tcp timer: Don't try stopping timers if timer message is not created.
[dragonfly.git] / sys / netinet / tcp_subr.c
CommitLineData
984263bc 1/*
66d6c637
JH
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
f23061d4 4 *
66d6c637
JH
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
f23061d4 7 *
66d6c637
JH
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
f23061d4 19 *
66d6c637
JH
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34/*
984263bc
MD
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
67 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
14572273 68 * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
984263bc
MD
69 */
70
71#include "opt_compat.h"
72#include "opt_inet6.h"
73#include "opt_ipsec.h"
74#include "opt_tcpdebug.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/callout.h>
79#include <sys/kernel.h>
80#include <sys/sysctl.h>
81#include <sys/malloc.h>
dd2b0fb4 82#include <sys/mpipe.h>
984263bc
MD
83#include <sys/mbuf.h>
84#ifdef INET6
85#include <sys/domain.h>
86#endif
87#include <sys/proc.h>
895c1f85 88#include <sys/priv.h>
984263bc
MD
89#include <sys/socket.h>
90#include <sys/socketvar.h>
91#include <sys/protosw.h>
92#include <sys/random.h>
3f9db7f8 93#include <sys/in_cksum.h>
c7afbe76 94#include <sys/ktr.h>
984263bc
MD
95
96#include <vm/vm_zone.h>
97
98#include <net/route.h>
99#include <net/if.h>
0ddb6032 100#include <net/netisr.h>
984263bc 101
707ad4ed 102#define _IP_VHL
984263bc
MD
103#include <netinet/in.h>
104#include <netinet/in_systm.h>
105#include <netinet/ip.h>
984263bc 106#include <netinet/ip6.h>
984263bc 107#include <netinet/in_pcb.h>
984263bc 108#include <netinet6/in6_pcb.h>
984263bc
MD
109#include <netinet/in_var.h>
110#include <netinet/ip_var.h>
984263bc 111#include <netinet6/ip6_var.h>
7d448528
JH
112#include <netinet/ip_icmp.h>
113#ifdef INET6
114#include <netinet/icmp6.h>
115#endif
984263bc
MD
116#include <netinet/tcp.h>
117#include <netinet/tcp_fsm.h>
118#include <netinet/tcp_seq.h>
119#include <netinet/tcp_timer.h>
a48c5dd5 120#include <netinet/tcp_timer2.h>
984263bc 121#include <netinet/tcp_var.h>
984263bc 122#include <netinet6/tcp6_var.h>
984263bc
MD
123#include <netinet/tcpip.h>
124#ifdef TCPDEBUG
125#include <netinet/tcp_debug.h>
126#endif
127#include <netinet6/ip6protosw.h>
128
129#ifdef IPSEC
130#include <netinet6/ipsec.h>
131#ifdef INET6
132#include <netinet6/ipsec6.h>
133#endif
707ad4ed 134#endif
984263bc
MD
135
136#ifdef FAST_IPSEC
bf844ffa 137#include <netproto/ipsec/ipsec.h>
984263bc 138#ifdef INET6
bf844ffa 139#include <netproto/ipsec/ipsec6.h>
984263bc
MD
140#endif
141#define IPSEC
707ad4ed 142#endif
984263bc 143
984263bc 144#include <sys/md5.h>
0ddb6032 145#include <sys/msgport2.h>
d2e9e54c
MD
146#include <machine/smp.h>
147
4599cf19
MD
148#include <net/netmsg2.h>
149
c7afbe76
MD
150#if !defined(KTR_TCP)
151#define KTR_TCP KTR_ALL
152#endif
153KTR_INFO_MASTER(tcp);
154KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
155KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
156KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
157#define logtcp(name) KTR_LOG(tcp_ ## name)
158
2b1ce38a
MD
159struct inpcbinfo tcbinfo[MAXCPU];
160struct tcpcbackqhead tcpcbackq[MAXCPU];
161
92db3805
SZ
162int tcp_mpsafe_proto = 0;
163TUNABLE_INT("net.inet.tcp.mpsafe_proto", &tcp_mpsafe_proto);
164
730902da 165static int tcp_mpsafe_thread = NETMSG_SERVICE_ADAPTIVE;
92db3805
SZ
166TUNABLE_INT("net.inet.tcp.mpsafe_thread", &tcp_mpsafe_thread);
167SYSCTL_INT(_net_inet_tcp, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
168 &tcp_mpsafe_thread, 0,
169 "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
170
707ad4ed 171int tcp_mssdflt = TCP_MSS;
f23061d4 172SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
707ad4ed 173 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
984263bc
MD
174
175#ifdef INET6
707ad4ed
JH
176int tcp_v6mssdflt = TCP6_MSS;
177SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
178 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
984263bc
MD
179#endif
180
181#if 0
707ad4ed 182static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
f23061d4 183SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
707ad4ed 184 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
984263bc
MD
185#endif
186
707ad4ed 187int tcp_do_rfc1323 = 1;
f23061d4 188SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
707ad4ed 189 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
984263bc 190
707ad4ed 191int tcp_do_rfc1644 = 0;
f23061d4 192SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
707ad4ed 193 &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
984263bc 194
707ad4ed 195static int tcp_tcbhashsize = 0;
984263bc 196SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
707ad4ed 197 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
984263bc 198
707ad4ed 199static int do_tcpdrain = 1;
984263bc
MD
200SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201 "Enable tcp_drain routine for extra help when low on mbufs");
202
d371a63a 203/* XXX JH */
f23061d4 204SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
d371a63a 205 &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
984263bc 206
707ad4ed 207static int icmp_may_rst = 1;
f23061d4 208SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
984263bc
MD
209 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210
707ad4ed 211static int tcp_isn_reseed_interval = 0;
984263bc
MD
212SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
214
215/*
f23061d4
JH
216 * TCP bandwidth limiting sysctls. Note that the default lower bound of
217 * 1024 exists only for debugging. A good production default would be
984263bc
MD
218 * something like 6100.
219 */
707ad4ed 220static int tcp_inflight_enable = 0;
984263bc
MD
221SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
222 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
223
707ad4ed 224static int tcp_inflight_debug = 0;
984263bc
MD
225SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
226 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
227
707ad4ed 228static int tcp_inflight_min = 6144;
984263bc 229SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
707ad4ed 230 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
984263bc 231
707ad4ed 232static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
984263bc 233SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
707ad4ed 234 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
984263bc 235
707ad4ed 236static int tcp_inflight_stab = 20;
984263bc
MD
237SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
238 &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
239
dd2b0fb4
MD
240static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
241static struct malloc_pipe tcptemp_mpipe;
242
92db3805 243static void tcp_willblock(int);
707ad4ed
JH
244static void tcp_cleartaocache (void);
245static void tcp_notify (struct inpcb *, int);
984263bc 246
5f7ab76b 247struct tcp_stats tcpstats_percpu[MAXCPU];
2b57d013
MD
248#ifdef SMP
249static int
250sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
251{
707ad4ed 252 int cpu, error = 0;
2b57d013 253
707ad4ed 254 for (cpu = 0; cpu < ncpus; ++cpu) {
5f7ab76b 255 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
707ad4ed 256 sizeof(struct tcp_stats))))
2b57d013 257 break;
5f7ab76b 258 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
707ad4ed 259 sizeof(struct tcp_stats))))
2b57d013
MD
260 break;
261 }
262
263 return (error);
264}
707ad4ed
JH
265SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
266 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
267#else
2b57d013 268SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
707ad4ed 269 &tcpstat, tcp_stats, "TCP statistics");
2b57d013
MD
270#endif
271
984263bc
MD
272/*
273 * Target size of TCP PCB hash tables. Must be a power of two.
274 *
275 * Note that this can be overridden by the kernel environment
276 * variable net.inet.tcp.tcbhashsize
277 */
278#ifndef TCBHASHSIZE
707ad4ed 279#define TCBHASHSIZE 512
984263bc
MD
280#endif
281
282/*
283 * This is the actual shape of what we allocate using the zone
284 * allocator. Doing it this way allows us to protect both structures
285 * using the same generation count, and also eliminates the overhead
286 * of allocating tcpcbs separately. By hiding the structure here,
287 * we avoid changing most of the rest of the code (although it needs
288 * to be changed, eventually, for greater efficiency).
289 */
290#define ALIGNMENT 32
291#define ALIGNM1 (ALIGNMENT - 1)
292struct inp_tp {
293 union {
294 struct inpcb inp;
295 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
296 } inp_tp_u;
297 struct tcpcb tcb;
a48c5dd5
SZ
298 struct tcp_callout inp_tp_rexmt;
299 struct tcp_callout inp_tp_persist;
300 struct tcp_callout inp_tp_keep;
301 struct tcp_callout inp_tp_2msl;
302 struct tcp_callout inp_tp_delack;
0f758523 303 struct netmsg_tcp_timer inp_tp_timermsg;
984263bc
MD
304};
305#undef ALIGNMENT
306#undef ALIGNM1
307
308/*
309 * Tcp initialization
310 */
311void
f3f70f0d 312tcp_init(void)
984263bc 313{
d371a63a
JH
314 struct inpcbporthead *porthashbase;
315 u_long porthashmask;
d371a63a 316 struct vm_zone *ipi_zone;
984263bc 317 int hashsize = TCBHASHSIZE;
d371a63a 318 int cpu;
bf82f9b7 319
d2e9e54c
MD
320 /*
321 * note: tcptemp is used for keepalives, and it is ok for an
322 * allocation to fail so do not specify MPF_INT.
323 */
dd2b0fb4
MD
324 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
325 25, -1, 0, NULL);
326
984263bc
MD
327 tcp_ccgen = 1;
328 tcp_cleartaocache();
329
330 tcp_delacktime = TCPTV_DELACK;
331 tcp_keepinit = TCPTV_KEEP_INIT;
332 tcp_keepidle = TCPTV_KEEP_IDLE;
333 tcp_keepintvl = TCPTV_KEEPINTVL;
334 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
335 tcp_msl = TCPTV_MSL;
336 tcp_rexmit_min = TCPTV_MIN;
337 tcp_rexmit_slop = TCPTV_CPU_VAR;
338
984263bc
MD
339 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
340 if (!powerof2(hashsize)) {
a6ec04bc 341 kprintf("WARNING: TCB hash size not a power of 2\n");
984263bc
MD
342 hashsize = 512; /* safe default */
343 }
344 tcp_tcbhashsize = hashsize;
d371a63a 345 porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
d371a63a
JH
346 ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
347 ZONE_INTERRUPT, 0);
348
349 for (cpu = 0; cpu < ncpus2; cpu++) {
d2e9e54c 350 in_pcbinfo_init(&tcbinfo[cpu]);
eb594563 351 tcbinfo[cpu].cpu = cpu;
d371a63a
JH
352 tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
353 &tcbinfo[cpu].hashmask);
354 tcbinfo[cpu].porthashbase = porthashbase;
355 tcbinfo[cpu].porthashmask = porthashmask;
8affadf8
JH
356 tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
357 &tcbinfo[cpu].wildcardhashmask);
d371a63a 358 tcbinfo[cpu].ipi_zone = ipi_zone;
2b1ce38a 359 TAILQ_INIT(&tcpcbackq[cpu]);
d371a63a 360 }
3edf7c37
RG
361
362 tcp_reass_maxseg = nmbclusters / 16;
707ad4ed 363 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
3edf7c37 364
984263bc 365#ifdef INET6
707ad4ed
JH
366#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
367#else
368#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
369#endif
984263bc
MD
370 if (max_protohdr < TCP_MINPROTOHDR)
371 max_protohdr = TCP_MINPROTOHDR;
372 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
373 panic("tcp_init");
374#undef TCP_MINPROTOHDR
375
2b57d013 376 /*
5f7ab76b 377 * Initialize TCP statistics counters for each CPU.
2b57d013
MD
378 */
379#ifdef SMP
380 for (cpu = 0; cpu < ncpus; ++cpu) {
5f7ab76b 381 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
2b57d013
MD
382 }
383#else
384 bzero(&tcpstat, sizeof(struct tcp_stats));
385#endif
386
984263bc 387 syncache_init();
bf82f9b7 388 tcp_thread_init();
984263bc
MD
389}
390
2b1ce38a
MD
391void
392tcpmsg_service_loop(void *dummy)
f23061d4 393{
2b1ce38a 394 struct netmsg *msg;
92db3805
SZ
395 int mplocked;
396
397 /*
398 * Thread was started with TDF_MPSAFE
399 */
400 mplocked = 0;
2b1ce38a 401
1e3f8217 402 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2b1ce38a 403 do {
c7afbe76 404 logtcp(rxmsg);
92db3805
SZ
405 mplocked = netmsg_service(msg, tcp_mpsafe_thread,
406 mplocked);
2b1ce38a 407 } while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
92db3805 408
c7afbe76 409 logtcp(delayed);
92db3805 410 tcp_willblock(mplocked);
c7afbe76 411 logtcp(wait);
2b1ce38a
MD
412 }
413}
414
415static void
92db3805 416tcp_willblock(int mplocked)
2b1ce38a
MD
417{
418 struct tcpcb *tp;
419 int cpu = mycpu->gd_cpuid;
92db3805
SZ
420 int unlock = 0;
421
422 if (!mplocked && !tcp_mpsafe_proto) {
423 if (TAILQ_EMPTY(&tcpcbackq[cpu]))
424 return;
425
426 get_mplock();
427 mplocked = 1;
428 unlock = 1;
429 }
2b1ce38a
MD
430
431 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
432 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
433 tp->t_flags &= ~TF_ONOUTPUTQ;
434 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
435 tcp_output(tp);
436 }
92db3805
SZ
437
438 if (unlock)
439 rel_mplock();
2b1ce38a
MD
440}
441
442
984263bc
MD
443/*
444 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
445 * tcp_template used to store this data in mbufs, but we now recopy it out
446 * of the tcpcb each time to conserve mbufs.
447 */
448void
707ad4ed 449tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
984263bc
MD
450{
451 struct inpcb *inp = tp->t_inpcb;
452 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
453
454#ifdef INET6
707ad4ed 455 if (inp->inp_vflag & INP_IPV6) {
984263bc
MD
456 struct ip6_hdr *ip6;
457
458 ip6 = (struct ip6_hdr *)ip_ptr;
459 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
460 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
461 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
462 (IPV6_VERSION & IPV6_VERSION_MASK);
463 ip6->ip6_nxt = IPPROTO_TCP;
464 ip6->ip6_plen = sizeof(struct tcphdr);
465 ip6->ip6_src = inp->in6p_laddr;
466 ip6->ip6_dst = inp->in6p_faddr;
467 tcp_hdr->th_sum = 0;
468 } else
469#endif
470 {
707ad4ed
JH
471 struct ip *ip = (struct ip *) ip_ptr;
472
473 ip->ip_vhl = IP_VHL_BORING;
474 ip->ip_tos = 0;
475 ip->ip_len = 0;
476 ip->ip_id = 0;
477 ip->ip_off = 0;
478 ip->ip_ttl = 0;
479 ip->ip_sum = 0;
480 ip->ip_p = IPPROTO_TCP;
481 ip->ip_src = inp->inp_laddr;
482 ip->ip_dst = inp->inp_faddr;
483 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
484 ip->ip_dst.s_addr,
485 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
984263bc
MD
486 }
487
488 tcp_hdr->th_sport = inp->inp_lport;
489 tcp_hdr->th_dport = inp->inp_fport;
490 tcp_hdr->th_seq = 0;
491 tcp_hdr->th_ack = 0;
492 tcp_hdr->th_x2 = 0;
493 tcp_hdr->th_off = 5;
494 tcp_hdr->th_flags = 0;
495 tcp_hdr->th_win = 0;
496 tcp_hdr->th_urp = 0;
497}
498
499/*
500 * Create template to be used to send tcp packets on a connection.
501 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
502 * use for this function is in keepalives, which use tcp_respond.
503 */
504struct tcptemp *
707ad4ed 505tcp_maketemplate(struct tcpcb *tp)
984263bc 506{
dd2b0fb4 507 struct tcptemp *tmp;
984263bc 508
dd2b0fb4 509 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
707ad4ed 510 return (NULL);
f23061d4 511 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
dd2b0fb4
MD
512 return (tmp);
513}
984263bc 514
dd2b0fb4
MD
515void
516tcp_freetemplate(struct tcptemp *tmp)
517{
518 mpipe_free(&tcptemp_mpipe, tmp);
984263bc
MD
519}
520
521/*
522 * Send a single message to the TCP at address specified by
707ad4ed 523 * the given TCP/IP header. If m == NULL, then we make a copy
984263bc
MD
524 * of the tcpiphdr at ti and send directly to the addressed host.
525 * This is used to force keep alive messages out using the TCP
526 * template for a connection. If flags are given then we send
527 * a message back to the TCP which originated the * segment ti,
528 * and discard the mbuf containing it and any other attached mbufs.
529 *
530 * In any case the ack and sequence number of the transmitted
531 * segment are as specified by the parameters.
532 *
533 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
534 */
535void
707ad4ed
JH
536tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
537 tcp_seq ack, tcp_seq seq, int flags)
984263bc 538{
2256ba69 539 int tlen;
984263bc 540 int win = 0;
707ad4ed 541 struct route *ro = NULL;
984263bc 542 struct route sro;
707ad4ed 543 struct ip *ip = ipgen;
984263bc 544 struct tcphdr *nth;
984263bc 545 int ipflags = 0;
707ad4ed
JH
546 struct route_in6 *ro6 = NULL;
547 struct route_in6 sro6;
548 struct ip6_hdr *ip6 = ipgen;
5a0e5b43 549 boolean_t use_tmpro = TRUE;
984263bc 550#ifdef INET6
707ad4ed
JH
551 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
552#else
553 const boolean_t isipv6 = FALSE;
554#endif
984263bc 555
707ad4ed 556 if (tp != NULL) {
984263bc 557 if (!(flags & TH_RST)) {
6d49aa6f 558 win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
984263bc
MD
559 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
560 win = (long)TCP_MAXWIN << tp->rcv_scale;
561 }
5a0e5b43
SZ
562 /*
563 * Don't use the route cache of a listen socket,
564 * it is not MPSAFE; use temporary route cache.
565 */
566 if (tp->t_state != TCPS_LISTEN) {
567 if (isipv6)
568 ro6 = &tp->t_inpcb->in6p_route;
569 else
570 ro = &tp->t_inpcb->inp_route;
571 use_tmpro = FALSE;
572 }
573 }
574 if (use_tmpro) {
984263bc
MD
575 if (isipv6) {
576 ro6 = &sro6;
577 bzero(ro6, sizeof *ro6);
707ad4ed
JH
578 } else {
579 ro = &sro;
580 bzero(ro, sizeof *ro);
581 }
984263bc 582 }
707ad4ed 583 if (m == NULL) {
74f1caca 584 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
984263bc
MD
585 if (m == NULL)
586 return;
587 tlen = 0;
588 m->m_data += max_linkhdr;
984263bc 589 if (isipv6) {
707ad4ed 590 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
984263bc
MD
591 ip6 = mtod(m, struct ip6_hdr *);
592 nth = (struct tcphdr *)(ip6 + 1);
707ad4ed
JH
593 } else {
594 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
595 ip = mtod(m, struct ip *);
596 nth = (struct tcphdr *)(ip + 1);
597 }
598 bcopy(th, nth, sizeof(struct tcphdr));
984263bc
MD
599 flags = TH_ACK;
600 } else {
601 m_freem(m->m_next);
707ad4ed 602 m->m_next = NULL;
984263bc
MD
603 m->m_data = (caddr_t)ipgen;
604 /* m_len is set later */
605 tlen = 0;
707ad4ed 606#define xchg(a, b, type) { type t; t = a; a = b; b = t; }
984263bc
MD
607 if (isipv6) {
608 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
609 nth = (struct tcphdr *)(ip6 + 1);
707ad4ed
JH
610 } else {
611 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
612 nth = (struct tcphdr *)(ip + 1);
613 }
984263bc
MD
614 if (th != nth) {
615 /*
616 * this is usually a case when an extension header
617 * exists between the IPv6 header and the
618 * TCP header.
619 */
620 nth->th_sport = th->th_sport;
621 nth->th_dport = th->th_dport;
622 }
623 xchg(nth->th_dport, nth->th_sport, n_short);
624#undef xchg
625 }
984263bc
MD
626 if (isipv6) {
627 ip6->ip6_flow = 0;
628 ip6->ip6_vfc = IPV6_VERSION;
629 ip6->ip6_nxt = IPPROTO_TCP;
707ad4ed
JH
630 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
631 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
632 } else {
633 tlen += sizeof(struct tcpiphdr);
634 ip->ip_len = tlen;
635 ip->ip_ttl = ip_defttl;
636 }
984263bc
MD
637 m->m_len = tlen;
638 m->m_pkthdr.len = tlen;
2038fb68 639 m->m_pkthdr.rcvif = NULL;
984263bc
MD
640 nth->th_seq = htonl(seq);
641 nth->th_ack = htonl(ack);
642 nth->th_x2 = 0;
707ad4ed 643 nth->th_off = sizeof(struct tcphdr) >> 2;
984263bc 644 nth->th_flags = flags;
707ad4ed 645 if (tp != NULL)
984263bc
MD
646 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
647 else
648 nth->th_win = htons((u_short)win);
649 nth->th_urp = 0;
984263bc
MD
650 if (isipv6) {
651 nth->th_sum = 0;
652 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
653 sizeof(struct ip6_hdr),
654 tlen - sizeof(struct ip6_hdr));
655 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
707ad4ed 656 (ro6 && ro6->ro_rt) ?
f23061d4 657 ro6->ro_rt->rt_ifp : NULL);
707ad4ed
JH
658 } else {
659 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
660 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
661 m->m_pkthdr.csum_flags = CSUM_TCP;
662 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
663 }
984263bc
MD
664#ifdef TCPDEBUG
665 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
666 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
667#endif
984263bc 668 if (isipv6) {
f23061d4
JH
669 ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
670 tp ? tp->t_inpcb : NULL);
707ad4ed 671 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
984263bc
MD
672 RTFREE(ro6->ro_rt);
673 ro6->ro_rt = NULL;
674 }
707ad4ed 675 } else {
1dbb3516 676 ipflags |= IP_DEBUGROUTE;
f23061d4 677 ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
707ad4ed
JH
678 if ((ro == &sro) && (ro->ro_rt != NULL)) {
679 RTFREE(ro->ro_rt);
680 ro->ro_rt = NULL;
681 }
984263bc 682 }
984263bc
MD
683}
684
685/*
686 * Create a new TCP control block, making an
687 * empty reassembly queue and hooking it to the argument
688 * protocol control block. The `inp' parameter must have
689 * come from the zone allocator set up in tcp_init().
690 */
691struct tcpcb *
707ad4ed 692tcp_newtcpcb(struct inpcb *inp)
984263bc
MD
693{
694 struct inp_tp *it;
2256ba69 695 struct tcpcb *tp;
984263bc 696#ifdef INET6
707ad4ed
JH
697 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
698#else
699 const boolean_t isipv6 = FALSE;
700#endif
984263bc
MD
701
702 it = (struct inp_tp *)inp;
703 tp = &it->tcb;
707ad4ed 704 bzero(tp, sizeof(struct tcpcb));
984263bc 705 LIST_INIT(&tp->t_segq);
707ad4ed 706 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
984263bc
MD
707
708 /* Set up our timeouts. */
a48c5dd5
SZ
709 tp->tt_rexmt = &it->inp_tp_rexmt;
710 tp->tt_persist = &it->inp_tp_persist;
711 tp->tt_keep = &it->inp_tp_keep;
712 tp->tt_2msl = &it->inp_tp_2msl;
713 tp->tt_delack = &it->inp_tp_delack;
714 tcp_inittimers(tp);
984263bc 715
3db1c8a3
SZ
716 /*
717 * Zero out timer message. We don't create it here,
718 * since the current CPU may not be the owner of this
719 * inpcb.
720 */
0f758523 721 tp->tt_msg = &it->inp_tp_timermsg;
3db1c8a3 722 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
0f758523 723
984263bc 724 if (tcp_do_rfc1323)
707ad4ed 725 tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
984263bc
MD
726 if (tcp_do_rfc1644)
727 tp->t_flags |= TF_REQ_CC;
728 tp->t_inpcb = inp; /* XXX */
eb594563 729 tp->t_state = TCPS_CLOSED;
984263bc
MD
730 /*
731 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
732 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
733 * reasonable initial retransmit time.
734 */
735 tp->t_srtt = TCPTV_SRTTBASE;
707ad4ed
JH
736 tp->t_rttvar =
737 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
984263bc
MD
738 tp->t_rttmin = tcp_rexmit_min;
739 tp->t_rxtcur = TCPTV_RTOBASE;
740 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
741 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
742 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
743 tp->t_rcvtime = ticks;
707ad4ed 744 /*
984263bc
MD
745 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
746 * because the socket may be bound to an IPv6 wildcard address,
747 * which may match an IPv4-mapped IPv6 address.
748 */
749 inp->inp_ip_ttl = ip_defttl;
f23061d4 750 inp->inp_ppcb = tp;
91489f6b 751 tcp_sack_tcpcb_init(tp);
984263bc
MD
752 return (tp); /* XXX */
753}
754
755/*
707ad4ed
JH
756 * Drop a TCP connection, reporting the specified error.
757 * If connection is synchronized, then send a RST to peer.
984263bc
MD
758 */
759struct tcpcb *
71f385dc 760tcp_drop(struct tcpcb *tp, int error)
984263bc
MD
761{
762 struct socket *so = tp->t_inpcb->inp_socket;
763
764 if (TCPS_HAVERCVDSYN(tp->t_state)) {
765 tp->t_state = TCPS_CLOSED;
f23061d4 766 tcp_output(tp);
984263bc
MD
767 tcpstat.tcps_drops++;
768 } else
769 tcpstat.tcps_conndrops++;
71f385dc
MD
770 if (error == ETIMEDOUT && tp->t_softerror)
771 error = tp->t_softerror;
772 so->so_error = error;
984263bc
MD
773 return (tcp_close(tp));
774}
775
8affadf8 776#ifdef SMP
eb594563 777
8affadf8 778struct netmsg_remwildcard {
4599cf19 779 struct netmsg nm_netmsg;
8affadf8
JH
780 struct inpcb *nm_inp;
781 struct inpcbinfo *nm_pcbinfo;
eb594563
MD
782#if defined(INET6)
783 int nm_isinet6;
784#else
785 int nm_unused01;
786#endif
8affadf8
JH
787};
788
eb594563
MD
789/*
790 * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
791 * inp can be detached. We do this by cycling through the cpus, ending up
792 * on the cpu controlling the inp last and then doing the disconnect.
793 */
4599cf19
MD
794static void
795in_pcbremwildcardhash_handler(struct netmsg *msg0)
8affadf8
JH
796{
797 struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
eb594563 798 int cpu;
8affadf8 799
eb594563
MD
800 cpu = msg->nm_pcbinfo->cpu;
801
802 if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
803 /* note: detach removes any wildcard hash entry */
804#ifdef INET6
805 if (msg->nm_isinet6)
806 in6_pcbdetach(msg->nm_inp);
807 else
808#endif
809 in_pcbdetach(msg->nm_inp);
4599cf19 810 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
eb594563
MD
811 } else {
812 in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
813 cpu = (cpu + 1) % ncpus2;
814 msg->nm_pcbinfo = &tcbinfo[cpu];
4599cf19 815 lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
eb594563 816 }
8affadf8 817}
eb594563 818
8affadf8
JH
819#endif
820
984263bc
MD
821/*
822 * Close a TCP control block:
823 * discard all space held by the tcp
824 * discard internet protocol block
825 * wake up any sleepers
826 */
827struct tcpcb *
707ad4ed 828tcp_close(struct tcpcb *tp)
984263bc 829{
2256ba69 830 struct tseg_qent *q;
984263bc
MD
831 struct inpcb *inp = tp->t_inpcb;
832 struct socket *so = inp->inp_socket;
2256ba69 833 struct rtentry *rt;
707ad4ed 834 boolean_t dosavessthresh;
8affadf8
JH
835#ifdef SMP
836 int cpu;
837#endif
707ad4ed
JH
838#ifdef INET6
839 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
eb594563 840 boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
707ad4ed
JH
841#else
842 const boolean_t isipv6 = FALSE;
843#endif
984263bc
MD
844
845 /*
eb594563
MD
846 * The tp is not instantly destroyed in the wildcard case. Setting
847 * the state to TCPS_TERMINATING will prevent the TCP stack from
848 * messing with it, though it should be noted that this change may
849 * not take effect on other cpus until we have chained the wildcard
850 * hash removal.
851 *
852 * XXX we currently depend on the BGL to synchronize the tp->t_state
853 * update and prevent other tcp protocol threads from accepting new
854 * connections on the listen socket we might be trying to close down.
855 */
856 KKASSERT(tp->t_state != TCPS_TERMINATING);
857 tp->t_state = TCPS_TERMINATING;
858
859 /*
984263bc 860 * Make sure that all of our timers are stopped before we
2d42d2b0 861 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
697aadcd
SZ
862 * timers are never used. If timer message is never created
863 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
984263bc 864 */
697aadcd 865 if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
2d42d2b0
SZ
866 tcp_callout_stop(tp, tp->tt_rexmt);
867 tcp_callout_stop(tp, tp->tt_persist);
868 tcp_callout_stop(tp, tp->tt_keep);
869 tcp_callout_stop(tp, tp->tt_2msl);
870 tcp_callout_stop(tp, tp->tt_delack);
871 }
984263bc 872
2b1ce38a
MD
873 if (tp->t_flags & TF_ONOUTPUTQ) {
874 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
875 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
876 tp->t_flags &= ~TF_ONOUTPUTQ;
877 }
878
984263bc
MD
879 /*
880 * If we got enough samples through the srtt filter,
881 * save the rtt and rttvar in the routing entry.
882 * 'Enough' is arbitrarily defined as the 16 samples.
883 * 16 samples is enough for the srtt filter to converge
884 * to within 5% of the correct value; fewer samples and
885 * we could save a very bogus rtt.
886 *
887 * Don't update the default route's characteristics and don't
888 * update anything that the user "locked".
889 */
890 if (tp->t_rttupdated >= 16) {
2256ba69 891 u_long i = 0;
707ad4ed 892
984263bc
MD
893 if (isipv6) {
894 struct sockaddr_in6 *sin6;
895
896 if ((rt = inp->in6p_route.ro_rt) == NULL)
897 goto no_valid_rt;
898 sin6 = (struct sockaddr_in6 *)rt_key(rt);
899 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
900 goto no_valid_rt;
707ad4ed
JH
901 } else
902 if ((rt = inp->inp_route.ro_rt) == NULL ||
903 ((struct sockaddr_in *)rt_key(rt))->
904 sin_addr.s_addr == INADDR_ANY)
905 goto no_valid_rt;
906
907 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
908 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
984263bc
MD
909 if (rt->rt_rmx.rmx_rtt && i)
910 /*
911 * filter this update to half the old & half
912 * the new values, converting scale.
913 * See route.h and tcp_var.h for a
914 * description of the scaling constants.
915 */
916 rt->rt_rmx.rmx_rtt =
917 (rt->rt_rmx.rmx_rtt + i) / 2;
918 else
919 rt->rt_rmx.rmx_rtt = i;
920 tcpstat.tcps_cachedrtt++;
921 }
707ad4ed 922 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
984263bc
MD
923 i = tp->t_rttvar *
924 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
925 if (rt->rt_rmx.rmx_rttvar && i)
926 rt->rt_rmx.rmx_rttvar =
927 (rt->rt_rmx.rmx_rttvar + i) / 2;
928 else
929 rt->rt_rmx.rmx_rttvar = i;
930 tcpstat.tcps_cachedrttvar++;
931 }
932 /*
933 * The old comment here said:
934 * update the pipelimit (ssthresh) if it has been updated
935 * already or if a pipesize was specified & the threshhold
936 * got below half the pipesize. I.e., wait for bad news
937 * before we start updating, then update on both good
938 * and bad news.
939 *
940 * But we want to save the ssthresh even if no pipesize is
941 * specified explicitly in the route, because such
942 * connections still have an implicit pipesize specified
943 * by the global tcp_sendspace. In the absence of a reliable
944 * way to calculate the pipesize, it will have to do.
945 */
946 i = tp->snd_ssthresh;
947 if (rt->rt_rmx.rmx_sendpipe != 0)
707ad4ed 948 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
984263bc 949 else
6d49aa6f 950 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
707ad4ed
JH
951 if (dosavessthresh ||
952 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
953 (rt->rt_rmx.rmx_ssthresh != 0))) {
984263bc
MD
954 /*
955 * convert the limit from user data bytes to
956 * packets then to packet data bytes.
957 */
958 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
959 if (i < 2)
960 i = 2;
707ad4ed
JH
961 i *= tp->t_maxseg +
962 (isipv6 ?
963 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
964 sizeof(struct tcpiphdr));
984263bc
MD
965 if (rt->rt_rmx.rmx_ssthresh)
966 rt->rt_rmx.rmx_ssthresh =
967 (rt->rt_rmx.rmx_ssthresh + i) / 2;
968 else
969 rt->rt_rmx.rmx_ssthresh = i;
970 tcpstat.tcps_cachedssthresh++;
971 }
972 }
707ad4ed
JH
973
974no_valid_rt:
984263bc
MD
975 /* free the reassembly queue, if any */
976 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
977 LIST_REMOVE(q, tqe_q);
978 m_freem(q->tqe_m);
979 FREE(q, M_TSEGQ);
3edf7c37 980 tcp_reass_qsize--;
984263bc 981 }
91489f6b
JH
982 /* throw away SACK blocks in scoreboard*/
983 if (TCP_DO_SACK(tp))
984 tcp_sack_cleanup(&tp->scb);
eb594563 985
984263bc
MD
986 inp->inp_ppcb = NULL;
987 soisdisconnected(so);
0f758523
SZ
988
989 tcp_destroy_timermsg(tp);
990
eb594563
MD
991 /*
992 * Discard the inp. In the SMP case a wildcard inp's hash (created
993 * by a listen socket or an INADDR_ANY udp socket) is replicated
994 * for each protocol thread and must be removed in the context of
995 * that thread. This is accomplished by chaining the message
996 * through the cpus.
997 *
998 * If the inp is not wildcarded we simply detach, which will remove
999 * the any hashes still present for this inp.
1000 */
8affadf8 1001#ifdef SMP
1e019813 1002 if (inp->inp_flags & INP_WILDCARD_MP) {
eb594563 1003 struct netmsg_remwildcard *msg;
1e019813 1004
eb594563 1005 cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
77652cad 1006 msg = kmalloc(sizeof(struct netmsg_remwildcard),
4599cf19
MD
1007 M_LWKTMSG, M_INTWAIT);
1008 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1009 in_pcbremwildcardhash_handler);
eb594563
MD
1010#ifdef INET6
1011 msg->nm_isinet6 = isafinet6;
8affadf8 1012#endif
eb594563
MD
1013 msg->nm_inp = inp;
1014 msg->nm_pcbinfo = &tcbinfo[cpu];
4599cf19 1015 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
f23061d4 1016 } else
eb594563
MD
1017#endif
1018 {
1019 /* note: detach removes any wildcard hash entry */
984263bc 1020#ifdef INET6
eb594563
MD
1021 if (isafinet6)
1022 in6_pcbdetach(inp);
1023 else
707ad4ed 1024#endif
eb594563
MD
1025 in_pcbdetach(inp);
1026 }
984263bc 1027 tcpstat.tcps_closed++;
707ad4ed 1028 return (NULL);
984263bc
MD
1029}
1030
3f48f9c5
JH
1031static __inline void
1032tcp_drain_oncpu(struct inpcbhead *head)
984263bc 1033{
d371a63a
JH
1034 struct inpcb *inpb;
1035 struct tcpcb *tcpb;
1036 struct tseg_qent *te;
3f48f9c5
JH
1037
1038 LIST_FOREACH(inpb, head, inp_list) {
d2e9e54c
MD
1039 if (inpb->inp_flags & INP_PLACEMARKER)
1040 continue;
3f48f9c5
JH
1041 if ((tcpb = intotcpcb(inpb))) {
1042 while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1043 LIST_REMOVE(te, tqe_q);
1044 m_freem(te->tqe_m);
1045 FREE(te, M_TSEGQ);
1046 tcp_reass_qsize--;
1047 }
1048 }
1049 }
1050}
1051
0ddb6032
JH
1052#ifdef SMP
1053struct netmsg_tcp_drain {
4599cf19 1054 struct netmsg nm_netmsg;
0ddb6032
JH
1055 struct inpcbhead *nm_head;
1056};
1057
4599cf19
MD
1058static void
1059tcp_drain_handler(netmsg_t netmsg)
0ddb6032 1060{
4599cf19 1061 struct netmsg_tcp_drain *nm = (void *)netmsg;
0ddb6032
JH
1062
1063 tcp_drain_oncpu(nm->nm_head);
4599cf19 1064 lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
0ddb6032
JH
1065}
1066#endif
1067
3f48f9c5 1068void
f3f70f0d 1069tcp_drain(void)
3f48f9c5 1070{
93c8e032 1071#ifdef SMP
d371a63a 1072 int cpu;
93c8e032 1073#endif
d371a63a
JH
1074
1075 if (!do_tcpdrain)
1076 return;
984263bc
MD
1077
1078 /*
1079 * Walk the tcpbs, if existing, and flush the reassembly queue,
1080 * if there is one...
1081 * XXX: The "Net/3" implementation doesn't imply that the TCP
707ad4ed
JH
1082 * reassembly queue should be flushed, but in a situation
1083 * where we're really low on mbufs, this is potentially
1084 * useful.
984263bc 1085 */
3f48f9c5 1086#ifdef SMP
d371a63a 1087 for (cpu = 0; cpu < ncpus2; cpu++) {
3f48f9c5
JH
1088 struct netmsg_tcp_drain *msg;
1089
0ddb6032 1090 if (cpu == mycpu->gd_cpuid) {
d2e9e54c 1091 tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
3f48f9c5 1092 } else {
77652cad 1093 msg = kmalloc(sizeof(struct netmsg_tcp_drain),
b76bed62
MD
1094 M_LWKTMSG, M_NOWAIT);
1095 if (msg == NULL)
3f48f9c5 1096 continue;
4599cf19
MD
1097 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1098 tcp_drain_handler);
d2e9e54c 1099 msg->nm_head = &tcbinfo[cpu].pcblisthead;
4599cf19 1100 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
984263bc 1101 }
984263bc 1102 }
3f48f9c5 1103#else
d2e9e54c 1104 tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
3f48f9c5 1105#endif
984263bc
MD
1106}
1107
1108/*
1109 * Notify a tcp user of an asynchronous error;
1110 * store error as soft error, but wake up user
1111 * (for now, won't do anything until can select for soft error).
1112 *
1113 * Do not wake up user since there currently is no mechanism for
1114 * reporting soft errors (yet - a kqueue filter may be added).
1115 */
1116static void
707ad4ed 1117tcp_notify(struct inpcb *inp, int error)
984263bc 1118{
707ad4ed 1119 struct tcpcb *tp = intotcpcb(inp);
984263bc
MD
1120
1121 /*
1122 * Ignore some errors if we are hooked up.
1123 * If connection hasn't completed, has retransmitted several times,
1124 * and receives a second error, give up now. This is better
1125 * than waiting a long time to establish a connection that
1126 * can never complete.
1127 */
1128 if (tp->t_state == TCPS_ESTABLISHED &&
1129 (error == EHOSTUNREACH || error == ENETUNREACH ||
1130 error == EHOSTDOWN)) {
1131 return;
1132 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1133 tp->t_softerror)
1134 tcp_drop(tp, error);
1135 else
1136 tp->t_softerror = error;
1137#if 0
f23061d4 1138 wakeup(&so->so_timeo);
984263bc
MD
1139 sorwakeup(so);
1140 sowwakeup(so);
1141#endif
1142}
1143
1144static int
1145tcp_pcblist(SYSCTL_HANDLER_ARGS)
1146{
d2e9e54c
MD
1147 int error, i, n;
1148 struct inpcb *marker;
1149 struct inpcb *inp;
984263bc 1150 inp_gen_t gencnt;
d2e9e54c
MD
1151 globaldata_t gd;
1152 int origcpu, ccpu;
1153
1154 error = 0;
1155 n = 0;
984263bc
MD
1156
1157 /*
1158 * The process of preparing the TCB list is too time-consuming and
1159 * resource-intensive to repeat twice on every request.
1160 */
707ad4ed 1161 if (req->oldptr == NULL) {
d2e9e54c
MD
1162 for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1163 gd = globaldata_find(ccpu);
1164 n += tcbinfo[gd->gd_cpuid].ipi_count;
1165 }
8d7c364e 1166 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
707ad4ed 1167 return (0);
984263bc
MD
1168 }
1169
707ad4ed
JH
1170 if (req->newptr != NULL)
1171 return (EPERM);
984263bc 1172
efda3bd0 1173 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
d2e9e54c
MD
1174 marker->inp_flags |= INP_PLACEMARKER;
1175
984263bc 1176 /*
d2e9e54c 1177 * OK, now we're committed to doing something. Run the inpcb list
f23061d4 1178 * for each cpu in the system and construct the output. Use a
d2e9e54c
MD
1179 * list placemarker to deal with list changes occuring during
1180 * copyout blockages (but otherwise depend on being on the correct
1181 * cpu to avoid races).
984263bc 1182 */
d2e9e54c
MD
1183 origcpu = mycpu->gd_cpuid;
1184 for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1185 globaldata_t rgd;
1186 caddr_t inp_ppcb;
1187 struct xtcpcb xt;
1188 int cpu_id;
1189
1190 cpu_id = (origcpu + ccpu) % ncpus;
1191 if ((smp_active_mask & (1 << cpu_id)) == 0)
1192 continue;
1193 rgd = globaldata_find(cpu_id);
1194 lwkt_setcpu_self(rgd);
1195
d2e9e54c
MD
1196 gencnt = tcbinfo[cpu_id].ipi_gencnt;
1197 n = tcbinfo[cpu_id].ipi_count;
1198
d2e9e54c
MD
1199 LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1200 i = 0;
1201 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1202 /*
1203 * process a snapshot of pcbs, ignoring placemarkers
1204 * and using our own to allow SYSCTL_OUT to block.
1205 */
1206 LIST_REMOVE(marker, inp_list);
1207 LIST_INSERT_AFTER(inp, marker, inp_list);
707ad4ed 1208
d2e9e54c
MD
1209 if (inp->inp_flags & INP_PLACEMARKER)
1210 continue;
1211 if (inp->inp_gencnt > gencnt)
1212 continue;
1213 if (prison_xinpcb(req->td, inp))
1214 continue;
984263bc 1215
984263bc 1216 xt.xt_len = sizeof xt;
984263bc
MD
1217 bcopy(inp, &xt.xt_inp, sizeof *inp);
1218 inp_ppcb = inp->inp_ppcb;
1219 if (inp_ppcb != NULL)
1220 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1221 else
707ad4ed 1222 bzero(&xt.xt_tp, sizeof xt.xt_tp);
984263bc
MD
1223 if (inp->inp_socket)
1224 sotoxsocket(inp->inp_socket, &xt.xt_socket);
d2e9e54c
MD
1225 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1226 break;
1227 ++i;
1228 }
1229 LIST_REMOVE(marker, inp_list);
1230 if (error == 0 && i < n) {
0c3c561c
JH
1231 bzero(&xt, sizeof xt);
1232 xt.xt_len = sizeof xt;
d2e9e54c 1233 while (i < n) {
f23061d4 1234 error = SYSCTL_OUT(req, &xt, sizeof xt);
d2e9e54c
MD
1235 if (error)
1236 break;
1237 ++i;
1238 }
1239 }
984263bc 1240 }
d2e9e54c
MD
1241
1242 /*
1243 * Make sure we are on the same cpu we were on originally, since
1244 * higher level callers expect this. Also don't pollute caches with
1245 * migrated userland data by (eventually) returning to userland
1246 * on a different cpu.
1247 */
1248 lwkt_setcpu_self(globaldata_find(origcpu));
efda3bd0 1249 kfree(marker, M_TEMP);
707ad4ed 1250 return (error);
984263bc
MD
1251}
1252
1253SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1254 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1255
1256static int
1257tcp_getcred(SYSCTL_HANDLER_ARGS)
1258{
1259 struct sockaddr_in addrs[2];
1260 struct inpcb *inp;
d371a63a 1261 int cpu;
1cae611f 1262 int error;
984263bc 1263
895c1f85 1264 error = priv_check(req->td, PRIV_ROOT);
707ad4ed 1265 if (error != 0)
984263bc 1266 return (error);
707ad4ed
JH
1267 error = SYSCTL_IN(req, addrs, sizeof addrs);
1268 if (error != 0)
984263bc 1269 return (error);
1cae611f 1270 crit_enter();
d371a63a
JH
1271 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1272 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1273 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1274 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
984263bc
MD
1275 if (inp == NULL || inp->inp_socket == NULL) {
1276 error = ENOENT;
1277 goto out;
1278 }
1279 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1280out:
1cae611f 1281 crit_exit();
984263bc
MD
1282 return (error);
1283}
1284
707ad4ed 1285SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
984263bc
MD
1286 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1287
1288#ifdef INET6
1289static int
1290tcp6_getcred(SYSCTL_HANDLER_ARGS)
1291{
1292 struct sockaddr_in6 addrs[2];
1293 struct inpcb *inp;
1cae611f 1294 int error;
707ad4ed 1295 boolean_t mapped = FALSE;
984263bc 1296
895c1f85 1297 error = priv_check(req->td, PRIV_ROOT);
707ad4ed 1298 if (error != 0)
984263bc 1299 return (error);
707ad4ed
JH
1300 error = SYSCTL_IN(req, addrs, sizeof addrs);
1301 if (error != 0)
984263bc
MD
1302 return (error);
1303 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1304 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
707ad4ed 1305 mapped = TRUE;
984263bc
MD
1306 else
1307 return (EINVAL);
1308 }
1cae611f 1309 crit_enter();
707ad4ed 1310 if (mapped) {
d371a63a
JH
1311 inp = in_pcblookup_hash(&tcbinfo[0],
1312 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1313 addrs[1].sin6_port,
1314 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1315 addrs[0].sin6_port,
1316 0, NULL);
1317 } else {
1318 inp = in6_pcblookup_hash(&tcbinfo[0],
1319 &addrs[1].sin6_addr, addrs[1].sin6_port,
1320 &addrs[0].sin6_addr, addrs[0].sin6_port,
1321 0, NULL);
1322 }
984263bc
MD
1323 if (inp == NULL || inp->inp_socket == NULL) {
1324 error = ENOENT;
1325 goto out;
1326 }
707ad4ed 1327 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
984263bc 1328out:
1cae611f 1329 crit_exit();
984263bc
MD
1330 return (error);
1331}
1332
707ad4ed 1333SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
984263bc
MD
1334 0, 0,
1335 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1336#endif
1337
14572273
SZ
1338struct netmsg_tcp_notify {
1339 struct netmsg nm_nmsg;
1340 void (*nm_notify)(struct inpcb *, int);
1341 struct in_addr nm_faddr;
1342 int nm_arg;
1343};
1344
1345static void
1346tcp_notifyall_oncpu(struct netmsg *netmsg)
1347{
1348 struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1349 int nextcpu;
1350
1351 in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1352 nmsg->nm_arg, nmsg->nm_notify);
1353
1354 nextcpu = mycpuid + 1;
1355 if (nextcpu < ncpus2)
1356 lwkt_forwardmsg(tcp_cport(nextcpu), &netmsg->nm_lmsg);
1357 else
1358 lwkt_replymsg(&netmsg->nm_lmsg, 0);
1359}
1360
984263bc 1361void
707ad4ed 1362tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
984263bc
MD
1363{
1364 struct ip *ip = vip;
1365 struct tcphdr *th;
1366 struct in_addr faddr;
1367 struct inpcb *inp;
1368 struct tcpcb *tp;
707ad4ed 1369 void (*notify)(struct inpcb *, int) = tcp_notify;
7d448528 1370 tcp_seq icmpseq;
1cae611f 1371 int arg, cpu;
7d448528
JH
1372
1373 if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1374 return;
1375 }
984263bc
MD
1376
1377 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1378 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1379 return;
1380
7d448528
JH
1381 arg = inetctlerrmap[cmd];
1382 if (cmd == PRC_QUENCH) {
984263bc 1383 notify = tcp_quench;
7d448528
JH
1384 } else if (icmp_may_rst &&
1385 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1386 cmd == PRC_UNREACH_PORT ||
1387 cmd == PRC_TIMXCEED_INTRANS) &&
1388 ip != NULL) {
984263bc 1389 notify = tcp_drop_syn_sent;
7d448528
JH
1390 } else if (cmd == PRC_MSGSIZE) {
1391 struct icmp *icmp = (struct icmp *)
1392 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1393
1394 arg = ntohs(icmp->icmp_nextmtu);
984263bc 1395 notify = tcp_mtudisc;
7d448528 1396 } else if (PRC_IS_REDIRECT(cmd)) {
707ad4ed 1397 ip = NULL;
984263bc 1398 notify = in_rtchange;
7d448528 1399 } else if (cmd == PRC_HOSTDEAD) {
707ad4ed 1400 ip = NULL;
7d448528
JH
1401 }
1402
707ad4ed 1403 if (ip != NULL) {
1cae611f 1404 crit_enter();
707ad4ed
JH
1405 th = (struct tcphdr *)((caddr_t)ip +
1406 (IP_VHL_HL(ip->ip_vhl) << 2));
d371a63a 1407 cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
707ad4ed 1408 ip->ip_src.s_addr, th->th_sport);
d371a63a 1409 inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
707ad4ed
JH
1410 ip->ip_src, th->th_sport, 0, NULL);
1411 if ((inp != NULL) && (inp->inp_socket != NULL)) {
7d448528 1412 icmpseq = htonl(th->th_seq);
984263bc 1413 tp = intotcpcb(inp);
7d448528
JH
1414 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1415 SEQ_LT(icmpseq, tp->snd_max))
1416 (*notify)(inp, arg);
984263bc
MD
1417 } else {
1418 struct in_conninfo inc;
1419
1420 inc.inc_fport = th->th_dport;
1421 inc.inc_lport = th->th_sport;
1422 inc.inc_faddr = faddr;
1423 inc.inc_laddr = ip->ip_src;
1424#ifdef INET6
1425 inc.inc_isipv6 = 0;
1426#endif
1427 syncache_unreach(&inc, th);
1428 }
1cae611f 1429 crit_exit();
d371a63a 1430 } else {
14572273
SZ
1431 struct netmsg_tcp_notify nmsg;
1432
1433 KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1434 netmsg_init(&nmsg.nm_nmsg, &curthread->td_msgport, 0,
1435 tcp_notifyall_oncpu);
1436 nmsg.nm_faddr = faddr;
1437 nmsg.nm_arg = arg;
1438 nmsg.nm_notify = notify;
1439
1440 lwkt_domsg(tcp_cport(0), &nmsg.nm_nmsg.nm_lmsg, 0);
d371a63a 1441 }
984263bc
MD
1442}
1443
1444#ifdef INET6
1445void
707ad4ed 1446tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
984263bc
MD
1447{
1448 struct tcphdr th;
42a7fc75 1449 void (*notify) (struct inpcb *, int) = tcp_notify;
984263bc
MD
1450 struct ip6_hdr *ip6;
1451 struct mbuf *m;
1452 struct ip6ctlparam *ip6cp = NULL;
1453 const struct sockaddr_in6 *sa6_src = NULL;
1454 int off;
1455 struct tcp_portonly {
1456 u_int16_t th_sport;
1457 u_int16_t th_dport;
1458 } *thp;
7d448528 1459 int arg;
984263bc
MD
1460
1461 if (sa->sa_family != AF_INET6 ||
1462 sa->sa_len != sizeof(struct sockaddr_in6))
1463 return;
1464
7d448528 1465 arg = 0;
984263bc
MD
1466 if (cmd == PRC_QUENCH)
1467 notify = tcp_quench;
7d448528
JH
1468 else if (cmd == PRC_MSGSIZE) {
1469 struct ip6ctlparam *ip6cp = d;
1470 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1471
1472 arg = ntohl(icmp6->icmp6_mtu);
984263bc 1473 notify = tcp_mtudisc;
7d448528
JH
1474 } else if (!PRC_IS_REDIRECT(cmd) &&
1475 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
984263bc 1476 return;
7d448528 1477 }
984263bc
MD
1478
1479 /* if the parameter is from icmp6, decode it. */
1480 if (d != NULL) {
1481 ip6cp = (struct ip6ctlparam *)d;
1482 m = ip6cp->ip6c_m;
1483 ip6 = ip6cp->ip6c_ip6;
1484 off = ip6cp->ip6c_off;
1485 sa6_src = ip6cp->ip6c_src;
1486 } else {
1487 m = NULL;
1488 ip6 = NULL;
1489 off = 0; /* fool gcc */
1490 sa6_src = &sa6_any;
1491 }
1492
707ad4ed 1493 if (ip6 != NULL) {
984263bc
MD
1494 struct in_conninfo inc;
1495 /*
1496 * XXX: We assume that when IPV6 is non NULL,
1497 * M and OFF are valid.
1498 */
1499
1500 /* check if we can safely examine src and dst ports */
707ad4ed 1501 if (m->m_pkthdr.len < off + sizeof *thp)
984263bc
MD
1502 return;
1503
707ad4ed
JH
1504 bzero(&th, sizeof th);
1505 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
984263bc 1506
d2e9e54c 1507 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
984263bc 1508 (struct sockaddr *)ip6cp->ip6c_src,
7d448528 1509 th.th_sport, cmd, arg, notify);
984263bc
MD
1510
1511 inc.inc_fport = th.th_dport;
1512 inc.inc_lport = th.th_sport;
1513 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1514 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1515 inc.inc_isipv6 = 1;
1516 syncache_unreach(&inc, &th);
1517 } else
d2e9e54c 1518 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
7d448528 1519 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
984263bc 1520}
707ad4ed 1521#endif
984263bc
MD
1522
1523/*
1524 * Following is where TCP initial sequence number generation occurs.
1525 *
1526 * There are two places where we must use initial sequence numbers:
1527 * 1. In SYN-ACK packets.
1528 * 2. In SYN packets.
1529 *
1530 * All ISNs for SYN-ACK packets are generated by the syncache. See
1531 * tcp_syncache.c for details.
1532 *
1533 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1534 * depends on this property. In addition, these ISNs should be
1535 * unguessable so as to prevent connection hijacking. To satisfy
1536 * the requirements of this situation, the algorithm outlined in
1537 * RFC 1948 is used to generate sequence numbers.
1538 *
1539 * Implementation details:
1540 *
1541 * Time is based off the system timer, and is corrected so that it
1542 * increases by one megabyte per second. This allows for proper
1543 * recycling on high speed LANs while still leaving over an hour
1544 * before rollover.
1545 *
1546 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1547 * between seeding of isn_secret. This is normally set to zero,
1548 * as reseeding should not be necessary.
1549 *
1550 */
1551
707ad4ed 1552#define ISN_BYTES_PER_SECOND 1048576
984263bc
MD
1553
1554u_char isn_secret[32];
1555int isn_last_reseed;
1556MD5_CTX isn_ctx;
1557
1558tcp_seq
707ad4ed 1559tcp_new_isn(struct tcpcb *tp)
984263bc
MD
1560{
1561 u_int32_t md5_buffer[4];
1562 tcp_seq new_isn;
1563
1564 /* Seed if this is the first use, reseed if requested. */
1565 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1566 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1567 < (u_int)ticks))) {
707ad4ed 1568 read_random_unlimited(&isn_secret, sizeof isn_secret);
984263bc
MD
1569 isn_last_reseed = ticks;
1570 }
707ad4ed 1571
984263bc
MD
1572 /* Compute the md5 hash and return the ISN. */
1573 MD5Init(&isn_ctx);
707ad4ed
JH
1574 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1575 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
984263bc 1576#ifdef INET6
707ad4ed 1577 if (tp->t_inpcb->inp_vflag & INP_IPV6) {
984263bc
MD
1578 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1579 sizeof(struct in6_addr));
1580 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1581 sizeof(struct in6_addr));
1582 } else
1583#endif
1584 {
1585 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1586 sizeof(struct in_addr));
1587 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1588 sizeof(struct in_addr));
1589 }
1590 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1591 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1592 new_isn = (tcp_seq) md5_buffer[0];
1593 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
707ad4ed 1594 return (new_isn);
984263bc
MD
1595}
1596
1597/*
1598 * When a source quench is received, close congestion window
1599 * to one segment. We will gradually open it again as we proceed.
1600 */
1601void
71f385dc 1602tcp_quench(struct inpcb *inp, int error)
984263bc
MD
1603{
1604 struct tcpcb *tp = intotcpcb(inp);
1605
8acdb67c 1606 if (tp != NULL) {
984263bc 1607 tp->snd_cwnd = tp->t_maxseg;
8acdb67c
JH
1608 tp->snd_wacked = 0;
1609 }
984263bc
MD
1610}
1611
1612/*
1613 * When a specific ICMP unreachable message is received and the
1614 * connection state is SYN-SENT, drop the connection. This behavior
1615 * is controlled by the icmp_may_rst sysctl.
1616 */
1617void
71f385dc 1618tcp_drop_syn_sent(struct inpcb *inp, int error)
984263bc
MD
1619{
1620 struct tcpcb *tp = intotcpcb(inp);
1621
707ad4ed 1622 if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
71f385dc 1623 tcp_drop(tp, error);
984263bc
MD
1624}
1625
1626/*
7d448528 1627 * When a `need fragmentation' ICMP is received, update our idea of the MSS
984263bc
MD
1628 * based on the new value in the route. Also nudge TCP to send something,
1629 * since we know the packet we just sent was dropped.
1630 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1631 */
1632void
7d448528 1633tcp_mtudisc(struct inpcb *inp, int mtu)
984263bc
MD
1634{
1635 struct tcpcb *tp = intotcpcb(inp);
1636 struct rtentry *rt;
984263bc 1637 struct socket *so = inp->inp_socket;
7d448528 1638 int maxopd, mss;
984263bc 1639#ifdef INET6
707ad4ed
JH
1640 boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1641#else
1642 const boolean_t isipv6 = FALSE;
1643#endif
984263bc 1644
7d448528
JH
1645 if (tp == NULL)
1646 return;
1647
1648 /*
1649 * If no MTU is provided in the ICMP message, use the
1650 * next lower likely value, as specified in RFC 1191.
1651 */
1652 if (mtu == 0) {
1653 int oldmtu;
1654
1655 oldmtu = tp->t_maxopd +
1656 (isipv6 ?
1657 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1658 sizeof(struct tcpiphdr));
1659 mtu = ip_next_mtu(oldmtu, 0);
1660 }
1661
1662 if (isipv6)
1663 rt = tcp_rtlookup6(&inp->inp_inc);
1664 else
1665 rt = tcp_rtlookup(&inp->inp_inc);
1666 if (rt != NULL) {
1667 struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1668
1669 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1670 mtu = rt->rt_rmx.rmx_mtu;
1671
1672 maxopd = mtu -
1673 (isipv6 ?
1674 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1675 sizeof(struct tcpiphdr));
1676
984263bc 1677 /*
7d448528 1678 * XXX - The following conditional probably violates the TCP
984263bc
MD
1679 * spec. The problem is that, since we don't know the
1680 * other end's MSS, we are supposed to use a conservative
1681 * default. But, if we do that, then MTU discovery will
1682 * never actually take place, because the conservative
1683 * default is much less than the MTUs typically seen
1684 * on the Internet today. For the moment, we'll sweep
1685 * this under the carpet.
1686 *
1687 * The conservative default might not actually be a problem
1688 * if the only case this occurs is when sending an initial
1689 * SYN with options and data to a host we've never talked
1690 * to before. Then, they will reply with an MSS value which
1691 * will get recorded and the new parameters should get
1692 * recomputed. For Further Study.
1693 */
7d448528
JH
1694 if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1695 maxopd = taop->tao_mssopt;
1696 } else
1697 maxopd = mtu -
1698 (isipv6 ?
1699 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1700 sizeof(struct tcpiphdr));
1701
1702 if (tp->t_maxopd <= maxopd)
1703 return;
1704 tp->t_maxopd = maxopd;
1705
1706 mss = maxopd;
1707 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1708 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1709 mss -= TCPOLEN_TSTAMP_APPA;
1710
1711 if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1712 (TF_REQ_CC | TF_RCVD_CC))
1713 mss -= TCPOLEN_CC_APPA;
1714
1715 /* round down to multiple of MCLBYTES */
1716#if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1717 if (mss > MCLBYTES)
1718 mss &= ~(MCLBYTES - 1);
984263bc 1719#else
7d448528
JH
1720 if (mss > MCLBYTES)
1721 mss = (mss / MCLBYTES) * MCLBYTES;
984263bc 1722#endif
984263bc 1723
6d49aa6f
MD
1724 if (so->so_snd.ssb_hiwat < mss)
1725 mss = so->so_snd.ssb_hiwat;
984263bc 1726
7d448528
JH
1727 tp->t_maxseg = mss;
1728 tp->t_rtttime = 0;
1729 tp->snd_nxt = tp->snd_una;
1730 tcp_output(tp);
1731 tcpstat.tcps_mturesent++;
984263bc
MD
1732}
1733
1734/*
1735 * Look-up the routing entry to the peer of this inpcb. If no route
1736 * is found and it cannot be allocated the return NULL. This routine
1737 * is called by TCP routines that access the rmx structure and by tcp_mss
1738 * to get the interface MTU.
1739 */
1740struct rtentry *
707ad4ed 1741tcp_rtlookup(struct in_conninfo *inc)
984263bc 1742{
f23061d4 1743 struct route *ro = &inc->inc_route;
984263bc 1744
f23061d4 1745 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
984263bc
MD
1746 /* No route yet, so try to acquire one */
1747 if (inc->inc_faddr.s_addr != INADDR_ANY) {
88fcebeb
MD
1748 /*
1749 * unused portions of the structure MUST be zero'd
1750 * out because rtalloc() treats it as opaque data
1751 */
1752 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
984263bc
MD
1753 ro->ro_dst.sa_family = AF_INET;
1754 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1755 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1756 inc->inc_faddr;
1757 rtalloc(ro);
984263bc
MD
1758 }
1759 }
f23061d4 1760 return (ro->ro_rt);
984263bc
MD
1761}
1762
1763#ifdef INET6
1764struct rtentry *
707ad4ed 1765tcp_rtlookup6(struct in_conninfo *inc)
984263bc 1766{
f23061d4 1767 struct route_in6 *ro6 = &inc->inc6_route;
984263bc 1768
f23061d4 1769 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
984263bc
MD
1770 /* No route yet, so try to acquire one */
1771 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
88fcebeb
MD
1772 /*
1773 * unused portions of the structure MUST be zero'd
1774 * out because rtalloc() treats it as opaque data
1775 */
1776 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
984263bc
MD
1777 ro6->ro_dst.sin6_family = AF_INET6;
1778 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1779 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1780 rtalloc((struct route *)ro6);
984263bc
MD
1781 }
1782 }
f23061d4 1783 return (ro6->ro_rt);
984263bc 1784}
707ad4ed 1785#endif
984263bc
MD
1786
1787#ifdef IPSEC
1788/* compute ESP/AH header size for TCP, including outer IP header. */
1789size_t
707ad4ed 1790ipsec_hdrsiz_tcp(struct tcpcb *tp)
984263bc
MD
1791{
1792 struct inpcb *inp;
1793 struct mbuf *m;
1794 size_t hdrsiz;
1795 struct ip *ip;
984263bc
MD
1796 struct tcphdr *th;
1797
1798 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
707ad4ed 1799 return (0);
74f1caca 1800 MGETHDR(m, MB_DONTWAIT, MT_DATA);
984263bc 1801 if (!m)
707ad4ed 1802 return (0);
984263bc
MD
1803
1804#ifdef INET6
707ad4ed
JH
1805 if (inp->inp_vflag & INP_IPV6) {
1806 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1807
984263bc
MD
1808 th = (struct tcphdr *)(ip6 + 1);
1809 m->m_pkthdr.len = m->m_len =
707ad4ed 1810 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
984263bc
MD
1811 tcp_fillheaders(tp, ip6, th);
1812 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1813 } else
707ad4ed
JH
1814#endif
1815 {
1816 ip = mtod(m, struct ip *);
1817 th = (struct tcphdr *)(ip + 1);
1818 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1819 tcp_fillheaders(tp, ip, th);
1820 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1821 }
984263bc
MD
1822
1823 m_free(m);
707ad4ed 1824 return (hdrsiz);
984263bc 1825}
707ad4ed 1826#endif
984263bc
MD
1827
1828/*
1829 * Return a pointer to the cached information about the remote host.
1830 * The cached information is stored in the protocol specific part of
1831 * the route metrics.
1832 */
1833struct rmxp_tao *
707ad4ed 1834tcp_gettaocache(struct in_conninfo *inc)
984263bc
MD
1835{
1836 struct rtentry *rt;
1837
1838#ifdef INET6
1839 if (inc->inc_isipv6)
1840 rt = tcp_rtlookup6(inc);
1841 else
707ad4ed
JH
1842#endif
1843 rt = tcp_rtlookup(inc);
984263bc
MD
1844
1845 /* Make sure this is a host route and is up. */
1846 if (rt == NULL ||
707ad4ed
JH
1847 (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1848 return (NULL);
984263bc 1849
707ad4ed 1850 return (rmx_taop(rt->rt_rmx));
984263bc
MD
1851}
1852
1853/*
1854 * Clear all the TAO cache entries, called from tcp_init.
1855 *
1856 * XXX
1857 * This routine is just an empty one, because we assume that the routing
1858 * routing tables are initialized at the same time when TCP, so there is
1859 * nothing in the cache left over.
1860 */
1861static void
f3f70f0d 1862tcp_cleartaocache(void)
984263bc
MD
1863{
1864}
1865
1866/*
1867 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1868 *
1869 * This code attempts to calculate the bandwidth-delay product as a
1870 * means of determining the optimal window size to maximize bandwidth,
1871 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1872 * routers. This code also does a fairly good job keeping RTTs in check
1873 * across slow links like modems. We implement an algorithm which is very
1874 * similar (but not meant to be) TCP/Vegas. The code operates on the
1875 * transmitter side of a TCP connection and so only effects the transmit
1876 * side of the connection.
1877 *
1878 * BACKGROUND: TCP makes no provision for the management of buffer space
f23061d4 1879 * at the end points or at the intermediate routers and switches. A TCP
984263bc
MD
1880 * stream, whether using NewReno or not, will eventually buffer as
1881 * many packets as it is able and the only reason this typically works is
1882 * due to the fairly small default buffers made available for a connection
1883 * (typicaly 16K or 32K). As machines use larger windows and/or window
1884 * scaling it is now fairly easy for even a single TCP connection to blow-out
f23061d4 1885 * all available buffer space not only on the local interface, but on
984263bc
MD
1886 * intermediate routers and switches as well. NewReno makes a misguided
1887 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1888 * then backing off, then steadily increasing the window again until another
1889 * failure occurs, ad-infinitum. This results in terrible oscillation that
1890 * is only made worse as network loads increase and the idea of intentionally
1891 * blowing out network buffers is, frankly, a terrible way to manage network
1892 * resources.
1893 *
1894 * It is far better to limit the transmit window prior to the failure
1895 * condition being achieved. There are two general ways to do this: First
1896 * you can 'scan' through different transmit window sizes and locate the
1897 * point where the RTT stops increasing, indicating that you have filled the
1898 * pipe, then scan backwards until you note that RTT stops decreasing, then
1899 * repeat ad-infinitum. This method works in principle but has severe
1900 * implementation issues due to RTT variances, timer granularity, and
1901 * instability in the algorithm which can lead to many false positives and
1902 * create oscillations as well as interact badly with other TCP streams
1903 * implementing the same algorithm.
1904 *
1905 * The second method is to limit the window to the bandwidth delay product
1906 * of the link. This is the method we implement. RTT variances and our
f23061d4 1907 * own manipulation of the congestion window, bwnd, can potentially
984263bc
MD
1908 * destabilize the algorithm. For this reason we have to stabilize the
1909 * elements used to calculate the window. We do this by using the minimum
1910 * observed RTT, the long term average of the observed bandwidth, and
1911 * by adding two segments worth of slop. It isn't perfect but it is able
1912 * to react to changing conditions and gives us a very stable basis on
1913 * which to extend the algorithm.
1914 */
1915void
1916tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1917{
1918 u_long bw;
1919 u_long bwnd;
1920 int save_ticks;
421de19e 1921 int delta_ticks;
984263bc
MD
1922
1923 /*
1924 * If inflight_enable is disabled in the middle of a tcp connection,
1925 * make sure snd_bwnd is effectively disabled.
1926 */
707ad4ed 1927 if (!tcp_inflight_enable) {
984263bc
MD
1928 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1929 tp->snd_bandwidth = 0;
1930 return;
1931 }
1932
1933 /*
421de19e
MD
1934 * Validate the delta time. If a connection is new or has been idle
1935 * a long time we have to reset the bandwidth calculator.
1936 */
1937 save_ticks = ticks;
1938 delta_ticks = save_ticks - tp->t_bw_rtttime;
1939 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1940 tp->t_bw_rtttime = ticks;
1941 tp->t_bw_rtseq = ack_seq;
1942 if (tp->snd_bandwidth == 0)
1943 tp->snd_bandwidth = tcp_inflight_min;
1944 return;
1945 }
1946 if (delta_ticks == 0)
1947 return;
1948
1949 /*
1950 * Sanity check, plus ignore pure window update acks.
1951 */
1952 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1953 return;
1954
1955 /*
984263bc
MD
1956 * Figure out the bandwidth. Due to the tick granularity this
1957 * is a very rough number and it MUST be averaged over a fairly
1958 * long period of time. XXX we need to take into account a link
1959 * that is not using all available bandwidth, but for now our
1960 * slop will ramp us up if this case occurs and the bandwidth later
1961 * increases.
984263bc 1962 */
421de19e 1963 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
984263bc
MD
1964 tp->t_bw_rtttime = save_ticks;
1965 tp->t_bw_rtseq = ack_seq;
984263bc
MD
1966 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1967
1968 tp->snd_bandwidth = bw;
1969
1970 /*
1971 * Calculate the semi-static bandwidth delay product, plus two maximal
1972 * segments. The additional slop puts us squarely in the sweet
1973 * spot and also handles the bandwidth run-up case. Without the
1974 * slop we could be locking ourselves into a lower bandwidth.
1975 *
1976 * Situations Handled:
1977 * (1) Prevents over-queueing of packets on LANs, especially on
1978 * high speed LANs, allowing larger TCP buffers to be
f23061d4 1979 * specified, and also does a good job preventing
984263bc
MD
1980 * over-queueing of packets over choke points like modems
1981 * (at least for the transmit side).
1982 *
1983 * (2) Is able to handle changing network loads (bandwidth
1984 * drops so bwnd drops, bandwidth increases so bwnd
1985 * increases).
1986 *
1987 * (3) Theoretically should stabilize in the face of multiple
1988 * connections implementing the same algorithm (this may need
1989 * a little work).
1990 *
f23061d4 1991 * (4) Stability value (defaults to 20 = 2 maximal packets) can
984263bc
MD
1992 * be adjusted with a sysctl but typically only needs to be on
1993 * very slow connections. A value no smaller then 5 should
1994 * be used, but only reduce this default if you have no other
1995 * choice.
1996 */
707ad4ed
JH
1997
1998#define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
1999 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2000 tcp_inflight_stab * (int)tp->t_maxseg / 10;
984263bc
MD
2001#undef USERTT
2002
2003 if (tcp_inflight_debug > 0) {
2004 static int ltime;
2005 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2006 ltime = ticks;
a6ec04bc 2007 kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
707ad4ed 2008 tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
984263bc
MD
2009 }
2010 }
2011 if ((long)bwnd < tcp_inflight_min)
2012 bwnd = tcp_inflight_min;
2013 if (bwnd > tcp_inflight_max)
2014 bwnd = tcp_inflight_max;
2015 if ((long)bwnd < tp->t_maxseg * 2)
2016 bwnd = tp->t_maxseg * 2;
2017 tp->snd_bwnd = bwnd;
2018}