291 }
292 vm_page_test_dirty(p);
293 if ((p->dirty & p->valid) == 0 ||
294 p->queue != PQ_INACTIVE ||
295 p->wire_count != 0 || /* may be held by buf cache */
296 p->hold_count != 0) { /* may be undergoing I/O */
297 ib = 0;
298 break;
299 }
300 mc[--page_base] = p;
301 ++pageout_count;
302 ++ib;
303 /*
304 * alignment boundry, stop here and switch directions. Do
305 * not clear ib.
306 */
307 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
308 break;
309 }
310
311 while (pageout_count < vm_pageout_page_count &&
312 pindex + is < object->size) {
313 vm_page_t p;
314
315 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
316 break;
317 if (((p->queue - p->pc) == PQ_CACHE) ||
318 (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
319 break;
320 }
321 vm_page_test_dirty(p);
322 if ((p->dirty & p->valid) == 0 ||
323 p->queue != PQ_INACTIVE ||
324 p->wire_count != 0 || /* may be held by buf cache */
325 p->hold_count != 0) { /* may be undergoing I/O */
326 break;
327 }
328 mc[page_base + pageout_count] = p;
329 ++pageout_count;
330 ++is;
331 }
332
333 /*
334 * If we exhausted our forward scan, continue with the reverse scan
335 * when possible, even past a page boundry. This catches boundry
336 * conditions.
337 */
338 if (ib && pageout_count < vm_pageout_page_count)
339 goto more;
340
341 /*
342 * we allow reads during pageouts...
343 */
344 return vm_pageout_flush(&mc[page_base], pageout_count, 0);
345}
346
347/*
348 * vm_pageout_flush() - launder the given pages
349 *
350 * The given pages are laundered. Note that we setup for the start of
351 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
352 * reference count all in here rather then in the parent. If we want
353 * the parent to do more sophisticated things we may have to change
354 * the ordering.
355 */
356
357int
358vm_pageout_flush(mc, count, flags)
359 vm_page_t *mc;
360 int count;
361 int flags;
362{
5f910b2f 363 vm_object_t object;
984263bc
MD
364 int pageout_status[count];
365 int numpagedout = 0;
366 int i;
367
368 /*
369 * Initiate I/O. Bump the vm_page_t->busy counter and
370 * mark the pages read-only.
371 *
372 * We do not have to fixup the clean/dirty bits here... we can
373 * allow the pager to do it after the I/O completes.
374 */
375
376 for (i = 0; i < count; i++) {
377 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
378 vm_page_io_start(mc[i]);
379 vm_page_protect(mc[i], VM_PROT_READ);
380 }
381
382 object = mc[0]->object;
383 vm_object_pip_add(object, count);
384
385 vm_pager_put_pages(object, mc, count,
386 (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
387 pageout_status);
388
389 for (i = 0; i < count; i++) {
390 vm_page_t mt = mc[i];
391
392 switch (pageout_status[i]) {
393 case VM_PAGER_OK:
394 numpagedout++;
395 break;
396 case VM_PAGER_PEND:
397 numpagedout++;
398 break;
399 case VM_PAGER_BAD:
400 /*
401 * Page outside of range of object. Right now we
402 * essentially lose the changes by pretending it
403 * worked.
404 */
405 pmap_clear_modify(mt);
406 vm_page_undirty(mt);
407 break;
408 case VM_PAGER_ERROR:
409 case VM_PAGER_FAIL:
410 /*
411 * If page couldn't be paged out, then reactivate the
412 * page so it doesn't clog the inactive list. (We
413 * will try paging out it again later).
414 */
415 vm_page_activate(mt);
416 break;
417 case VM_PAGER_AGAIN:
418 break;
419 }
420
421 /*
422 * If the operation is still going, leave the page busy to
423 * block all other accesses. Also, leave the paging in
424 * progress indicator set so that we don't attempt an object
425 * collapse.
426 */
427 if (pageout_status[i] != VM_PAGER_PEND) {
428 vm_object_pip_wakeup(object);
429 vm_page_io_finish(mt);
430 if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
431 vm_page_protect(mt, VM_PROT_READ);
432 }
433 }
434 return numpagedout;
435}
436
437#if !defined(NO_SWAPPING)
438/*
439 * vm_pageout_object_deactivate_pages
440 *
441 * deactivate enough pages to satisfy the inactive target
442 * requirements or if vm_page_proc_limit is set, then
443 * deactivate all of the pages in the object and its
444 * backing_objects.
445 *
446 * The object and map must be locked.
447 */
448static void
449vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
450 vm_map_t map;
451 vm_object_t object;
452 vm_pindex_t desired;
453 int map_remove_only;
454{
5f910b2f 455 vm_page_t p, next;
984263bc
MD
456 int rcount;
457 int remove_mode;
458 int s;
459
460 if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
461 return;
462
463 while (object) {
464 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
465 return;
466 if (object->paging_in_progress)
467 return;
468
469 remove_mode = map_remove_only;
470 if (object->shadow_count > 1)
471 remove_mode = 1;
472 /*
473 * scan the objects entire memory queue
474 */
475 rcount = object->resident_page_count;
476 p = TAILQ_FIRST(&object->memq);
477 while (p && (rcount-- > 0)) {
478 int actcount;
479 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
480 return;
481 next = TAILQ_NEXT(p, listq);
12e4aaff 482 mycpu->gd_cnt.v_pdpages++;
984263bc
MD
483 if (p->wire_count != 0 ||
484 p->hold_count != 0 ||
485 p->busy != 0 ||
486 (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
487 !pmap_page_exists_quick(vm_map_pmap(map), p)) {
488 p = next;
489 continue;
490 }
491
492 actcount = pmap_ts_referenced(p);
493 if (actcount) {
494 vm_page_flag_set(p, PG_REFERENCED);
495 } else if (p->flags & PG_REFERENCED) {
496 actcount = 1;
497 }
498
499 if ((p->queue != PQ_ACTIVE) &&
500 (p->flags & PG_REFERENCED)) {
501 vm_page_activate(p);
502 p->act_count += actcount;
503 vm_page_flag_clear(p, PG_REFERENCED);
504 } else if (p->queue == PQ_ACTIVE) {
505 if ((p->flags & PG_REFERENCED) == 0) {
506 p->act_count -= min(p->act_count, ACT_DECLINE);
507 if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
508 vm_page_protect(p, VM_PROT_NONE);
509 vm_page_deactivate(p);
510 } else {
511 s = splvm();
512 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
513 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
514 splx(s);
515 }
516 } else {
517 vm_page_activate(p);
518 vm_page_flag_clear(p, PG_REFERENCED);
519 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
520 p->act_count += ACT_ADVANCE;
521 s = splvm();
522 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
523 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
524 splx(s);
525 }
526 } else if (p->queue == PQ_INACTIVE) {
527 vm_page_protect(p, VM_PROT_NONE);
528 }
529 p = next;
530 }
531 object = object->backing_object;
532 }
533 return;
534}
535
536/*
537 * deactivate some number of pages in a map, try to do it fairly, but
538 * that is really hard to do.
539 */
540static void
541vm_pageout_map_deactivate_pages(map, desired)
542 vm_map_t map;
543 vm_pindex_t desired;
544{
545 vm_map_entry_t tmpe;
546 vm_object_t obj, bigobj;
547 int nothingwired;
548
dadab5e9 549 if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curthread)) {
984263bc
MD
550 return;
551 }
552
553 bigobj = NULL;
554 nothingwired = TRUE;
555
556 /*
557 * first, search out the biggest object, and try to free pages from
558 * that.
559 */
560 tmpe = map->header.next;
561 while (tmpe != &map->header) {
562 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
563 obj = tmpe->object.vm_object;
564 if ((obj != NULL) && (obj->shadow_count <= 1) &&
565 ((bigobj == NULL) ||
566 (bigobj->resident_page_count < obj->resident_page_count))) {
567 bigobj = obj;
568 }
569 }
570 if (tmpe->wired_count > 0)
571 nothingwired = FALSE;
572 tmpe = tmpe->next;
573 }
574
575 if (bigobj)
576 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
577
578 /*
579 * Next, hunt around for other pages to deactivate. We actually
580 * do this search sort of wrong -- .text first is not the best idea.
581 */
582 tmpe = map->header.next;
583 while (tmpe != &map->header) {
584 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
585 break;
586 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
587 obj = tmpe->object.vm_object;
588 if (obj)
589 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
590 }
591 tmpe = tmpe->next;
592 };
593
594 /*
595 * Remove all mappings if a process is swapped out, this will free page
596 * table pages.
597 */
598 if (desired == 0 && nothingwired)
599 pmap_remove(vm_map_pmap(map),
600 VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
601 vm_map_unlock(map);
602 return;
603}
604#endif
605
606/*
607 * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
608 * to vnode deadlocks. We only do it for OBJT_DEFAULT and OBJT_SWAP objects
609 * which we know can be trivially freed.
610 */
611
612void
613vm_pageout_page_free(vm_page_t m) {
614 vm_object_t object = m->object;
615 int type = object->type;
616
617 if (type == OBJT_SWAP || type == OBJT_DEFAULT)
618 vm_object_reference(object);
619 vm_page_busy(m);
620 vm_page_protect(m, VM_PROT_NONE);
621 vm_page_free(m);
622 if (type == OBJT_SWAP || type == OBJT_DEFAULT)
623 vm_object_deallocate(object);
624}
625
626/*
627 * vm_pageout_scan does the dirty work for the pageout daemon.
628 */
629static void
630vm_pageout_scan(int pass)
631{
632 vm_page_t m, next;
633 struct vm_page marker;
634 int page_shortage, maxscan, pcount;
635 int addl_page_shortage, addl_page_shortage_init;
636 struct proc *p, *bigproc;
637 vm_offset_t size, bigsize;
638 vm_object_t object;
639 int actcount;
640 int vnodes_skipped = 0;
641 int maxlaunder;
642 int s;
643
644 /*
645 * Do whatever cleanup that the pmap code can.
646 */
647 pmap_collect();
648
649 addl_page_shortage_init = vm_pageout_deficit;
650 vm_pageout_deficit = 0;
651
652 /*
653 * Calculate the number of pages we want to either free or move
654 * to the cache.
655 */
656 page_shortage = vm_paging_target() + addl_page_shortage_init;
657
658 /*
659 * Initialize our marker
660 */
661 bzero(&marker, sizeof(marker));
662 marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
663 marker.queue = PQ_INACTIVE;
664 marker.wire_count = 1;
665
666 /*
667 * Start scanning the inactive queue for pages we can move to the
668 * cache or free. The scan will stop when the target is reached or
669 * we have scanned the entire inactive queue. Note that m->act_count
670 * is not used to form decisions for the inactive queue, only for the
671 * active queue.
672 *
673 * maxlaunder limits the number of dirty pages we flush per scan.
674 * For most systems a smaller value (16 or 32) is more robust under
675 * extreme memory and disk pressure because any unnecessary writes
676 * to disk can result in extreme performance degredation. However,
677 * systems with excessive dirty pages (especially when MAP_NOSYNC is
678 * used) will die horribly with limited laundering. If the pageout
679 * daemon cannot clean enough pages in the first pass, we let it go
680 * all out in succeeding passes.
681 */
682 if ((maxlaunder = vm_max_launder) <= 1)
683 maxlaunder = 1;
684 if (pass)
685 maxlaunder = 10000;
686
687rescan0:
688 addl_page_shortage = addl_page_shortage_init;
12e4aaff 689 maxscan = vmstats.v_inactive_count;
984263bc
MD
690 for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
691 m != NULL && maxscan-- > 0 && page_shortage > 0;
692 m = next) {
693
12e4aaff 694 mycpu->gd_cnt.v_pdpages++;
984263bc
MD
695
696 if (m->queue != PQ_INACTIVE) {
697 goto rescan0;
698 }
699
700 next = TAILQ_NEXT(m, pageq);
701
702 /*
703 * skip marker pages
704 */
705 if (m->flags & PG_MARKER)
706 continue;
707
708 /*
709 * A held page may be undergoing I/O, so skip it.
710 */
711 if (m->hold_count) {
712 s = splvm();
713 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
714 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
715 splx(s);
716 addl_page_shortage++;
717 continue;
718 }
719 /*
720 * Dont mess with busy pages, keep in the front of the
721 * queue, most likely are being paged out.
722 */
723 if (m->busy || (m->flags & PG_BUSY)) {
724 addl_page_shortage++;
725 continue;
726 }
727
728 /*
729 * If the object is not being used, we ignore previous
730 * references.
731 */
732 if (m->object->ref_count == 0) {
733 vm_page_flag_clear(m, PG_REFERENCED);
734 pmap_clear_reference(m);
735
736 /*
737 * Otherwise, if the page has been referenced while in the
738 * inactive queue, we bump the "activation count" upwards,
739 * making it less likely that the page will be added back to
740 * the inactive queue prematurely again. Here we check the
741 * page tables (or emulated bits, if any), given the upper
742 * level VM system not knowing anything about existing
743 * references.
744 */
745 } else if (((m->flags & PG_REFERENCED) == 0) &&
746 (actcount = pmap_ts_referenced(m))) {
747 vm_page_activate(m);
748 m->act_count += (actcount + ACT_ADVANCE);
749 continue;
750 }
751
752 /*
753 * If the upper level VM system knows about any page
754 * references, we activate the page. We also set the
755 * "activation count" higher than normal so that we will less
756 * likely place pages back onto the inactive queue again.
757 */
758 if ((m->flags & PG_REFERENCED) != 0) {
759 vm_page_flag_clear(m, PG_REFERENCED);
760 actcount = pmap_ts_referenced(m);
761 vm_page_activate(m);
762 m->act_count += (actcount + ACT_ADVANCE + 1);
763 continue;
764 }
765
766 /*
767 * If the upper level VM system doesn't know anything about
768 * the page being dirty, we have to check for it again. As
769 * far as the VM code knows, any partially dirty pages are
770 * fully dirty.
771 */
772 if (m->dirty == 0) {
773 vm_page_test_dirty(m);
774 } else {
775 vm_page_dirty(m);
776 }
777
778 /*
779 * Invalid pages can be easily freed
780 */
781 if (m->valid == 0) {
782 vm_pageout_page_free(m);
12e4aaff 783 mycpu->gd_cnt.v_dfree++;
984263bc
MD
784 --page_shortage;
785
786 /*
787 * Clean pages can be placed onto the cache queue. This
788 * effectively frees them.
789 */
790 } else if (m->dirty == 0) {
791 /*
792 * Clean pages can be immediately freed to the cache.
793 */
794 vm_page_cache(m);
795 --page_shortage;
796 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
797 /*
798 * Dirty pages need to be paged out, but flushing
799 * a page is extremely expensive verses freeing
800 * a clean page. Rather then artificially limiting
801 * the number of pages we can flush, we instead give
802 * dirty pages extra priority on the inactive queue
803 * by forcing them to be cycled through the queue
804 * twice before being flushed, after which the
805 * (now clean) page will cycle through once more
806 * before being freed. This significantly extends
807 * the thrash point for a heavily loaded machine.
808 */
809 s = splvm();
810 vm_page_flag_set(m, PG_WINATCFLS);
811 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
812 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
813 splx(s);
814 } else if (maxlaunder > 0) {
815 /*
816 * We always want to try to flush some dirty pages if
817 * we encounter them, to keep the system stable.
818 * Normally this number is small, but under extreme
819 * pressure where there are insufficient clean pages
820 * on the inactive queue, we may have to go all out.
821 */
822 int swap_pageouts_ok;
823 struct vnode *vp = NULL;
824
825 object = m->object;
826
827 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
828 swap_pageouts_ok = 1;
829 } else {
830 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
831 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
832 vm_page_count_min());
833
834 }
835
836 /*
837 * We don't bother paging objects that are "dead".
838 * Those objects are in a "rundown" state.
839 */
840 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
841 s = splvm();
842 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
843 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
844 splx(s);
845 continue;
846 }
847
848 /*
849 * The object is already known NOT to be dead. It
850 * is possible for the vget() to block the whole
851 * pageout daemon, but the new low-memory handling
852 * code should prevent it.
853 *
854 * The previous code skipped locked vnodes and, worse,
855 * reordered pages in the queue. This results in
856 * completely non-deterministic operation because,
857 * quite often, a vm_fault has initiated an I/O and
858 * is holding a locked vnode at just the point where
859 * the pageout daemon is woken up.
860 *
861 * We can't wait forever for the vnode lock, we might
862 * deadlock due to a vn_read() getting stuck in
863 * vm_wait while holding this vnode. We skip the
864 * vnode if we can't get it in a reasonable amount
865 * of time.
866 */
867
868 if (object->type == OBJT_VNODE) {
869 vp = object->handle;
870
dadab5e9 871 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
984263bc
MD
872 ++pageout_lock_miss;
873 if (object->flags & OBJ_MIGHTBEDIRTY)
874 vnodes_skipped++;
875 continue;
876 }
877
878 /*
879 * The page might have been moved to another
880 * queue during potential blocking in vget()
881 * above. The page might have been freed and
882 * reused for another vnode. The object might
883 * have been reused for another vnode.
884 */
885 if (m->queue != PQ_INACTIVE ||
886 m->object != object ||
887 object->handle != vp) {
888 if (object->flags & OBJ_MIGHTBEDIRTY)
889 vnodes_skipped++;
890 vput(vp);
891 continue;
892 }
893
894 /*
895 * The page may have been busied during the
896 * blocking in vput(); We don't move the
897 * page back onto the end of the queue so that
898 * statistics are more correct if we don't.
899 */
900 if (m->busy || (m->flags & PG_BUSY)) {
901 vput(vp);
902 continue;
903 }
904
905 /*
906 * If the page has become held it might
907 * be undergoing I/O, so skip it
908 */
909 if (m->hold_count) {
910 s = splvm();
911 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
912 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
913 splx(s);
914 if (object->flags & OBJ_MIGHTBEDIRTY)
915 vnodes_skipped++;
916 vput(vp);
917 continue;
918 }
919 }
920
921 /*
922 * If a page is dirty, then it is either being washed
923 * (but not yet cleaned) or it is still in the
924 * laundry. If it is still in the laundry, then we
925 * start the cleaning operation.
926 *
927 * This operation may cluster, invalidating the 'next'
928 * pointer. To prevent an inordinate number of
929 * restarts we use our marker to remember our place.
930 *
931 * decrement page_shortage on success to account for
932 * the (future) cleaned page. Otherwise we could wind
933 * up laundering or cleaning too many pages.
934 */
935 s = splvm();
936 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
937 splx(s);
938 if (vm_pageout_clean(m) != 0) {
939 --page_shortage;
940 --maxlaunder;
941 }
942 s = splvm();
943 next = TAILQ_NEXT(&marker, pageq);
944 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
945 splx(s);
946 if (vp != NULL)
947 vput(vp);
948 }
949 }
950
951 /*
952 * Compute the number of pages we want to try to move from the
953 * active queue to the inactive queue.
954 */
955 page_shortage = vm_paging_target() +
12e4aaff 956 vmstats.v_inactive_target - vmstats.v_inactive_count;
984263bc
MD
957 page_shortage += addl_page_shortage;
958
959 /*
960 * Scan the active queue for things we can deactivate. We nominally
961 * track the per-page activity counter and use it to locate
962 * deactivation candidates.
963 */
964
12e4aaff 965 pcount = vmstats.v_active_count;
984263bc
MD
966 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
967
968 while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
969
970 /*
971 * This is a consistency check, and should likely be a panic
972 * or warning.
973 */
974 if (m->queue != PQ_ACTIVE) {
975 break;
976 }
977
978 next = TAILQ_NEXT(m, pageq);
979 /*
980 * Don't deactivate pages that are busy.
981 */
982 if ((m->busy != 0) ||
983 (m->flags & PG_BUSY) ||
984 (m->hold_count != 0)) {
985 s = splvm();
986 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
987 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
988 splx(s);
989 m = next;
990 continue;
991 }
992
993 /*
994 * The count for pagedaemon pages is done after checking the
995 * page for eligibility...
996 */
12e4aaff 997 mycpu->gd_cnt.v_pdpages++;
984263bc
MD
998
999 /*
1000 * Check to see "how much" the page has been used.
1001 */
1002 actcount = 0;
1003 if (m->object->ref_count != 0) {
1004 if (m->flags & PG_REFERENCED) {
1005 actcount += 1;
1006 }
1007 actcount += pmap_ts_referenced(m);
1008 if (actcount) {
1009 m->act_count += ACT_ADVANCE + actcount;
1010 if (m->act_count > ACT_MAX)
1011 m->act_count = ACT_MAX;
1012 }
1013 }
1014
1015 /*
1016 * Since we have "tested" this bit, we need to clear it now.
1017 */
1018 vm_page_flag_clear(m, PG_REFERENCED);
1019
1020 /*
1021 * Only if an object is currently being used, do we use the
1022 * page activation count stats.
1023 */
1024 if (actcount && (m->object->ref_count != 0)) {
1025 s = splvm();
1026 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1027 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1028 splx(s);
1029 } else {
1030 m->act_count -= min(m->act_count, ACT_DECLINE);
1031 if (vm_pageout_algorithm ||
1032 m->object->ref_count == 0 ||
1033 m->act_count == 0) {
1034 page_shortage--;
1035 if (m->object->ref_count == 0) {
1036 vm_page_protect(m, VM_PROT_NONE);
1037 if (m->dirty == 0)
1038 vm_page_cache(m);
1039 else
1040 vm_page_deactivate(m);
1041 } else {
1042 vm_page_deactivate(m);
1043 }
1044 } else {
1045 s = splvm();
1046 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1047 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1048 splx(s);
1049 }
1050 }
1051 m = next;
1052 }
1053
1054 s = splvm();
1055
1056 /*
1057 * We try to maintain some *really* free pages, this allows interrupt
1058 * code to be guaranteed space. Since both cache and free queues
1059 * are considered basically 'free', moving pages from cache to free
1060 * does not effect other calculations.
1061 */
1062
12e4aaff 1063 while (vmstats.v_free_count < vmstats.v_free_reserved) {
984263bc
MD
1064 static int cache_rover = 0;
1065 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1066 if (!m)
1067 break;
1068 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1069 m->busy ||
1070 m->hold_count ||
1071 m->wire_count) {
1072#ifdef INVARIANTS
1073 printf("Warning: busy page %p found in cache\n", m);
1074#endif
1075 vm_page_deactivate(m);
1076 continue;
1077 }
1078 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1079 vm_pageout_page_free(m);
12e4aaff 1080 mycpu->gd_cnt.v_dfree++;
984263bc
MD
1081 }
1082 splx(s);
1083
1084#if !defined(NO_SWAPPING)
1085 /*
1086 * Idle process swapout -- run once per second.
1087 */
1088 if (vm_swap_idle_enabled) {
1089 static long lsec;
1090 if (time_second != lsec) {
1091 vm_pageout_req_swapout |= VM_SWAP_IDLE;
1092 vm_req_vmdaemon();
1093 lsec = time_second;
1094 }
1095 }
1096#endif
1097
1098 /*
1099 * If we didn't get enough free pages, and we have skipped a vnode
1100 * in a writeable object, wakeup the sync daemon. And kick swapout
1101 * if we did not get enough free pages.
1102 */
1103 if (vm_paging_target() > 0) {
1104 if (vnodes_skipped && vm_page_count_min())
1105 (void) speedup_syncer();
1106#if !defined(NO_SWAPPING)
1107 if (vm_swap_enabled && vm_page_count_target()) {
1108 vm_req_vmdaemon();
1109 vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1110 }
1111#endif
1112 }
1113
1114 /*
1115 * If we are out of swap and were not able to reach our paging
1116 * target, kill the largest process.
1117 */
1118 if ((vm_swap_size < 64 && vm_page_count_min()) ||
1119 (swap_pager_full && vm_paging_target() > 0)) {
1120#if 0
1121 if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1122#endif
1123 bigproc = NULL;
1124 bigsize = 0;
1125 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1126 /*
1127 * if this is a system process, skip it
1128 */
1129 if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1130 ((p->p_pid < 48) && (vm_swap_size != 0))) {
1131 continue;
1132 }
1133 /*
1134 * if the process is in a non-running type state,
1135 * don't touch it.
1136 */
1137 if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1138 continue;
1139 }
1140 /*
1141 * get the process size
1142 */
1143 size = vmspace_resident_count(p->p_vmspace) +
1144 vmspace_swap_count(p->p_vmspace);
1145 /*
1146 * if the this process is bigger than the biggest one
1147 * remember it.
1148 */
1149 if (size > bigsize) {
1150 bigproc = p;
1151 bigsize = size;
1152 }
1153 }
1154 if (bigproc != NULL) {
1155 killproc(bigproc, "out of swap space");
1156 bigproc->p_estcpu = 0;
1157 bigproc->p_nice = PRIO_MIN;
1158 resetpriority(bigproc);
12e4aaff 1159 wakeup(&vmstats.v_free_count);
984263bc
MD
1160 }
1161 }
1162}
1163
1164/*
1165 * This routine tries to maintain the pseudo LRU active queue,
1166 * so that during long periods of time where there is no paging,
1167 * that some statistic accumulation still occurs. This code
1168 * helps the situation where paging just starts to occur.
1169 */
1170static void
1171vm_pageout_page_stats()
1172{
1173 int s;
1174 vm_page_t m,next;
1175 int pcount,tpcount; /* Number of pages to check */
1176 static int fullintervalcount = 0;
1177 int page_shortage;
1178 int s0;
1179
1180 page_shortage =
12e4aaff
MD
1181 (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1182 (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
984263bc
MD
1183
1184 if (page_shortage <= 0)
1185 return;
1186
1187 s0 = splvm();
1188
12e4aaff 1189 pcount = vmstats.v_active_count;
984263bc
MD
1190 fullintervalcount += vm_pageout_stats_interval;
1191 if (fullintervalcount < vm_pageout_full_stats_interval) {
12e4aaff 1192 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
984263bc
MD
1193 if (pcount > tpcount)
1194 pcount = tpcount;
1195 } else {
1196 fullintervalcount = 0;
1197 }
1198
1199 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1200 while ((m != NULL) && (pcount-- > 0)) {
1201 int actcount;
1202
1203 if (m->queue != PQ_ACTIVE) {
1204 break;
1205 }
1206
1207 next = TAILQ_NEXT(m, pageq);
1208 /*
1209 * Don't deactivate pages that are busy.
1210 */
1211 if ((m->busy != 0) ||
1212 (m->flags & PG_BUSY) ||
1213 (m->hold_count != 0)) {
1214 s = splvm();
1215 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1216 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1217 splx(s);
1218 m = next;
1219 continue;
1220 }
1221
1222 actcount = 0;
1223 if (m->flags & PG_REFERENCED) {
1224 vm_page_flag_clear(m, PG_REFERENCED);
1225 actcount += 1;
1226 }
1227
1228 actcount += pmap_ts_referenced(m);
1229 if (actcount) {
1230 m->act_count += ACT_ADVANCE + actcount;
1231 if (m->act_count > ACT_MAX)
1232 m->act_count = ACT_MAX;
1233 s = splvm();
1234 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1235 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1236 splx(s);
1237 } else {
1238 if (m->act_count == 0) {
1239 /*
1240 * We turn off page access, so that we have
1241 * more accurate RSS stats. We don't do this
1242 * in the normal page deactivation when the
1243 * system is loaded VM wise, because the
1244 * cost of the large number of page protect
1245 * operations would be higher than the value
1246 * of doing the operation.
1247 */
1248 vm_page_protect(m, VM_PROT_NONE);
1249 vm_page_deactivate(m);
1250 } else {
1251 m->act_count -= min(m->act_count, ACT_DECLINE);
1252 s = splvm();
1253 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1254 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1255 splx(s);
1256 }
1257 }
1258
1259 m = next;
1260 }
1261 splx(s0);
1262}
1263
1264static int
1265vm_pageout_free_page_calc(count)
1266vm_size_t count;
1267{
12e4aaff 1268 if (count < vmstats.v_page_count)
984263bc
MD
1269 return 0;
1270 /*
1271 * free_reserved needs to include enough for the largest swap pager
1272 * structures plus enough for any pv_entry structs when paging.
1273 */
12e4aaff
MD
1274 if (vmstats.v_page_count > 1024)
1275 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
984263bc 1276 else
12e4aaff
MD
1277 vmstats.v_free_min = 4;
1278 vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1279 vmstats.v_interrupt_free_min;
1280 vmstats.v_free_reserved = vm_pageout_page_count +
1281 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1282 vmstats.v_free_severe = vmstats.v_free_min / 2;
1283 vmstats.v_free_min += vmstats.v_free_reserved;
1284 vmstats.v_free_severe += vmstats.v_free_reserved;
984263bc
MD
1285 return 1;
1286}
1287
1288
1289/*
1290 * vm_pageout is the high level pageout daemon.
1291 */
1292static void
1293vm_pageout()
1294{
1295 int pass;
1296
1297 /*
1298 * Initialize some paging parameters.
1299 */
1300
12e4aaff
MD
1301 vmstats.v_interrupt_free_min = 2;
1302 if (vmstats.v_page_count < 2000)
984263bc
MD
1303 vm_pageout_page_count = 8;
1304
12e4aaff 1305 vm_pageout_free_page_calc(vmstats.v_page_count);
984263bc
MD
1306 /*
1307 * v_free_target and v_cache_min control pageout hysteresis. Note
1308 * that these are more a measure of the VM cache queue hysteresis
1309 * then the VM free queue. Specifically, v_free_target is the
1310 * high water mark (free+cache pages).
1311 *
1312 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1313 * low water mark, while v_free_min is the stop. v_cache_min must
1314 * be big enough to handle memory needs while the pageout daemon
1315 * is signalled and run to free more pages.
1316 */
12e4aaff
MD
1317 if (vmstats.v_free_count > 6144)
1318 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
984263bc 1319 else
12e4aaff 1320 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
984263bc 1321
12e4aaff
MD
1322 if (vmstats.v_free_count > 2048) {
1323 vmstats.v_cache_min = vmstats.v_free_target;
1324 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1325 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
984263bc 1326 } else {
12e4aaff
MD
1327 vmstats.v_cache_min = 0;
1328 vmstats.v_cache_max = 0;
1329 vmstats.v_inactive_target = vmstats.v_free_count / 4;
984263bc 1330 }
12e4aaff
MD
1331 if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1332 vmstats.v_inactive_target = vmstats.v_free_count / 3;
984263bc
MD
1333
1334 /* XXX does not really belong here */
1335 if (vm_page_max_wired == 0)
12e4aaff 1336 vm_page_max_wired = vmstats.v_free_count / 3;
984263bc
MD
1337
1338 if (vm_pageout_stats_max == 0)
12e4aaff 1339 vm_pageout_stats_max = vmstats.v_free_target;
984263bc
MD
1340
1341 /*
1342 * Set interval in seconds for stats scan.
1343 */
1344 if (vm_pageout_stats_interval == 0)
1345 vm_pageout_stats_interval = 5;
1346 if (vm_pageout_full_stats_interval == 0)
1347 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1348
1349
1350 /*
1351 * Set maximum free per pass
1352 */
1353 if (vm_pageout_stats_free_max == 0)
1354 vm_pageout_stats_free_max = 5;
1355
1356 swap_pager_swap_init();
1357 pass = 0;
1358 /*
1359 * The pageout daemon is never done, so loop forever.
1360 */
1361 while (TRUE) {
1362 int error;
1363 int s = splvm();
1364
1365 /*
1366 * If we have enough free memory, wakeup waiters. Do
1367 * not clear vm_pages_needed until we reach our target,
1368 * otherwise we may be woken up over and over again and
1369 * waste a lot of cpu.
1370 */
1371 if (vm_pages_needed && !vm_page_count_min()) {
1372 if (vm_paging_needed() <= 0)
1373 vm_pages_needed = 0;
12e4aaff 1374 wakeup(&vmstats.v_free_count);
984263bc
MD
1375 }
1376 if (vm_pages_needed) {
1377 /*
1378 * Still not done, take a second pass without waiting
1379 * (unlimited dirty cleaning), otherwise sleep a bit
1380 * and try again.
1381 */
1382 ++pass;
1383 if (pass > 1)
377d4740 1384 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
984263bc
MD
1385 } else {
1386 /*
1387 * Good enough, sleep & handle stats. Prime the pass
1388 * for the next run.
1389 */
1390 if (pass > 1)
1391 pass = 1;
1392 else
1393 pass = 0;
1394 error = tsleep(&vm_pages_needed,
377d4740 1395 0, "psleep", vm_pageout_stats_interval * hz);
984263bc
MD
1396 if (error && !vm_pages_needed) {
1397 splx(s);
1398 pass = 0;
1399 vm_pageout_page_stats();
1400 continue;
1401 }
1402 }
1403
1404 if (vm_pages_needed)
12e4aaff 1405 mycpu->gd_cnt.v_pdwakeups++;
984263bc
MD
1406 splx(s);
1407 vm_pageout_scan(pass);
1408 vm_pageout_deficit = 0;
1409 }
1410}
1411
1412void
1413pagedaemon_wakeup()
1414{
bc6dffab 1415 if (!vm_pages_needed && curthread != pagethread) {
984263bc
MD
1416 vm_pages_needed++;
1417 wakeup(&vm_pages_needed);
1418 }
1419}
1420
1421#if !defined(NO_SWAPPING)
1422static void
1423vm_req_vmdaemon()
1424{
1425 static int lastrun = 0;
1426
1427 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1428 wakeup(&vm_daemon_needed);
1429 lastrun = ticks;
1430 }
1431}
1432
1433static void
1434vm_daemon()
1435{
1436 struct proc *p;
1437
1438 while (TRUE) {
377d4740 1439 tsleep(&vm_daemon_needed, 0, "psleep", 0);
984263bc
MD
1440 if (vm_pageout_req_swapout) {
1441 swapout_procs(vm_pageout_req_swapout);
1442 vm_pageout_req_swapout = 0;
1443 }
1444 /*
1445 * scan the processes for exceeding their rlimits or if
1446 * process is swapped out -- deactivate pages
1447 */
1448
1449 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1450 vm_pindex_t limit, size;
1451
1452 /*
1453 * if this is a system process or if we have already
1454 * looked at this process, skip it.
1455 */
1456 if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1457 continue;
1458 }
1459 /*
1460 * if the process is in a non-running type state,
1461 * don't touch it.
1462 */
1463 if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1464 continue;
1465 }
1466 /*
1467 * get a limit
1468 */
1469 limit = OFF_TO_IDX(
1470 qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1471 p->p_rlimit[RLIMIT_RSS].rlim_max));
1472
1473 /*
1474 * let processes that are swapped out really be
1475 * swapped out set the limit to nothing (will force a
1476 * swap-out.)
1477 */
1478 if ((p->p_flag & P_INMEM) == 0)
1479 limit = 0; /* XXX */
1480
1481 size = vmspace_resident_count(p->p_vmspace);
1482 if (limit >= 0 && size >= limit) {
1483 vm_pageout_map_deactivate_pages(
1484 &p->p_vmspace->vm_map, limit);
1485 }
1486 }
1487 }
1488}
1489#endif