kernel: Align backslashes in 'files' a bit better for firmwares.
[dragonfly.git] / sys / bus / u4b / wlan / if_run.c
CommitLineData
12bd3c8b
SW
1/*-
2 * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3 * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4 * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD$");
21
22/*-
23 * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
24 * http://www.ralinktech.com/
25 */
26
27#include <sys/param.h>
28#include <sys/sockio.h>
29#include <sys/sysctl.h>
30#include <sys/lock.h>
31#include <sys/mutex.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/bus.h>
39#include <sys/endian.h>
40#include <sys/linker.h>
41#include <sys/firmware.h>
42#include <sys/kdb.h>
43
44#include <machine/bus.h>
45#include <machine/resource.h>
46#include <sys/rman.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/in_var.h>
59#include <netinet/if_ether.h>
60#include <netinet/ip.h>
61
62#include <net80211/ieee80211_var.h>
63#include <net80211/ieee80211_regdomain.h>
64#include <net80211/ieee80211_radiotap.h>
65#include <net80211/ieee80211_ratectl.h>
66
67#include <dev/usb/usb.h>
68#include <dev/usb/usbdi.h>
69#include "usbdevs.h"
70
71#define USB_DEBUG_VAR run_debug
72#include <dev/usb/usb_debug.h>
73
74#include <dev/usb/wlan/if_runreg.h>
75#include <dev/usb/wlan/if_runvar.h>
76
77#define nitems(_a) (sizeof((_a)) / sizeof((_a)[0]))
78
79#ifdef USB_DEBUG
80#define RUN_DEBUG
81#endif
82
83#ifdef RUN_DEBUG
84int run_debug = 0;
85static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
86SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
87 "run debug level");
88#endif
89
90#define IEEE80211_HAS_ADDR4(wh) \
91 (((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
92
93/*
94 * Because of LOR in run_key_delete(), use atomic instead.
95 * '& RUN_CMDQ_MASQ' is to loop cmdq[].
96 */
97#define RUN_CMDQ_GET(c) (atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
98
99static const STRUCT_USB_HOST_ID run_devs[] = {
100#define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
101 RUN_DEV(ABOCOM, RT2770),
102 RUN_DEV(ABOCOM, RT2870),
103 RUN_DEV(ABOCOM, RT3070),
104 RUN_DEV(ABOCOM, RT3071),
105 RUN_DEV(ABOCOM, RT3072),
106 RUN_DEV(ABOCOM2, RT2870_1),
107 RUN_DEV(ACCTON, RT2770),
108 RUN_DEV(ACCTON, RT2870_1),
109 RUN_DEV(ACCTON, RT2870_2),
110 RUN_DEV(ACCTON, RT2870_3),
111 RUN_DEV(ACCTON, RT2870_4),
112 RUN_DEV(ACCTON, RT2870_5),
113 RUN_DEV(ACCTON, RT3070),
114 RUN_DEV(ACCTON, RT3070_1),
115 RUN_DEV(ACCTON, RT3070_2),
116 RUN_DEV(ACCTON, RT3070_3),
117 RUN_DEV(ACCTON, RT3070_4),
118 RUN_DEV(ACCTON, RT3070_5),
119 RUN_DEV(AIRTIES, RT3070),
120 RUN_DEV(ALLWIN, RT2070),
121 RUN_DEV(ALLWIN, RT2770),
122 RUN_DEV(ALLWIN, RT2870),
123 RUN_DEV(ALLWIN, RT3070),
124 RUN_DEV(ALLWIN, RT3071),
125 RUN_DEV(ALLWIN, RT3072),
126 RUN_DEV(ALLWIN, RT3572),
127 RUN_DEV(AMIGO, RT2870_1),
128 RUN_DEV(AMIGO, RT2870_2),
129 RUN_DEV(AMIT, CGWLUSB2GNR),
130 RUN_DEV(AMIT, RT2870_1),
131 RUN_DEV(AMIT2, RT2870),
132 RUN_DEV(ASUS, RT2870_1),
133 RUN_DEV(ASUS, RT2870_2),
134 RUN_DEV(ASUS, RT2870_3),
135 RUN_DEV(ASUS, RT2870_4),
136 RUN_DEV(ASUS, RT2870_5),
137 RUN_DEV(ASUS, USBN13),
138 RUN_DEV(ASUS, RT3070_1),
139 RUN_DEV(ASUS2, USBN11),
140 RUN_DEV(AZUREWAVE, RT2870_1),
141 RUN_DEV(AZUREWAVE, RT2870_2),
142 RUN_DEV(AZUREWAVE, RT3070_1),
143 RUN_DEV(AZUREWAVE, RT3070_2),
144 RUN_DEV(AZUREWAVE, RT3070_3),
145 RUN_DEV(BELKIN, F5D8053V3),
146 RUN_DEV(BELKIN, F5D8055),
147 RUN_DEV(BELKIN, F5D8055V2),
148 RUN_DEV(BELKIN, F6D4050V1),
149 RUN_DEV(BELKIN, RT2870_1),
150 RUN_DEV(BELKIN, RT2870_2),
151 RUN_DEV(CISCOLINKSYS, AE1000),
152 RUN_DEV(CISCOLINKSYS2, RT3070),
153 RUN_DEV(CISCOLINKSYS3, RT3070),
154 RUN_DEV(CONCEPTRONIC2, RT2870_1),
155 RUN_DEV(CONCEPTRONIC2, RT2870_2),
156 RUN_DEV(CONCEPTRONIC2, RT2870_3),
157 RUN_DEV(CONCEPTRONIC2, RT2870_4),
158 RUN_DEV(CONCEPTRONIC2, RT2870_5),
159 RUN_DEV(CONCEPTRONIC2, RT2870_6),
160 RUN_DEV(CONCEPTRONIC2, RT2870_7),
161 RUN_DEV(CONCEPTRONIC2, RT2870_8),
162 RUN_DEV(CONCEPTRONIC2, RT3070_1),
163 RUN_DEV(CONCEPTRONIC2, RT3070_2),
164 RUN_DEV(CONCEPTRONIC2, VIGORN61),
165 RUN_DEV(COREGA, CGWLUSB300GNM),
166 RUN_DEV(COREGA, RT2870_1),
167 RUN_DEV(COREGA, RT2870_2),
168 RUN_DEV(COREGA, RT2870_3),
169 RUN_DEV(COREGA, RT3070),
170 RUN_DEV(CYBERTAN, RT2870),
171 RUN_DEV(DLINK, RT2870),
172 RUN_DEV(DLINK, RT3072),
173 RUN_DEV(DLINK2, DWA130),
174 RUN_DEV(DLINK2, RT2870_1),
175 RUN_DEV(DLINK2, RT2870_2),
176 RUN_DEV(DLINK2, RT3070_1),
177 RUN_DEV(DLINK2, RT3070_2),
178 RUN_DEV(DLINK2, RT3070_3),
179 RUN_DEV(DLINK2, RT3070_4),
180 RUN_DEV(DLINK2, RT3070_5),
181 RUN_DEV(DLINK2, RT3072),
182 RUN_DEV(DLINK2, RT3072_1),
183 RUN_DEV(EDIMAX, EW7717),
184 RUN_DEV(EDIMAX, EW7718),
185 RUN_DEV(EDIMAX, RT2870_1),
186 RUN_DEV(ENCORE, RT3070_1),
187 RUN_DEV(ENCORE, RT3070_2),
188 RUN_DEV(ENCORE, RT3070_3),
189 RUN_DEV(GIGABYTE, GNWB31N),
190 RUN_DEV(GIGABYTE, GNWB32L),
191 RUN_DEV(GIGABYTE, RT2870_1),
192 RUN_DEV(GIGASET, RT3070_1),
193 RUN_DEV(GIGASET, RT3070_2),
194 RUN_DEV(GUILLEMOT, HWNU300),
195 RUN_DEV(HAWKING, HWUN2),
196 RUN_DEV(HAWKING, RT2870_1),
197 RUN_DEV(HAWKING, RT2870_2),
198 RUN_DEV(HAWKING, RT3070),
199 RUN_DEV(IODATA, RT3072_1),
200 RUN_DEV(IODATA, RT3072_2),
201 RUN_DEV(IODATA, RT3072_3),
202 RUN_DEV(IODATA, RT3072_4),
203 RUN_DEV(LINKSYS4, RT3070),
204 RUN_DEV(LINKSYS4, WUSB100),
205 RUN_DEV(LINKSYS4, WUSB54GCV3),
206 RUN_DEV(LINKSYS4, WUSB600N),
207 RUN_DEV(LINKSYS4, WUSB600NV2),
208 RUN_DEV(LOGITEC, RT2870_1),
209 RUN_DEV(LOGITEC, RT2870_2),
210 RUN_DEV(LOGITEC, RT2870_3),
211 RUN_DEV(LOGITEC, LANW300NU2),
212 RUN_DEV(MELCO, RT2870_1),
213 RUN_DEV(MELCO, RT2870_2),
214 RUN_DEV(MELCO, WLIUCAG300N),
215 RUN_DEV(MELCO, WLIUCG300N),
216 RUN_DEV(MELCO, WLIUCG301N),
217 RUN_DEV(MELCO, WLIUCGN),
218 RUN_DEV(MELCO, WLIUCGNM),
219 RUN_DEV(MOTOROLA4, RT2770),
220 RUN_DEV(MOTOROLA4, RT3070),
221 RUN_DEV(MSI, RT3070_1),
222 RUN_DEV(MSI, RT3070_2),
223 RUN_DEV(MSI, RT3070_3),
224 RUN_DEV(MSI, RT3070_4),
225 RUN_DEV(MSI, RT3070_5),
226 RUN_DEV(MSI, RT3070_6),
227 RUN_DEV(MSI, RT3070_7),
228 RUN_DEV(MSI, RT3070_8),
229 RUN_DEV(MSI, RT3070_9),
230 RUN_DEV(MSI, RT3070_10),
231 RUN_DEV(MSI, RT3070_11),
232 RUN_DEV(OVISLINK, RT3072),
233 RUN_DEV(PARA, RT3070),
234 RUN_DEV(PEGATRON, RT2870),
235 RUN_DEV(PEGATRON, RT3070),
236 RUN_DEV(PEGATRON, RT3070_2),
237 RUN_DEV(PEGATRON, RT3070_3),
238 RUN_DEV(PHILIPS, RT2870),
239 RUN_DEV(PLANEX2, GWUS300MINIS),
240 RUN_DEV(PLANEX2, GWUSMICRON),
241 RUN_DEV(PLANEX2, RT2870),
242 RUN_DEV(PLANEX2, RT3070),
243 RUN_DEV(QCOM, RT2870),
244 RUN_DEV(QUANTA, RT3070),
245 RUN_DEV(RALINK, RT2070),
246 RUN_DEV(RALINK, RT2770),
247 RUN_DEV(RALINK, RT2870),
248 RUN_DEV(RALINK, RT3070),
249 RUN_DEV(RALINK, RT3071),
250 RUN_DEV(RALINK, RT3072),
251 RUN_DEV(RALINK, RT3370),
252 RUN_DEV(RALINK, RT3572),
253 RUN_DEV(RALINK, RT8070),
254 RUN_DEV(SAMSUNG, WIS09ABGN),
255 RUN_DEV(SAMSUNG2, RT2870_1),
256 RUN_DEV(SENAO, RT2870_1),
257 RUN_DEV(SENAO, RT2870_2),
258 RUN_DEV(SENAO, RT2870_3),
259 RUN_DEV(SENAO, RT2870_4),
260 RUN_DEV(SENAO, RT3070),
261 RUN_DEV(SENAO, RT3071),
262 RUN_DEV(SENAO, RT3072_1),
263 RUN_DEV(SENAO, RT3072_2),
264 RUN_DEV(SENAO, RT3072_3),
265 RUN_DEV(SENAO, RT3072_4),
266 RUN_DEV(SENAO, RT3072_5),
267 RUN_DEV(SITECOMEU, RT2770),
268 RUN_DEV(SITECOMEU, RT2870_1),
269 RUN_DEV(SITECOMEU, RT2870_2),
270 RUN_DEV(SITECOMEU, RT2870_3),
271 RUN_DEV(SITECOMEU, RT2870_4),
272 RUN_DEV(SITECOMEU, RT3070),
273 RUN_DEV(SITECOMEU, RT3070_2),
274 RUN_DEV(SITECOMEU, RT3070_3),
275 RUN_DEV(SITECOMEU, RT3070_4),
276 RUN_DEV(SITECOMEU, RT3071),
277 RUN_DEV(SITECOMEU, RT3072_1),
278 RUN_DEV(SITECOMEU, RT3072_2),
279 RUN_DEV(SITECOMEU, RT3072_3),
280 RUN_DEV(SITECOMEU, RT3072_4),
281 RUN_DEV(SITECOMEU, RT3072_5),
282 RUN_DEV(SITECOMEU, RT3072_6),
283 RUN_DEV(SITECOMEU, WL608),
284 RUN_DEV(SPARKLAN, RT2870_1),
285 RUN_DEV(SPARKLAN, RT3070),
286 RUN_DEV(SWEEX2, LW153),
287 RUN_DEV(SWEEX2, LW303),
288 RUN_DEV(SWEEX2, LW313),
289 RUN_DEV(TOSHIBA, RT3070),
290 RUN_DEV(UMEDIA, RT2870_1),
291 RUN_DEV(ZCOM, RT2870_1),
292 RUN_DEV(ZCOM, RT2870_2),
293 RUN_DEV(ZINWELL, RT2870_1),
294 RUN_DEV(ZINWELL, RT2870_2),
295 RUN_DEV(ZINWELL, RT3070),
296 RUN_DEV(ZINWELL, RT3072_1),
297 RUN_DEV(ZINWELL, RT3072_2),
298 RUN_DEV(ZYXEL, RT2870_1),
299 RUN_DEV(ZYXEL, RT2870_2),
300#undef RUN_DEV
301};
302
303static device_probe_t run_match;
304static device_attach_t run_attach;
305static device_detach_t run_detach;
306
307static usb_callback_t run_bulk_rx_callback;
308static usb_callback_t run_bulk_tx_callback0;
309static usb_callback_t run_bulk_tx_callback1;
310static usb_callback_t run_bulk_tx_callback2;
311static usb_callback_t run_bulk_tx_callback3;
312static usb_callback_t run_bulk_tx_callback4;
313static usb_callback_t run_bulk_tx_callback5;
314
315static void run_bulk_tx_callbackN(struct usb_xfer *xfer,
316 usb_error_t error, unsigned int index);
317static struct ieee80211vap *run_vap_create(struct ieee80211com *,
318 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
319 const uint8_t [IEEE80211_ADDR_LEN],
320 const uint8_t [IEEE80211_ADDR_LEN]);
321static void run_vap_delete(struct ieee80211vap *);
322static void run_cmdq_cb(void *, int);
323static void run_setup_tx_list(struct run_softc *,
324 struct run_endpoint_queue *);
325static void run_unsetup_tx_list(struct run_softc *,
326 struct run_endpoint_queue *);
327static int run_load_microcode(struct run_softc *);
328static int run_reset(struct run_softc *);
329static usb_error_t run_do_request(struct run_softc *,
330 struct usb_device_request *, void *);
331static int run_read(struct run_softc *, uint16_t, uint32_t *);
332static int run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
333static int run_write_2(struct run_softc *, uint16_t, uint16_t);
334static int run_write(struct run_softc *, uint16_t, uint32_t);
335static int run_write_region_1(struct run_softc *, uint16_t,
336 const uint8_t *, int);
337static int run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
338static int run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
339static int run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
340static int run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
341static int run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
342static int run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
343static int run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
344static int run_bbp_write(struct run_softc *, uint8_t, uint8_t);
345static int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
346static const char *run_get_rf(int);
347static int run_read_eeprom(struct run_softc *);
348static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
349 const uint8_t mac[IEEE80211_ADDR_LEN]);
350static int run_media_change(struct ifnet *);
351static int run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
352static int run_wme_update(struct ieee80211com *);
353static void run_wme_update_cb(void *);
354static void run_key_update_begin(struct ieee80211vap *);
355static void run_key_update_end(struct ieee80211vap *);
356static void run_key_set_cb(void *);
357static int run_key_set(struct ieee80211vap *, struct ieee80211_key *,
358 const uint8_t mac[IEEE80211_ADDR_LEN]);
359static void run_key_delete_cb(void *);
360static int run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
361static void run_ratectl_to(void *);
362static void run_ratectl_cb(void *, int);
363static void run_drain_fifo(void *);
364static void run_iter_func(void *, struct ieee80211_node *);
365static void run_newassoc_cb(void *);
366static void run_newassoc(struct ieee80211_node *, int);
367static void run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
368static void run_tx_free(struct run_endpoint_queue *pq,
369 struct run_tx_data *, int);
370static void run_set_tx_desc(struct run_softc *, struct run_tx_data *);
371static int run_tx(struct run_softc *, struct mbuf *,
372 struct ieee80211_node *);
373static int run_tx_mgt(struct run_softc *, struct mbuf *,
374 struct ieee80211_node *);
375static int run_sendprot(struct run_softc *, const struct mbuf *,
376 struct ieee80211_node *, int, int);
377static int run_tx_param(struct run_softc *, struct mbuf *,
378 struct ieee80211_node *,
379 const struct ieee80211_bpf_params *);
380static int run_raw_xmit(struct ieee80211_node *, struct mbuf *,
381 const struct ieee80211_bpf_params *);
382static void run_start(struct ifnet *);
383static int run_ioctl(struct ifnet *, u_long, caddr_t);
384static void run_set_agc(struct run_softc *, uint8_t);
385static void run_select_chan_group(struct run_softc *, int);
386static void run_set_rx_antenna(struct run_softc *, int);
387static void run_rt2870_set_chan(struct run_softc *, u_int);
388static void run_rt3070_set_chan(struct run_softc *, u_int);
389static void run_rt3572_set_chan(struct run_softc *, u_int);
390static int run_set_chan(struct run_softc *, struct ieee80211_channel *);
391static void run_set_channel(struct ieee80211com *);
392static void run_scan_start(struct ieee80211com *);
393static void run_scan_end(struct ieee80211com *);
394static void run_update_beacon(struct ieee80211vap *, int);
395static void run_update_beacon_cb(void *);
396static void run_updateprot(struct ieee80211com *);
397static void run_updateprot_cb(void *);
398static void run_usb_timeout_cb(void *);
399static void run_reset_livelock(struct run_softc *);
400static void run_enable_tsf_sync(struct run_softc *);
401static void run_enable_mrr(struct run_softc *);
402static void run_set_txpreamble(struct run_softc *);
403static void run_set_basicrates(struct run_softc *);
404static void run_set_leds(struct run_softc *, uint16_t);
405static void run_set_bssid(struct run_softc *, const uint8_t *);
406static void run_set_macaddr(struct run_softc *, const uint8_t *);
407static void run_updateslot(struct ifnet *);
408static void run_updateslot_cb(void *);
409static void run_update_mcast(struct ifnet *);
410static int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
411static void run_update_promisc_locked(struct ifnet *);
412static void run_update_promisc(struct ifnet *);
413static int run_bbp_init(struct run_softc *);
414static int run_rt3070_rf_init(struct run_softc *);
415static int run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
416 uint8_t *);
417static void run_rt3070_rf_setup(struct run_softc *);
418static int run_txrx_enable(struct run_softc *);
419static void run_init(void *);
420static void run_init_locked(struct run_softc *);
421static void run_stop(void *);
422static void run_delay(struct run_softc *, unsigned int);
423
424static const struct {
425 uint16_t reg;
426 uint32_t val;
427} rt2870_def_mac[] = {
428 RT2870_DEF_MAC
429};
430
431static const struct {
432 uint8_t reg;
433 uint8_t val;
434} rt2860_def_bbp[] = {
435 RT2860_DEF_BBP
436};
437
438static const struct rfprog {
439 uint8_t chan;
440 uint32_t r1, r2, r3, r4;
441} rt2860_rf2850[] = {
442 RT2860_RF2850
443};
444
445struct {
446 uint8_t n, r, k;
447} rt3070_freqs[] = {
448 RT3070_RF3052
449};
450
451static const struct {
452 uint8_t reg;
453 uint8_t val;
454} rt3070_def_rf[] = {
455 RT3070_DEF_RF
456},rt3572_def_rf[] = {
457 RT3572_DEF_RF
458};
459
460static const struct usb_config run_config[RUN_N_XFER] = {
461 [RUN_BULK_TX_BE] = {
462 .type = UE_BULK,
463 .endpoint = UE_ADDR_ANY,
464 .ep_index = 0,
465 .direction = UE_DIR_OUT,
466 .bufsize = RUN_MAX_TXSZ,
467 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
468 .callback = run_bulk_tx_callback0,
469 .timeout = 5000, /* ms */
470 },
471 [RUN_BULK_TX_BK] = {
472 .type = UE_BULK,
473 .endpoint = UE_ADDR_ANY,
474 .direction = UE_DIR_OUT,
475 .ep_index = 1,
476 .bufsize = RUN_MAX_TXSZ,
477 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
478 .callback = run_bulk_tx_callback1,
479 .timeout = 5000, /* ms */
480 },
481 [RUN_BULK_TX_VI] = {
482 .type = UE_BULK,
483 .endpoint = UE_ADDR_ANY,
484 .direction = UE_DIR_OUT,
485 .ep_index = 2,
486 .bufsize = RUN_MAX_TXSZ,
487 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
488 .callback = run_bulk_tx_callback2,
489 .timeout = 5000, /* ms */
490 },
491 [RUN_BULK_TX_VO] = {
492 .type = UE_BULK,
493 .endpoint = UE_ADDR_ANY,
494 .direction = UE_DIR_OUT,
495 .ep_index = 3,
496 .bufsize = RUN_MAX_TXSZ,
497 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
498 .callback = run_bulk_tx_callback3,
499 .timeout = 5000, /* ms */
500 },
501 [RUN_BULK_TX_HCCA] = {
502 .type = UE_BULK,
503 .endpoint = UE_ADDR_ANY,
504 .direction = UE_DIR_OUT,
505 .ep_index = 4,
506 .bufsize = RUN_MAX_TXSZ,
507 .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
508 .callback = run_bulk_tx_callback4,
509 .timeout = 5000, /* ms */
510 },
511 [RUN_BULK_TX_PRIO] = {
512 .type = UE_BULK,
513 .endpoint = UE_ADDR_ANY,
514 .direction = UE_DIR_OUT,
515 .ep_index = 5,
516 .bufsize = RUN_MAX_TXSZ,
517 .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
518 .callback = run_bulk_tx_callback5,
519 .timeout = 5000, /* ms */
520 },
521 [RUN_BULK_RX] = {
522 .type = UE_BULK,
523 .endpoint = UE_ADDR_ANY,
524 .direction = UE_DIR_IN,
525 .bufsize = RUN_MAX_RXSZ,
526 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
527 .callback = run_bulk_rx_callback,
528 }
529};
530
531static int
532run_match(device_t self)
533{
534 struct usb_attach_arg *uaa = device_get_ivars(self);
535
536 if (uaa->usb_mode != USB_MODE_HOST)
537 return (ENXIO);
538 if (uaa->info.bConfigIndex != 0)
539 return (ENXIO);
540 if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
541 return (ENXIO);
542
543 return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
544}
545
546static int
547run_attach(device_t self)
548{
549 struct run_softc *sc = device_get_softc(self);
550 struct usb_attach_arg *uaa = device_get_ivars(self);
551 struct ieee80211com *ic;
552 struct ifnet *ifp;
553 uint32_t ver;
554 int i, ntries, error;
555 uint8_t iface_index, bands;
556
557 device_set_usb_desc(self);
558 sc->sc_udev = uaa->device;
559 sc->sc_dev = self;
560
561 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
562 MTX_NETWORK_LOCK, MTX_DEF);
563
564 iface_index = RT2860_IFACE_INDEX;
565
566 error = usbd_transfer_setup(uaa->device, &iface_index,
567 sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
568 if (error) {
569 device_printf(self, "could not allocate USB transfers, "
570 "err=%s\n", usbd_errstr(error));
571 goto detach;
572 }
573
574 RUN_LOCK(sc);
575
576 /* wait for the chip to settle */
577 for (ntries = 0; ntries < 100; ntries++) {
578 if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
579 RUN_UNLOCK(sc);
580 goto detach;
581 }
582 if (ver != 0 && ver != 0xffffffff)
583 break;
584 run_delay(sc, 10);
585 }
586 if (ntries == 100) {
587 device_printf(sc->sc_dev,
588 "timeout waiting for NIC to initialize\n");
589 RUN_UNLOCK(sc);
590 goto detach;
591 }
592 sc->mac_ver = ver >> 16;
593 sc->mac_rev = ver & 0xffff;
594
595 /* retrieve RF rev. no and various other things from EEPROM */
596 run_read_eeprom(sc);
597
598 device_printf(sc->sc_dev,
599 "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
600 sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
601 sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid));
602
603 if ((error = run_load_microcode(sc)) != 0) {
604 device_printf(sc->sc_dev, "could not load 8051 microcode\n");
605 RUN_UNLOCK(sc);
606 goto detach;
607 }
608
609 RUN_UNLOCK(sc);
610
611 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612 if (ifp == NULL) {
613 device_printf(sc->sc_dev, "can not if_alloc()\n");
614 goto detach;
615 }
616 ic = ifp->if_l2com;
617
618 ifp->if_softc = sc;
619 if_initname(ifp, "run", device_get_unit(sc->sc_dev));
620 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
621 ifp->if_init = run_init;
622 ifp->if_ioctl = run_ioctl;
623 ifp->if_start = run_start;
624 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
625 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
626 IFQ_SET_READY(&ifp->if_snd);
627
628 ic->ic_ifp = ifp;
629 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
630 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
631
632 /* set device capabilities */
633 ic->ic_caps =
634 IEEE80211_C_STA | /* station mode supported */
635 IEEE80211_C_MONITOR | /* monitor mode supported */
636 IEEE80211_C_IBSS |
637 IEEE80211_C_HOSTAP |
638 IEEE80211_C_WDS | /* 4-address traffic works */
639 IEEE80211_C_MBSS |
640 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
641 IEEE80211_C_SHSLOT | /* short slot time supported */
642 IEEE80211_C_WME | /* WME */
643 IEEE80211_C_WPA; /* WPA1|WPA2(RSN) */
644
645 ic->ic_cryptocaps =
646 IEEE80211_CRYPTO_WEP |
647 IEEE80211_CRYPTO_AES_CCM |
648 IEEE80211_CRYPTO_TKIPMIC |
649 IEEE80211_CRYPTO_TKIP;
650
651 ic->ic_flags |= IEEE80211_F_DATAPAD;
652 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
653
654 bands = 0;
655 setbit(&bands, IEEE80211_MODE_11B);
656 setbit(&bands, IEEE80211_MODE_11G);
657 ieee80211_init_channels(ic, NULL, &bands);
658
659 /*
660 * Do this by own because h/w supports
661 * more channels than ieee80211_init_channels()
662 */
663 if (sc->rf_rev == RT2860_RF_2750 ||
664 sc->rf_rev == RT2860_RF_2850 ||
665 sc->rf_rev == RT3070_RF_3052) {
666 /* set supported .11a rates */
667 for (i = 14; i < nitems(rt2860_rf2850); i++) {
668 uint8_t chan = rt2860_rf2850[i].chan;
669 ic->ic_channels[ic->ic_nchans].ic_freq =
670 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
671 ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
672 ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
673 ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
674 ic->ic_nchans++;
675 }
676 }
677
678 ieee80211_ifattach(ic, sc->sc_bssid);
679
680 ic->ic_scan_start = run_scan_start;
681 ic->ic_scan_end = run_scan_end;
682 ic->ic_set_channel = run_set_channel;
683 ic->ic_node_alloc = run_node_alloc;
684 ic->ic_newassoc = run_newassoc;
685 ic->ic_updateslot = run_updateslot;
686 ic->ic_update_mcast = run_update_mcast;
687 ic->ic_wme.wme_update = run_wme_update;
688 ic->ic_raw_xmit = run_raw_xmit;
689 ic->ic_update_promisc = run_update_promisc;
690
691 ic->ic_vap_create = run_vap_create;
692 ic->ic_vap_delete = run_vap_delete;
693
694 ieee80211_radiotap_attach(ic,
695 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
696 RUN_TX_RADIOTAP_PRESENT,
697 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
698 RUN_RX_RADIOTAP_PRESENT);
699
700 TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
701 TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
702 callout_init((struct callout *)&sc->ratectl_ch, 1);
703
704 if (bootverbose)
705 ieee80211_announce(ic);
706
707 return (0);
708
709detach:
710 run_detach(self);
711 return (ENXIO);
712}
713
714static int
715run_detach(device_t self)
716{
717 struct run_softc *sc = device_get_softc(self);
718 struct ifnet *ifp = sc->sc_ifp;
719 struct ieee80211com *ic;
720 int i;
721
722 /* stop all USB transfers */
723 usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
724
725 RUN_LOCK(sc);
726
727 sc->ratectl_run = RUN_RATECTL_OFF;
728 sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
729
730 /* free TX list, if any */
731 for (i = 0; i != RUN_EP_QUEUES; i++)
732 run_unsetup_tx_list(sc, &sc->sc_epq[i]);
733 RUN_UNLOCK(sc);
734
735 if (ifp) {
736 ic = ifp->if_l2com;
737 /* drain tasks */
738 usb_callout_drain(&sc->ratectl_ch);
739 ieee80211_draintask(ic, &sc->cmdq_task);
740 ieee80211_draintask(ic, &sc->ratectl_task);
741 ieee80211_ifdetach(ic);
742 if_free(ifp);
743 }
744
745 mtx_destroy(&sc->sc_mtx);
746
747 return (0);
748}
749
750static struct ieee80211vap *
751run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
752 enum ieee80211_opmode opmode, int flags,
753 const uint8_t bssid[IEEE80211_ADDR_LEN],
754 const uint8_t mac[IEEE80211_ADDR_LEN])
755{
756 struct ifnet *ifp = ic->ic_ifp;
757 struct run_softc *sc = ifp->if_softc;
758 struct run_vap *rvp;
759 struct ieee80211vap *vap;
760 int i;
761
762 if (sc->rvp_cnt >= RUN_VAP_MAX) {
763 if_printf(ifp, "number of VAPs maxed out\n");
764 return (NULL);
765 }
766
767 switch (opmode) {
768 case IEEE80211_M_STA:
769 /* enable s/w bmiss handling for sta mode */
770 flags |= IEEE80211_CLONE_NOBEACONS;
771 /* fall though */
772 case IEEE80211_M_IBSS:
773 case IEEE80211_M_MONITOR:
774 case IEEE80211_M_HOSTAP:
775 case IEEE80211_M_MBSS:
776 /* other than WDS vaps, only one at a time */
777 if (!TAILQ_EMPTY(&ic->ic_vaps))
778 return (NULL);
779 break;
780 case IEEE80211_M_WDS:
781 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
782 if(vap->iv_opmode != IEEE80211_M_HOSTAP)
783 continue;
784 /* WDS vap's always share the local mac address. */
785 flags &= ~IEEE80211_CLONE_BSSID;
786 break;
787 }
788 if (vap == NULL) {
789 if_printf(ifp, "wds only supported in ap mode\n");
790 return (NULL);
791 }
792 break;
793 default:
794 if_printf(ifp, "unknown opmode %d\n", opmode);
795 return (NULL);
796 }
797
798 rvp = (struct run_vap *) malloc(sizeof(struct run_vap),
f6807fa3 799 M_80211_VAP, M_WAITOK | M_ZERO);
12bd3c8b
SW
800 if (rvp == NULL)
801 return (NULL);
802 vap = &rvp->vap;
803 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
804
805 vap->iv_key_update_begin = run_key_update_begin;
806 vap->iv_key_update_end = run_key_update_end;
807 vap->iv_update_beacon = run_update_beacon;
808 vap->iv_max_aid = RT2870_WCID_MAX;
809 /*
810 * To delete the right key from h/w, we need wcid.
811 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
812 * and matching wcid will be written into there. So, cast
813 * some spells to remove 'const' from ieee80211_key{}
814 */
815 vap->iv_key_delete = (void *)run_key_delete;
816 vap->iv_key_set = (void *)run_key_set;
817
818 /* override state transition machine */
819 rvp->newstate = vap->iv_newstate;
820 vap->iv_newstate = run_newstate;
821
822 ieee80211_ratectl_init(vap);
823 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
824
825 /* complete setup */
826 ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
827
828 /* make sure id is always unique */
829 for (i = 0; i < RUN_VAP_MAX; i++) {
830 if((sc->rvp_bmap & 1 << i) == 0){
831 sc->rvp_bmap |= 1 << i;
832 rvp->rvp_id = i;
833 break;
834 }
835 }
836 if (sc->rvp_cnt++ == 0)
837 ic->ic_opmode = opmode;
838
839 if (opmode == IEEE80211_M_HOSTAP)
840 sc->cmdq_run = RUN_CMDQ_GO;
841
842 DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
843 rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
844
845 return (vap);
846}
847
848static void
849run_vap_delete(struct ieee80211vap *vap)
850{
851 struct run_vap *rvp = RUN_VAP(vap);
852 struct ifnet *ifp;
853 struct ieee80211com *ic;
854 struct run_softc *sc;
855 uint8_t rvp_id;
856
857 if (vap == NULL)
858 return;
859
860 ic = vap->iv_ic;
861 ifp = ic->ic_ifp;
862
863 sc = ifp->if_softc;
864
865 RUN_LOCK(sc);
866
867 m_freem(rvp->beacon_mbuf);
868 rvp->beacon_mbuf = NULL;
869
870 rvp_id = rvp->rvp_id;
871 sc->ratectl_run &= ~(1 << rvp_id);
872 sc->rvp_bmap &= ~(1 << rvp_id);
873 run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
874 run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
875 --sc->rvp_cnt;
876
877 DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
878 vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
879
880 RUN_UNLOCK(sc);
881
882 ieee80211_ratectl_deinit(vap);
883 ieee80211_vap_detach(vap);
884 free(rvp, M_80211_VAP);
885}
886
887/*
888 * There are numbers of functions need to be called in context thread.
889 * Rather than creating taskqueue event for each of those functions,
890 * here is all-for-one taskqueue callback function. This function
891 * gurantees deferred functions are executed in the same order they
892 * were enqueued.
893 * '& RUN_CMDQ_MASQ' is to loop cmdq[].
894 */
895static void
896run_cmdq_cb(void *arg, int pending)
897{
898 struct run_softc *sc = arg;
899 uint8_t i;
900
901 /* call cmdq[].func locked */
902 RUN_LOCK(sc);
903 for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
904 i = sc->cmdq_exec, pending--) {
905 DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
906 if (sc->cmdq_run == RUN_CMDQ_GO) {
907 /*
908 * If arg0 is NULL, callback func needs more
909 * than one arg. So, pass ptr to cmdq struct.
910 */
911 if (sc->cmdq[i].arg0)
912 sc->cmdq[i].func(sc->cmdq[i].arg0);
913 else
914 sc->cmdq[i].func(&sc->cmdq[i]);
915 }
916 sc->cmdq[i].arg0 = NULL;
917 sc->cmdq[i].func = NULL;
918 sc->cmdq_exec++;
919 sc->cmdq_exec &= RUN_CMDQ_MASQ;
920 }
921 RUN_UNLOCK(sc);
922}
923
924static void
925run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
926{
927 struct run_tx_data *data;
928
929 memset(pq, 0, sizeof(*pq));
930
931 STAILQ_INIT(&pq->tx_qh);
932 STAILQ_INIT(&pq->tx_fh);
933
934 for (data = &pq->tx_data[0];
935 data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
936 data->sc = sc;
937 STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
938 }
939 pq->tx_nfree = RUN_TX_RING_COUNT;
940}
941
942static void
943run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
944{
945 struct run_tx_data *data;
946
947 /* make sure any subsequent use of the queues will fail */
948 pq->tx_nfree = 0;
949 STAILQ_INIT(&pq->tx_fh);
950 STAILQ_INIT(&pq->tx_qh);
951
952 /* free up all node references and mbufs */
953 for (data = &pq->tx_data[0];
954 data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
955 if (data->m != NULL) {
956 m_freem(data->m);
957 data->m = NULL;
958 }
959 if (data->ni != NULL) {
960 ieee80211_free_node(data->ni);
961 data->ni = NULL;
962 }
963 }
964}
965
966static int
967run_load_microcode(struct run_softc *sc)
968{
969 usb_device_request_t req;
970 const struct firmware *fw;
971 const u_char *base;
972 uint32_t tmp;
973 int ntries, error;
974 const uint64_t *temp;
975 uint64_t bytes;
976
977 RUN_UNLOCK(sc);
978 fw = firmware_get("runfw");
979 RUN_LOCK(sc);
980 if (fw == NULL) {
981 device_printf(sc->sc_dev,
982 "failed loadfirmware of file %s\n", "runfw");
983 return ENOENT;
984 }
985
986 if (fw->datasize != 8192) {
987 device_printf(sc->sc_dev,
988 "invalid firmware size (should be 8KB)\n");
989 error = EINVAL;
990 goto fail;
991 }
992
993 /*
994 * RT3071/RT3072 use a different firmware
995 * run-rt2870 (8KB) contains both,
996 * first half (4KB) is for rt2870,
997 * last half is for rt3071.
998 */
999 base = fw->data;
1000 if ((sc->mac_ver) != 0x2860 &&
1001 (sc->mac_ver) != 0x2872 &&
1002 (sc->mac_ver) != 0x3070) {
1003 base += 4096;
1004 }
1005
1006 /* cheap sanity check */
1007 temp = fw->data;
1008 bytes = *temp;
1009 if (bytes != be64toh(0xffffff0210280210)) {
1010 device_printf(sc->sc_dev, "firmware checksum failed\n");
1011 error = EINVAL;
1012 goto fail;
1013 }
1014
1015 run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1016 /* write microcode image */
1017 run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1018 run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1019 run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1020
1021 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1022 req.bRequest = RT2870_RESET;
1023 USETW(req.wValue, 8);
1024 USETW(req.wIndex, 0);
1025 USETW(req.wLength, 0);
1026 if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL))
1027 != 0) {
1028 device_printf(sc->sc_dev, "firmware reset failed\n");
1029 goto fail;
1030 }
1031
1032 run_delay(sc, 10);
1033
1034 run_write(sc, RT2860_H2M_MAILBOX, 0);
1035 if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1036 goto fail;
1037
1038 /* wait until microcontroller is ready */
1039 for (ntries = 0; ntries < 1000; ntries++) {
1040 if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1041 goto fail;
1042 }
1043 if (tmp & RT2860_MCU_READY)
1044 break;
1045 run_delay(sc, 10);
1046 }
1047 if (ntries == 1000) {
1048 device_printf(sc->sc_dev,
1049 "timeout waiting for MCU to initialize\n");
1050 error = ETIMEDOUT;
1051 goto fail;
1052 }
1053 device_printf(sc->sc_dev, "firmware %s loaded\n",
1054 (base == fw->data) ? "RT2870" : "RT3071");
1055
1056fail:
1057 firmware_put(fw, FIRMWARE_UNLOAD);
1058 return (error);
1059}
1060
1061int
1062run_reset(struct run_softc *sc)
1063{
1064 usb_device_request_t req;
1065
1066 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1067 req.bRequest = RT2870_RESET;
1068 USETW(req.wValue, 1);
1069 USETW(req.wIndex, 0);
1070 USETW(req.wLength, 0);
1071 return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
1072}
1073
1074static usb_error_t
1075run_do_request(struct run_softc *sc,
1076 struct usb_device_request *req, void *data)
1077{
1078 usb_error_t err;
1079 int ntries = 10;
1080
1081 RUN_LOCK_ASSERT(sc, MA_OWNED);
1082
1083 while (ntries--) {
1084 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
1085 req, data, 0, NULL, 250 /* ms */);
1086 if (err == 0)
1087 break;
1088 DPRINTFN(1, "Control request failed, %s (retrying)\n",
1089 usbd_errstr(err));
1090 run_delay(sc, 10);
1091 }
1092 return (err);
1093}
1094
1095static int
1096run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1097{
1098 uint32_t tmp;
1099 int error;
1100
1101 error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1102 if (error == 0)
1103 *val = le32toh(tmp);
1104 else
1105 *val = 0xffffffff;
1106 return (error);
1107}
1108
1109static int
1110run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1111{
1112 usb_device_request_t req;
1113
1114 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1115 req.bRequest = RT2870_READ_REGION_1;
1116 USETW(req.wValue, 0);
1117 USETW(req.wIndex, reg);
1118 USETW(req.wLength, len);
1119
1120 return (run_do_request(sc, &req, buf));
1121}
1122
1123static int
1124run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1125{
1126 usb_device_request_t req;
1127
1128 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1129 req.bRequest = RT2870_WRITE_2;
1130 USETW(req.wValue, val);
1131 USETW(req.wIndex, reg);
1132 USETW(req.wLength, 0);
1133
1134 return (run_do_request(sc, &req, NULL));
1135}
1136
1137static int
1138run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1139{
1140 int error;
1141
1142 if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1143 error = run_write_2(sc, reg + 2, val >> 16);
1144 return (error);
1145}
1146
1147static int
1148run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1149 int len)
1150{
1151#if 1
1152 int i, error = 0;
1153 /*
1154 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1155 * We thus issue multiple WRITE_2 commands instead.
1156 */
1157 KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1158 for (i = 0; i < len && error == 0; i += 2)
1159 error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1160 return (error);
1161#else
1162 usb_device_request_t req;
1163
1164 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1165 req.bRequest = RT2870_WRITE_REGION_1;
1166 USETW(req.wValue, 0);
1167 USETW(req.wIndex, reg);
1168 USETW(req.wLength, len);
1169 return (run_do_request(sc, &req, buf));
1170#endif
1171}
1172
1173static int
1174run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1175{
1176 int i, error = 0;
1177
1178 KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1179 for (i = 0; i < len && error == 0; i += 4)
1180 error = run_write(sc, reg + i, val);
1181 return (error);
1182}
1183
1184/* Read 16-bit from eFUSE ROM (RT3070 only.) */
1185static int
1186run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1187{
1188 uint32_t tmp;
1189 uint16_t reg;
1190 int error, ntries;
1191
1192 if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1193 return (error);
1194
1195 addr *= 2;
1196 /*-
1197 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1198 * DATA0: F E D C
1199 * DATA1: B A 9 8
1200 * DATA2: 7 6 5 4
1201 * DATA3: 3 2 1 0
1202 */
1203 tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1204 tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1205 run_write(sc, RT3070_EFUSE_CTRL, tmp);
1206 for (ntries = 0; ntries < 100; ntries++) {
1207 if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1208 return (error);
1209 if (!(tmp & RT3070_EFSROM_KICK))
1210 break;
1211 run_delay(sc, 2);
1212 }
1213 if (ntries == 100)
1214 return (ETIMEDOUT);
1215
1216 if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1217 *val = 0xffff; /* address not found */
1218 return (0);
1219 }
1220 /* determine to which 32-bit register our 16-bit word belongs */
1221 reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1222 if ((error = run_read(sc, reg, &tmp)) != 0)
1223 return (error);
1224
1225 *val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1226 return (0);
1227}
1228
1229static int
1230run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1231{
1232 usb_device_request_t req;
1233 uint16_t tmp;
1234 int error;
1235
1236 addr *= 2;
1237 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1238 req.bRequest = RT2870_EEPROM_READ;
1239 USETW(req.wValue, 0);
1240 USETW(req.wIndex, addr);
1241 USETW(req.wLength, sizeof tmp);
1242
1243 error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
1244 if (error == 0)
1245 *val = le16toh(tmp);
1246 else
1247 *val = 0xffff;
1248 return (error);
1249}
1250
1251static __inline int
1252run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1253{
1254 /* either eFUSE ROM or EEPROM */
1255 return sc->sc_srom_read(sc, addr, val);
1256}
1257
1258static int
1259run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1260{
1261 uint32_t tmp;
1262 int error, ntries;
1263
1264 for (ntries = 0; ntries < 10; ntries++) {
1265 if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1266 return (error);
1267 if (!(tmp & RT2860_RF_REG_CTRL))
1268 break;
1269 }
1270 if (ntries == 10)
1271 return (ETIMEDOUT);
1272
1273 /* RF registers are 24-bit on the RT2860 */
1274 tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1275 (val & 0x3fffff) << 2 | (reg & 3);
1276 return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1277}
1278
1279static int
1280run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1281{
1282 uint32_t tmp;
1283 int error, ntries;
1284
1285 for (ntries = 0; ntries < 100; ntries++) {
1286 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1287 return (error);
1288 if (!(tmp & RT3070_RF_KICK))
1289 break;
1290 }
1291 if (ntries == 100)
1292 return (ETIMEDOUT);
1293
1294 tmp = RT3070_RF_KICK | reg << 8;
1295 if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1296 return (error);
1297
1298 for (ntries = 0; ntries < 100; ntries++) {
1299 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1300 return (error);
1301 if (!(tmp & RT3070_RF_KICK))
1302 break;
1303 }
1304 if (ntries == 100)
1305 return (ETIMEDOUT);
1306
1307 *val = tmp & 0xff;
1308 return (0);
1309}
1310
1311static int
1312run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1313{
1314 uint32_t tmp;
1315 int error, ntries;
1316
1317 for (ntries = 0; ntries < 10; ntries++) {
1318 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1319 return (error);
1320 if (!(tmp & RT3070_RF_KICK))
1321 break;
1322 }
1323 if (ntries == 10)
1324 return (ETIMEDOUT);
1325
1326 tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1327 return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1328}
1329
1330static int
1331run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1332{
1333 uint32_t tmp;
1334 int ntries, error;
1335
1336 for (ntries = 0; ntries < 10; ntries++) {
1337 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1338 return (error);
1339 if (!(tmp & RT2860_BBP_CSR_KICK))
1340 break;
1341 }
1342 if (ntries == 10)
1343 return (ETIMEDOUT);
1344
1345 tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1346 if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1347 return (error);
1348
1349 for (ntries = 0; ntries < 10; ntries++) {
1350 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1351 return (error);
1352 if (!(tmp & RT2860_BBP_CSR_KICK))
1353 break;
1354 }
1355 if (ntries == 10)
1356 return (ETIMEDOUT);
1357
1358 *val = tmp & 0xff;
1359 return (0);
1360}
1361
1362static int
1363run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1364{
1365 uint32_t tmp;
1366 int ntries, error;
1367
1368 for (ntries = 0; ntries < 10; ntries++) {
1369 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1370 return (error);
1371 if (!(tmp & RT2860_BBP_CSR_KICK))
1372 break;
1373 }
1374 if (ntries == 10)
1375 return (ETIMEDOUT);
1376
1377 tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1378 return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1379}
1380
1381/*
1382 * Send a command to the 8051 microcontroller unit.
1383 */
1384static int
1385run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1386{
1387 uint32_t tmp;
1388 int error, ntries;
1389
1390 for (ntries = 0; ntries < 100; ntries++) {
1391 if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1392 return error;
1393 if (!(tmp & RT2860_H2M_BUSY))
1394 break;
1395 }
1396 if (ntries == 100)
1397 return ETIMEDOUT;
1398
1399 tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1400 if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1401 error = run_write(sc, RT2860_HOST_CMD, cmd);
1402 return (error);
1403}
1404
1405/*
1406 * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1407 * Used to adjust per-rate Tx power registers.
1408 */
1409static __inline uint32_t
1410b4inc(uint32_t b32, int8_t delta)
1411{
1412 int8_t i, b4;
1413
1414 for (i = 0; i < 8; i++) {
1415 b4 = b32 & 0xf;
1416 b4 += delta;
1417 if (b4 < 0)
1418 b4 = 0;
1419 else if (b4 > 0xf)
1420 b4 = 0xf;
1421 b32 = b32 >> 4 | b4 << 28;
1422 }
1423 return (b32);
1424}
1425
1426static const char *
1427run_get_rf(int rev)
1428{
1429 switch (rev) {
1430 case RT2860_RF_2820: return "RT2820";
1431 case RT2860_RF_2850: return "RT2850";
1432 case RT2860_RF_2720: return "RT2720";
1433 case RT2860_RF_2750: return "RT2750";
1434 case RT3070_RF_3020: return "RT3020";
1435 case RT3070_RF_2020: return "RT2020";
1436 case RT3070_RF_3021: return "RT3021";
1437 case RT3070_RF_3022: return "RT3022";
1438 case RT3070_RF_3052: return "RT3052";
1439 }
1440 return ("unknown");
1441}
1442
1443int
1444run_read_eeprom(struct run_softc *sc)
1445{
1446 int8_t delta_2ghz, delta_5ghz;
1447 uint32_t tmp;
1448 uint16_t val;
1449 int ridx, ant, i;
1450
1451 /* check whether the ROM is eFUSE ROM or EEPROM */
1452 sc->sc_srom_read = run_eeprom_read_2;
1453 if (sc->mac_ver >= 0x3070) {
1454 run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1455 DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1456 if (tmp & RT3070_SEL_EFUSE)
1457 sc->sc_srom_read = run_efuse_read_2;
1458 }
1459
1460 /* read ROM version */
1461 run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1462 DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1463
1464 /* read MAC address */
1465 run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1466 sc->sc_bssid[0] = val & 0xff;
1467 sc->sc_bssid[1] = val >> 8;
1468 run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1469 sc->sc_bssid[2] = val & 0xff;
1470 sc->sc_bssid[3] = val >> 8;
1471 run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1472 sc->sc_bssid[4] = val & 0xff;
1473 sc->sc_bssid[5] = val >> 8;
1474
1475 /* read vender BBP settings */
1476 for (i = 0; i < 10; i++) {
1477 run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1478 sc->bbp[i].val = val & 0xff;
1479 sc->bbp[i].reg = val >> 8;
1480 DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1481 }
1482 if (sc->mac_ver >= 0x3071) {
1483 /* read vendor RF settings */
1484 for (i = 0; i < 10; i++) {
1485 run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1486 sc->rf[i].val = val & 0xff;
1487 sc->rf[i].reg = val >> 8;
1488 DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1489 sc->rf[i].val);
1490 }
1491 }
1492
1493 /* read RF frequency offset from EEPROM */
1494 run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1495 sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1496 DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1497
1498 if (val >> 8 != 0xff) {
1499 /* read LEDs operating mode */
1500 sc->leds = val >> 8;
1501 run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1502 run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1503 run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1504 } else {
1505 /* broken EEPROM, use default settings */
1506 sc->leds = 0x01;
1507 sc->led[0] = 0x5555;
1508 sc->led[1] = 0x2221;
1509 sc->led[2] = 0x5627; /* differs from RT2860 */
1510 }
1511 DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1512 sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1513
1514 /* read RF information */
1515 run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1516 if (val == 0xffff) {
1517 DPRINTF("invalid EEPROM antenna info, using default\n");
1518 if (sc->mac_ver == 0x3572) {
1519 /* default to RF3052 2T2R */
1520 sc->rf_rev = RT3070_RF_3052;
1521 sc->ntxchains = 2;
1522 sc->nrxchains = 2;
1523 } else if (sc->mac_ver >= 0x3070) {
1524 /* default to RF3020 1T1R */
1525 sc->rf_rev = RT3070_RF_3020;
1526 sc->ntxchains = 1;
1527 sc->nrxchains = 1;
1528 } else {
1529 /* default to RF2820 1T2R */
1530 sc->rf_rev = RT2860_RF_2820;
1531 sc->ntxchains = 1;
1532 sc->nrxchains = 2;
1533 }
1534 } else {
1535 sc->rf_rev = (val >> 8) & 0xf;
1536 sc->ntxchains = (val >> 4) & 0xf;
1537 sc->nrxchains = val & 0xf;
1538 }
1539 DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1540 sc->rf_rev, sc->ntxchains, sc->nrxchains);
1541
1542 /* check if RF supports automatic Tx access gain control */
1543 run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1544 DPRINTF("EEPROM CFG 0x%04x\n", val);
1545 /* check if driver should patch the DAC issue */
1546 if ((val >> 8) != 0xff)
1547 sc->patch_dac = (val >> 15) & 1;
1548 if ((val & 0xff) != 0xff) {
1549 sc->ext_5ghz_lna = (val >> 3) & 1;
1550 sc->ext_2ghz_lna = (val >> 2) & 1;
1551 /* check if RF supports automatic Tx access gain control */
1552 sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1553 /* check if we have a hardware radio switch */
1554 sc->rfswitch = val & 1;
1555 }
1556
1557 /* read power settings for 2GHz channels */
1558 for (i = 0; i < 14; i += 2) {
1559 run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1560 sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1561 sc->txpow1[i + 1] = (int8_t)(val >> 8);
1562
1563 run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1564 sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1565 sc->txpow2[i + 1] = (int8_t)(val >> 8);
1566 }
1567 /* fix broken Tx power entries */
1568 for (i = 0; i < 14; i++) {
1569 if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1570 sc->txpow1[i] = 5;
1571 if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1572 sc->txpow2[i] = 5;
1573 DPRINTF("chan %d: power1=%d, power2=%d\n",
1574 rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1575 }
1576 /* read power settings for 5GHz channels */
1577 for (i = 0; i < 40; i += 2) {
1578 run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1579 sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1580 sc->txpow1[i + 15] = (int8_t)(val >> 8);
1581
1582 run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1583 sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1584 sc->txpow2[i + 15] = (int8_t)(val >> 8);
1585 }
1586 /* fix broken Tx power entries */
1587 for (i = 0; i < 40; i++) {
1588 if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1589 sc->txpow1[14 + i] = 5;
1590 if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1591 sc->txpow2[14 + i] = 5;
1592 DPRINTF("chan %d: power1=%d, power2=%d\n",
1593 rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1594 sc->txpow2[14 + i]);
1595 }
1596
1597 /* read Tx power compensation for each Tx rate */
1598 run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1599 delta_2ghz = delta_5ghz = 0;
1600 if ((val & 0xff) != 0xff && (val & 0x80)) {
1601 delta_2ghz = val & 0xf;
1602 if (!(val & 0x40)) /* negative number */
1603 delta_2ghz = -delta_2ghz;
1604 }
1605 val >>= 8;
1606 if ((val & 0xff) != 0xff && (val & 0x80)) {
1607 delta_5ghz = val & 0xf;
1608 if (!(val & 0x40)) /* negative number */
1609 delta_5ghz = -delta_5ghz;
1610 }
1611 DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1612 delta_2ghz, delta_5ghz);
1613
1614 for (ridx = 0; ridx < 5; ridx++) {
1615 uint32_t reg;
1616
1617 run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1618 reg = val;
1619 run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1620 reg |= (uint32_t)val << 16;
1621
1622 sc->txpow20mhz[ridx] = reg;
1623 sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1624 sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1625
1626 DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1627 "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1628 sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1629 }
1630
1631 /* read RSSI offsets and LNA gains from EEPROM */
1632 run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1633 sc->rssi_2ghz[0] = val & 0xff; /* Ant A */
1634 sc->rssi_2ghz[1] = val >> 8; /* Ant B */
1635 run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1636 if (sc->mac_ver >= 0x3070) {
1637 /*
1638 * On RT3070 chips (limited to 2 Rx chains), this ROM
1639 * field contains the Tx mixer gain for the 2GHz band.
1640 */
1641 if ((val & 0xff) != 0xff)
1642 sc->txmixgain_2ghz = val & 0x7;
1643 DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1644 } else
1645 sc->rssi_2ghz[2] = val & 0xff; /* Ant C */
1646 sc->lna[2] = val >> 8; /* channel group 2 */
1647
1648 run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1649 sc->rssi_5ghz[0] = val & 0xff; /* Ant A */
1650 sc->rssi_5ghz[1] = val >> 8; /* Ant B */
1651 run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1652 if (sc->mac_ver == 0x3572) {
1653 /*
1654 * On RT3572 chips (limited to 2 Rx chains), this ROM
1655 * field contains the Tx mixer gain for the 5GHz band.
1656 */
1657 if ((val & 0xff) != 0xff)
1658 sc->txmixgain_5ghz = val & 0x7;
1659 DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1660 } else
1661 sc->rssi_5ghz[2] = val & 0xff; /* Ant C */
1662 sc->lna[3] = val >> 8; /* channel group 3 */
1663
1664 run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1665 sc->lna[0] = val & 0xff; /* channel group 0 */
1666 sc->lna[1] = val >> 8; /* channel group 1 */
1667
1668 /* fix broken 5GHz LNA entries */
1669 if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1670 DPRINTF("invalid LNA for channel group %d\n", 2);
1671 sc->lna[2] = sc->lna[1];
1672 }
1673 if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1674 DPRINTF("invalid LNA for channel group %d\n", 3);
1675 sc->lna[3] = sc->lna[1];
1676 }
1677
1678 /* fix broken RSSI offset entries */
1679 for (ant = 0; ant < 3; ant++) {
1680 if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1681 DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1682 ant + 1, sc->rssi_2ghz[ant]);
1683 sc->rssi_2ghz[ant] = 0;
1684 }
1685 if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1686 DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1687 ant + 1, sc->rssi_5ghz[ant]);
1688 sc->rssi_5ghz[ant] = 0;
1689 }
1690 }
1691 return (0);
1692}
1693
1694static struct ieee80211_node *
1695run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1696{
f6807fa3 1697 return malloc(sizeof (struct run_node), M_DEVBUF, M_WAITOK | M_ZERO);
12bd3c8b
SW
1698}
1699
1700static int
1701run_media_change(struct ifnet *ifp)
1702{
1703 struct ieee80211vap *vap = ifp->if_softc;
1704 struct ieee80211com *ic = vap->iv_ic;
1705 const struct ieee80211_txparam *tp;
1706 struct run_softc *sc = ic->ic_ifp->if_softc;
1707 uint8_t rate, ridx;
1708 int error;
1709
1710 RUN_LOCK(sc);
1711
1712 error = ieee80211_media_change(ifp);
1713 if (error != ENETRESET) {
1714 RUN_UNLOCK(sc);
1715 return (error);
1716 }
1717
1718 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1719 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1720 struct ieee80211_node *ni;
1721 struct run_node *rn;
1722
1723 rate = ic->ic_sup_rates[ic->ic_curmode].
1724 rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1725 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1726 if (rt2860_rates[ridx].rate == rate)
1727 break;
1728 ni = ieee80211_ref_node(vap->iv_bss);
1729 rn = (struct run_node *)ni;
1730 rn->fix_ridx = ridx;
1731 DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1732 ieee80211_free_node(ni);
1733 }
1734
1735#if 0
1736 if ((ifp->if_flags & IFF_UP) &&
1737 (ifp->if_drv_flags & IFF_DRV_RUNNING)){
1738 run_init_locked(sc);
1739 }
1740#endif
1741
1742 RUN_UNLOCK(sc);
1743
1744 return (0);
1745}
1746
1747static int
1748run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1749{
1750 const struct ieee80211_txparam *tp;
1751 struct ieee80211com *ic = vap->iv_ic;
1752 struct run_softc *sc = ic->ic_ifp->if_softc;
1753 struct run_vap *rvp = RUN_VAP(vap);
1754 enum ieee80211_state ostate;
1755 uint32_t sta[3];
1756 uint32_t tmp;
1757 uint8_t ratectl;
1758 uint8_t restart_ratectl = 0;
1759 uint8_t bid = 1 << rvp->rvp_id;
1760
1761 ostate = vap->iv_state;
1762 DPRINTF("%s -> %s\n",
1763 ieee80211_state_name[ostate],
1764 ieee80211_state_name[nstate]);
1765
1766 IEEE80211_UNLOCK(ic);
1767 RUN_LOCK(sc);
1768
1769 ratectl = sc->ratectl_run; /* remember current state */
1770 sc->ratectl_run = RUN_RATECTL_OFF;
1771 usb_callout_stop(&sc->ratectl_ch);
1772
1773 if (ostate == IEEE80211_S_RUN) {
1774 /* turn link LED off */
1775 run_set_leds(sc, RT2860_LED_RADIO);
1776 }
1777
1778 switch (nstate) {
1779 case IEEE80211_S_INIT:
1780 restart_ratectl = 1;
1781
1782 if (ostate != IEEE80211_S_RUN)
1783 break;
1784
1785 ratectl &= ~bid;
1786 sc->runbmap &= ~bid;
1787
1788 /* abort TSF synchronization if there is no vap running */
1789 if (--sc->running == 0) {
1790 run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1791 run_write(sc, RT2860_BCN_TIME_CFG,
1792 tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1793 RT2860_TBTT_TIMER_EN));
1794 }
1795 break;
1796
1797 case IEEE80211_S_RUN:
1798 if (!(sc->runbmap & bid)) {
1799 if(sc->running++)
1800 restart_ratectl = 1;
1801 sc->runbmap |= bid;
1802 }
1803
1804 m_freem(rvp->beacon_mbuf);
1805 rvp->beacon_mbuf = NULL;
1806
1807 switch (vap->iv_opmode) {
1808 case IEEE80211_M_HOSTAP:
1809 case IEEE80211_M_MBSS:
1810 sc->ap_running |= bid;
1811 ic->ic_opmode = vap->iv_opmode;
1812 run_update_beacon_cb(vap);
1813 break;
1814 case IEEE80211_M_IBSS:
1815 sc->adhoc_running |= bid;
1816 if (!sc->ap_running)
1817 ic->ic_opmode = vap->iv_opmode;
1818 run_update_beacon_cb(vap);
1819 break;
1820 case IEEE80211_M_STA:
1821 sc->sta_running |= bid;
1822 if (!sc->ap_running && !sc->adhoc_running)
1823 ic->ic_opmode = vap->iv_opmode;
1824
1825 /* read statistic counters (clear on read) */
1826 run_read_region_1(sc, RT2860_TX_STA_CNT0,
1827 (uint8_t *)sta, sizeof sta);
1828
1829 break;
1830 default:
1831 ic->ic_opmode = vap->iv_opmode;
1832 break;
1833 }
1834
1835 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1836 struct ieee80211_node *ni;
1837
1838 run_updateslot(ic->ic_ifp);
1839 run_enable_mrr(sc);
1840 run_set_txpreamble(sc);
1841 run_set_basicrates(sc);
1842 ni = ieee80211_ref_node(vap->iv_bss);
1843 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1844 run_set_bssid(sc, ni->ni_bssid);
1845 ieee80211_free_node(ni);
1846 run_enable_tsf_sync(sc);
1847
1848 /* enable automatic rate adaptation */
1849 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1850 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1851 ratectl |= bid;
1852 }
1853
1854 /* turn link LED on */
1855 run_set_leds(sc, RT2860_LED_RADIO |
1856 (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1857 RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1858
1859 break;
1860 default:
1861 DPRINTFN(6, "undefined case\n");
1862 break;
1863 }
1864
1865 /* restart amrr for running VAPs */
1866 if ((sc->ratectl_run = ratectl) && restart_ratectl)
1867 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1868
1869 RUN_UNLOCK(sc);
1870 IEEE80211_LOCK(ic);
1871
1872 return(rvp->newstate(vap, nstate, arg));
1873}
1874
1875/* ARGSUSED */
1876static void
1877run_wme_update_cb(void *arg)
1878{
1879 struct ieee80211com *ic = arg;
1880 struct run_softc *sc = ic->ic_ifp->if_softc;
1881 struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1882 int aci, error = 0;
1883
1884 RUN_LOCK_ASSERT(sc, MA_OWNED);
1885
1886 /* update MAC TX configuration registers */
1887 for (aci = 0; aci < WME_NUM_AC; aci++) {
1888 error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1889 wmesp->wme_params[aci].wmep_logcwmax << 16 |
1890 wmesp->wme_params[aci].wmep_logcwmin << 12 |
1891 wmesp->wme_params[aci].wmep_aifsn << 8 |
1892 wmesp->wme_params[aci].wmep_txopLimit);
1893 if (error) goto err;
1894 }
1895
1896 /* update SCH/DMA registers too */
1897 error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1898 wmesp->wme_params[WME_AC_VO].wmep_aifsn << 12 |
1899 wmesp->wme_params[WME_AC_VI].wmep_aifsn << 8 |
1900 wmesp->wme_params[WME_AC_BK].wmep_aifsn << 4 |
1901 wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1902 if (error) goto err;
1903 error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1904 wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1905 wmesp->wme_params[WME_AC_VI].wmep_logcwmin << 8 |
1906 wmesp->wme_params[WME_AC_BK].wmep_logcwmin << 4 |
1907 wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1908 if (error) goto err;
1909 error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1910 wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1911 wmesp->wme_params[WME_AC_VI].wmep_logcwmax << 8 |
1912 wmesp->wme_params[WME_AC_BK].wmep_logcwmax << 4 |
1913 wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1914 if (error) goto err;
1915 error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1916 wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1917 wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1918 if (error) goto err;
1919 error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1920 wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1921 wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1922
1923err:
1924 if (error)
1925 DPRINTF("WME update failed\n");
1926
1927 return;
1928}
1929
1930static int
1931run_wme_update(struct ieee80211com *ic)
1932{
1933 struct run_softc *sc = ic->ic_ifp->if_softc;
1934
1935 /* sometime called wothout lock */
1936 if (mtx_owned(&ic->ic_comlock.mtx)) {
1937 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1938 DPRINTF("cmdq_store=%d\n", i);
1939 sc->cmdq[i].func = run_wme_update_cb;
1940 sc->cmdq[i].arg0 = ic;
1941 ieee80211_runtask(ic, &sc->cmdq_task);
1942 return (0);
1943 }
1944
1945 RUN_LOCK(sc);
1946 run_wme_update_cb(ic);
1947 RUN_UNLOCK(sc);
1948
1949 /* return whatever, upper layer desn't care anyway */
1950 return (0);
1951}
1952
1953static void
1954run_key_update_begin(struct ieee80211vap *vap)
1955{
1956 /*
1957 * To avoid out-of-order events, both run_key_set() and
1958 * _delete() are deferred and handled by run_cmdq_cb().
1959 * So, there is nothing we need to do here.
1960 */
1961}
1962
1963static void
1964run_key_update_end(struct ieee80211vap *vap)
1965{
1966 /* null */
1967}
1968
1969static void
1970run_key_set_cb(void *arg)
1971{
1972 struct run_cmdq *cmdq = arg;
1973 struct ieee80211vap *vap = cmdq->arg1;
1974 struct ieee80211_key *k = cmdq->k;
1975 struct ieee80211com *ic = vap->iv_ic;
1976 struct run_softc *sc = ic->ic_ifp->if_softc;
1977 struct ieee80211_node *ni;
1978 uint32_t attr;
1979 uint16_t base, associd;
1980 uint8_t mode, wcid, iv[8];
1981
1982 RUN_LOCK_ASSERT(sc, MA_OWNED);
1983
1984 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1985 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1986 else
1987 ni = vap->iv_bss;
1988 associd = (ni != NULL) ? ni->ni_associd : 0;
1989
1990 /* map net80211 cipher to RT2860 security mode */
1991 switch (k->wk_cipher->ic_cipher) {
1992 case IEEE80211_CIPHER_WEP:
1993 if(k->wk_keylen < 8)
1994 mode = RT2860_MODE_WEP40;
1995 else
1996 mode = RT2860_MODE_WEP104;
1997 break;
1998 case IEEE80211_CIPHER_TKIP:
1999 mode = RT2860_MODE_TKIP;
2000 break;
2001 case IEEE80211_CIPHER_AES_CCM:
2002 mode = RT2860_MODE_AES_CCMP;
2003 break;
2004 default:
2005 DPRINTF("undefined case\n");
2006 return;
2007 }
2008
2009 DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2010 associd, k->wk_keyix, mode,
2011 (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2012 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2013 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2014
2015 if (k->wk_flags & IEEE80211_KEY_GROUP) {
2016 wcid = 0; /* NB: update WCID0 for group keys */
2017 base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2018 } else {
2019 wcid = RUN_AID2WCID(associd);
2020 base = RT2860_PKEY(wcid);
2021 }
2022
2023 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2024 if(run_write_region_1(sc, base, k->wk_key, 16))
2025 return;
2026 if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8)) /* wk_txmic */
2027 return;
2028 if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8)) /* wk_rxmic */
2029 return;
2030 } else {
2031 /* roundup len to 16-bit: XXX fix write_region_1() instead */
2032 if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2033 return;
2034 }
2035
2036 if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2037 (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2038 /* set initial packet number in IV+EIV */
2039 if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2040 memset(iv, 0, sizeof iv);
2041 iv[3] = vap->iv_def_txkey << 6;
2042 } else {
2043 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2044 iv[0] = k->wk_keytsc >> 8;
2045 iv[1] = (iv[0] | 0x20) & 0x7f;
2046 iv[2] = k->wk_keytsc;
2047 } else /* CCMP */ {
2048 iv[0] = k->wk_keytsc;
2049 iv[1] = k->wk_keytsc >> 8;
2050 iv[2] = 0;
2051 }
2052 iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2053 iv[4] = k->wk_keytsc >> 16;
2054 iv[5] = k->wk_keytsc >> 24;
2055 iv[6] = k->wk_keytsc >> 32;
2056 iv[7] = k->wk_keytsc >> 40;
2057 }
2058 if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2059 return;
2060 }
2061
2062 if (k->wk_flags & IEEE80211_KEY_GROUP) {
2063 /* install group key */
2064 if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2065 return;
2066 attr &= ~(0xf << (k->wk_keyix * 4));
2067 attr |= mode << (k->wk_keyix * 4);
2068 if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2069 return;
2070 } else {
2071 /* install pairwise key */
2072 if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2073 return;
2074 attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2075 if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2076 return;
2077 }
2078
2079 /* TODO create a pass-thru key entry? */
2080
2081 /* need wcid to delete the right key later */
2082 k->wk_pad = wcid;
2083}
2084
2085/*
2086 * Don't have to be deferred, but in order to keep order of
2087 * execution, i.e. with run_key_delete(), defer this and let
2088 * run_cmdq_cb() maintain the order.
2089 *
2090 * return 0 on error
2091 */
2092static int
2093run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2094 const uint8_t mac[IEEE80211_ADDR_LEN])
2095{
2096 struct ieee80211com *ic = vap->iv_ic;
2097 struct run_softc *sc = ic->ic_ifp->if_softc;
2098 uint32_t i;
2099
2100 i = RUN_CMDQ_GET(&sc->cmdq_store);
2101 DPRINTF("cmdq_store=%d\n", i);
2102 sc->cmdq[i].func = run_key_set_cb;
2103 sc->cmdq[i].arg0 = NULL;
2104 sc->cmdq[i].arg1 = vap;
2105 sc->cmdq[i].k = k;
2106 IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2107 ieee80211_runtask(ic, &sc->cmdq_task);
2108
2109 /*
2110 * To make sure key will be set when hostapd
2111 * calls iv_key_set() before if_init().
2112 */
2113 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2114 RUN_LOCK(sc);
2115 sc->cmdq_key_set = RUN_CMDQ_GO;
2116 RUN_UNLOCK(sc);
2117 }
2118
2119 return (1);
2120}
2121
2122/*
2123 * If wlan is destroyed without being brought down i.e. without
2124 * wlan down or wpa_cli terminate, this function is called after
2125 * vap is gone. Don't refer it.
2126 */
2127static void
2128run_key_delete_cb(void *arg)
2129{
2130 struct run_cmdq *cmdq = arg;
2131 struct run_softc *sc = cmdq->arg1;
2132 struct ieee80211_key *k = &cmdq->key;
2133 uint32_t attr;
2134 uint8_t wcid;
2135
2136 RUN_LOCK_ASSERT(sc, MA_OWNED);
2137
2138 if (k->wk_flags & IEEE80211_KEY_GROUP) {
2139 /* remove group key */
2140 DPRINTF("removing group key\n");
2141 run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2142 attr &= ~(0xf << (k->wk_keyix * 4));
2143 run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2144 } else {
2145 /* remove pairwise key */
2146 DPRINTF("removing key for wcid %x\n", k->wk_pad);
2147 /* matching wcid was written to wk_pad in run_key_set() */
2148 wcid = k->wk_pad;
2149 run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2150 attr &= ~0xf;
2151 run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2152 run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2153 }
2154
2155 k->wk_pad = 0;
2156}
2157
2158/*
2159 * return 0 on error
2160 */
2161static int
2162run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2163{
2164 struct ieee80211com *ic = vap->iv_ic;
2165 struct run_softc *sc = ic->ic_ifp->if_softc;
2166 struct ieee80211_key *k0;
2167 uint32_t i;
2168
2169 /*
2170 * When called back, key might be gone. So, make a copy
2171 * of some values need to delete keys before deferring.
2172 * But, because of LOR with node lock, cannot use lock here.
2173 * So, use atomic instead.
2174 */
2175 i = RUN_CMDQ_GET(&sc->cmdq_store);
2176 DPRINTF("cmdq_store=%d\n", i);
2177 sc->cmdq[i].func = run_key_delete_cb;
2178 sc->cmdq[i].arg0 = NULL;
2179 sc->cmdq[i].arg1 = sc;
2180 k0 = &sc->cmdq[i].key;
2181 k0->wk_flags = k->wk_flags;
2182 k0->wk_keyix = k->wk_keyix;
2183 /* matching wcid was written to wk_pad in run_key_set() */
2184 k0->wk_pad = k->wk_pad;
2185 ieee80211_runtask(ic, &sc->cmdq_task);
2186 return (1); /* return fake success */
2187
2188}
2189
2190static void
2191run_ratectl_to(void *arg)
2192{
2193 struct run_softc *sc = arg;
2194
2195 /* do it in a process context, so it can go sleep */
2196 ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2197 /* next timeout will be rescheduled in the callback task */
2198}
2199
2200/* ARGSUSED */
2201static void
2202run_ratectl_cb(void *arg, int pending)
2203{
2204 struct run_softc *sc = arg;
2205 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2206 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2207
2208 if (vap == NULL)
2209 return;
2210
2211 if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2212 run_iter_func(sc, vap->iv_bss);
2213 else {
2214 /*
2215 * run_reset_livelock() doesn't do anything with AMRR,
2216 * but Ralink wants us to call it every 1 sec. So, we
2217 * piggyback here rather than creating another callout.
2218 * Livelock may occur only in HOSTAP or IBSS mode
2219 * (when h/w is sending beacons).
2220 */
2221 RUN_LOCK(sc);
2222 run_reset_livelock(sc);
2223 /* just in case, there are some stats to drain */
2224 run_drain_fifo(sc);
2225 RUN_UNLOCK(sc);
2226 ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2227 }
2228
2229 if(sc->ratectl_run != RUN_RATECTL_OFF)
2230 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2231}
2232
2233static void
2234run_drain_fifo(void *arg)
2235{
2236 struct run_softc *sc = arg;
2237 struct ifnet *ifp = sc->sc_ifp;
2238 uint32_t stat;
2239 uint16_t (*wstat)[3];
2240 uint8_t wcid, mcs, pid;
2241 int8_t retry;
2242
2243 RUN_LOCK_ASSERT(sc, MA_OWNED);
2244
2245 for (;;) {
2246 /* drain Tx status FIFO (maxsize = 16) */
2247 run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2248 DPRINTFN(4, "tx stat 0x%08x\n", stat);
2249 if (!(stat & RT2860_TXQ_VLD))
2250 break;
2251
2252 wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2253
2254 /* if no ACK was requested, no feedback is available */
2255 if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2256 wcid == 0)
2257 continue;
2258
2259 /*
2260 * Even though each stat is Tx-complete-status like format,
2261 * the device can poll stats. Because there is no guarantee
2262 * that the referring node is still around when read the stats.
2263 * So that, if we use ieee80211_ratectl_tx_update(), we will
2264 * have hard time not to refer already freed node.
2265 *
2266 * To eliminate such page faults, we poll stats in softc.
2267 * Then, update the rates later with ieee80211_ratectl_tx_update().
2268 */
2269 wstat = &(sc->wcid_stats[wcid]);
2270 (*wstat)[RUN_TXCNT]++;
2271 if (stat & RT2860_TXQ_OK)
2272 (*wstat)[RUN_SUCCESS]++;
2273 else
2274 ifp->if_oerrors++;
2275 /*
2276 * Check if there were retries, ie if the Tx success rate is
2277 * different from the requested rate. Note that it works only
2278 * because we do not allow rate fallback from OFDM to CCK.
2279 */
2280 mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2281 pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2282 if ((retry = pid -1 - mcs) > 0) {
2283 (*wstat)[RUN_TXCNT] += retry;
2284 (*wstat)[RUN_RETRY] += retry;
2285 }
2286 }
2287 DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2288
2289 sc->fifo_cnt = 0;
2290}
2291
2292static void
2293run_iter_func(void *arg, struct ieee80211_node *ni)
2294{
2295 struct run_softc *sc = arg;
2296 struct ieee80211vap *vap = ni->ni_vap;
2297 struct ieee80211com *ic = ni->ni_ic;
2298 struct ifnet *ifp = ic->ic_ifp;
2299 struct run_node *rn = (void *)ni;
2300 union run_stats sta[2];
2301 uint16_t (*wstat)[3];
2302 int txcnt, success, retrycnt, error;
2303
2304 RUN_LOCK(sc);
2305
2306 if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2307 vap->iv_opmode == IEEE80211_M_STA)) {
2308 /* read statistic counters (clear on read) and update AMRR state */
2309 error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2310 sizeof sta);
2311 if (error != 0)
2312 goto fail;
2313
2314 /* count failed TX as errors */
2315 ifp->if_oerrors += le16toh(sta[0].error.fail);
2316
2317 retrycnt = le16toh(sta[1].tx.retry);
2318 success = le16toh(sta[1].tx.success);
2319 txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2320
2321 DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2322 retrycnt, success, le16toh(sta[0].error.fail));
2323 } else {
2324 wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2325
2326 if (wstat == &(sc->wcid_stats[0]) ||
2327 wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2328 goto fail;
2329
2330 txcnt = (*wstat)[RUN_TXCNT];
2331 success = (*wstat)[RUN_SUCCESS];
2332 retrycnt = (*wstat)[RUN_RETRY];
2333 DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2334 retrycnt, txcnt, success);
2335
2336 memset(wstat, 0, sizeof(*wstat));
2337 }
2338
2339 ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2340 rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2341
2342fail:
2343 RUN_UNLOCK(sc);
2344
2345 DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2346}
2347
2348static void
2349run_newassoc_cb(void *arg)
2350{
2351 struct run_cmdq *cmdq = arg;
2352 struct ieee80211_node *ni = cmdq->arg1;
2353 struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2354 uint8_t wcid = cmdq->wcid;
2355
2356 RUN_LOCK_ASSERT(sc, MA_OWNED);
2357
2358 run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2359 ni->ni_macaddr, IEEE80211_ADDR_LEN);
2360
2361 memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2362}
2363
2364static void
2365run_newassoc(struct ieee80211_node *ni, int isnew)
2366{
2367 struct run_node *rn = (void *)ni;
2368 struct ieee80211_rateset *rs = &ni->ni_rates;
2369 struct ieee80211vap *vap = ni->ni_vap;
2370 struct ieee80211com *ic = vap->iv_ic;
2371 struct run_softc *sc = ic->ic_ifp->if_softc;
2372 uint8_t rate;
2373 uint8_t ridx;
2374 uint8_t wcid = RUN_AID2WCID(ni->ni_associd);
2375 int i, j;
2376
2377 if (wcid > RT2870_WCID_MAX) {
2378 device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2379 return;
2380 }
2381
2382 /* only interested in true associations */
2383 if (isnew && ni->ni_associd != 0) {
2384
2385 /*
2386 * This function could is called though timeout function.
2387 * Need to defer.
2388 */
2389 uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2390 DPRINTF("cmdq_store=%d\n", cnt);
2391 sc->cmdq[cnt].func = run_newassoc_cb;
2392 sc->cmdq[cnt].arg0 = NULL;
2393 sc->cmdq[cnt].arg1 = ni;
2394 sc->cmdq[cnt].wcid = wcid;
2395 ieee80211_runtask(ic, &sc->cmdq_task);
2396 }
2397
2398 DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2399 isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
2400
2401 for (i = 0; i < rs->rs_nrates; i++) {
2402 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2403 /* convert 802.11 rate to hardware rate index */
2404 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2405 if (rt2860_rates[ridx].rate == rate)
2406 break;
2407 rn->ridx[i] = ridx;
2408 /* determine rate of control response frames */
2409 for (j = i; j >= 0; j--) {
2410 if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2411 rt2860_rates[rn->ridx[i]].phy ==
2412 rt2860_rates[rn->ridx[j]].phy)
2413 break;
2414 }
2415 if (j >= 0) {
2416 rn->ctl_ridx[i] = rn->ridx[j];
2417 } else {
2418 /* no basic rate found, use mandatory one */
2419 rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2420 }
2421 DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2422 rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2423 }
2424 rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2425 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2426 if (rt2860_rates[ridx].rate == rate)
2427 break;
2428 rn->mgt_ridx = ridx;
2429 DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2430
2431 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2432}
2433
2434/*
2435 * Return the Rx chain with the highest RSSI for a given frame.
2436 */
2437static __inline uint8_t
2438run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2439{
2440 uint8_t rxchain = 0;
2441
2442 if (sc->nrxchains > 1) {
2443 if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2444 rxchain = 1;
2445 if (sc->nrxchains > 2)
2446 if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2447 rxchain = 2;
2448 }
2449 return (rxchain);
2450}
2451
2452static void
2453run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2454{
2455 struct ifnet *ifp = sc->sc_ifp;
2456 struct ieee80211com *ic = ifp->if_l2com;
2457 struct ieee80211_frame *wh;
2458 struct ieee80211_node *ni;
2459 struct rt2870_rxd *rxd;
2460 struct rt2860_rxwi *rxwi;
2461 uint32_t flags;
2462 uint16_t len, phy;
2463 uint8_t ant, rssi;
2464 int8_t nf;
2465
2466 rxwi = mtod(m, struct rt2860_rxwi *);
2467 len = le16toh(rxwi->len) & 0xfff;
2468 if (__predict_false(len > dmalen)) {
2469 m_freem(m);
2470 ifp->if_ierrors++;
2471 DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2472 return;
2473 }
2474 /* Rx descriptor is located at the end */
2475 rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2476 flags = le32toh(rxd->flags);
2477
2478 if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2479 m_freem(m);
2480 ifp->if_ierrors++;
2481 DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2482 return;
2483 }
2484
2485 m->m_data += sizeof(struct rt2860_rxwi);
2486 m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2487
2488 wh = mtod(m, struct ieee80211_frame *);
2489
2490 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2491 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2492 m->m_flags |= M_WEP;
2493 }
2494
2495 if (flags & RT2860_RX_L2PAD) {
2496 DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2497 len += 2;
2498 }
2499
2500 ni = ieee80211_find_rxnode(ic,
2501 mtod(m, struct ieee80211_frame_min *));
2502
2503 if (__predict_false(flags & RT2860_RX_MICERR)) {
2504 /* report MIC failures to net80211 for TKIP */
2505 if (ni != NULL)
2506 ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2507 m_freem(m);
2508 ifp->if_ierrors++;
2509 DPRINTF("MIC error. Someone is lying.\n");
2510 return;
2511 }
2512
2513 ant = run_maxrssi_chain(sc, rxwi);
2514 rssi = rxwi->rssi[ant];
2515 nf = run_rssi2dbm(sc, rssi, ant);
2516
2517 m->m_pkthdr.rcvif = ifp;
2518 m->m_pkthdr.len = m->m_len = len;
2519
2520 if (ni != NULL) {
2521 (void)ieee80211_input(ni, m, rssi, nf);
2522 ieee80211_free_node(ni);
2523 } else {
2524 (void)ieee80211_input_all(ic, m, rssi, nf);
2525 }
2526
2527 if (__predict_false(ieee80211_radiotap_active(ic))) {
2528 struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2529
2530 tap->wr_flags = 0;
2531 tap->wr_chan_freq = htole16(ic->ic_bsschan->ic_freq);
2532 tap->wr_chan_flags = htole16(ic->ic_bsschan->ic_flags);
2533 tap->wr_antsignal = rssi;
2534 tap->wr_antenna = ant;
2535 tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2536 tap->wr_rate = 2; /* in case it can't be found below */
2537 phy = le16toh(rxwi->phy);
2538 switch (phy & RT2860_PHY_MODE) {
2539 case RT2860_PHY_CCK:
2540 switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2541 case 0: tap->wr_rate = 2; break;
2542 case 1: tap->wr_rate = 4; break;
2543 case 2: tap->wr_rate = 11; break;
2544 case 3: tap->wr_rate = 22; break;
2545 }
2546 if (phy & RT2860_PHY_SHPRE)
2547 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2548 break;
2549 case RT2860_PHY_OFDM:
2550 switch (phy & RT2860_PHY_MCS) {
2551 case 0: tap->wr_rate = 12; break;
2552 case 1: tap->wr_rate = 18; break;
2553 case 2: tap->wr_rate = 24; break;
2554 case 3: tap->wr_rate = 36; break;
2555 case 4: tap->wr_rate = 48; break;
2556 case 5: tap->wr_rate = 72; break;
2557 case 6: tap->wr_rate = 96; break;
2558 case 7: tap->wr_rate = 108; break;
2559 }
2560 break;
2561 }
2562 }
2563}
2564
2565static void
2566run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2567{
2568 struct run_softc *sc = usbd_xfer_softc(xfer);
2569 struct ifnet *ifp = sc->sc_ifp;
2570 struct mbuf *m = NULL;
2571 struct mbuf *m0;
2572 uint32_t dmalen;
2573 int xferlen;
2574
2575 usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2576
2577 switch (USB_GET_STATE(xfer)) {
2578 case USB_ST_TRANSFERRED:
2579
2580 DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2581
2582 if (xferlen < sizeof (uint32_t) +
2583 sizeof (struct rt2860_rxwi) + sizeof (struct rt2870_rxd)) {
2584 DPRINTF("xfer too short %d\n", xferlen);
2585 goto tr_setup;
2586 }
2587
2588 m = sc->rx_m;
2589 sc->rx_m = NULL;
2590
2591 /* FALLTHROUGH */
2592 case USB_ST_SETUP:
2593tr_setup:
2594 if (sc->rx_m == NULL) {
2595 sc->rx_m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
2596 MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2597 }
2598 if (sc->rx_m == NULL) {
2599 DPRINTF("could not allocate mbuf - idle with stall\n");
2600 ifp->if_ierrors++;
2601 usbd_xfer_set_stall(xfer);
2602 usbd_xfer_set_frames(xfer, 0);
2603 } else {
2604 /*
2605 * Directly loading a mbuf cluster into DMA to
2606 * save some data copying. This works because
2607 * there is only one cluster.
2608 */
2609 usbd_xfer_set_frame_data(xfer, 0,
2610 mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2611 usbd_xfer_set_frames(xfer, 1);
2612 }
2613 usbd_transfer_submit(xfer);
2614 break;
2615
2616 default: /* Error */
2617 if (error != USB_ERR_CANCELLED) {
2618 /* try to clear stall first */
2619 usbd_xfer_set_stall(xfer);
2620
2621 if (error == USB_ERR_TIMEOUT)
2622 device_printf(sc->sc_dev, "device timeout\n");
2623
2624 ifp->if_ierrors++;
2625
2626 goto tr_setup;
2627 }
2628 if (sc->rx_m != NULL) {
2629 m_freem(sc->rx_m);
2630 sc->rx_m = NULL;
2631 }
2632 break;
2633 }
2634
2635 if (m == NULL)
2636 return;
2637
2638 /* inputting all the frames must be last */
2639
2640 RUN_UNLOCK(sc);
2641
2642 m->m_pkthdr.len = m->m_len = xferlen;
2643
2644 /* HW can aggregate multiple 802.11 frames in a single USB xfer */
2645 for(;;) {
2646 dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2647
2648 if ((dmalen == 0) || ((dmalen & 3) != 0)) {
2649 DPRINTF("bad DMA length %u\n", dmalen);
2650 break;
2651 }
2652 if ((dmalen + 8) > xferlen) {
2653 DPRINTF("bad DMA length %u > %d\n",
2654 dmalen + 8, xferlen);
2655 break;
2656 }
2657
2658 /* If it is the last one or a single frame, we won't copy. */
2659 if ((xferlen -= dmalen + 8) <= 8) {
2660 /* trim 32-bit DMA-len header */
2661 m->m_data += 4;
2662 m->m_pkthdr.len = m->m_len -= 4;
2663 run_rx_frame(sc, m, dmalen);
2664 break;
2665 }
2666
2667 /* copy aggregated frames to another mbuf */
2668 m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2669 if (__predict_false(m0 == NULL)) {
2670 DPRINTF("could not allocate mbuf\n");
2671 ifp->if_ierrors++;
2672 break;
2673 }
2674 m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2675 dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2676 m0->m_pkthdr.len = m0->m_len =
2677 dmalen + sizeof(struct rt2870_rxd);
2678 run_rx_frame(sc, m0, dmalen);
2679
2680 /* update data ptr */
2681 m->m_data += dmalen + 8;
2682 m->m_pkthdr.len = m->m_len -= dmalen + 8;
2683 }
2684
2685 RUN_LOCK(sc);
2686}
2687
2688static void
2689run_tx_free(struct run_endpoint_queue *pq,
2690 struct run_tx_data *data, int txerr)
2691{
2692 if (data->m != NULL) {
2693 if (data->m->m_flags & M_TXCB)
2694 ieee80211_process_callback(data->ni, data->m,
2695 txerr ? ETIMEDOUT : 0);
2696 m_freem(data->m);
2697 data->m = NULL;
2698
2699 if (data->ni == NULL) {
2700 DPRINTF("no node\n");
2701 } else {
2702 ieee80211_free_node(data->ni);
2703 data->ni = NULL;
2704 }
2705 }
2706
2707 STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2708 pq->tx_nfree++;
2709}
2710
2711static void
2712run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2713{
2714 struct run_softc *sc = usbd_xfer_softc(xfer);
2715 struct ifnet *ifp = sc->sc_ifp;
2716 struct ieee80211com *ic = ifp->if_l2com;
2717 struct run_tx_data *data;
2718 struct ieee80211vap *vap = NULL;
2719 struct usb_page_cache *pc;
2720 struct run_endpoint_queue *pq = &sc->sc_epq[index];
2721 struct mbuf *m;
2722 usb_frlength_t size;
2723 int actlen;
2724 int sumlen;
2725
2726 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2727
2728 switch (USB_GET_STATE(xfer)) {
2729 case USB_ST_TRANSFERRED:
2730 DPRINTFN(11, "transfer complete: %d "
2731 "bytes @ index %d\n", actlen, index);
2732
2733 data = usbd_xfer_get_priv(xfer);
2734
2735 run_tx_free(pq, data, 0);
2736 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2737
2738 usbd_xfer_set_priv(xfer, NULL);
2739
2740 ifp->if_opackets++;
2741
2742 /* FALLTHROUGH */
2743 case USB_ST_SETUP:
2744tr_setup:
2745 data = STAILQ_FIRST(&pq->tx_qh);
2746 if (data == NULL)
2747 break;
2748
2749 STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2750
2751 m = data->m;
2752 if ((m->m_pkthdr.len +
2753 sizeof(data->desc) + 3 + 8) > RUN_MAX_TXSZ) {
2754 DPRINTF("data overflow, %u bytes\n",
2755 m->m_pkthdr.len);
2756
2757 ifp->if_oerrors++;
2758
2759 run_tx_free(pq, data, 1);
2760
2761 goto tr_setup;
2762 }
2763
2764 pc = usbd_xfer_get_frame(xfer, 0);
2765 size = sizeof(data->desc);
2766 usbd_copy_in(pc, 0, &data->desc, size);
2767 usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2768 size += m->m_pkthdr.len;
2769 /*
2770 * Align end on a 4-byte boundary, pad 8 bytes (CRC +
2771 * 4-byte padding), and be sure to zero those trailing
2772 * bytes:
2773 */
2774 usbd_frame_zero(pc, size, ((-size) & 3) + 8);
2775 size += ((-size) & 3) + 8;
2776
2777 vap = data->ni->ni_vap;
2778 if (ieee80211_radiotap_active_vap(vap)) {
2779 struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2780 struct rt2860_txwi *txwi =
2781 (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2782
2783 tap->wt_flags = 0;
2784 tap->wt_rate = rt2860_rates[data->ridx].rate;
2785 tap->wt_chan_freq = htole16(vap->iv_bss->ni_chan->ic_freq);
2786 tap->wt_chan_flags = htole16(vap->iv_bss->ni_chan->ic_flags);
2787 tap->wt_hwqueue = index;
2788 if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2789 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2790
2791 ieee80211_radiotap_tx(vap, m);
2792 }
2793
2794 DPRINTFN(11, "sending frame len=%u/%u @ index %d\n",
2795 m->m_pkthdr.len, size, index);
2796
2797 usbd_xfer_set_frame_len(xfer, 0, size);
2798 usbd_xfer_set_priv(xfer, data);
2799
2800 usbd_transfer_submit(xfer);
2801
2802 RUN_UNLOCK(sc);
2803 run_start(ifp);
2804 RUN_LOCK(sc);
2805
2806 break;
2807
2808 default:
2809 DPRINTF("USB transfer error, %s\n",
2810 usbd_errstr(error));
2811
2812 data = usbd_xfer_get_priv(xfer);
2813
2814 ifp->if_oerrors++;
2815
2816 if (data != NULL) {
2817 if(data->ni != NULL)
2818 vap = data->ni->ni_vap;
2819 run_tx_free(pq, data, error);
2820 usbd_xfer_set_priv(xfer, NULL);
2821 }
2822 if (vap == NULL)
2823 vap = TAILQ_FIRST(&ic->ic_vaps);
2824
2825 if (error != USB_ERR_CANCELLED) {
2826 if (error == USB_ERR_TIMEOUT) {
2827 device_printf(sc->sc_dev, "device timeout\n");
2828 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2829 DPRINTF("cmdq_store=%d\n", i);
2830 sc->cmdq[i].func = run_usb_timeout_cb;
2831 sc->cmdq[i].arg0 = vap;
2832 ieee80211_runtask(ic, &sc->cmdq_task);
2833 }
2834
2835 /*
2836 * Try to clear stall first, also if other
2837 * errors occur, hence clearing stall
2838 * introduces a 50 ms delay:
2839 */
2840 usbd_xfer_set_stall(xfer);
2841 goto tr_setup;
2842 }
2843 break;
2844 }
2845}
2846
2847static void
2848run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2849{
2850 run_bulk_tx_callbackN(xfer, error, 0);
2851}
2852
2853static void
2854run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2855{
2856 run_bulk_tx_callbackN(xfer, error, 1);
2857}
2858
2859static void
2860run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2861{
2862 run_bulk_tx_callbackN(xfer, error, 2);
2863}
2864
2865static void
2866run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2867{
2868 run_bulk_tx_callbackN(xfer, error, 3);
2869}
2870
2871static void
2872run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2873{
2874 run_bulk_tx_callbackN(xfer, error, 4);
2875}
2876
2877static void
2878run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2879{
2880 run_bulk_tx_callbackN(xfer, error, 5);
2881}
2882
2883static void
2884run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2885{
2886 struct mbuf *m = data->m;
2887 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2888 struct ieee80211vap *vap = data->ni->ni_vap;
2889 struct ieee80211_frame *wh;
2890 struct rt2870_txd *txd;
2891 struct rt2860_txwi *txwi;
2892 uint16_t xferlen;
2893 uint16_t mcs;
2894 uint8_t ridx = data->ridx;
2895 uint8_t pad;
2896
2897 /* get MCS code from rate index */
2898 mcs = rt2860_rates[ridx].mcs;
2899
2900 xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2901
2902 /* roundup to 32-bit alignment */
2903 xferlen = (xferlen + 3) & ~3;
2904
2905 txd = (struct rt2870_txd *)&data->desc;
2906 txd->len = htole16(xferlen);
2907
2908 wh = mtod(m, struct ieee80211_frame *);
2909
2910 /*
2911 * Ether both are true or both are false, the header
2912 * are nicely aligned to 32-bit. So, no L2 padding.
2913 */
2914 if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2915 pad = 0;
2916 else
2917 pad = 2;
2918
2919 /* setup TX Wireless Information */
2920 txwi = (struct rt2860_txwi *)(txd + 1);
2921 txwi->len = htole16(m->m_pkthdr.len - pad);
2922 if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2923 txwi->phy = htole16(RT2860_PHY_CCK);
2924 if (ridx != RT2860_RIDX_CCK1 &&
2925 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2926 mcs |= RT2860_PHY_SHPRE;
2927 } else
2928 txwi->phy = htole16(RT2860_PHY_OFDM);
2929 txwi->phy |= htole16(mcs);
2930
2931 /* check if RTS/CTS or CTS-to-self protection is required */
2932 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2933 (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2934 ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2935 rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2936 txwi->txop |= RT2860_TX_TXOP_HT;
2937 else
2938 txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2939
2940 if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2941 txwi->xflags |= RT2860_TX_NSEQ;
2942}
2943
2944/* This function must be called locked */
2945static int
2946run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2947{
2948 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2949 struct ieee80211vap *vap = ni->ni_vap;
2950 struct ieee80211_frame *wh;
2951 struct ieee80211_channel *chan;
2952 const struct ieee80211_txparam *tp;
2953 struct run_node *rn = (void *)ni;
2954 struct run_tx_data *data;
2955 struct rt2870_txd *txd;
2956 struct rt2860_txwi *txwi;
2957 uint16_t qos;
2958 uint16_t dur;
2959 uint16_t qid;
2960 uint8_t type;
2961 uint8_t tid;
2962 uint8_t ridx;
2963 uint8_t ctl_ridx;
2964 uint8_t qflags;
2965 uint8_t xflags = 0;
2966 int hasqos;
2967
2968 RUN_LOCK_ASSERT(sc, MA_OWNED);
2969
2970 wh = mtod(m, struct ieee80211_frame *);
2971
2972 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2973
2974 /*
2975 * There are 7 bulk endpoints: 1 for RX
2976 * and 6 for TX (4 EDCAs + HCCA + Prio).
2977 * Update 03-14-2009: some devices like the Planex GW-US300MiniS
2978 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2979 */
2980 if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2981 uint8_t *frm;
2982
2983 if(IEEE80211_HAS_ADDR4(wh))
2984 frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
2985 else
2986 frm =((struct ieee80211_qosframe *)wh)->i_qos;
2987
2988 qos = le16toh(*(const uint16_t *)frm);
2989 tid = qos & IEEE80211_QOS_TID;
2990 qid = TID_TO_WME_AC(tid);
2991 } else {
2992 qos = 0;
2993 tid = 0;
2994 qid = WME_AC_BE;
2995 }
2996 qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
2997
2998 DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
2999 qos, qid, tid, qflags);
3000
3001 chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
3002 tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
3003
3004 /* pickup a rate index */
3005 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3006 type != IEEE80211_FC0_TYPE_DATA) {
3007 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3008 RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3009 ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3010 } else {
3011 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3012 ridx = rn->fix_ridx;
3013 else
3014 ridx = rn->amrr_ridx;
3015 ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3016 }
3017
3018 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3019 (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3020 IEEE80211_QOS_ACKPOLICY_NOACK)) {
3021 xflags |= RT2860_TX_ACK;
3022 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3023 dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3024 else
3025 dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3026 *(uint16_t *)wh->i_dur = htole16(dur);
3027 }
3028
3029 /* reserve slots for mgmt packets, just in case */
3030 if (sc->sc_epq[qid].tx_nfree < 3) {
3031 DPRINTFN(10, "tx ring %d is full\n", qid);
3032 return (-1);
3033 }
3034
3035 data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3036 STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3037 sc->sc_epq[qid].tx_nfree--;
3038
3039 txd = (struct rt2870_txd *)&data->desc;
3040 txd->flags = qflags;
3041 txwi = (struct rt2860_txwi *)(txd + 1);
3042 txwi->xflags = xflags;
3043 txwi->wcid = IEEE80211_IS_MULTICAST(wh->i_addr1) ?
3044 0 : RUN_AID2WCID(ni->ni_associd);
3045 /* clear leftover garbage bits */
3046 txwi->flags = 0;
3047 txwi->txop = 0;
3048
3049 data->m = m;
3050 data->ni = ni;
3051 data->ridx = ridx;
3052
3053 run_set_tx_desc(sc, data);
3054
3055 /*
3056 * The chip keeps track of 2 kind of Tx stats,
3057 * * TX_STAT_FIFO, for per WCID stats, and
3058 * * TX_STA_CNT0 for all-TX-in-one stats.
3059 *
3060 * To use FIFO stats, we need to store MCS into the driver-private
3061 * PacketID field. So that, we can tell whose stats when we read them.
3062 * We add 1 to the MCS because setting the PacketID field to 0 means
3063 * that we don't want feedback in TX_STAT_FIFO.
3064 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3065 *
3066 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3067 */
3068 if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3069 vap->iv_opmode == IEEE80211_M_MBSS) {
3070 uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3071 txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3072
3073 /*
3074 * Unlike PCI based devices, we don't get any interrupt from
3075 * USB devices, so we simulate FIFO-is-full interrupt here.
3076 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3077 * quickly get fulled. To prevent overflow, increment a counter on
3078 * every FIFO stat request, so we know how many slots are left.
3079 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3080 * are used only in those modes.
3081 * We just drain stats. AMRR gets updated every 1 sec by
3082 * run_ratectl_cb() via callout.
3083 * Call it early. Otherwise overflow.
3084 */
3085 if (sc->fifo_cnt++ == 10) {
3086 /*
3087 * With multiple vaps or if_bridge, if_start() is called
3088 * with a non-sleepable lock, tcpinp. So, need to defer.
3089 */
3090 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3091 DPRINTFN(6, "cmdq_store=%d\n", i);
3092 sc->cmdq[i].func = run_drain_fifo;
3093 sc->cmdq[i].arg0 = sc;
3094 ieee80211_runtask(ic, &sc->cmdq_task);
3095 }
3096 }
3097
3098 STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3099
3100 usbd_transfer_start(sc->sc_xfer[qid]);
3101
3102 DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3103 (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3104 rt2860_rates[ridx].rate, qid);
3105
3106 return (0);
3107}
3108
3109static int
3110run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3111{
3112 struct ifnet *ifp = sc->sc_ifp;
3113 struct ieee80211com *ic = ifp->if_l2com;
3114 struct run_node *rn = (void *)ni;
3115 struct run_tx_data *data;
3116 struct ieee80211_frame *wh;
3117 struct rt2870_txd *txd;
3118 struct rt2860_txwi *txwi;
3119 uint16_t dur;
3120 uint8_t ridx = rn->mgt_ridx;
3121 uint8_t type;
3122 uint8_t xflags = 0;
3123 uint8_t wflags = 0;
3124
3125 RUN_LOCK_ASSERT(sc, MA_OWNED);
3126
3127 wh = mtod(m, struct ieee80211_frame *);
3128
3129 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3130
3131 /* tell hardware to add timestamp for probe responses */
3132 if ((wh->i_fc[0] &
3133 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3134 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3135 wflags |= RT2860_TX_TS;
3136 else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3137 xflags |= RT2860_TX_ACK;
3138
3139 dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3140 ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3141 *(uint16_t *)wh->i_dur = htole16(dur);
3142 }
3143
3144 if (sc->sc_epq[0].tx_nfree == 0) {
3145 /* let caller free mbuf */
3146 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3147 return (EIO);
3148 }
3149 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3150 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3151 sc->sc_epq[0].tx_nfree--;
3152
3153 txd = (struct rt2870_txd *)&data->desc;
3154 txd->flags = RT2860_TX_QSEL_EDCA;
3155 txwi = (struct rt2860_txwi *)(txd + 1);
3156 txwi->wcid = 0xff;
3157 txwi->flags = wflags;
3158 txwi->xflags = xflags;
3159 txwi->txop = 0; /* clear leftover garbage bits */
3160
3161 data->m = m;
3162 data->ni = ni;
3163 data->ridx = ridx;
3164
3165 run_set_tx_desc(sc, data);
3166
3167 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3168 (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3169 rt2860_rates[ridx].rate);
3170
3171 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3172
3173 usbd_transfer_start(sc->sc_xfer[0]);
3174
3175 return (0);
3176}
3177
3178static int
3179run_sendprot(struct run_softc *sc,
3180 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3181{
3182 struct ieee80211com *ic = ni->ni_ic;
3183 struct ieee80211_frame *wh;
3184 struct run_tx_data *data;
3185 struct rt2870_txd *txd;
3186 struct rt2860_txwi *txwi;
3187 struct mbuf *mprot;
3188 int ridx;
3189 int protrate;
3190 int ackrate;
3191 int pktlen;
3192 int isshort;
3193 uint16_t dur;
3194 uint8_t type;
3195 uint8_t wflags = 0;
3196 uint8_t xflags = 0;
3197
3198 RUN_LOCK_ASSERT(sc, MA_OWNED);
3199
3200 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3201 ("protection %d", prot));
3202
3203 wh = mtod(m, struct ieee80211_frame *);
3204 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3205 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3206
3207 protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3208 ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3209
3210 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3211 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3212 + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3213 wflags = RT2860_TX_FRAG;
3214
3215 /* check that there are free slots before allocating the mbuf */
3216 if (sc->sc_epq[0].tx_nfree == 0) {
3217 /* let caller free mbuf */
3218 sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3219 return (ENOBUFS);
3220 }
3221
3222 if (prot == IEEE80211_PROT_RTSCTS) {
3223 /* NB: CTS is the same size as an ACK */
3224 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3225 xflags |= RT2860_TX_ACK;
3226 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3227 } else {
3228 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3229 }
3230 if (mprot == NULL) {
3231 sc->sc_ifp->if_oerrors++;
3232 DPRINTF("could not allocate mbuf\n");
3233 return (ENOBUFS);
3234 }
3235
3236 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3237 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3238 sc->sc_epq[0].tx_nfree--;
3239
3240 txd = (struct rt2870_txd *)&data->desc;
3241 txd->flags = RT2860_TX_QSEL_EDCA;
3242 txwi = (struct rt2860_txwi *)(txd + 1);
3243 txwi->wcid = 0xff;
3244 txwi->flags = wflags;
3245 txwi->xflags = xflags;
3246 txwi->txop = 0; /* clear leftover garbage bits */
3247
3248 data->m = mprot;
3249 data->ni = ieee80211_ref_node(ni);
3250
3251 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3252 if (rt2860_rates[ridx].rate == protrate)
3253 break;
3254 data->ridx = ridx;
3255
3256 run_set_tx_desc(sc, data);
3257
3258 DPRINTFN(1, "sending prot len=%u rate=%u\n",
3259 m->m_pkthdr.len, rate);
3260
3261 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3262
3263 usbd_transfer_start(sc->sc_xfer[0]);
3264
3265 return (0);
3266}
3267
3268static int
3269run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3270 const struct ieee80211_bpf_params *params)
3271{
3272 struct ieee80211com *ic = ni->ni_ic;
3273 struct ieee80211_frame *wh;
3274 struct run_tx_data *data;
3275 struct rt2870_txd *txd;
3276 struct rt2860_txwi *txwi;
3277 uint8_t type;
3278 uint8_t ridx;
3279 uint8_t rate;
3280 uint8_t opflags = 0;
3281 uint8_t xflags = 0;
3282 int error;
3283
3284 RUN_LOCK_ASSERT(sc, MA_OWNED);
3285
3286 KASSERT(params != NULL, ("no raw xmit params"));
3287
3288 wh = mtod(m, struct ieee80211_frame *);
3289 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3290
3291 rate = params->ibp_rate0;
3292 if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3293 /* let caller free mbuf */
3294 return (EINVAL);
3295 }
3296
3297 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3298 xflags |= RT2860_TX_ACK;
3299 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3300 error = run_sendprot(sc, m, ni,
3301 params->ibp_flags & IEEE80211_BPF_RTS ?
3302 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3303 rate);
3304 if (error) {
3305 /* let caller free mbuf */
3306 return error;
3307 }
3308 opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3309 }
3310
3311 if (sc->sc_epq[0].tx_nfree == 0) {
3312 /* let caller free mbuf */
3313 sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3314 DPRINTF("sending raw frame, but tx ring is full\n");
3315 return (EIO);
3316 }
3317 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3318 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3319 sc->sc_epq[0].tx_nfree--;
3320
3321 txd = (struct rt2870_txd *)&data->desc;
3322 txd->flags = RT2860_TX_QSEL_EDCA;
3323 txwi = (struct rt2860_txwi *)(txd + 1);
3324 txwi->wcid = 0xff;
3325 txwi->xflags = xflags;
3326 txwi->txop = opflags;
3327 txwi->flags = 0; /* clear leftover garbage bits */
3328
3329 data->m = m;
3330 data->ni = ni;
3331 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3332 if (rt2860_rates[ridx].rate == rate)
3333 break;
3334 data->ridx = ridx;
3335
3336 run_set_tx_desc(sc, data);
3337
3338 DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3339 m->m_pkthdr.len, rate);
3340
3341 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3342
3343 usbd_transfer_start(sc->sc_xfer[0]);
3344
3345 return (0);
3346}
3347
3348static int
3349run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3350 const struct ieee80211_bpf_params *params)
3351{
3352 struct ifnet *ifp = ni->ni_ic->ic_ifp;
3353 struct run_softc *sc = ifp->if_softc;
3354 int error = 0;
3355
3356 RUN_LOCK(sc);
3357
3358 /* prevent management frames from being sent if we're not ready */
3359 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3360 error = ENETDOWN;
3361 goto done;
3362 }
3363
3364 if (params == NULL) {
3365 /* tx mgt packet */
3366 if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3367 ifp->if_oerrors++;
3368 DPRINTF("mgt tx failed\n");
3369 goto done;
3370 }
3371 } else {
3372 /* tx raw packet with param */
3373 if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3374 ifp->if_oerrors++;
3375 DPRINTF("tx with param failed\n");
3376 goto done;
3377 }
3378 }
3379
3380 ifp->if_opackets++;
3381
3382done:
3383 RUN_UNLOCK(sc);
3384
3385 if (error != 0) {
3386 if(m != NULL)
3387 m_freem(m);
3388 ieee80211_free_node(ni);
3389 }
3390
3391 return (error);
3392}
3393
3394static void
3395run_start(struct ifnet *ifp)
3396{
3397 struct run_softc *sc = ifp->if_softc;
3398 struct ieee80211_node *ni;
3399 struct mbuf *m;
3400
3401 RUN_LOCK(sc);
3402
3403 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3404 RUN_UNLOCK(sc);
3405 return;
3406 }
3407
3408 for (;;) {
3409 /* send data frames */
3410 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3411 if (m == NULL)
3412 break;
3413
3414 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3415 if (run_tx(sc, m, ni) != 0) {
3416 IFQ_DRV_PREPEND(&ifp->if_snd, m);
3417 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3418 break;
3419 }
3420 }
3421
3422 RUN_UNLOCK(sc);
3423}
3424
3425static int
3426run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3427{
3428 struct run_softc *sc = ifp->if_softc;
3429 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3430 struct ifreq *ifr = (struct ifreq *) data;
3431 int startall = 0;
3432 int error = 0;
3433
3434 switch (cmd) {
3435 case SIOCSIFFLAGS:
3436 RUN_LOCK(sc);
3437 if (ifp->if_flags & IFF_UP) {
3438 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){
3439 startall = 1;
3440 run_init_locked(sc);
3441 } else
3442 run_update_promisc_locked(ifp);
3443 } else {
3444 if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3445 (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3446 run_stop(sc);
3447 }
3448 }
3449 RUN_UNLOCK(sc);
3450 if (startall)
3451 ieee80211_start_all(ic);
3452 break;
3453 case SIOCGIFMEDIA:
3454 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3455 break;
3456 case SIOCGIFADDR:
3457 error = ether_ioctl(ifp, cmd, data);
3458 break;
3459 default:
3460 error = EINVAL;
3461 break;
3462 }
3463
3464 return (error);
3465}
3466
3467static void
3468run_set_agc(struct run_softc *sc, uint8_t agc)
3469{
3470 uint8_t bbp;
3471
3472 if (sc->mac_ver == 0x3572) {
3473 run_bbp_read(sc, 27, &bbp);
3474 bbp &= ~(0x3 << 5);
3475 run_bbp_write(sc, 27, bbp | 0 << 5); /* select Rx0 */
3476 run_bbp_write(sc, 66, agc);
3477 run_bbp_write(sc, 27, bbp | 1 << 5); /* select Rx1 */
3478 run_bbp_write(sc, 66, agc);
3479 } else
3480 run_bbp_write(sc, 66, agc);
3481}
3482
3483static void
3484run_select_chan_group(struct run_softc *sc, int group)
3485{
3486 uint32_t tmp;
3487 uint8_t agc;
3488
3489 run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3490 run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3491 run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3492 run_bbp_write(sc, 86, 0x00);
3493
3494 if (group == 0) {
3495 if (sc->ext_2ghz_lna) {
3496 run_bbp_write(sc, 82, 0x62);
3497 run_bbp_write(sc, 75, 0x46);
3498 } else {
3499 run_bbp_write(sc, 82, 0x84);
3500 run_bbp_write(sc, 75, 0x50);
3501 }
3502 } else {
3503 if (sc->mac_ver == 0x3572)
3504 run_bbp_write(sc, 82, 0x94);
3505 else
3506 run_bbp_write(sc, 82, 0xf2);
3507 if (sc->ext_5ghz_lna)
3508 run_bbp_write(sc, 75, 0x46);
3509 else
3510 run_bbp_write(sc, 75, 0x50);
3511 }
3512
3513 run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3514 tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3515 tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3516 run_write(sc, RT2860_TX_BAND_CFG, tmp);
3517
3518 /* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3519 tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3520 if (sc->nrxchains > 1)
3521 tmp |= RT2860_LNA_PE1_EN;
3522 if (group == 0) { /* 2GHz */
3523 tmp |= RT2860_PA_PE_G0_EN;
3524 if (sc->ntxchains > 1)
3525 tmp |= RT2860_PA_PE_G1_EN;
3526 } else { /* 5GHz */
3527 tmp |= RT2860_PA_PE_A0_EN;
3528 if (sc->ntxchains > 1)
3529 tmp |= RT2860_PA_PE_A1_EN;
3530 }
3531 if (sc->mac_ver == 0x3572) {
3532 run_rt3070_rf_write(sc, 8, 0x00);
3533 run_write(sc, RT2860_TX_PIN_CFG, tmp);
3534 run_rt3070_rf_write(sc, 8, 0x80);
3535 } else
3536 run_write(sc, RT2860_TX_PIN_CFG, tmp);
3537
3538 /* set initial AGC value */
3539 if (group == 0) { /* 2GHz band */
3540 if (sc->mac_ver >= 0x3070)
3541 agc = 0x1c + sc->lna[0] * 2;
3542 else
3543 agc = 0x2e + sc->lna[0];
3544 } else { /* 5GHz band */
3545 if (sc->mac_ver == 0x3572)
3546 agc = 0x22 + (sc->lna[group] * 5) / 3;
3547 else
3548 agc = 0x32 + (sc->lna[group] * 5) / 3;
3549 }
3550 run_set_agc(sc, agc);
3551}
3552
3553static void
3554run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3555{
3556 const struct rfprog *rfprog = rt2860_rf2850;
3557 uint32_t r2, r3, r4;
3558 int8_t txpow1, txpow2;
3559 int i;
3560
3561 /* find the settings for this channel (we know it exists) */
3562 for (i = 0; rfprog[i].chan != chan; i++);
3563
3564 r2 = rfprog[i].r2;
3565 if (sc->ntxchains == 1)
3566 r2 |= 1 << 12; /* 1T: disable Tx chain 2 */
3567 if (sc->nrxchains == 1)
3568 r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
3569 else if (sc->nrxchains == 2)
3570 r2 |= 1 << 4; /* 2R: disable Rx chain 3 */
3571
3572 /* use Tx power values from EEPROM */
3573 txpow1 = sc->txpow1[i];
3574 txpow2 = sc->txpow2[i];
3575 if (chan > 14) {
3576 if (txpow1 >= 0)
3577 txpow1 = txpow1 << 1 | 1;
3578 else
3579 txpow1 = (7 + txpow1) << 1;
3580 if (txpow2 >= 0)
3581 txpow2 = txpow2 << 1 | 1;
3582 else
3583 txpow2 = (7 + txpow2) << 1;
3584 }
3585 r3 = rfprog[i].r3 | txpow1 << 7;
3586 r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3587
3588 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3589 run_rt2870_rf_write(sc, RT2860_RF2, r2);
3590 run_rt2870_rf_write(sc, RT2860_RF3, r3);
3591 run_rt2870_rf_write(sc, RT2860_RF4, r4);
3592
3593 run_delay(sc, 10);
3594
3595 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3596 run_rt2870_rf_write(sc, RT2860_RF2, r2);
3597 run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3598 run_rt2870_rf_write(sc, RT2860_RF4, r4);
3599
3600 run_delay(sc, 10);
3601
3602 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3603 run_rt2870_rf_write(sc, RT2860_RF2, r2);
3604 run_rt2870_rf_write(sc, RT2860_RF3, r3);
3605 run_rt2870_rf_write(sc, RT2860_RF4, r4);
3606}
3607
3608static void
3609run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3610{
3611 int8_t txpow1, txpow2;
3612 uint8_t rf;
3613 int i;
3614
3615 /* RT3070 is 2GHz only */
3616 KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3617
3618 /* find the settings for this channel (we know it exists) */
3619 for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3620
3621 /* use Tx power values from EEPROM */
3622 txpow1 = sc->txpow1[i];
3623 txpow2 = sc->txpow2[i];
3624
3625 run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3626 run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3627 run_rt3070_rf_read(sc, 6, &rf);
3628 rf = (rf & ~0x03) | rt3070_freqs[i].r;
3629 run_rt3070_rf_write(sc, 6, rf);
3630
3631 /* set Tx0 power */
3632 run_rt3070_rf_read(sc, 12, &rf);
3633 rf = (rf & ~0x1f) | txpow1;
3634 run_rt3070_rf_write(sc, 12, rf);
3635
3636 /* set Tx1 power */
3637 run_rt3070_rf_read(sc, 13, &rf);
3638 rf = (rf & ~0x1f) | txpow2;
3639 run_rt3070_rf_write(sc, 13, rf);
3640
3641 run_rt3070_rf_read(sc, 1, &rf);
3642 rf &= ~0xfc;
3643 if (sc->ntxchains == 1)
3644 rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */
3645 else if (sc->ntxchains == 2)
3646 rf |= 1 << 7; /* 2T: disable Tx chain 3 */
3647 if (sc->nrxchains == 1)
3648 rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
3649 else if (sc->nrxchains == 2)
3650 rf |= 1 << 6; /* 2R: disable Rx chain 3 */
3651 run_rt3070_rf_write(sc, 1, rf);
3652
3653 /* set RF offset */
3654 run_rt3070_rf_read(sc, 23, &rf);
3655 rf = (rf & ~0x7f) | sc->freq;
3656 run_rt3070_rf_write(sc, 23, rf);
3657
3658 /* program RF filter */
3659 run_rt3070_rf_read(sc, 24, &rf); /* Tx */
3660 rf = (rf & ~0x3f) | sc->rf24_20mhz;
3661 run_rt3070_rf_write(sc, 24, rf);
3662 run_rt3070_rf_read(sc, 31, &rf); /* Rx */
3663 rf = (rf & ~0x3f) | sc->rf24_20mhz;
3664 run_rt3070_rf_write(sc, 31, rf);
3665
3666 /* enable RF tuning */
3667 run_rt3070_rf_read(sc, 7, &rf);
3668 run_rt3070_rf_write(sc, 7, rf | 0x01);
3669}
3670
3671static void
3672run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3673{
3674 int8_t txpow1, txpow2;
3675 uint32_t tmp;
3676 uint8_t rf;
3677 int i;
3678
3679 /* find the settings for this channel (we know it exists) */
3680 for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3681
3682 /* use Tx power values from EEPROM */
3683 txpow1 = sc->txpow1[i];
3684 txpow2 = sc->txpow2[i];
3685
3686 if (chan <= 14) {
3687 run_bbp_write(sc, 25, sc->bbp25);
3688 run_bbp_write(sc, 26, sc->bbp26);
3689 } else {
3690 /* enable IQ phase correction */
3691 run_bbp_write(sc, 25, 0x09);
3692 run_bbp_write(sc, 26, 0xff);
3693 }
3694
3695 run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3696 run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3697 run_rt3070_rf_read(sc, 6, &rf);
3698 rf = (rf & ~0x0f) | rt3070_freqs[i].r;
3699 rf |= (chan <= 14) ? 0x08 : 0x04;
3700 run_rt3070_rf_write(sc, 6, rf);
3701
3702 /* set PLL mode */
3703 run_rt3070_rf_read(sc, 5, &rf);
3704 rf &= ~(0x08 | 0x04);
3705 rf |= (chan <= 14) ? 0x04 : 0x08;
3706 run_rt3070_rf_write(sc, 5, rf);
3707
3708 /* set Tx power for chain 0 */
3709 if (chan <= 14)
3710 rf = 0x60 | txpow1;
3711 else
3712 rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3713 run_rt3070_rf_write(sc, 12, rf);
3714
3715 /* set Tx power for chain 1 */
3716 if (chan <= 14)
3717 rf = 0x60 | txpow2;
3718 else
3719 rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3720 run_rt3070_rf_write(sc, 13, rf);
3721
3722 /* set Tx/Rx streams */
3723 run_rt3070_rf_read(sc, 1, &rf);
3724 rf &= ~0xfc;
3725 if (sc->ntxchains == 1)
3726 rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */
3727 else if (sc->ntxchains == 2)
3728 rf |= 1 << 7; /* 2T: disable Tx chain 3 */
3729 if (sc->nrxchains == 1)
3730 rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
3731 else if (sc->nrxchains == 2)
3732 rf |= 1 << 6; /* 2R: disable Rx chain 3 */
3733 run_rt3070_rf_write(sc, 1, rf);
3734
3735 /* set RF offset */
3736 run_rt3070_rf_read(sc, 23, &rf);
3737 rf = (rf & ~0x7f) | sc->freq;
3738 run_rt3070_rf_write(sc, 23, rf);
3739
3740 /* program RF filter */
3741 rf = sc->rf24_20mhz;
3742 run_rt3070_rf_write(sc, 24, rf); /* Tx */
3743 run_rt3070_rf_write(sc, 31, rf); /* Rx */
3744
3745 /* enable RF tuning */
3746 run_rt3070_rf_read(sc, 7, &rf);
3747 rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3748 run_rt3070_rf_write(sc, 7, rf);
3749
3750 /* TSSI */
3751 rf = (chan <= 14) ? 0xc3 : 0xc0;
3752 run_rt3070_rf_write(sc, 9, rf);
3753
3754 /* set loop filter 1 */
3755 run_rt3070_rf_write(sc, 10, 0xf1);
3756 /* set loop filter 2 */
3757 run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3758
3759 /* set tx_mx2_ic */
3760 run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3761 /* set tx_mx1_ic */
3762 if (chan <= 14)
3763 rf = 0x48 | sc->txmixgain_2ghz;
3764 else
3765 rf = 0x78 | sc->txmixgain_5ghz;
3766 run_rt3070_rf_write(sc, 16, rf);
3767
3768 /* set tx_lo1 */
3769 run_rt3070_rf_write(sc, 17, 0x23);
3770 /* set tx_lo2 */
3771 if (chan <= 14)
3772 rf = 0x93;
3773 else if (chan <= 64)
3774 rf = 0xb7;
3775 else if (chan <= 128)
3776 rf = 0x74;
3777 else
3778 rf = 0x72;
3779 run_rt3070_rf_write(sc, 19, rf);
3780
3781 /* set rx_lo1 */
3782 if (chan <= 14)
3783 rf = 0xb3;
3784 else if (chan <= 64)
3785 rf = 0xf6;
3786 else if (chan <= 128)
3787 rf = 0xf4;
3788 else
3789 rf = 0xf3;
3790 run_rt3070_rf_write(sc, 20, rf);
3791
3792 /* set pfd_delay */
3793 if (chan <= 14)
3794 rf = 0x15;
3795 else if (chan <= 64)
3796 rf = 0x3d;
3797 else
3798 rf = 0x01;
3799 run_rt3070_rf_write(sc, 25, rf);
3800
3801 /* set rx_lo2 */
3802 run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3803 /* set ldo_rf_vc */
3804 run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3805 /* set drv_cc */
3806 run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3807
3808 run_read(sc, RT2860_GPIO_CTRL, &tmp);
3809 tmp &= ~0x8080;
3810 if (chan <= 14)
3811 tmp |= 0x80;
3812 run_write(sc, RT2860_GPIO_CTRL, tmp);
3813
3814 /* enable RF tuning */
3815 run_rt3070_rf_read(sc, 7, &rf);
3816 run_rt3070_rf_write(sc, 7, rf | 0x01);
3817
3818 run_delay(sc, 2);
3819}
3820
3821static void
3822run_set_rx_antenna(struct run_softc *sc, int aux)
3823{
3824 uint32_t tmp;
3825
3826 if (aux) {
3827 run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3828 run_read(sc, RT2860_GPIO_CTRL, &tmp);
3829 run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3830 } else {
3831 run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3832 run_read(sc, RT2860_GPIO_CTRL, &tmp);
3833 run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3834 }
3835}
3836
3837static int
3838run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3839{
3840 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3841 uint32_t chan, group;
3842
3843 chan = ieee80211_chan2ieee(ic, c);
3844 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3845 return (EINVAL);
3846
3847 if (sc->mac_ver == 0x3572)
3848 run_rt3572_set_chan(sc, chan);
3849 else if (sc->mac_ver >= 0x3070)
3850 run_rt3070_set_chan(sc, chan);
3851 else
3852 run_rt2870_set_chan(sc, chan);
3853
3854 /* determine channel group */
3855 if (chan <= 14)
3856 group = 0;
3857 else if (chan <= 64)
3858 group = 1;
3859 else if (chan <= 128)
3860 group = 2;
3861 else
3862 group = 3;
3863
3864 /* XXX necessary only when group has changed! */
3865 run_select_chan_group(sc, group);
3866
3867 run_delay(sc, 10);
3868
3869 return (0);
3870}
3871
3872static void
3873run_set_channel(struct ieee80211com *ic)
3874{
3875 struct run_softc *sc = ic->ic_ifp->if_softc;
3876
3877 RUN_LOCK(sc);
3878 run_set_chan(sc, ic->ic_curchan);
3879 RUN_UNLOCK(sc);
3880
3881 return;
3882}
3883
3884static void
3885run_scan_start(struct ieee80211com *ic)
3886{
3887 struct run_softc *sc = ic->ic_ifp->if_softc;
3888 uint32_t tmp;
3889
3890 RUN_LOCK(sc);
3891
3892 /* abort TSF synchronization */
3893 run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3894 run_write(sc, RT2860_BCN_TIME_CFG,
3895 tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3896 RT2860_TBTT_TIMER_EN));
3897 run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3898
3899 RUN_UNLOCK(sc);
3900
3901 return;
3902}
3903
3904static void
3905run_scan_end(struct ieee80211com *ic)
3906{
3907 struct run_softc *sc = ic->ic_ifp->if_softc;
3908
3909 RUN_LOCK(sc);
3910
3911 run_enable_tsf_sync(sc);
3912 /* XXX keep local copy */
3913 run_set_bssid(sc, sc->sc_bssid);
3914
3915 RUN_UNLOCK(sc);
3916
3917 return;
3918}
3919
3920/*
3921 * Could be called from ieee80211_node_timeout()
3922 * (non-sleepable thread)
3923 */
3924static void
3925run_update_beacon(struct ieee80211vap *vap, int item)
3926{
3927 struct ieee80211com *ic = vap->iv_ic;
3928 struct run_softc *sc = ic->ic_ifp->if_softc;
3929 struct run_vap *rvp = RUN_VAP(vap);
3930 int mcast = 0;
3931 uint32_t i;
3932
3933 KASSERT(vap != NULL, ("no beacon"));
3934
3935 switch (item) {
3936 case IEEE80211_BEACON_ERP:
3937 run_updateslot(ic->ic_ifp);
3938 break;
3939 case IEEE80211_BEACON_HTINFO:
3940 run_updateprot(ic);
3941 break;
3942 case IEEE80211_BEACON_TIM:
3943 mcast = 1; /*TODO*/
3944 break;
3945 default:
3946 break;
3947 }
3948
3949 setbit(rvp->bo.bo_flags, item);
3950 ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3951
3952 i = RUN_CMDQ_GET(&sc->cmdq_store);
3953 DPRINTF("cmdq_store=%d\n", i);
3954 sc->cmdq[i].func = run_update_beacon_cb;
3955 sc->cmdq[i].arg0 = vap;
3956 ieee80211_runtask(ic, &sc->cmdq_task);
3957
3958 return;
3959}
3960
3961static void
3962run_update_beacon_cb(void *arg)
3963{
3964 struct ieee80211vap *vap = arg;
3965 struct run_vap *rvp = RUN_VAP(vap);
3966 struct ieee80211com *ic = vap->iv_ic;
3967 struct run_softc *sc = ic->ic_ifp->if_softc;
3968 struct rt2860_txwi txwi;
3969 struct mbuf *m;
3970 uint8_t ridx;
3971
3972 if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
3973 return;
3974
3975 /*
3976 * No need to call ieee80211_beacon_update(), run_update_beacon()
3977 * is taking care of apropriate calls.
3978 */
3979 if (rvp->beacon_mbuf == NULL) {
3980 rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
3981 &rvp->bo);
3982 if (rvp->beacon_mbuf == NULL)
3983 return;
3984 }
3985 m = rvp->beacon_mbuf;
3986
3987 memset(&txwi, 0, sizeof txwi);
3988 txwi.wcid = 0xff;
3989 txwi.len = htole16(m->m_pkthdr.len);
3990 /* send beacons at the lowest available rate */
3991 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3992 RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3993 txwi.phy = htole16(rt2860_rates[ridx].mcs);
3994 if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
3995 txwi.phy |= htole16(RT2860_PHY_OFDM);
3996 txwi.txop = RT2860_TX_TXOP_HT;
3997 txwi.flags = RT2860_TX_TS;
3998 txwi.xflags = RT2860_TX_NSEQ;
3999
4000 run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
4001 (uint8_t *)&txwi, sizeof txwi);
4002 run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
4003 mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1); /* roundup len */
4004
4005 return;
4006}
4007
4008static void
4009run_updateprot(struct ieee80211com *ic)
4010{
4011 struct run_softc *sc = ic->ic_ifp->if_softc;
4012 uint32_t i;
4013
4014 i = RUN_CMDQ_GET(&sc->cmdq_store);
4015 DPRINTF("cmdq_store=%d\n", i);
4016 sc->cmdq[i].func = run_updateprot_cb;
4017 sc->cmdq[i].arg0 = ic;
4018 ieee80211_runtask(ic, &sc->cmdq_task);
4019}
4020
4021static void
4022run_updateprot_cb(void *arg)
4023{
4024 struct ieee80211com *ic = arg;
4025 struct run_softc *sc = ic->ic_ifp->if_softc;
4026 uint32_t tmp;
4027
4028 tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4029 /* setup protection frame rate (MCS code) */
4030 tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4031 rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4032 rt2860_rates[RT2860_RIDX_CCK11].mcs;
4033
4034 /* CCK frames don't require protection */
4035 run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4036 if (ic->ic_flags & IEEE80211_F_USEPROT) {
4037 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4038 tmp |= RT2860_PROT_CTRL_RTS_CTS;
4039 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4040 tmp |= RT2860_PROT_CTRL_CTS;
4041 }
4042 run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4043}
4044
4045static void
4046run_usb_timeout_cb(void *arg)
4047{
4048 struct ieee80211vap *vap = arg;
4049 struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4050
4051 RUN_LOCK_ASSERT(sc, MA_OWNED);
4052
4053 if(vap->iv_state == IEEE80211_S_RUN &&
4054 vap->iv_opmode != IEEE80211_M_STA)
4055 run_reset_livelock(sc);
4056 else if (vap->iv_state == IEEE80211_S_SCAN) {
4057 DPRINTF("timeout caused by scan\n");
4058 /* cancel bgscan */
4059 ieee80211_cancel_scan(vap);
4060 } else
4061 DPRINTF("timeout by unknown cause\n");
4062}
4063
4064static void
4065run_reset_livelock(struct run_softc *sc)
4066{
4067 uint32_t tmp;
4068
4069 RUN_LOCK_ASSERT(sc, MA_OWNED);
4070
4071 /*
4072 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4073 * can run into a livelock and start sending CTS-to-self frames like
4074 * crazy if protection is enabled. Reset MAC/BBP for a while
4075 */
4076 run_read(sc, RT2860_DEBUG, &tmp);
4077 DPRINTFN(3, "debug reg %08x\n", tmp);
4078 if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4079 DPRINTF("CTS-to-self livelock detected\n");
4080 run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4081 run_delay(sc, 1);
4082 run_write(sc, RT2860_MAC_SYS_CTRL,
4083 RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4084 }
4085}
4086
4087static void
4088run_update_promisc_locked(struct ifnet *ifp)
4089{
4090 struct run_softc *sc = ifp->if_softc;
4091 uint32_t tmp;
4092
4093 run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4094
4095 tmp |= RT2860_DROP_UC_NOME;
4096 if (ifp->if_flags & IFF_PROMISC)
4097 tmp &= ~RT2860_DROP_UC_NOME;
4098
4099 run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4100
4101 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4102 "entering" : "leaving");
4103}
4104
4105static void
4106run_update_promisc(struct ifnet *ifp)
4107{
4108 struct run_softc *sc = ifp->if_softc;
4109
4110 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4111 return;
4112
4113 RUN_LOCK(sc);
4114 run_update_promisc_locked(ifp);
4115 RUN_UNLOCK(sc);
4116}
4117
4118static void
4119run_enable_tsf_sync(struct run_softc *sc)
4120{
4121 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4122 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4123 uint32_t tmp;
4124
4125 DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4126
4127 run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4128 tmp &= ~0x1fffff;
4129 tmp |= vap->iv_bss->ni_intval * 16;
4130 tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4131
4132 if (ic->ic_opmode == IEEE80211_M_STA) {
4133 /*
4134 * Local TSF is always updated with remote TSF on beacon
4135 * reception.
4136 */
4137 tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4138 } else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4139 tmp |= RT2860_BCN_TX_EN;
4140 /*
4141 * Local TSF is updated with remote TSF on beacon reception
4142 * only if the remote TSF is greater than local TSF.
4143 */
4144 tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4145 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4146 ic->ic_opmode == IEEE80211_M_MBSS) {
4147 tmp |= RT2860_BCN_TX_EN;
4148 /* SYNC with nobody */
4149 tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4150 } else {
4151 DPRINTF("Enabling TSF failed. undefined opmode\n");
4152 return;
4153 }
4154
4155 run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4156}
4157
4158static void
4159run_enable_mrr(struct run_softc *sc)
4160{
4161#define CCK(mcs) (mcs)
4162#define OFDM(mcs) (1 << 3 | (mcs))
4163 run_write(sc, RT2860_LG_FBK_CFG0,
4164 OFDM(6) << 28 | /* 54->48 */
4165 OFDM(5) << 24 | /* 48->36 */
4166 OFDM(4) << 20 | /* 36->24 */
4167 OFDM(3) << 16 | /* 24->18 */
4168 OFDM(2) << 12 | /* 18->12 */
4169 OFDM(1) << 8 | /* 12-> 9 */
4170 OFDM(0) << 4 | /* 9-> 6 */
4171 OFDM(0)); /* 6-> 6 */
4172
4173 run_write(sc, RT2860_LG_FBK_CFG1,
4174 CCK(2) << 12 | /* 11->5.5 */
4175 CCK(1) << 8 | /* 5.5-> 2 */
4176 CCK(0) << 4 | /* 2-> 1 */
4177 CCK(0)); /* 1-> 1 */
4178#undef OFDM
4179#undef CCK
4180}
4181
4182static void
4183run_set_txpreamble(struct run_softc *sc)
4184{
4185 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4186 uint32_t tmp;
4187
4188 run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4189 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4190 tmp |= RT2860_CCK_SHORT_EN;
4191 else
4192 tmp &= ~RT2860_CCK_SHORT_EN;
4193 run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4194}
4195
4196static void
4197run_set_basicrates(struct run_softc *sc)
4198{
4199 struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4200
4201 /* set basic rates mask */
4202 if (ic->ic_curmode == IEEE80211_MODE_11B)
4203 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4204 else if (ic->ic_curmode == IEEE80211_MODE_11A)
4205 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4206 else /* 11g */
4207 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4208}
4209
4210static void
4211run_set_leds(struct run_softc *sc, uint16_t which)
4212{