Change mbug allocation flags from M_ to MB_ to avoid confusion with malloc
[dragonfly.git] / sys / netproto / key / key.c
CommitLineData
984263bc 1/* $FreeBSD: src/sys/netkey/key.c,v 1.16.2.13 2002/07/24 18:17:40 ume Exp $ */
74f1caca 2/* $DragonFly: src/sys/netproto/key/key.c,v 1.8 2004/06/02 14:43:03 eirikn Exp $ */
984263bc
MD
3/* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
4
5/*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34/*
35 * This code is referd to RFC 2367
36 */
37
38#include "opt_inet.h"
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41
42#include <sys/types.h>
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/mbuf.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/malloc.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/errno.h>
54#include <sys/proc.h>
55#include <sys/queue.h>
56#include <sys/syslog.h>
57
58#include <net/if.h>
59#include <net/route.h>
60#include <net/raw_cb.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#include <netinet/in_var.h>
66
67#ifdef INET6
68#include <netinet/ip6.h>
69#include <netinet6/in6_var.h>
70#include <netinet6/ip6_var.h>
71#endif /* INET6 */
72
73#ifdef INET
74#include <netinet/in_pcb.h>
75#endif
76#ifdef INET6
77#include <netinet6/in6_pcb.h>
78#endif /* INET6 */
79
80#include <net/pfkeyv2.h>
1f2de5d4
MD
81#include "keydb.h"
82#include "key.h"
83#include "keysock.h"
84#include "key_debug.h"
984263bc
MD
85
86#include <netinet6/ipsec.h>
87#ifdef INET6
88#include <netinet6/ipsec6.h>
89#endif
90#include <netinet6/ah.h>
91#ifdef INET6
92#include <netinet6/ah6.h>
93#endif
94#ifdef IPSEC_ESP
95#include <netinet6/esp.h>
96#ifdef INET6
97#include <netinet6/esp6.h>
98#endif
99#endif
100#include <netinet6/ipcomp.h>
101#ifdef INET6
102#include <netinet6/ipcomp6.h>
103#endif
104
105#include <machine/stdarg.h>
106
107/* randomness */
108#include <sys/random.h>
109
110#include <net/net_osdep.h>
111
112#ifndef satosin
113#define satosin(s) ((struct sockaddr_in *)s)
114#endif
115
116#define FULLMASK 0xff
117
118/*
119 * Note on SA reference counting:
120 * - SAs that are not in DEAD state will have (total external reference + 1)
121 * following value in reference count field. they cannot be freed and are
122 * referenced from SA header.
123 * - SAs that are in DEAD state will have (total external reference)
124 * in reference count field. they are ready to be freed. reference from
125 * SA header will be removed in key_delsav(), when the reference count
126 * field hits 0 (= no external reference other than from SA header.
127 */
128
129u_int32_t key_debug_level = 0;
130static u_int key_spi_trycnt = 1000;
131static u_int32_t key_spi_minval = 0x100;
132static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
133static u_int32_t policy_id = 0;
134static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
135static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
136static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
137static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
138static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/
139
140static u_int32_t acq_seq = 0;
141static int key_tick_init_random = 0;
142
143static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
144static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
145static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
146 /* registed list */
147#ifndef IPSEC_NONBLOCK_ACQUIRE
148static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
149#endif
150static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
151
152struct key_cb key_cb;
153
154/* search order for SAs */
155static const u_int saorder_state_valid_prefer_old[] = {
156 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
157};
158static const u_int saorder_state_valid_prefer_new[] = {
159 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
160};
161static const u_int saorder_state_alive[] = {
162 /* except DEAD */
163 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
164};
165static const u_int saorder_state_any[] = {
166 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
167 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
168};
169
170static const int minsize[] = {
171 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
172 sizeof(struct sadb_sa), /* SADB_EXT_SA */
173 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
174 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
175 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
176 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
177 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
178 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
179 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
180 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
181 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
182 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
183 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
184 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
185 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
186 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
187 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
188 0, /* SADB_X_EXT_KMPRIVATE */
189 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
190 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
191};
192static const int maxsize[] = {
193 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
194 sizeof(struct sadb_sa), /* SADB_EXT_SA */
195 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
198 0, /* SADB_EXT_ADDRESS_SRC */
199 0, /* SADB_EXT_ADDRESS_DST */
200 0, /* SADB_EXT_ADDRESS_PROXY */
201 0, /* SADB_EXT_KEY_AUTH */
202 0, /* SADB_EXT_KEY_ENCRYPT */
203 0, /* SADB_EXT_IDENTITY_SRC */
204 0, /* SADB_EXT_IDENTITY_DST */
205 0, /* SADB_EXT_SENSITIVITY */
206 0, /* SADB_EXT_PROPOSAL */
207 0, /* SADB_EXT_SUPPORTED_AUTH */
208 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
209 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
210 0, /* SADB_X_EXT_KMPRIVATE */
211 0, /* SADB_X_EXT_POLICY */
212 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
213};
214
215static int ipsec_esp_keymin = 256;
216static int ipsec_esp_auth = 0;
217static int ipsec_ah_keymin = 128;
218
219#ifdef SYSCTL_DECL
220SYSCTL_DECL(_net_key);
221#endif
222
223SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
224 &key_debug_level, 0, "");
225
226/* max count of trial for the decision of spi value */
227SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
228 &key_spi_trycnt, 0, "");
229
230/* minimum spi value to allocate automatically. */
231SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
232 &key_spi_minval, 0, "");
233
234/* maximun spi value to allocate automatically. */
235SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
236 &key_spi_maxval, 0, "");
237
238/* interval to initialize randseed */
239SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
240 &key_int_random, 0, "");
241
242/* lifetime for larval SA */
243SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
244 &key_larval_lifetime, 0, "");
245
246/* counter for blocking to send SADB_ACQUIRE to IKEd */
247SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
248 &key_blockacq_count, 0, "");
249
250/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
251SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
252 &key_blockacq_lifetime, 0, "");
253
254/* ESP auth */
255SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
256 &ipsec_esp_auth, 0, "");
257
258/* minimum ESP key length */
259SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
260 &ipsec_esp_keymin, 0, "");
261
262/* minimum AH key length */
263SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
264 &ipsec_ah_keymin, 0, "");
265
266/* perfered old SA rather than new SA */
267SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
268 &key_preferred_oldsa, 0, "");
269
270#ifndef LIST_FOREACH
271#define LIST_FOREACH(elm, head, field) \
272 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
273#endif
274#define __LIST_CHAINED(elm) \
275 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
276#define LIST_INSERT_TAIL(head, elm, type, field) \
277do {\
278 struct type *curelm = LIST_FIRST(head); \
279 if (curelm == NULL) {\
280 LIST_INSERT_HEAD(head, elm, field); \
281 } else { \
282 while (LIST_NEXT(curelm, field)) \
283 curelm = LIST_NEXT(curelm, field);\
284 LIST_INSERT_AFTER(curelm, elm, field);\
285 }\
286} while (0)
287
288#define KEY_CHKSASTATE(head, sav, name) \
289do { \
290 if ((head) != (sav)) { \
291 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
292 (name), (head), (sav))); \
293 continue; \
294 } \
295} while (0)
296
297#define KEY_CHKSPDIR(head, sp, name) \
298do { \
299 if ((head) != (sp)) { \
300 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
301 "anyway continue.\n", \
302 (name), (head), (sp))); \
303 } \
304} while (0)
305
306#if 1
307#define KMALLOC(p, t, n) \
062eab50 308 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_INTWAIT | M_NULLOK))
984263bc
MD
309#define KFREE(p) \
310 free((caddr_t)(p), M_SECA);
311#else
312#define KMALLOC(p, t, n) \
313do { \
062eab50 314 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_INTWAIT | M_NULLOK)); \
984263bc
MD
315 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \
316 __FILE__, __LINE__, (p), #t, n); \
317} while (0)
318
319#define KFREE(p) \
320 do { \
321 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \
322 free((caddr_t)(p), M_SECA); \
323 } while (0)
324#endif
325
326/*
327 * set parameters into secpolicyindex buffer.
328 * Must allocate secpolicyindex buffer passed to this function.
329 */
330#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
331do { \
332 bzero((idx), sizeof(struct secpolicyindex)); \
333 (idx)->dir = (_dir); \
334 (idx)->prefs = (ps); \
335 (idx)->prefd = (pd); \
336 (idx)->ul_proto = (ulp); \
337 bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \
338 bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \
339} while (0)
340
341/*
342 * set parameters into secasindex buffer.
343 * Must allocate secasindex buffer before calling this function.
344 */
345#define KEY_SETSECASIDX(p, m, r, s, d, idx) \
346do { \
347 bzero((idx), sizeof(struct secasindex)); \
348 (idx)->proto = (p); \
349 (idx)->mode = (m); \
350 (idx)->reqid = (r); \
351 bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \
352 bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \
353} while (0)
354
355/* key statistics */
356struct _keystat {
357 u_long getspi_count; /* the avarage of count to try to get new SPI */
358} keystat;
359
360struct sadb_msghdr {
361 struct sadb_msg *msg;
362 struct sadb_ext *ext[SADB_EXT_MAX + 1];
363 int extoff[SADB_EXT_MAX + 1];
364 int extlen[SADB_EXT_MAX + 1];
365};
366
3e0c9cba
RG
367static struct secasvar *key_allocsa_policy (struct secasindex *);
368static void key_freesp_so (struct secpolicy **);
369static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int);
370static void key_delsp (struct secpolicy *);
371static struct secpolicy *key_getsp (struct secpolicyindex *);
372static struct secpolicy *key_getspbyid (u_int32_t);
373static u_int32_t key_newreqid (void);
374static struct mbuf *key_gather_mbuf (struct mbuf *,
375 const struct sadb_msghdr *, int, int, ...);
376static int key_spdadd (struct socket *, struct mbuf *,
377 const struct sadb_msghdr *);
378static u_int32_t key_getnewspid (void);
379static int key_spddelete (struct socket *, struct mbuf *,
380 const struct sadb_msghdr *);
381static int key_spddelete2 (struct socket *, struct mbuf *,
382 const struct sadb_msghdr *);
383static int key_spdget (struct socket *, struct mbuf *,
384 const struct sadb_msghdr *);
385static int key_spdflush (struct socket *, struct mbuf *,
386 const struct sadb_msghdr *);
387static int key_spddump (struct socket *, struct mbuf *,
388 const struct sadb_msghdr *);
389static struct mbuf *key_setdumpsp (struct secpolicy *,
390 u_int8_t, u_int32_t, u_int32_t);
391static u_int key_getspreqmsglen (struct secpolicy *);
392static int key_spdexpire (struct secpolicy *);
393static struct secashead *key_newsah (struct secasindex *);
394static void key_delsah (struct secashead *);
395static struct secasvar *key_newsav (struct mbuf *,
396 const struct sadb_msghdr *, struct secashead *, int *);
397static void key_delsav (struct secasvar *);
398static struct secashead *key_getsah (struct secasindex *);
399static struct secasvar *key_checkspidup (struct secasindex *, u_int32_t);
400static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
401static int key_setsaval (struct secasvar *, struct mbuf *,
402 const struct sadb_msghdr *);
403static int key_mature (struct secasvar *);
404static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
405 u_int8_t, u_int32_t, u_int32_t);
406static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
407 u_int32_t, pid_t, u_int16_t);
408static struct mbuf *key_setsadbsa (struct secasvar *);
409static struct mbuf *key_setsadbaddr (u_int16_t,
410 struct sockaddr *, u_int8_t, u_int16_t);
984263bc 411#if 0
3e0c9cba
RG
412static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, caddr_t,
413 int, u_int64_t);
984263bc 414#endif
3e0c9cba
RG
415static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int32_t);
416static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
417 u_int32_t);
418static void *key_newbuf (const void *, u_int);
984263bc 419#ifdef INET6
3e0c9cba 420static int key_ismyaddr6 (struct sockaddr_in6 *);
984263bc
MD
421#endif
422
423/* flags for key_cmpsaidx() */
424#define CMP_HEAD 1 /* protocol, addresses. */
425#define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
426#define CMP_REQID 3 /* additionally HEAD, reaid. */
427#define CMP_EXACTLY 4 /* all elements. */
428static int key_cmpsaidx
3e0c9cba 429 (struct secasindex *, struct secasindex *, int);
984263bc
MD
430
431static int key_cmpspidx_exactly
3e0c9cba 432 (struct secpolicyindex *, struct secpolicyindex *);
984263bc 433static int key_cmpspidx_withmask
3e0c9cba
RG
434 (struct secpolicyindex *, struct secpolicyindex *);
435static int key_sockaddrcmp (struct sockaddr *, struct sockaddr *, int);
436static int key_bbcmp (caddr_t, caddr_t, u_int);
437static void key_srandom (void);
438static u_int16_t key_satype2proto (u_int8_t);
439static u_int8_t key_proto2satype (u_int16_t);
440
441static int key_getspi (struct socket *, struct mbuf *,
442 const struct sadb_msghdr *);
443static u_int32_t key_do_getnewspi (struct sadb_spirange *,
444 struct secasindex *);
445static int key_update (struct socket *, struct mbuf *,
446 const struct sadb_msghdr *);
984263bc 447#ifdef IPSEC_DOSEQCHECK
3e0c9cba 448static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
984263bc 449#endif
3e0c9cba
RG
450static int key_add (struct socket *, struct mbuf *,
451 const struct sadb_msghdr *);
452static int key_setident (struct secashead *, struct mbuf *,
453 const struct sadb_msghdr *);
454static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
455 const struct sadb_msghdr *);
456static int key_delete (struct socket *, struct mbuf *,
457 const struct sadb_msghdr *);
458static int key_get (struct socket *, struct mbuf *,
459 const struct sadb_msghdr *);
460
461static void key_getcomb_setlifetime (struct sadb_comb *);
984263bc 462#ifdef IPSEC_ESP
3e0c9cba 463static struct mbuf *key_getcomb_esp (void);
984263bc 464#endif
3e0c9cba
RG
465static struct mbuf *key_getcomb_ah (void);
466static struct mbuf *key_getcomb_ipcomp (void);
467static struct mbuf *key_getprop (const struct secasindex *);
984263bc 468
3e0c9cba 469static int key_acquire (struct secasindex *, struct secpolicy *);
984263bc 470#ifndef IPSEC_NONBLOCK_ACQUIRE
3e0c9cba
RG
471static struct secacq *key_newacq (struct secasindex *);
472static struct secacq *key_getacq (struct secasindex *);
473static struct secacq *key_getacqbyseq (u_int32_t);
984263bc 474#endif
3e0c9cba
RG
475static struct secspacq *key_newspacq (struct secpolicyindex *);
476static struct secspacq *key_getspacq (struct secpolicyindex *);
477static int key_acquire2 (struct socket *, struct mbuf *,
478 const struct sadb_msghdr *);
479static int key_register (struct socket *, struct mbuf *,
480 const struct sadb_msghdr *);
481static int key_expire (struct secasvar *);
482static int key_flush (struct socket *, struct mbuf *,
483 const struct sadb_msghdr *);
484static int key_dump (struct socket *, struct mbuf *,
485 const struct sadb_msghdr *);
486static int key_promisc (struct socket *, struct mbuf *,
487 const struct sadb_msghdr *);
488static int key_senderror (struct socket *, struct mbuf *, int);
489static int key_validate_ext (const struct sadb_ext *, int);
490static int key_align (struct mbuf *, struct sadb_msghdr *);
984263bc 491#if 0
3e0c9cba
RG
492static const char *key_getfqdn (void);
493static const char *key_getuserfqdn (void);
984263bc 494#endif
3e0c9cba
RG
495static void key_sa_chgstate (struct secasvar *, u_int8_t);
496static struct mbuf *key_alloc_mbuf (int);
984263bc
MD
497
498/* %%% IPsec policy management */
499/*
500 * allocating a SP for OUTBOUND or INBOUND packet.
501 * Must call key_freesp() later.
502 * OUT: NULL: not found
503 * others: found and return the pointer.
504 */
505struct secpolicy *
506key_allocsp(spidx, dir)
507 struct secpolicyindex *spidx;
508 u_int dir;
509{
510 struct secpolicy *sp;
511 struct timeval tv;
512 int s;
513
514 /* sanity check */
515 if (spidx == NULL)
516 panic("key_allocsp: NULL pointer is passed.\n");
517
518 /* check direction */
519 switch (dir) {
520 case IPSEC_DIR_INBOUND:
521 case IPSEC_DIR_OUTBOUND:
522 break;
523 default:
524 panic("key_allocsp: Invalid direction is passed.\n");
525 }
526
527 /* get a SP entry */
528 s = splnet(); /*called from softclock()*/
529 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
530 printf("*** objects\n");
531 kdebug_secpolicyindex(spidx));
532
533 LIST_FOREACH(sp, &sptree[dir], chain) {
534 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
535 printf("*** in SPD\n");
536 kdebug_secpolicyindex(&sp->spidx));
537
538 if (sp->state == IPSEC_SPSTATE_DEAD)
539 continue;
540 if (key_cmpspidx_withmask(&sp->spidx, spidx))
541 goto found;
542 }
543
544 splx(s);
545 return NULL;
546
547found:
548 /* sanity check */
549 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
550
551 /* found a SPD entry */
552 microtime(&tv);
553 sp->lastused = tv.tv_sec;
554 sp->refcnt++;
555 splx(s);
556 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
557 printf("DP key_allocsp cause refcnt++:%d SP:%p\n",
558 sp->refcnt, sp));
559
560 return sp;
561}
562
563/*
564 * return a policy that matches this particular inbound packet.
565 * XXX slow
566 */
567struct secpolicy *
568key_gettunnel(osrc, odst, isrc, idst)
569 struct sockaddr *osrc, *odst, *isrc, *idst;
570{
571 struct secpolicy *sp;
572 const int dir = IPSEC_DIR_INBOUND;
573 struct timeval tv;
574 int s;
575 struct ipsecrequest *r1, *r2, *p;
576 struct sockaddr *os, *od, *is, *id;
577 struct secpolicyindex spidx;
578
579 if (isrc->sa_family != idst->sa_family) {
580 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
581 isrc->sa_family, idst->sa_family));
582 return NULL;
583 }
584
585 s = splnet(); /*called from softclock()*/
586 LIST_FOREACH(sp, &sptree[dir], chain) {
587 if (sp->state == IPSEC_SPSTATE_DEAD)
588 continue;
589
590 r1 = r2 = NULL;
591 for (p = sp->req; p; p = p->next) {
592 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
593 continue;
594
595 r1 = r2;
596 r2 = p;
597
598 if (!r1) {
599 /* here we look at address matches only */
600 spidx = sp->spidx;
601 if (isrc->sa_len > sizeof(spidx.src) ||
602 idst->sa_len > sizeof(spidx.dst))
603 continue;
604 bcopy(isrc, &spidx.src, isrc->sa_len);
605 bcopy(idst, &spidx.dst, idst->sa_len);
606 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
607 continue;
608 } else {
609 is = (struct sockaddr *)&r1->saidx.src;
610 id = (struct sockaddr *)&r1->saidx.dst;
611 if (key_sockaddrcmp(is, isrc, 0) ||
612 key_sockaddrcmp(id, idst, 0))
613 continue;
614 }
615
616 os = (struct sockaddr *)&r2->saidx.src;
617 od = (struct sockaddr *)&r2->saidx.dst;
618 if (key_sockaddrcmp(os, osrc, 0) ||
619 key_sockaddrcmp(od, odst, 0))
620 continue;
621
622 goto found;
623 }
624 }
625 splx(s);
626 return NULL;
627
628found:
629 microtime(&tv);
630 sp->lastused = tv.tv_sec;
631 sp->refcnt++;
632 splx(s);
633 return sp;
634}
635
636/*
637 * allocating an SA entry for an *OUTBOUND* packet.
638 * checking each request entries in SP, and acquire an SA if need.
639 * OUT: 0: there are valid requests.
640 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
641 */
642int
643key_checkrequest(isr, saidx)
644 struct ipsecrequest *isr;
645 struct secasindex *saidx;
646{
647 u_int level;
648 int error;
649
650 /* sanity check */
651 if (isr == NULL || saidx == NULL)
652 panic("key_checkrequest: NULL pointer is passed.\n");
653
654 /* check mode */
655 switch (saidx->mode) {
656 case IPSEC_MODE_TRANSPORT:
657 case IPSEC_MODE_TUNNEL:
658 break;
659 case IPSEC_MODE_ANY:
660 default:
661 panic("key_checkrequest: Invalid policy defined.\n");
662 }
663
664 /* get current level */
665 level = ipsec_get_reqlevel(isr);
666
667#if 0
668 /*
669 * We do allocate new SA only if the state of SA in the holder is
670 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
671 */
672 if (isr->sav != NULL) {
673 if (isr->sav->sah == NULL)
674 panic("key_checkrequest: sah is null.\n");
675 if (isr->sav == (struct secasvar *)LIST_FIRST(
676 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
677 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
678 printf("DP checkrequest calls free SA:%p\n",
679 isr->sav));
680 key_freesav(isr->sav);
681 isr->sav = NULL;
682 }
683 }
684#else
685 /*
686 * we free any SA stashed in the IPsec request because a different
687 * SA may be involved each time this request is checked, either
688 * because new SAs are being configured, or this request is
689 * associated with an unconnected datagram socket, or this request
690 * is associated with a system default policy.
691 *
692 * The operation may have negative impact to performance. We may
693 * want to check cached SA carefully, rather than picking new SA
694 * every time.
695 */
696 if (isr->sav != NULL) {
697 key_freesav(isr->sav);
698 isr->sav = NULL;
699 }
700#endif
701
702 /*
703 * new SA allocation if no SA found.
704 * key_allocsa_policy should allocate the oldest SA available.
705 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
706 */
707 if (isr->sav == NULL)
708 isr->sav = key_allocsa_policy(saidx);
709
710 /* When there is SA. */
711 if (isr->sav != NULL)
712 return 0;
713
714 /* there is no SA */
715 if ((error = key_acquire(saidx, isr->sp)) != 0) {
716 /* XXX What should I do ? */
717 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
718 "from key_acquire.\n", error));
719 return error;
720 }
721
722 return level == IPSEC_LEVEL_REQUIRE ? ENOENT : 0;
723}
724
725/*
726 * allocating a SA for policy entry from SAD.
727 * NOTE: searching SAD of aliving state.
728 * OUT: NULL: not found.
729 * others: found and return the pointer.
730 */
731static struct secasvar *
732key_allocsa_policy(saidx)
733 struct secasindex *saidx;
734{
735 struct secashead *sah;
736 struct secasvar *sav;
737 u_int stateidx, state;
738 const u_int *saorder_state_valid;
739 int arraysize;
740
741 LIST_FOREACH(sah, &sahtree, chain) {
742 if (sah->state == SADB_SASTATE_DEAD)
743 continue;
744 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
745 goto found;
746 }
747
748 return NULL;
749
750 found:
751
752 /*
753 * search a valid state list for outbound packet.
754 * This search order is important.
755 */
756 if (key_preferred_oldsa) {
757 saorder_state_valid = saorder_state_valid_prefer_old;
758 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
759 } else {
760 saorder_state_valid = saorder_state_valid_prefer_new;
761 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
762 }
763
764 for (stateidx = 0; stateidx < arraysize; stateidx++) {
765
766 state = saorder_state_valid[stateidx];
767
768 sav = key_do_allocsa_policy(sah, state);
769 if (sav != NULL)
770 return sav;
771 }
772
773 return NULL;
774}
775
776/*
777 * searching SAD with direction, protocol, mode and state.
778 * called by key_allocsa_policy().
779 * OUT:
780 * NULL : not found
781 * others : found, pointer to a SA.
782 */
783static struct secasvar *
784key_do_allocsa_policy(sah, state)
785 struct secashead *sah;
786 u_int state;
787{
788 struct secasvar *sav, *nextsav, *candidate, *d;
789
790 /* initilize */
791 candidate = NULL;
792
793 for (sav = LIST_FIRST(&sah->savtree[state]);
794 sav != NULL;
795 sav = nextsav) {
796
797 nextsav = LIST_NEXT(sav, chain);
798
799 /* sanity check */
800 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
801
802 /* initialize */
803 if (candidate == NULL) {
804 candidate = sav;
805 continue;
806 }
807
808 /* Which SA is the better ? */
809
810 /* sanity check 2 */
811 if (candidate->lft_c == NULL || sav->lft_c == NULL)
812 panic("key_do_allocsa_policy: "
813 "lifetime_current is NULL.\n");
814
815 /* What the best method is to compare ? */
816 if (key_preferred_oldsa) {
817 if (candidate->lft_c->sadb_lifetime_addtime >
818 sav->lft_c->sadb_lifetime_addtime) {
819 candidate = sav;
820 }
821 continue;
822 /*NOTREACHED*/
823 }
824
825 /* prefered new sa rather than old sa */
826 if (candidate->lft_c->sadb_lifetime_addtime <
827 sav->lft_c->sadb_lifetime_addtime) {
828 d = candidate;
829 candidate = sav;
830 } else
831 d = sav;
832
833 /*
834 * prepared to delete the SA when there is more
835 * suitable candidate and the lifetime of the SA is not
836 * permanent.
837 */
838 if (d->lft_c->sadb_lifetime_addtime != 0) {
839 struct mbuf *m, *result;
840
841 key_sa_chgstate(d, SADB_SASTATE_DEAD);
842
843 m = key_setsadbmsg(SADB_DELETE, 0,
844 d->sah->saidx.proto, 0, 0, d->refcnt - 1);
845 if (!m)
846 goto msgfail;
847 result = m;
848
849 /* set sadb_address for saidx's. */
850 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
851 (struct sockaddr *)&d->sah->saidx.src,
852 d->sah->saidx.src.ss_len << 3,
853 IPSEC_ULPROTO_ANY);
854 if (!m)
855 goto msgfail;
856 m_cat(result, m);
857
858 /* set sadb_address for saidx's. */
859 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
860 (struct sockaddr *)&d->sah->saidx.src,
861 d->sah->saidx.src.ss_len << 3,
862 IPSEC_ULPROTO_ANY);
863 if (!m)
864 goto msgfail;
865 m_cat(result, m);
866
867 /* create SA extension */
868 m = key_setsadbsa(d);
869 if (!m)
870 goto msgfail;
871 m_cat(result, m);
872
873 if (result->m_len < sizeof(struct sadb_msg)) {
874 result = m_pullup(result,
875 sizeof(struct sadb_msg));
876 if (result == NULL)
877 goto msgfail;
878 }
879
880 result->m_pkthdr.len = 0;
881 for (m = result; m; m = m->m_next)
882 result->m_pkthdr.len += m->m_len;
883 mtod(result, struct sadb_msg *)->sadb_msg_len =
884 PFKEY_UNIT64(result->m_pkthdr.len);
885
886 if (key_sendup_mbuf(NULL, result,
887 KEY_SENDUP_REGISTERED))
888 goto msgfail;
889 msgfail:
890 key_freesav(d);
891 }
892 }
893
894 if (candidate) {
895 candidate->refcnt++;
896 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
897 printf("DP allocsa_policy cause "
898 "refcnt++:%d SA:%p\n",
899 candidate->refcnt, candidate));
900 }
901 return candidate;
902}
903
904/*
905 * allocating a SA entry for a *INBOUND* packet.
906 * Must call key_freesav() later.
907 * OUT: positive: pointer to a sav.
908 * NULL: not found, or error occured.
909 *
910 * In the comparison, source address will be ignored for RFC2401 conformance.
911 * To quote, from section 4.1:
912 * A security association is uniquely identified by a triple consisting
913 * of a Security Parameter Index (SPI), an IP Destination Address, and a
914 * security protocol (AH or ESP) identifier.
915 * Note that, however, we do need to keep source address in IPsec SA.
916 * IKE specification and PF_KEY specification do assume that we
917 * keep source address in IPsec SA. We see a tricky situation here.
918 */
919struct secasvar *
920key_allocsa(family, src, dst, proto, spi)
921 u_int family, proto;
922 caddr_t src, dst;
923 u_int32_t spi;
924{
925 struct secashead *sah;
926 struct secasvar *sav;
927 u_int stateidx, state;
928 struct sockaddr_in sin;
929 struct sockaddr_in6 sin6;
930 int s;
931 const u_int *saorder_state_valid;
932 int arraysize;
933
934 /* sanity check */
935 if (src == NULL || dst == NULL)
936 panic("key_allocsa: NULL pointer is passed.\n");
937
938 /*
939 * when both systems employ similar strategy to use a SA.
940 * the search order is important even in the inbound case.
941 */
942 if (key_preferred_oldsa) {
943 saorder_state_valid = saorder_state_valid_prefer_old;
944 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
945 } else {
946 saorder_state_valid = saorder_state_valid_prefer_new;
947 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
948 }
949
950 /*
951 * searching SAD.
952 * XXX: to be checked internal IP header somewhere. Also when
953 * IPsec tunnel packet is received. But ESP tunnel mode is
954 * encrypted so we can't check internal IP header.
955 */
956 s = splnet(); /*called from softclock()*/
957 LIST_FOREACH(sah, &sahtree, chain) {
958 /*
959 * search a valid state list for inbound packet.
960 * the search order is not important.
961 */
962 for (stateidx = 0; stateidx < arraysize; stateidx++) {
963 state = saorder_state_valid[stateidx];
964 LIST_FOREACH(sav, &sah->savtree[state], chain) {
965 /* sanity check */
966 KEY_CHKSASTATE(sav->state, state, "key_allocsav");
967 if (proto != sav->sah->saidx.proto)
968 continue;
969 if (spi != sav->spi)
970 continue;
971 if (family != sav->sah->saidx.src.ss_family ||
972 family != sav->sah->saidx.dst.ss_family)
973 continue;
974
975#if 0 /* don't check src */
976 /* check src address */
977 switch (family) {
978 case AF_INET:
979 bzero(&sin, sizeof(sin));
980 sin.sin_family = AF_INET;
981 sin.sin_len = sizeof(sin);
982 bcopy(src, &sin.sin_addr,
983 sizeof(sin.sin_addr));
984 if (key_sockaddrcmp((struct sockaddr*)&sin,
985 (struct sockaddr *)&sav->sah->saidx.src, 0) != 0)
986 continue;
987
988 break;
989 case AF_INET6:
990 bzero(&sin6, sizeof(sin6));
991 sin6.sin6_family = AF_INET6;
992 sin6.sin6_len = sizeof(sin6);
993 bcopy(src, &sin6.sin6_addr,
994 sizeof(sin6.sin6_addr));
995 if (IN6_IS_SCOPE_LINKLOCAL(&sin6.sin6_addr)) {
996 /* kame fake scopeid */
997 sin6.sin6_scope_id =
998 ntohs(sin6.sin6_addr.s6_addr16[1]);
999 sin6.sin6_addr.s6_addr16[1] = 0;
1000 }
1001 if (key_sockaddrcmp((struct sockaddr*)&sin6,
1002 (struct sockaddr *)&sav->sah->saidx.src, 0) != 0)
1003 continue;
1004 break;
1005 default:
1006 ipseclog((LOG_DEBUG, "key_allocsa: "
1007 "unknown address family=%d.\n",
1008 family));
1009 continue;
1010 }
1011
1012#endif
1013 /* check dst address */
1014 switch (family) {
1015 case AF_INET:
1016 bzero(&sin, sizeof(sin));
1017 sin.sin_family = AF_INET;
1018 sin.sin_len = sizeof(sin);
1019 bcopy(dst, &sin.sin_addr,
1020 sizeof(sin.sin_addr));
1021 if (key_sockaddrcmp((struct sockaddr*)&sin,
1022 (struct sockaddr *)&sav->sah->saidx.dst, 0) != 0)
1023 continue;
1024
1025 break;
1026 case AF_INET6:
1027 bzero(&sin6, sizeof(sin6));
1028 sin6.sin6_family = AF_INET6;
1029 sin6.sin6_len = sizeof(sin6);
1030 bcopy(dst, &sin6.sin6_addr,
1031 sizeof(sin6.sin6_addr));
1032 if (IN6_IS_SCOPE_LINKLOCAL(&sin6.sin6_addr)) {
1033 /* kame fake scopeid */
1034 sin6.sin6_scope_id =
1035 ntohs(sin6.sin6_addr.s6_addr16[1]);
1036 sin6.sin6_addr.s6_addr16[1] = 0;
1037 }
1038 if (key_sockaddrcmp((struct sockaddr*)&sin6,
1039 (struct sockaddr *)&sav->sah->saidx.dst, 0) != 0)
1040 continue;
1041 break;
1042 default:
1043 ipseclog((LOG_DEBUG, "key_allocsa: "
1044 "unknown address family=%d.\n",
1045 family));
1046 continue;
1047 }
1048
1049 goto found;
1050 }
1051 }
1052 }
1053
1054 /* not found */
1055 splx(s);
1056 return NULL;
1057
1058found:
1059 sav->refcnt++;
1060 splx(s);
1061 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1062 printf("DP allocsa cause refcnt++:%d SA:%p\n",
1063 sav->refcnt, sav));
1064 return sav;
1065}
1066
1067/*
1068 * Must be called after calling key_allocsp().
1069 * For both the packet without socket and key_freeso().
1070 */
1071void
1072key_freesp(sp)
1073 struct secpolicy *sp;
1074{
1075 /* sanity check */
1076 if (sp == NULL)
1077 panic("key_freesp: NULL pointer is passed.\n");
1078
1079 sp->refcnt--;
1080 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1081 printf("DP freesp cause refcnt--:%d SP:%p\n",
1082 sp->refcnt, sp));
1083
1084 if (sp->refcnt == 0)
1085 key_delsp(sp);
1086
1087 return;
1088}
1089
1090/*
1091 * Must be called after calling key_allocsp().
1092 * For the packet with socket.
1093 */
1094void
1095key_freeso(so)
1096 struct socket *so;
1097{
1098 /* sanity check */
1099 if (so == NULL)
1100 panic("key_freeso: NULL pointer is passed.\n");
1101
1102 switch (so->so_proto->pr_domain->dom_family) {
1103#ifdef INET
1104 case PF_INET:
1105 {
1106 struct inpcb *pcb = sotoinpcb(so);
1107
1108 /* Does it have a PCB ? */
1109 if (pcb == NULL)
1110 return;
1111 key_freesp_so(&pcb->inp_sp->sp_in);
1112 key_freesp_so(&pcb->inp_sp->sp_out);
1113 }
1114 break;
1115#endif
1116#ifdef INET6
1117 case PF_INET6:
1118 {
1119#ifdef HAVE_NRL_INPCB
1120 struct inpcb *pcb = sotoinpcb(so);
1121
1122 /* Does it have a PCB ? */
1123 if (pcb == NULL)
1124 return;
1125 key_freesp_so(&pcb->inp_sp->sp_in);
1126 key_freesp_so(&pcb->inp_sp->sp_out);
1127#else
1128 struct in6pcb *pcb = sotoin6pcb(so);
1129
1130 /* Does it have a PCB ? */
1131 if (pcb == NULL)
1132 return;
1133 key_freesp_so(&pcb->in6p_sp->sp_in);
1134 key_freesp_so(&pcb->in6p_sp->sp_out);
1135#endif
1136 }
1137 break;
1138#endif /* INET6 */
1139 default:
1140 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n",
1141 so->so_proto->pr_domain->dom_family));
1142 return;
1143 }
1144
1145 return;
1146}
1147
1148static void
1149key_freesp_so(sp)
1150 struct secpolicy **sp;
1151{
1152 /* sanity check */
1153 if (sp == NULL || *sp == NULL)
1154 panic("key_freesp_so: sp == NULL\n");
1155
1156 switch ((*sp)->policy) {
1157 case IPSEC_POLICY_IPSEC:
1158 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1159 printf("DP freeso calls free SP:%p\n", *sp));
1160 key_freesp(*sp);
1161 *sp = NULL;
1162 break;
1163 case IPSEC_POLICY_ENTRUST:
1164 case IPSEC_POLICY_BYPASS:
1165 return;
1166 default:
1167 panic("key_freesp_so: Invalid policy found %d", (*sp)->policy);
1168 }
1169
1170 return;
1171}
1172
1173/*
1174 * Must be called after calling key_allocsa().
1175 * This function is called by key_freesp() to free some SA allocated
1176 * for a policy.
1177 */
1178void
1179key_freesav(sav)
1180 struct secasvar *sav;
1181{
1182 /* sanity check */
1183 if (sav == NULL)
1184 panic("key_freesav: NULL pointer is passed.\n");
1185
1186 sav->refcnt--;
1187 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1188 printf("DP freesav cause refcnt--:%d SA:%p SPI %u\n",
1189 sav->refcnt, sav, (u_int32_t)ntohl(sav->spi)));
1190
1191 if (sav->refcnt == 0)
1192 key_delsav(sav);
1193
1194 return;
1195}
1196
1197/* %%% SPD management */
1198/*
1199 * free security policy entry.
1200 */
1201static void
1202key_delsp(sp)
1203 struct secpolicy *sp;
1204{
1205 int s;
1206
1207 /* sanity check */
1208 if (sp == NULL)
1209 panic("key_delsp: NULL pointer is passed.\n");
1210
1211 sp->state = IPSEC_SPSTATE_DEAD;
1212
1213 if (sp->refcnt > 0)
1214 return; /* can't free */
1215
1216 s = splnet(); /*called from softclock()*/
1217 /* remove from SP index */
1218 if (__LIST_CHAINED(sp))
1219 LIST_REMOVE(sp, chain);
1220
1221 {
1222 struct ipsecrequest *isr = sp->req, *nextisr;
1223
1224 while (isr != NULL) {
1225 if (isr->sav != NULL) {
1226 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1227 printf("DP delsp calls free SA:%p\n",
1228 isr->sav));
1229 key_freesav(isr->sav);
1230 isr->sav = NULL;
1231 }
1232
1233 nextisr = isr->next;
1234 KFREE(isr);
1235 isr = nextisr;
1236 }
1237 }
1238
1239 keydb_delsecpolicy(sp);
1240
1241 splx(s);
1242
1243 return;
1244}
1245
1246/*
1247 * search SPD
1248 * OUT: NULL : not found
1249 * others : found, pointer to a SP.
1250 */
1251static struct secpolicy *
1252key_getsp(spidx)
1253 struct secpolicyindex *spidx;
1254{
1255 struct secpolicy *sp;
1256
1257 /* sanity check */
1258 if (spidx == NULL)
1259 panic("key_getsp: NULL pointer is passed.\n");
1260
1261 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1262 if (sp->state == IPSEC_SPSTATE_DEAD)
1263 continue;
1264 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1265 sp->refcnt++;
1266 return sp;
1267 }
1268 }
1269
1270 return NULL;
1271}
1272
1273/*
1274 * get SP by index.
1275 * OUT: NULL : not found
1276 * others : found, pointer to a SP.
1277 */
1278static struct secpolicy *
1279key_getspbyid(id)
1280 u_int32_t id;
1281{
1282 struct secpolicy *sp;
1283
1284 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1285 if (sp->state == IPSEC_SPSTATE_DEAD)
1286 continue;
1287 if (sp->id == id) {
1288 sp->refcnt++;
1289 return sp;
1290 }
1291 }
1292
1293 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1294 if (sp->state == IPSEC_SPSTATE_DEAD)
1295 continue;
1296 if (sp->id == id) {
1297 sp->refcnt++;
1298 return sp;
1299 }
1300 }
1301
1302 return NULL;
1303}
1304
1305struct secpolicy *
1306key_newsp()
1307{
1308 struct secpolicy *newsp = NULL;
1309
1310 newsp = keydb_newsecpolicy();
1311 if (!newsp)
1312 return newsp;
1313
1314 newsp->refcnt = 1;
1315 newsp->req = NULL;
1316
1317 return newsp;
1318}
1319
1320/*
1321 * create secpolicy structure from sadb_x_policy structure.
1322 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1323 * so must be set properly later.
1324 */
1325struct secpolicy *
1326key_msg2sp(xpl0, len, error)
1327 struct sadb_x_policy *xpl0;
1328 size_t len;
1329 int *error;
1330{
1331 struct secpolicy *newsp;
1332
1333 /* sanity check */
1334 if (xpl0 == NULL)
1335 panic("key_msg2sp: NULL pointer was passed.\n");
1336 if (len < sizeof(*xpl0))
1337 panic("key_msg2sp: invalid length.\n");
1338 if (len != PFKEY_EXTLEN(xpl0)) {
1339 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
1340 *error = EINVAL;
1341 return NULL;
1342 }
1343
1344 if ((newsp = key_newsp()) == NULL) {
1345 *error = ENOBUFS;
1346 return NULL;
1347 }
1348
1349 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1350 newsp->policy = xpl0->sadb_x_policy_type;
1351
1352 /* check policy */
1353 switch (xpl0->sadb_x_policy_type) {
1354 case IPSEC_POLICY_DISCARD:
1355 case IPSEC_POLICY_NONE:
1356 case IPSEC_POLICY_ENTRUST:
1357 case IPSEC_POLICY_BYPASS:
1358 newsp->req = NULL;
1359 break;
1360
1361 case IPSEC_POLICY_IPSEC:
1362 {
1363 int tlen;
1364 struct sadb_x_ipsecrequest *xisr;
1365 struct ipsecrequest **p_isr = &newsp->req;
1366
1367 /* validity check */
1368 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1369 ipseclog((LOG_DEBUG,
1370 "key_msg2sp: Invalid msg length.\n"));
1371 key_freesp(newsp);
1372 *error = EINVAL;
1373 return NULL;
1374 }
1375
1376 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1377 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1378
1379 while (tlen > 0) {
1380
1381 /* length check */
1382 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1383 ipseclog((LOG_DEBUG, "key_msg2sp: "
1384 "invalid ipsecrequest length.\n"));
1385 key_freesp(newsp);
1386 *error = EINVAL;
1387 return NULL;
1388 }
1389
1390 /* allocate request buffer */
1391 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr));
1392 if ((*p_isr) == NULL) {
1393 ipseclog((LOG_DEBUG,
1394 "key_msg2sp: No more memory.\n"));
1395 key_freesp(newsp);
1396 *error = ENOBUFS;
1397 return NULL;
1398 }
1399 bzero(*p_isr, sizeof(**p_isr));
1400
1401 /* set values */
1402 (*p_isr)->next = NULL;
1403
1404 switch (xisr->sadb_x_ipsecrequest_proto) {
1405 case IPPROTO_ESP:
1406 case IPPROTO_AH:
1407 case IPPROTO_IPCOMP:
1408 break;
1409 default:
1410 ipseclog((LOG_DEBUG,
1411 "key_msg2sp: invalid proto type=%u\n",
1412 xisr->sadb_x_ipsecrequest_proto));
1413 key_freesp(newsp);
1414 *error = EPROTONOSUPPORT;
1415 return NULL;
1416 }
1417 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1418
1419 switch (xisr->sadb_x_ipsecrequest_mode) {
1420 case IPSEC_MODE_TRANSPORT:
1421 case IPSEC_MODE_TUNNEL:
1422 break;
1423 case IPSEC_MODE_ANY:
1424 default:
1425 ipseclog((LOG_DEBUG,
1426 "key_msg2sp: invalid mode=%u\n",
1427 xisr->sadb_x_ipsecrequest_mode));
1428 key_freesp(newsp);
1429 *error = EINVAL;
1430 return NULL;
1431 }
1432 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1433
1434 switch (xisr->sadb_x_ipsecrequest_level) {
1435 case IPSEC_LEVEL_DEFAULT:
1436 case IPSEC_LEVEL_USE:
1437 case IPSEC_LEVEL_REQUIRE:
1438 break;
1439 case IPSEC_LEVEL_UNIQUE:
1440 /* validity check */
1441 /*
1442 * If range violation of reqid, kernel will
1443 * update it, don't refuse it.
1444 */
1445 if (xisr->sadb_x_ipsecrequest_reqid
1446 > IPSEC_MANUAL_REQID_MAX) {
1447 ipseclog((LOG_DEBUG,
1448 "key_msg2sp: reqid=%d range "
1449 "violation, updated by kernel.\n",
1450 xisr->sadb_x_ipsecrequest_reqid));
1451 xisr->sadb_x_ipsecrequest_reqid = 0;
1452 }
1453
1454 /* allocate new reqid id if reqid is zero. */
1455 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1456 u_int32_t reqid;
1457 if ((reqid = key_newreqid()) == 0) {
1458 key_freesp(newsp);
1459 *error = ENOBUFS;
1460 return NULL;
1461 }
1462 (*p_isr)->saidx.reqid = reqid;
1463 xisr->sadb_x_ipsecrequest_reqid = reqid;
1464 } else {
1465 /* set it for manual keying. */
1466 (*p_isr)->saidx.reqid =
1467 xisr->sadb_x_ipsecrequest_reqid;
1468 }
1469 break;
1470
1471 default:
1472 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
1473 xisr->sadb_x_ipsecrequest_level));
1474 key_freesp(newsp);
1475 *error = EINVAL;
1476 return NULL;
1477 }
1478 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1479
1480 /* set IP addresses if there */
1481 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1482 struct sockaddr *paddr;
1483
1484 paddr = (struct sockaddr *)(xisr + 1);
1485
1486 /* validity check */
1487 if (paddr->sa_len
1488 > sizeof((*p_isr)->saidx.src)) {
1489 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1490 "address length.\n"));
1491 key_freesp(newsp);
1492 *error = EINVAL;
1493 return NULL;
1494 }
1495 bcopy(paddr, &(*p_isr)->saidx.src,
1496 paddr->sa_len);
1497
1498 paddr = (struct sockaddr *)((caddr_t)paddr
1499 + paddr->sa_len);
1500
1501 /* validity check */
1502 if (paddr->sa_len
1503 > sizeof((*p_isr)->saidx.dst)) {
1504 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
1505 "address length.\n"));
1506 key_freesp(newsp);
1507 *error = EINVAL;
1508 return NULL;
1509 }
1510 bcopy(paddr, &(*p_isr)->saidx.dst,
1511 paddr->sa_len);
1512 }
1513
1514 (*p_isr)->sav = NULL;
1515 (*p_isr)->sp = newsp;
1516
1517 /* initialization for the next. */
1518 p_isr = &(*p_isr)->next;
1519 tlen -= xisr->sadb_x_ipsecrequest_len;
1520
1521 /* validity check */
1522 if (tlen < 0) {
1523 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
1524 key_freesp(newsp);
1525 *error = EINVAL;
1526 return NULL;
1527 }
1528
1529 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1530 + xisr->sadb_x_ipsecrequest_len);
1531 }
1532 }
1533 break;
1534 default:
1535 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
1536 key_freesp(newsp);
1537 *error = EINVAL;
1538 return NULL;
1539 }
1540
1541 *error = 0;
1542 return newsp;
1543}
1544
1545static u_int32_t
1546key_newreqid()
1547{
1548 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1549
1550 auto_reqid = (auto_reqid == ~0
1551 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1552
1553 /* XXX should be unique check */
1554
1555 return auto_reqid;
1556}
1557
1558/*
1559 * copy secpolicy struct to sadb_x_policy structure indicated.
1560 */
1561struct mbuf *
1562key_sp2msg(sp)
1563 struct secpolicy *sp;
1564{
1565 struct sadb_x_policy *xpl;
1566 int tlen;
1567 caddr_t p;
1568 struct mbuf *m;
1569
1570 /* sanity check. */
1571 if (sp == NULL)
1572 panic("key_sp2msg: NULL pointer was passed.\n");
1573
1574 tlen = key_getspreqmsglen(sp);
1575
1576 m = key_alloc_mbuf(tlen);
1577 if (!m || m->m_next) { /*XXX*/
1578 if (m)
1579 m_freem(m);
1580 return NULL;
1581 }
1582
1583 m->m_len = tlen;
1584 m->m_next = NULL;
1585 xpl = mtod(m, struct sadb_x_policy *);
1586 bzero(xpl, tlen);
1587
1588 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1589 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1590 xpl->sadb_x_policy_type = sp->policy;
1591 xpl->sadb_x_policy_dir = sp->spidx.dir;
1592 xpl->sadb_x_policy_id = sp->id;
1593 p = (caddr_t)xpl + sizeof(*xpl);
1594
1595 /* if is the policy for ipsec ? */
1596 if (sp->policy == IPSEC_POLICY_IPSEC) {
1597 struct sadb_x_ipsecrequest *xisr;
1598 struct ipsecrequest *isr;
1599
1600 for (isr = sp->req; isr != NULL; isr = isr->next) {
1601
1602 xisr = (struct sadb_x_ipsecrequest *)p;
1603
1604 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1605 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1606 xisr->sadb_x_ipsecrequest_level = isr->level;
1607 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1608
1609 p += sizeof(*xisr);
1610 bcopy(&isr->saidx.src, p, isr->saidx.src.ss_len);
1611 p += isr->saidx.src.ss_len;
1612 bcopy(&isr->saidx.dst, p, isr->saidx.dst.ss_len);
1613 p += isr->saidx.src.ss_len;
1614
1615 xisr->sadb_x_ipsecrequest_len =
1616 PFKEY_ALIGN8(sizeof(*xisr)
1617 + isr->saidx.src.ss_len
1618 + isr->saidx.dst.ss_len);
1619 }
1620 }
1621
1622 return m;
1623}
1624
1625/* m will not be freed nor modified */
1626static struct mbuf *
984263bc
MD
1627key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1628 int ndeep, int nitem, ...)
984263bc 1629{
e2565a42 1630 __va_list ap;
984263bc
MD
1631 int idx;
1632 int i;
1633 struct mbuf *result = NULL, *n;
1634 int len;
1635
1636 if (m == NULL || mhp == NULL)
1637 panic("null pointer passed to key_gather");
1638
e2565a42 1639 __va_start(ap, nitem);
984263bc 1640 for (i = 0; i < nitem; i++) {
e2565a42 1641 idx = __va_arg(ap, int);
984263bc
MD
1642 if (idx < 0 || idx > SADB_EXT_MAX)
1643 goto fail;
1644 /* don't attempt to pull empty extension */
1645 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1646 continue;
1647 if (idx != SADB_EXT_RESERVED &&
1648 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1649 continue;
1650
1651 if (idx == SADB_EXT_RESERVED) {
1652 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1653#ifdef DIAGNOSTIC
1654 if (len > MHLEN)
1655 panic("assumption failed");
1656#endif
74f1caca 1657 MGETHDR(n, MB_DONTWAIT, MT_DATA);
984263bc
MD
1658 if (!n)
1659 goto fail;
1660 n->m_len = len;
1661 n->m_next = NULL;
1662 m_copydata(m, 0, sizeof(struct sadb_msg),
1663 mtod(n, caddr_t));
1664 } else if (i < ndeep) {
1665 len = mhp->extlen[idx];
1666 n = key_alloc_mbuf(len);
1667 if (!n || n->m_next) { /*XXX*/
1668 if (n)
1669 m_freem(n);
1670 goto fail;
1671 }
1672 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1673 mtod(n, caddr_t));
1674 } else {
1675 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
74f1caca 1676 MB_DONTWAIT);
984263bc
MD
1677 }
1678 if (n == NULL)
1679 goto fail;
1680
1681 if (result)
1682 m_cat(result, n);
1683 else
1684 result = n;
1685 }
e2565a42 1686 __va_end(ap);
984263bc
MD
1687
1688 if ((result->m_flags & M_PKTHDR) != 0) {
1689 result->m_pkthdr.len = 0;
1690 for (n = result; n; n = n->m_next)
1691 result->m_pkthdr.len += n->m_len;
1692 }
1693
1694 return result;
1695
1696fail:
1697 m_freem(result);
1698 return NULL;
1699}
1700
1701/*
1702 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1703 * add a entry to SP database, when received
1704 * <base, address(SD), (lifetime(H),) policy>
1705 * from the user(?).
1706 * Adding to SP database,
1707 * and send
1708 * <base, address(SD), (lifetime(H),) policy>
1709 * to the socket which was send.
1710 *
1711 * SPDADD set a unique policy entry.
1712 * SPDSETIDX like SPDADD without a part of policy requests.
1713 * SPDUPDATE replace a unique policy entry.
1714 *
1715 * m will always be freed.
1716 */
1717static int
1718key_spdadd(so, m, mhp)
1719 struct socket *so;
1720 struct mbuf *m;
1721 const struct sadb_msghdr *mhp;
1722{
1723 struct sadb_address *src0, *dst0;
1724 struct sadb_x_policy *xpl0, *xpl;
1725 struct sadb_lifetime *lft = NULL;
1726 struct secpolicyindex spidx;
1727 struct secpolicy *newsp;
1728 struct timeval tv;
1729 int error;
1730
1731 /* sanity check */
1732 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1733 panic("key_spdadd: NULL pointer is passed.\n");
1734
1735 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1736 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1737 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1738 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1739 return key_senderror(so, m, EINVAL);
1740 }
1741 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1742 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1743 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1744 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1745 return key_senderror(so, m, EINVAL);
1746 }
1747 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1748 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1749 < sizeof(struct sadb_lifetime)) {
1750 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1751 return key_senderror(so, m, EINVAL);
1752 }
1753 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1754 }
1755
1756 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1757 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1758 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1759
1760 /* make secindex */
1761 /* XXX boundary check against sa_len */
1762 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1763 src0 + 1,
1764 dst0 + 1,
1765 src0->sadb_address_prefixlen,
1766 dst0->sadb_address_prefixlen,
1767 src0->sadb_address_proto,
1768 &spidx);
1769
1770 /* checking the direciton. */
1771 switch (xpl0->sadb_x_policy_dir) {
1772 case IPSEC_DIR_INBOUND:
1773 case IPSEC_DIR_OUTBOUND:
1774 break;
1775 default:
1776 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
1777 mhp->msg->sadb_msg_errno = EINVAL;
1778 return 0;
1779 }
1780
1781 /* check policy */
1782 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1783 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1784 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1785 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
1786 return key_senderror(so, m, EINVAL);
1787 }
1788
1789 /* policy requests are mandatory when action is ipsec. */
1790 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1791 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1792 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1793 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
1794 return key_senderror(so, m, EINVAL);
1795 }
1796
1797 /*
1798 * checking there is SP already or not.
1799 * SPDUPDATE doesn't depend on whether there is a SP or not.
1800 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1801 * then error.
1802 */
1803 newsp = key_getsp(&spidx);
1804 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1805 if (newsp) {
1806 newsp->state = IPSEC_SPSTATE_DEAD;
1807 key_freesp(newsp);
1808 }
1809 } else {
1810 if (newsp != NULL) {
1811 key_freesp(newsp);
1812 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
1813 return key_senderror(so, m, EEXIST);
1814 }
1815 }
1816
1817 /* allocation new SP entry */
1818 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1819 return key_senderror(so, m, error);
1820 }
1821
1822 if ((newsp->id = key_getnewspid()) == 0) {
1823 keydb_delsecpolicy(newsp);
1824 return key_senderror(so, m, ENOBUFS);
1825 }
1826
1827 /* XXX boundary check against sa_len */
1828 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1829 src0 + 1,
1830 dst0 + 1,
1831 src0->sadb_address_prefixlen,
1832 dst0->sadb_address_prefixlen,
1833 src0->sadb_address_proto,
1834 &newsp->spidx);
1835
1836 /* sanity check on addr pair */
1837 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1838 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1839 keydb_delsecpolicy(newsp);
1840 return key_senderror(so, m, EINVAL);
1841 }
1842 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1843 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1844 keydb_delsecpolicy(newsp);
1845 return key_senderror(so, m, EINVAL);
1846 }
1847#if 1
1848 if (newsp->req && newsp->req->saidx.src.ss_family) {
1849 struct sockaddr *sa;
1850 sa = (struct sockaddr *)(src0 + 1);
1851 if (sa->sa_family != newsp->req->saidx.src.ss_family) {
1852 keydb_delsecpolicy(newsp);
1853 return key_senderror(so, m, EINVAL);
1854 }
1855 }
1856 if (newsp->req && newsp->req->saidx.dst.ss_family) {
1857 struct sockaddr *sa;
1858 sa = (struct sockaddr *)(dst0 + 1);
1859 if (sa->sa_family != newsp->req->saidx.dst.ss_family) {
1860 keydb_delsecpolicy(newsp);
1861 return key_senderror(so, m, EINVAL);
1862 }
1863 }
1864#endif
1865
1866 microtime(&tv);
1867 newsp->created = tv.tv_sec;
1868 newsp->lastused = tv.tv_sec;
1869 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1870 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1871
1872 newsp->refcnt = 1; /* do not reclaim until I say I do */
1873 newsp->state = IPSEC_SPSTATE_ALIVE;
1874 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1875
1876 /* delete the entry in spacqtree */
1877 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1878 struct secspacq *spacq;
1879 if ((spacq = key_getspacq(&spidx)) != NULL) {
1880 /* reset counter in order to deletion by timehandler. */
1881 microtime(&tv);
1882 spacq->created = tv.tv_sec;
1883 spacq->count = 0;
1884 }
1885 }
1886
1887 {
1888 struct mbuf *n, *mpolicy;
1889 struct sadb_msg *newmsg;
1890 int off;
1891
1892 /* create new sadb_msg to reply. */
1893 if (lft) {
1894 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1895 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1896 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1897 } else {
1898 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1899 SADB_X_EXT_POLICY,
1900 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1901 }
1902 if (!n)
1903 return key_senderror(so, m, ENOBUFS);
1904
1905 if (n->m_len < sizeof(*newmsg)) {
1906 n = m_pullup(n, sizeof(*newmsg));
1907 if (!n)
1908 return key_senderror(so, m, ENOBUFS);
1909 }
1910 newmsg = mtod(n, struct sadb_msg *);
1911 newmsg->sadb_msg_errno = 0;
1912 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1913
1914 off = 0;
1915 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1916 sizeof(*xpl), &off);
1917 if (mpolicy == NULL) {
1918 /* n is already freed */
1919 return key_senderror(so, m, ENOBUFS);
1920 }
1921 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1922 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1923 m_freem(n);
1924 return key_senderror(so, m, EINVAL);
1925 }
1926 xpl->sadb_x_policy_id = newsp->id;
1927
1928 m_freem(m);
1929 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1930 }
1931}
1932
1933/*
1934 * get new policy id.
1935 * OUT:
1936 * 0: failure.
1937 * others: success.
1938 */
1939static u_int32_t
1940key_getnewspid()
1941{
1942 u_int32_t newid = 0;
1943 int count = key_spi_trycnt; /* XXX */
1944 struct secpolicy *sp;
1945
1946 /* when requesting to allocate spi ranged */
1947 while (count--) {
1948 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1949
1950 if ((sp = key_getspbyid(newid)) == NULL)
1951 break;
1952
1953 key_freesp(sp);
1954 }
1955
1956 if (count == 0 || newid == 0) {
1957 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
1958 return 0;
1959 }
1960
1961 return newid;
1962}
1963
1964/*
1965 * SADB_SPDDELETE processing
1966 * receive
1967 * <base, address(SD), policy(*)>
1968 * from the user(?), and set SADB_SASTATE_DEAD,
1969 * and send,
1970 * <base, address(SD), policy(*)>
1971 * to the ikmpd.
1972 * policy(*) including direction of policy.
1973 *
1974 * m will always be freed.
1975 */
1976static int
1977key_spddelete(so, m, mhp)
1978 struct socket *so;
1979 struct mbuf *m;
1980 const struct sadb_msghdr *mhp;
1981{
1982 struct sadb_address *src0, *dst0;
1983 struct sadb_x_policy *xpl0;
1984 struct secpolicyindex spidx;
1985 struct secpolicy *sp;
1986
1987 /* sanity check */
1988 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
1989 panic("key_spddelete: NULL pointer is passed.\n");
1990
1991 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1992 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1993 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1994 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
1995 return key_senderror(so, m, EINVAL);
1996 }
1997 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1998 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1999 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2000 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
2001 return key_senderror(so, m, EINVAL);
2002 }
2003
2004 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2005 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2006 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2007
2008 /* make secindex */
2009 /* XXX boundary check against sa_len */
2010 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2011 src0 + 1,
2012 dst0 + 1,
2013 src0->sadb_address_prefixlen,
2014 dst0->sadb_address_prefixlen,
2015 src0->sadb_address_proto,
2016 &spidx);
2017
2018 /* checking the direciton. */
2019 switch (xpl0->sadb_x_policy_dir) {
2020 case IPSEC_DIR_INBOUND:
2021 case IPSEC_DIR_OUTBOUND:
2022 break;
2023 default:
2024 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
2025 return key_senderror(so, m, EINVAL);
2026 }
2027
2028 /* Is there SP in SPD ? */
2029 if ((sp = key_getsp(&spidx)) == NULL) {
2030 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
2031 return key_senderror(so, m, EINVAL);
2032 }
2033
2034 /* save policy id to buffer to be returned. */
2035 xpl0->sadb_x_policy_id = sp->id;
2036
2037 sp->state = IPSEC_SPSTATE_DEAD;
2038 key_freesp(sp);
2039
2040 {
2041 struct mbuf *n;
2042 struct sadb_msg *newmsg;
2043
2044 /* create new sadb_msg to reply. */
2045 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2046 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2047 if (!n)
2048 return key_senderror(so, m, ENOBUFS);
2049
2050 newmsg = mtod(n, struct sadb_msg *);
2051 newmsg->sadb_msg_errno = 0;
2052 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2053
2054 m_freem(m);
2055 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2056 }
2057}
2058
2059/*
2060 * SADB_SPDDELETE2 processing
2061 * receive
2062 * <base, policy(*)>
2063 * from the user(?), and set SADB_SASTATE_DEAD,
2064 * and send,
2065 * <base, policy(*)>
2066 * to the ikmpd.
2067 * policy(*) including direction of policy.
2068 *
2069 * m will always be freed.
2070 */
2071static int
2072key_spddelete2(so, m, mhp)
2073 struct socket *so;
2074 struct mbuf *m;
2075 const struct sadb_msghdr *mhp;
2076{
2077 u_int32_t id;
2078 struct secpolicy *sp;
2079
2080 /* sanity check */
2081 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2082 panic("key_spddelete2: NULL pointer is passed.\n");
2083
2084 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2085 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2086 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
2087 key_senderror(so, m, EINVAL);
2088 return 0;
2089 }
2090
2091 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2092
2093 /* Is there SP in SPD ? */
2094 if ((sp = key_getspbyid(id)) == NULL) {
2095 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
2096 key_senderror(so, m, EINVAL);
2097 }
2098
2099 sp->state = IPSEC_SPSTATE_DEAD;
2100 key_freesp(sp);
2101
2102 {
2103 struct mbuf *n, *nn;
2104 struct sadb_msg *newmsg;
2105 int off, len;
2106
2107 /* create new sadb_msg to reply. */
2108 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2109
2110 if (len > MCLBYTES)
2111 return key_senderror(so, m, ENOBUFS);
74f1caca 2112 MGETHDR(n, MB_DONTWAIT, MT_DATA);
984263bc 2113 if (n && len > MHLEN) {
74f1caca 2114 MCLGET(n, MB_DONTWAIT);
984263bc
MD
2115 if ((n->m_flags & M_EXT) == 0) {
2116 m_freem(n);
2117 n = NULL;
2118 }
2119 }
2120 if (!n)
2121 return key_senderror(so, m, ENOBUFS);
2122
2123 n->m_len = len;
2124 n->m_next = NULL;
2125 off = 0;
2126
2127 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2128 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2129
2130#ifdef DIAGNOSTIC
2131 if (off != len)
2132 panic("length inconsistency in key_spddelete2");
2133#endif
2134
2135 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
74f1caca 2136 mhp->extlen[SADB_X_EXT_POLICY], MB_DONTWAIT);
984263bc
MD
2137 if (!n->m_next) {
2138 m_freem(n);
2139 return key_senderror(so, m, ENOBUFS);
2140 }
2141
2142 n->m_pkthdr.len = 0;
2143 for (nn = n; nn; nn = nn->m_next)
2144 n->m_pkthdr.len += nn->m_len;
2145
2146 newmsg = mtod(n, struct sadb_msg *);
2147 newmsg->sadb_msg_errno = 0;
2148 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2149
2150 m_freem(m);
2151 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2152 }
2153}
2154
2155/*
2156 * SADB_X_GET processing
2157 * receive
2158 * <base, policy(*)>
2159 * from the user(?),
2160 * and send,
2161 * <base, address(SD), policy>
2162 * to the ikmpd.
2163 * policy(*) including direction of policy.
2164 *
2165 * m will always be freed.
2166 */
2167static int
2168key_spdget(so, m, mhp)
2169 struct socket *so;
2170 struct mbuf *m;
2171 const struct sadb_msghdr *mhp;
2172{
2173 u_int32_t id;
2174 struct secpolicy *sp;
2175 struct mbuf *n;
2176
2177 /* sanity check */
2178 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2179 panic("key_spdget: NULL pointer is passed.\n");
2180
2181 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2182 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2183 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
2184 return key_senderror(so, m, EINVAL);
2185 }
2186
2187 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2188
2189 /* Is there SP in SPD ? */
2190 if ((sp = key_getspbyid(id)) == NULL) {
2191 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
2192 return key_senderror(so, m, ENOENT);
2193 }
2194
2195 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2196 if (n != NULL) {
2197 m_freem(m);
2198 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2199 } else
2200 return key_senderror(so, m, ENOBUFS);
2201}
2202
2203/*
2204 * SADB_X_SPDACQUIRE processing.
2205 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2206 * send
2207 * <base, policy(*)>
2208 * to KMD, and expect to receive
2209 * <base> with SADB_X_SPDACQUIRE if error occured,
2210 * or
2211 * <base, policy>
2212 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2213 * policy(*) is without policy requests.
2214 *
2215 * 0 : succeed
2216 * others: error number
2217 */
2218int
2219key_spdacquire(sp)
2220 struct secpolicy *sp;
2221{
2222 struct mbuf *result = NULL, *m;
2223 struct secspacq *newspacq;
2224 int error;
2225
2226 /* sanity check */
2227 if (sp == NULL)
2228 panic("key_spdacquire: NULL pointer is passed.\n");
2229 if (sp->req != NULL)
2230 panic("key_spdacquire: called but there is request.\n");
2231 if (sp->policy != IPSEC_POLICY_IPSEC)
2232 panic("key_spdacquire: policy mismathed. IPsec is expected.\n");
2233
2234 /* get a entry to check whether sent message or not. */
2235 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
2236 if (key_blockacq_count < newspacq->count) {
2237 /* reset counter and do send message. */
2238 newspacq->count = 0;
2239 } else {
2240 /* increment counter and do nothing. */
2241 newspacq->count++;
2242 return 0;
2243 }
2244 } else {
2245 /* make new entry for blocking to send SADB_ACQUIRE. */
2246 if ((newspacq = key_newspacq(&sp->spidx)) == NULL)
2247 return ENOBUFS;
2248
2249 /* add to acqtree */
2250 LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
2251 }
2252
2253 /* create new sadb_msg to reply. */
2254 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2255 if (!m) {
2256 error = ENOBUFS;
2257 goto fail;
2258 }
2259 result = m;
2260
2261 result->m_pkthdr.len = 0;
2262 for (m = result; m; m = m->m_next)
2263 result->m_pkthdr.len += m->m_len;
2264
2265 mtod(result, struct sadb_msg *)->sadb_msg_len =
2266 PFKEY_UNIT64(result->m_pkthdr.len);
2267
2268 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2269
2270fail:
2271 if (result)
2272 m_freem(result);
2273 return error;
2274}
2275
2276/*
2277 * SADB_SPDFLUSH processing
2278 * receive
2279 * <base>
2280 * from the user, and free all entries in secpctree.
2281 * and send,
2282 * <base>
2283 * to the user.
2284 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2285 *
2286 * m will always be freed.
2287 */
2288static int
2289key_spdflush(so, m, mhp)
2290 struct socket *so;
2291 struct mbuf *m;
2292 const struct sadb_msghdr *mhp;
2293{
2294 struct sadb_msg *newmsg;
2295 struct secpolicy *sp;
2296 u_int dir;
2297
2298 /* sanity check */
2299 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2300 panic("key_spdflush: NULL pointer is passed.\n");
2301
2302 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2303 return key_senderror(so, m, EINVAL);
2304
2305 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2306 LIST_FOREACH(sp, &sptree[dir], chain) {
2307 sp->state = IPSEC_SPSTATE_DEAD;
2308 }
2309 }
2310
2311 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2312 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
2313 return key_senderror(so, m, ENOBUFS);
2314 }
2315
2316 if (m->m_next)
2317 m_freem(m->m_next);
2318 m->m_next = NULL;
2319 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2320 newmsg = mtod(m, struct sadb_msg *);
2321 newmsg->sadb_msg_errno = 0;
2322 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2323
2324 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2325}
2326
2327/*
2328 * SADB_SPDDUMP processing
2329 * receive
2330 * <base>
2331 * from the user, and dump all SP leaves
2332 * and send,
2333 * <base> .....
2334 * to the ikmpd.
2335 *
2336 * m will always be freed.
2337 */
2338static int
2339key_spddump(so, m, mhp)
2340 struct socket *so;
2341 struct mbuf *m;
2342 const struct sadb_msghdr *mhp;
2343{
2344 struct secpolicy *sp;
2345 int cnt;
2346 u_int dir;
2347 struct mbuf *n;
2348
2349 /* sanity check */
2350 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL)
2351 panic("key_spddump: NULL pointer is passed.\n");
2352
2353 /* search SPD entry and get buffer size. */
2354 cnt = 0;
2355 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2356 LIST_FOREACH(sp, &sptree[dir], chain) {
2357 cnt++;
2358 }
2359 }
2360
2361 if (cnt == 0)
2362 return key_senderror(so, m, ENOENT);
2363
2364 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2365 LIST_FOREACH(sp, &sptree[dir], chain) {
2366 --cnt;
2367 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2368 mhp->msg->sadb_msg_pid);
2369
2370 if (n)
2371 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2372 }
2373 }
2374
2375 m_freem(m);
2376 return 0;
2377}
2378
2379static struct mbuf *
2380key_setdumpsp(sp, type, seq, pid)
2381 struct secpolicy *sp;
2382 u_int8_t type;
2383 u_int32_t seq, pid;
2384{
2385 struct mbuf *result = NULL, *m;
2386
2387 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2388 if (!m)
2389 goto fail;
2390 result = m;
2391
2392 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2393 (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs,
2394 sp->spidx.ul_proto);
2395 if (!m)
2396 goto fail;
2397 m_cat(result, m);
2398
2399 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2400 (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd,
2401 sp->spidx.ul_proto);
2402 if (!m)
2403 goto fail;
2404 m_cat(result, m);
2405
2406 m = key_sp2msg(sp);
2407 if (!m)
2408 goto fail;
2409 m_cat(result, m);
2410
2411 if ((result->m_flags & M_PKTHDR) == 0)
2412 goto fail;
2413
2414 if (result->m_len < sizeof(struct sadb_msg)) {
2415 result = m_pullup(result, sizeof(struct sadb_msg));
2416 if (result == NULL)
2417 goto fail;
2418 }
2419
2420 result->m_pkthdr.len = 0;
2421 for (m = result; m; m = m->m_next)
2422 result->m_pkthdr.len += m->m_len;
2423
2424 mtod(result, struct sadb_msg *)->sadb_msg_len =
2425 PFKEY_UNIT64(result->m_pkthdr.len);
2426
2427 return result;
2428
2429fail:
2430 m_freem(result);
2431 return NULL;
2432}
2433
2434/*
2435 * get PFKEY message length for security policy and request.
2436 */
2437static u_int
2438key_getspreqmsglen(sp)
2439 struct secpolicy *sp;
2440{
2441 u_int tlen;
2442
2443 tlen = sizeof(struct sadb_x_policy);
2444
2445 /* if is the policy for ipsec ? */
2446 if (sp->policy != IPSEC_POLICY_IPSEC)
2447 return tlen;
2448
2449 /* get length of ipsec requests */
2450 {
2451 struct ipsecrequest *isr;
2452 int len;
2453
2454 for (isr = sp->req; isr != NULL; isr = isr->next) {
2455 len = sizeof(struct sadb_x_ipsecrequest)
2456 + isr->saidx.src.ss_len
2457 + isr->saidx.dst.ss_len;
2458
2459 tlen += PFKEY_ALIGN8(len);
2460 }
2461 }
2462
2463 return tlen;
2464}
2465
2466/*
2467 * SADB_SPDEXPIRE processing
2468 * send
2469 * <base, address(SD), lifetime(CH), policy>
2470 * to KMD by PF_KEY.
2471 *
2472 * OUT: 0 : succeed
2473 * others : error number
2474 */
2475static int
2476key_spdexpire(sp)
2477 struct secpolicy *sp;
2478{
2479 int s;
2480 struct mbuf *result = NULL, *m;
2481 int len;
2482 int error = -1;
2483 struct sadb_lifetime *lt;
2484
2485 /* XXX: Why do we lock ? */
2486 s = splnet(); /*called from softclock()*/
2487
2488 /* sanity check */
2489 if (sp == NULL)
2490 panic("key_spdexpire: NULL pointer is passed.\n");
2491
2492 /* set msg header */
2493 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2494 if (!m) {
2495 error = ENOBUFS;
2496 goto fail;
2497 }
2498 result = m;
2499
2500 /* create lifetime extension (current and hard) */
2501 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2502 m = key_alloc_mbuf(len);
2503 if (!m || m->m_next) { /*XXX*/
2504 if (m)
2505 m_freem(m);
2506 error = ENOBUFS;
2507 goto fail;
2508 }
2509 bzero(mtod(m, caddr_t), len);
2510 lt = mtod(m, struct sadb_lifetime *);
2511 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2512 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2513 lt->sadb_lifetime_allocations = 0;
2514 lt->sadb_lifetime_bytes = 0;
2515 lt->sadb_lifetime_addtime = sp->created;
2516 lt->sadb_lifetime_usetime = sp->lastused;
2517 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2518 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2519 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2520 lt->sadb_lifetime_allocations = 0;
2521 lt->sadb_lifetime_bytes = 0;
2522 lt->sadb_lifetime_addtime = sp->lifetime;
2523 lt->sadb_lifetime_usetime = sp->validtime;
2524 m_cat(result, m);
2525
2526 /* set sadb_address for source */
2527 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2528 (struct sockaddr *)&sp->spidx.src,
2529 sp->spidx.prefs, sp->spidx.ul_proto);
2530 if (!m) {
2531 error = ENOBUFS;
2532 goto fail;
2533 }
2534 m_cat(result, m);
2535
2536 /* set sadb_address for destination */
2537 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2538 (struct sockaddr *)&sp->spidx.dst,
2539 sp->spidx.prefd, sp->spidx.ul_proto);
2540 if (!m) {
2541 error = ENOBUFS;
2542 goto fail;
2543 }
2544 m_cat(result, m);
2545
2546 /* set secpolicy */
2547 m = key_sp2msg(sp);
2548 if (!m) {
2549 error = ENOBUFS;
2550 goto fail;
2551 }
2552 m_cat(result, m);
2553
2554 if ((result->m_flags & M_PKTHDR) == 0) {
2555 error = EINVAL;
2556 goto fail;
2557 }
2558
2559 if (result->m_len < sizeof(struct sadb_msg)) {
2560 result = m_pullup(result, sizeof(struct sadb_msg));
2561 if (result == NULL) {
2562 error = ENOBUFS;
2563 goto fail;
2564 }
2565 }
2566
2567 result->m_pkthdr.len = 0;
2568 for (m = result; m; m = m->m_next)
2569 result->m_pkthdr.len += m->m_len;
2570
2571 mtod(result, struct sadb_msg *)->sadb_msg_len =
2572 PFKEY_UNIT64(result->m_pkthdr.len);
2573
2574 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2575
2576 fail:
2577 if (result)
2578 m_freem(result);
2579 splx(s);
2580 return error;
2581}
2582
2583/* %%% SAD management */
2584/*
2585 * allocating a memory for new SA head, and copy from the values of mhp.
2586 * OUT: NULL : failure due to the lack of memory.
2587 * others : pointer to new SA head.
2588 */
2589static struct secashead *
2590key_newsah(saidx)
2591 struct secasindex *saidx;
2592{
2593 struct secashead *newsah;
2594
2595 /* sanity check */
2596 if (saidx == NULL)
2597 panic("key_newsaidx: NULL pointer is passed.\n");
2598
2599 newsah = keydb_newsecashead();
2600 if (newsah == NULL)
2601 return NULL;
2602
2603 bcopy(saidx, &newsah->saidx, sizeof(newsah->saidx));
2604
2605 /* add to saidxtree */
2606 newsah->state = SADB_SASTATE_MATURE;
2607 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2608
2609 return(newsah);
2610}
2611
2612/*
2613 * delete SA index and all SA registerd.
2614 */
2615static void
2616key_delsah(sah)
2617 struct secashead *sah;
2618{
2619 struct secasvar *sav, *nextsav;
2620 u_int stateidx, state;
2621 int s;
2622 int zombie = 0;
2623
2624 /* sanity check */
2625 if (sah == NULL)
2626 panic("key_delsah: NULL pointer is passed.\n");
2627
2628 s = splnet(); /*called from softclock()*/
2629
2630 /* searching all SA registerd in the secindex. */
2631 for (stateidx = 0;
2632 stateidx < _ARRAYLEN(saorder_state_any);
2633 stateidx++) {
2634
2635 state = saorder_state_any[stateidx];
2636 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
2637 sav != NULL;
2638 sav = nextsav) {
2639
2640 nextsav = LIST_NEXT(sav, chain);
2641
2642 if (sav->refcnt > 0) {
2643 /* give up to delete this sa */
2644 zombie++;
2645 continue;
2646 }
2647
2648 /* sanity check */
2649 KEY_CHKSASTATE(state, sav->state, "key_delsah");
2650
2651 key_freesav(sav);
2652
2653 /* remove back pointer */
2654 sav->sah = NULL;
2655 sav = NULL;
2656 }
2657 }
2658
2659 /* don't delete sah only if there are savs. */
2660 if (zombie) {
2661 splx(s);
2662 return;
2663 }
2664
2665 if (sah->sa_route.ro_rt) {
2666 RTFREE(sah->sa_route.ro_rt);
2667 sah->sa_route.ro_rt = (struct rtentry *)NULL;
2668 }
2669
2670 /* remove from tree of SA index */
2671 if (__LIST_CHAINED(sah))
2672 LIST_REMOVE(sah, chain);
2673
2674 KFREE(sah);
2675
2676 splx(s);
2677 return;
2678}
2679
2680/*
2681 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2682 * and copy the values of mhp into new buffer.
2683 * When SAD message type is GETSPI:
2684 * to set sequence number from acq_seq++,
2685 * to set zero to SPI.
2686 * not to call key_setsava().
2687 * OUT: NULL : fail
2688 * others : pointer to new secasvar.
2689 *
2690 * does not modify mbuf. does not free mbuf on error.
2691 */
2692static struct secasvar *
2693key_newsav(m, mhp, sah, errp)
2694 struct mbuf *m;
2695 const struct sadb_msghdr *mhp;
2696 struct secashead *sah;
2697 int *errp;
2698{
2699 struct secasvar *newsav;
2700 const struct sadb_sa *xsa;
2701
2702 /* sanity check */
2703 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL)
2704 panic("key_newsa: NULL pointer is passed.\n");
2705
2706 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar));
2707 if (newsav == NULL) {
2708 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n"));
2709 *errp = ENOBUFS;
2710 return NULL;
2711 }
2712 bzero((caddr_t)newsav, sizeof(struct secasvar));
2713
2714 switch (mhp->msg->sadb_msg_type) {
2715 case SADB_GETSPI:
2716 newsav->spi = 0;
2717
2718#ifdef IPSEC_DOSEQCHECK
2719 /* sync sequence number */
2720 if (mhp->msg->sadb_msg_seq == 0)
2721 newsav->seq =
2722 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2723 else
2724#endif
2725 newsav->seq = mhp->msg->sadb_msg_seq;
2726 break;
2727
2728 case SADB_ADD:
2729 /* sanity check */
2730 if (mhp->ext[SADB_EXT_SA] == NULL) {
2731 KFREE(newsav);
2732 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
2733 *errp = EINVAL;
2734 return NULL;
2735 }
2736 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2737 newsav->spi = xsa->sadb_sa_spi;
2738 newsav->seq = mhp->msg->sadb_msg_seq;
2739 break;
2740 default:
2741 KFREE(newsav);
2742 *errp = EINVAL;
2743 return NULL;
2744 }
2745
2746 /* copy sav values */
2747 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2748 *errp = key_setsaval(newsav, m, mhp);
2749 if (*errp) {
2750 KFREE(newsav);
2751 return NULL;
2752 }
2753 }
2754
2755 /* reset created */
2756 {
2757 struct timeval tv;
2758 microtime(&tv);
2759 newsav->created = tv.tv_sec;
2760 }
2761
2762 newsav->pid = mhp->msg->sadb_msg_pid;
2763
2764 /* add to satree */
2765 newsav->sah = sah;
2766 newsav->refcnt = 1;
2767 newsav->state = SADB_SASTATE_LARVAL;
2768 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2769 secasvar, chain);
2770
2771 return newsav;
2772}
2773
2774/*
2775 * free() SA variable entry.
2776 */
2777static void
2778key_delsav(sav)
2779 struct secasvar *sav;
2780{
2781 /* sanity check */
2782 if (sav == NULL)
2783 panic("key_delsav: NULL pointer is passed.\n");
2784
2785 if (sav->refcnt > 0)
2786 return; /* can't free */
2787
2788 /* remove from SA header */
2789 if (__LIST_CHAINED(sav))
2790 LIST_REMOVE(sav, chain);
2791
2792 if (sav->key_auth != NULL) {
2793 bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2794 KFREE(sav->key_auth);
2795 sav->key_auth = NULL;
2796 }
2797 if (sav->key_enc != NULL) {
2798 bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
2799 KFREE(sav->key_enc);
2800 sav->key_enc = NULL;
2801 }
2802 if (sav->sched) {
2803 bzero(sav->sched, sav->schedlen);
2804 KFREE(sav->sched);
2805 sav->sched = NULL;
2806 }
2807 if (sav->replay != NULL) {
2808 keydb_delsecreplay(sav->replay);
2809 sav->replay = NULL;
2810 }
2811 if (sav->lft_c != NULL) {
2812 KFREE(sav->lft_c);
2813 sav->lft_c = NULL;
2814 }
2815 if (sav->lft_h != NULL) {
2816 KFREE(sav->lft_h);
2817 sav->lft_h = NULL;
2818 }
2819 if (sav->lft_s != NULL) {
2820 KFREE(sav->lft_s);
2821 sav->lft_s = NULL;
2822 }
2823 if (sav->iv != NULL) {
2824 KFREE(sav->iv);
2825 sav->iv = NULL;
2826 }
2827
2828 KFREE(sav);
2829
2830 return;
2831}
2832
2833/*
2834 * search SAD.
2835 * OUT:
2836 * NULL : not found
2837 * others : found, pointer to a SA.
2838 */
2839static struct secashead *
2840key_getsah(saidx)
2841 struct secasindex *saidx;
2842{
2843 struct secashead *sah;
2844
2845 LIST_FOREACH(sah, &sahtree, chain) {
2846 if (sah->state == SADB_SASTATE_DEAD)
2847 continue;
2848 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2849 return sah;
2850 }
2851
2852 return NULL;
2853}
2854
2855/*
2856 * check not to be duplicated SPI.
2857 * NOTE: this function is too slow due to searching all SAD.
2858 * OUT:
2859 * NULL : not found
2860 * others : found, pointer to a SA.
2861 */
2862static struct secasvar *
2863key_checkspidup(saidx, spi)
2864 struct secasindex *saidx;
2865 u_int32_t spi;
2866{
2867 struct secashead *sah;
2868 struct secasvar *sav;
2869
2870 /* check address family */
2871 if (saidx->src.ss_family != saidx->dst.ss_family) {
2872 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
2873 return NULL;
2874 }
2875
2876 /* check all SAD */
2877 LIST_FOREACH(sah, &sahtree, chain) {
2878 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2879 continue;
2880 sav = key_getsavbyspi(sah, spi);
2881 if (sav != NULL)
2882 return sav;
2883 }
2884
2885 return NULL;
2886}
2887
2888/*
2889 * search SAD litmited alive SA, protocol, SPI.
2890 * OUT:
2891 * NULL : not found
2892 * others : found, pointer to a SA.
2893 */
2894static struct secasvar *
2895key_getsavbyspi(sah, spi)
2896 struct secashead *sah;
2897 u_int32_t spi;
2898{
2899 struct secasvar *sav;
2900 u_int stateidx, state;
2901
2902 /* search all status */
2903 for (stateidx = 0;
2904 stateidx < _ARRAYLEN(saorder_state_alive);
2905 stateidx++) {
2906
2907 state = saorder_state_alive[stateidx];
2908 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2909
2910 /* sanity check */
2911 if (sav->state != state) {
2912 ipseclog((LOG_DEBUG, "key_getsavbyspi: "
2913 "invalid sav->state (queue: %d SA: %d)\n",
2914 state, sav->state));
2915 continue;
2916 }
2917
2918 if (sav->spi == spi)
2919 return sav;
2920 }
2921 }
2922
2923 return NULL;
2924}
2925
2926/*
2927 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2928 * You must update these if need.
2929 * OUT: 0: success.
2930 * !0: failure.
2931 *
2932 * does not modify mbuf. does not free mbuf on error.
2933 */
2934static int
2935key_setsaval(sav, m, mhp)
2936 struct secasvar *sav;
2937 struct mbuf *m;
2938 const struct sadb_msghdr *mhp;
2939{
2940#ifdef IPSEC_ESP
2941 const struct esp_algorithm *algo;
2942#endif
2943 int error = 0;
2944 struct timeval tv;
2945
2946 /* sanity check */
2947 if (m == NULL || mhp == NULL || mhp->msg == NULL)
2948 panic("key_setsaval: NULL pointer is passed.\n");
2949
2950 /* initialization */
2951 sav->replay = NULL;
2952 sav->key_auth = NULL;
2953 sav->key_enc = NULL;
2954 sav->sched = NULL;
2955 sav->schedlen = 0;
2956 sav->iv = NULL;
2957 sav->lft_c = NULL;
2958 sav->lft_h = NULL;
2959 sav->lft_s = NULL;
2960
2961 /* SA */
2962 if (mhp->ext[SADB_EXT_SA] != NULL) {
2963 const struct sadb_sa *sa0;
2964
2965 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2966 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
2967 error = EINVAL;
2968 goto fail;
2969 }
2970
2971 sav->alg_auth = sa0->sadb_sa_auth;
2972 sav->alg_enc = sa0->sadb_sa_encrypt;
2973 sav->flags = sa0->sadb_sa_flags;
2974
2975 /* replay window */
2976 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
2977 sav->replay = keydb_newsecreplay(sa0->sadb_sa_replay);
2978 if (sav->replay == NULL) {
2979 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
2980 error = ENOBUFS;
2981 goto fail;
2982 }
2983 }
2984 }
2985
2986 /* Authentication keys */
2987 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
2988 const struct sadb_key *key0;
2989 int len;
2990
2991 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
2992 len = mhp->extlen[SADB_EXT_KEY_AUTH];
2993
2994 error = 0;
2995 if (len < sizeof(*key0)) {
2996 error = EINVAL;
2997 goto fail;
2998 }
2999 switch (mhp->msg->sadb_msg_satype) {
3000 case SADB_SATYPE_AH:
3001 case SADB_SATYPE_ESP:
3002 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3003 sav->alg_auth != SADB_X_AALG_NULL)
3004 error = EINVAL;
3005 break;
3006 case SADB_X_SATYPE_IPCOMP:
3007 default:
3008 error = EINVAL;
3009 break;
3010 }
3011 if (error) {
3012 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
3013 goto fail;
3014 }
3015
3016 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
3017 if (sav->key_auth == NULL) {
3018 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3019 error = ENOBUFS;
3020 goto fail;
3021 }
3022 }
3023
3024 /* Encryption key */
3025 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3026 const struct sadb_key *key0;
3027 int len;
3028
3029 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3030 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3031
3032 error = 0;
3033 if (len < sizeof(*key0)) {
3034 error = EINVAL;
3035 goto fail;
3036 }
3037 switch (mhp->msg->sadb_msg_satype) {
3038 case SADB_SATYPE_ESP:
3039 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3040 sav->alg_enc != SADB_EALG_NULL) {
3041 error = EINVAL;
3042 break;
3043 }
3044 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
3045 if (sav->key_enc == NULL) {
3046 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3047 error = ENOBUFS;
3048 goto fail;
3049 }
3050 break;
3051 case SADB_X_SATYPE_IPCOMP:
3052 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3053 error = EINVAL;
3054 sav->key_enc = NULL; /*just in case*/
3055 break;
3056 case SADB_SATYPE_AH:
3057 default:
3058 error = EINVAL;
3059 break;
3060 }
3061 if (error) {
3062 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n"));
3063 goto fail;
3064 }
3065 }
3066
3067 /* set iv */
3068 sav->ivlen = 0;
3069
3070 switch (mhp->msg->sadb_msg_satype) {
3071 case SADB_SATYPE_ESP:
3072#ifdef IPSEC_ESP
3073 algo = esp_algorithm_lookup(sav->alg_enc);
3074 if (algo && algo->ivlen)
3075 sav->ivlen = (*algo->ivlen)(algo, sav);
3076 if (sav->ivlen == 0)
3077 break;
3078 KMALLOC(sav->iv, caddr_t, sav->ivlen);
3079 if (sav->iv == 0) {
3080 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3081 error = ENOBUFS;
3082 goto fail;
3083 }
3084
3085 /* initialize */
3086 key_randomfill(sav->iv, sav->ivlen);
3087#endif
3088 break;
3089 case SADB_SATYPE_AH:
3090 case SADB_X_SATYPE_IPCOMP:
3091 break;
3092 default:
3093 ipseclog((LOG_DEBUG, "key_setsaval: invalid SA type.\n"));
3094 error = EINVAL;
3095 goto fail;
3096 }
3097
3098 /* reset created */
3099 microtime(&tv);
3100 sav->created = tv.tv_sec;
3101
3102 /* make lifetime for CURRENT */
3103 KMALLOC(sav->lft_c, struct sadb_lifetime *,
3104 sizeof(struct sadb_lifetime));
3105 if (sav->lft_c == NULL) {
3106 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3107 error = ENOBUFS;
3108 goto fail;
3109 }
3110
3111 microtime(&tv);
3112
3113 sav->lft_c->sadb_lifetime_len =
3114 PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3115 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3116 sav->lft_c->sadb_lifetime_allocations = 0;
3117 sav->lft_c->sadb_lifetime_bytes = 0;
3118 sav->lft_c->sadb_lifetime_addtime = tv.tv_sec;
3119 sav->lft_c->sadb_lifetime_usetime = 0;
3120
3121 /* lifetimes for HARD and SOFT */
3122 {
3123 const struct sadb_lifetime *lft0;
3124
3125 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3126 if (lft0 != NULL) {
3127 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3128 error = EINVAL;
3129 goto fail;
3130 }
3131 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0,
3132 sizeof(*lft0));
3133 if (sav->lft_h == NULL) {
3134 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3135 error = ENOBUFS;
3136 goto fail;
3137 }
3138 /* to be initialize ? */
3139 }
3140
3141 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3142 if (lft0 != NULL) {
3143 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3144 error = EINVAL;
3145 goto fail;
3146 }
3147 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0,
3148 sizeof(*lft0));
3149 if (sav->lft_s == NULL) {
3150 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
3151 error = ENOBUFS;
3152 goto fail;
3153 }
3154 /* to be initialize ? */
3155 }
3156 }
3157
3158 return 0;
3159
3160 fail:
3161 /* initialization */
3162 if (sav->replay != NULL) {
3163 keydb_delsecreplay(sav->replay);
3164 sav->replay = NULL;
3165 }
3166 if (sav->key_auth != NULL) {
3167 KFREE(sav->key_auth);
3168 sav->key_auth = NULL;
3169 }
3170 if (sav->key_enc != NULL) {
3171 KFREE(sav->key_enc);
3172 sav->key_enc = NULL;
3173 }
3174 if (sav->sched) {
3175 KFREE(sav->sched);
3176 sav->sched = NULL;
3177 }
3178 if (sav->iv != NULL) {
3179 KFREE(sav->iv);
3180 sav->iv = NULL;
3181 }
3182 if (sav->lft_c != NULL) {
3183 KFREE(sav->lft_c);
3184 sav->lft_c = NULL;
3185 }
3186 if (sav->lft_h != NULL) {
3187 KFREE(sav->lft_h);
3188 sav->lft_h = NULL;
3189 }
3190 if (sav->lft_s != NULL) {
3191 KFREE(sav->lft_s);
3192 sav->lft_s = NULL;
3193 }
3194
3195 return error;
3196}
3197
3198/*
3199 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3200 * OUT: 0: valid
3201 * other: errno
3202 */
3203static int
3204key_mature(sav)
3205 struct secasvar *sav;
3206{
3207 int mature;
3208 int checkmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */
3209 int mustmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */
3210
3211 mature = 0;
3212
3213 /* check SPI value */
3214 switch (sav->sah->saidx.proto) {
3215 case IPPROTO_ESP:
3216 case IPPROTO_AH:
3217 if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) {
3218 ipseclog((LOG_DEBUG,
3219 "key_mature: illegal range of SPI %u.\n",
3220 (u_int32_t)ntohl(sav->spi)));
3221 return EINVAL;
3222 }
3223 break;
3224 }
3225
3226 /* check satype */
3227 switch (sav->sah->saidx.proto) {
3228 case IPPROTO_ESP:
3229 /* check flags */
3230 if ((sav->flags & SADB_X_EXT_OLD)
3231 && (sav->flags & SADB_X_EXT_DERIV)) {
3232 ipseclog((LOG_DEBUG, "key_mature: "
3233 "invalid flag (derived) given to old-esp.\n"));
3234 return EINVAL;
3235 }
3236 if (sav->alg_auth == SADB_AALG_NONE)
3237 checkmask = 1;
3238 else
3239 checkmask = 3;
3240 mustmask = 1;
3241 break;
3242 case IPPROTO_AH:
3243 /* check flags */
3244 if (sav->flags & SADB_X_EXT_DERIV) {
3245 ipseclog((LOG_DEBUG, "key_mature: "
3246 "invalid flag (derived) given to AH SA.\n"));
3247 return EINVAL;
3248 }
3249 if (sav->alg_enc != SADB_EALG_NONE) {
3250 ipseclog((LOG_DEBUG, "key_mature: "
3251 "protocol and algorithm mismated.\n"));
3252 return(EINVAL);
3253 }
3254 checkmask = 2;
3255 mustmask = 2;
3256 break;
3257 case IPPROTO_IPCOMP:
3258 if (sav->alg_auth != SADB_AALG_NONE) {
3259 ipseclog((LOG_DEBUG, "key_mature: "
3260 "protocol and algorithm mismated.\n"));
3261 return(EINVAL);
3262 }
3263 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3264 && ntohl(sav->spi) >= 0x10000) {
3265 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n"));
3266 return(EINVAL);
3267 }
3268 checkmask = 4;
3269 mustmask = 4;
3270 break;
3271 default:
3272 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
3273 return EPROTONOSUPPORT;
3274 }
3275
3276 /* check authentication algorithm */
3277 if ((checkmask & 2) != 0) {
3278 const struct ah_algorithm *algo;
3279 int keylen;
3280
3281 algo = ah_algorithm_lookup(sav->alg_auth);
3282 if (!algo) {
3283 ipseclog((LOG_DEBUG,"key_mature: "
3284 "unknown authentication algorithm.\n"));
3285 return EINVAL;
3286 }
3287
3288 /* algorithm-dependent check */
3289 if (sav->key_auth)
3290 keylen = sav->key_auth->sadb_key_bits;
3291 else
3292 keylen = 0;
3293 if (keylen < algo->keymin || algo->keymax < keylen) {
3294 ipseclog((LOG_DEBUG,
3295 "key_mature: invalid AH key length %d "
3296 "(%d-%d allowed)\n",
3297 keylen, algo->keymin, algo->keymax));
3298 return EINVAL;
3299 }
3300
3301 if (algo->mature) {
3302 if ((*algo->mature)(sav)) {
3303 /* message generated in per-algorithm function*/
3304 return EINVAL;
3305 } else
3306 mature = SADB_SATYPE_AH;
3307 }
3308
3309 if ((mustmask & 2) != 0 && mature != SADB_SATYPE_AH) {
3310 ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for AH\n"));
3311 return EINVAL;
3312 }
3313 }
3314
3315 /* check encryption algorithm */
3316 if ((checkmask & 1) != 0) {
3317#ifdef IPSEC_ESP
3318 const struct esp_algorithm *algo;
3319 int keylen;
3320
3321 algo = esp_algorithm_lookup(sav->alg_enc);
3322 if (!algo) {
3323 ipseclog((LOG_DEBUG, "key_mature: unknown encryption algorithm.\n"));
3324 return EINVAL;
3325 }
3326
3327 /* algorithm-dependent check */
3328 if (sav->key_enc)
3329 keylen = sav->key_enc->sadb_key_bits;
3330 else
3331 keylen = 0;
3332 if (keylen < algo->keymin || algo->keymax < keylen) {
3333 ipseclog((LOG_DEBUG,
3334 "key_mature: invalid ESP key length %d "
3335 "(%d-%d allowed)\n",
3336 keylen, algo->keymin, algo->keymax));
3337 return EINVAL;
3338 }
3339
3340 if (algo->mature) {
3341 if ((*algo->mature)(sav)) {
3342 /* message generated in per-algorithm function*/
3343 return EINVAL;
3344 } else
3345 mature = SADB_SATYPE_ESP;
3346 }
3347
3348 if ((mustmask & 1) != 0 && mature != SADB_SATYPE_ESP) {
3349 ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for ESP\n"));
3350 return EINVAL;
3351 }
3352#else /*IPSEC_ESP*/
3353 ipseclog((LOG_DEBUG, "key_mature: ESP not supported in this configuration\n"));
3354 return EINVAL;
3355#endif
3356 }
3357
3358 /* check compression algorithm */
3359 if ((checkmask & 4) != 0) {
3360 const struct ipcomp_algorithm *algo;
3361
3362 /* algorithm-dependent check */
3363 algo = ipcomp_algorithm_lookup(sav->alg_enc);
3364 if (!algo) {
3365 ipseclog((LOG_DEBUG, "key_mature: unknown compression algorithm.\n"));
3366 return EINVAL;
3367 }
3368 }
3369
3370 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3371
3372 return 0;
3373}
3374
3375/*
3376 * subroutine for SADB_GET and SADB_DUMP.
3377 */
3378static struct mbuf *
3379key_setdumpsa(sav, type, satype, seq, pid)
3380 struct secasvar *sav;
3381 u_int8_t type, satype;
3382 u_int32_t seq, pid;
3383{
3384 struct mbuf *result = NULL, *tres = NULL, *m;
3385 int l = 0;
3386 int i;
3387 void *p;
3388 int dumporder[] = {
3389 SADB_EXT_SA, SADB_X_EXT_SA2,
3390 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3391 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3392 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3393 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3394 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3395 };
3396
3397 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3398 if (m == NULL)
3399 goto fail;
3400 result = m;
3401
3402 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3403 m = NULL;
3404 p = NULL;
3405 switch (dumporder[i]) {
3406 case SADB_EXT_SA:
3407 m = key_setsadbsa(sav);
3408 if (!m)
3409 goto fail;
3410 break;
3411
3412 case SADB_X_EXT_SA2:
3413 m = key_setsadbxsa2(sav->sah->saidx.mode,
3414 sav->replay ? sav->replay->count : 0,
3415 sav->sah->saidx.reqid);
3416 if (!m)
3417 goto fail;
3418 break;
3419
3420 case SADB_EXT_ADDRESS_SRC:
3421 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3422 (struct sockaddr *)&sav->sah->saidx.src,
3423 FULLMASK, IPSEC_ULPROTO_ANY);
3424 if (!m)
3425 goto fail;
3426 break;
3427
3428 case SADB_EXT_ADDRESS_DST:
3429 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3430 (struct sockaddr *)&sav->sah->saidx.dst,
3431 FULLMASK, IPSEC_ULPROTO_ANY);
3432 if (!m)
3433 goto fail;
3434 break;
3435
3436 case SADB_EXT_KEY_AUTH:
3437 if (!sav->key_auth)
3438 continue;
3439 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3440 p = sav->key_auth;
3441 break;
3442
3443 case SADB_EXT_KEY_ENCRYPT:
3444 if (!sav->key_enc)
3445 continue;
3446 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3447 p = sav->key_enc;
3448 break;
3449
3450 case SADB_EXT_LIFETIME_CURRENT:
3451 if (!sav->lft_c)
3452 continue;
3453 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3454 p = sav->lft_c;
3455 break;
3456
3457 case SADB_EXT_LIFETIME_HARD:
3458 if (!sav->lft_h)
3459 continue;
3460 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3461 p = sav->lft_h;
3462 break;
3463
3464 case SADB_EXT_LIFETIME_SOFT:
3465 if (!sav->lft_s)
3466 continue;
3467 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3468 p = sav->lft_s;
3469 break;
3470
3471 case SADB_EXT_ADDRESS_PROXY:
3472 case SADB_EXT_IDENTITY_SRC:
3473 case SADB_EXT_IDENTITY_DST:
3474 /* XXX: should we brought from SPD ? */
3475 case SADB_EXT_SENSITIVITY:
3476 default:
3477 continue;
3478 }
3479
3480 if ((!m && !p) || (m && p))
3481 goto fail;
3482 if (p && tres) {
74f1caca 3483 M_PREPEND(tres, l, MB_DONTWAIT);
984263bc
MD
3484 if (!tres)
3485 goto fail;
3486 bcopy(p, mtod(tres, caddr_t), l);
3487 continue;
3488 }
3489 if (p) {
3490 m = key_alloc_mbuf(l);
3491 if (!m)
3492 goto fail;
3493 m_copyback(m, 0, l, p);
3494 }
3495
3496 if (tres)
3497 m_cat(m, tres);
3498 tres = m;
3499 }
3500
3501 m_cat(result, tres);
3502
3503 if (result->m_len < sizeof(struct sadb_msg)) {
3504 result = m_pullup(result, sizeof(struct sadb_msg));
3505 if (result == NULL)
3506 goto fail;
3507 }
3508
3509 result->m_pkthdr.len = 0;
3510 for (m = result; m; m = m->m_next)
3511 result->m_pkthdr.len += m->m_len;
3512
3513 mtod(result, struct sadb_msg *)->sadb_msg_len =
3514 PFKEY_UNIT64(result->m_pkthdr.len);
3515
3516 return result;
3517
3518fail:
3519 m_freem(result);
3520 m_freem(tres);
3521 return NULL;
3522}
3523
3524/*
3525 * set data into sadb_msg.
3526 */
3527static struct mbuf *
3528key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3529 u_int8_t type, satype;
3530 u_int16_t tlen;
3531 u_int32_t seq;
3532 pid_t pid;
3533 u_int16_t reserved;
3534{
3535 struct mbuf *m;
3536 struct sadb_msg *p;
3537 int len;
3538
3539 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3540 if (len > MCLBYTES)
3541 return NULL;
74f1caca 3542 MGETHDR(m, MB_DONTWAIT, MT_DATA);
984263bc 3543 if (m && len > MHLEN) {
74f1caca 3544 MCLGET(m, MB_DONTWAIT);
984263bc
MD
3545 if ((m->m_flags & M_EXT) == 0) {
3546 m_freem(m);
3547 m = NULL;
3548 }
3549 }
3550 if (!m)
3551 return NULL;
3552 m->m_pkthdr.len = m->m_len = len;
3553 m->m_next = NULL;
3554
3555 p = mtod(m, struct sadb_msg *);
3556
3557 bzero(p, len);
3558 p->sadb_msg_version = PF_KEY_V2;
3559 p->sadb_msg_type = type;
3560 p->sadb_msg_errno = 0;
3561 p->sadb_msg_satype = satype;
3562 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3563 p->sadb_msg_reserved = reserved;
3564 p->sadb_msg_seq = seq;
3565 p->sadb_msg_pid = (u_int32_t)pid;
3566
3567 return m;
3568}
3569
3570/*
3571 * copy secasvar data into sadb_address.
3572 */
3573static struct mbuf *
3574key_setsadbsa(sav)
3575 struct secasvar *sav;
3576{
3577 struct mbuf *m;
3578 struct sadb_sa *p;
3579 int len;
3580
3581 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3582 m = key_alloc_mbuf(len);
3583 if (!m || m->m_next) { /*XXX*/
3584 if (m)
3585 m_freem(m);
3586 return NULL;
3587 }
3588
3589 p = mtod(m, struct sadb_sa *);
3590
3591 bzero(p, len);
3592 p->sadb_sa_len = PFKEY_UNIT64(len);
3593 p->sadb_sa_exttype = SADB_EXT_SA;
3594 p->sadb_sa_spi = sav->spi;
3595 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3596 p->sadb_sa_state = sav->state;
3597 p->sadb_sa_auth = sav->alg_auth;
3598 p->sadb_sa_encrypt = sav->alg_enc;
3599 p->sadb_sa_flags = sav->flags;
3600
3601 return m;
3602}
3603
3604/*
3605 * set data into sadb_address.
3606 */
3607static struct mbuf *
3608key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3609 u_int16_t exttype;
3610 struct sockaddr *saddr;
3611 u_int8_t prefixlen;
3612 u_int16_t ul_proto;
3613{
3614 struct mbuf *m;
3615 struct sadb_address *p;
3616 size_t len;
3617
3618 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3619 PFKEY_ALIGN8(saddr->sa_len);
3620 m = key_alloc_mbuf(len);
3621 if (!m || m->m_next) { /*XXX*/
3622 if (m)
3623 m_freem(m);
3624 return NULL;
3625 }
3626
3627 p = mtod(m, struct sadb_address *);
3628
3629 bzero(p, len);
3630 p->sadb_address_len = PFKEY_UNIT64(len);
3631 p->sadb_address_exttype = exttype;
3632 p->sadb_address_proto = ul_proto;
3633 if (prefixlen == FULLMASK) {
3634 switch (saddr->sa_family) {
3635 case AF_INET:
3636 prefixlen = sizeof(struct in_addr) << 3;
3637 break;
3638 case AF_INET6:
3639 prefixlen = sizeof(struct in6_addr) << 3;
3640 break;
3641 default:
3642 ; /*XXX*/
3643 }
3644 }
3645 p->sadb_address_prefixlen = prefixlen;
3646 p->sadb_address_reserved = 0;
3647
3648 bcopy(saddr,
3649 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3650 saddr->sa_len);
3651
3652 return m;
3653}
3654
3655#if 0
3656/*
3657 * set data into sadb_ident.
3658 */
3659static struct mbuf *
3660key_setsadbident(exttype, idtype, string, stringlen, id)
3661 u_int16_t exttype, idtype;
3662 caddr_t string;
3663 int stringlen;
3664 u_int64_t id;
3665{
3666 struct mbuf *m;
3667 struct sadb_ident *p;
3668 size_t len;
3669
3670 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
3671 m = key_alloc_mbuf(len);
3672 if (!m || m->m_next) { /*XXX*/
3673 if (m)
3674 m_freem(m);
3675 return NULL;
3676 }
3677
3678 p = mtod(m, struct sadb_ident *);
3679
3680 bzero(p, len);
3681 p->sadb_ident_len = PFKEY_UNIT64(len);
3682 p->sadb_ident_exttype = exttype;
3683 p->sadb_ident_type = idtype;
3684 p->sadb_ident_reserved = 0;
3685 p->sadb_ident_id = id;
3686
3687 bcopy(string,
3688 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
3689 stringlen);
3690
3691 return m;
3692}
3693#endif
3694
3695/*
3696 * set data into sadb_x_sa2.
3697 */
3698static struct mbuf *
3699key_setsadbxsa2(mode, seq, reqid)
3700 u_int8_t mode;
3701 u_int32_t seq, reqid;
3702{
3703 struct mbuf *m;
3704 struct sadb_x_sa2 *p;
3705 size_t len;
3706
3707 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3708 m = key_alloc_mbuf(len);
3709 if (!m || m->m_next) { /*XXX*/
3710 if (m)
3711 m_freem(m);
3712 return NULL;
3713 }
3714
3715 p = mtod(m, struct sadb_x_sa2 *);
3716
3717 bzero(p, len);
3718 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3719 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3720 p->sadb_x_sa2_mode = mode;
3721 p->sadb_x_sa2_reserved1 = 0;
3722 p->sadb_x_sa2_reserved2 = 0;
3723 p->sadb_x_sa2_sequence = seq;
3724 p->sadb_x_sa2_reqid = reqid;
3725
3726 return m;
3727}
3728
3729/*
3730 * set data into sadb_x_policy
3731 */
3732static struct mbuf *
3733key_setsadbxpolicy(type, dir, id)
3734 u_int16_t type;
3735 u_int8_t dir;
3736 u_int32_t id;
3737{
3738 struct mbuf *m;
3739 struct sadb_x_policy *p;
3740 size_t len;
3741
3742 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3743 m = key_alloc_mbuf(len);
3744 if (!m || m->m_next) { /*XXX*/
3745 if (m)
3746 m_freem(m);
3747 return NULL;
3748 }
3749
3750 p = mtod(m, struct sadb_x_policy *);
3751
3752 bzero(p, len);
3753 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3754 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3755 p->sadb_x_policy_type = type;
3756 p->sadb_x_policy_dir = dir;
3757 p->sadb_x_policy_id = id;
3758
3759 return m;
3760}
3761
3762/* %%% utilities */
3763/*
3764 * copy a buffer into the new buffer allocated.
3765 */
3766static void *
3767key_newbuf(src, len)
3768 const void *src;
3769 u_int len;
3770{
3771 caddr_t new;
3772
3773 KMALLOC(new, caddr_t, len);
3774 if (new == NULL) {
3775 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n"));
3776 return NULL;
3777 }
3778 bcopy(src, new, len);
3779
3780 return new;
3781}
3782
3783/* compare my own address
3784 * OUT: 1: true, i.e. my address.
3785 * 0: false
3786 */
3787int
3788key_ismyaddr(sa)
3789 struct sockaddr *sa;
3790{
3791#ifdef INET
3792 struct sockaddr_in *sin;
3793 struct in_ifaddr *ia;
3794#endif
3795
3796 /* sanity check */
3797 if (sa == NULL)
3798 panic("key_ismyaddr: NULL pointer is passed.\n");
3799
3800 switch (sa->sa_family) {
3801#ifdef INET
3802 case AF_INET:
3803 sin = (struct sockaddr_in *)sa;
3804 for (ia = in_ifaddrhead.tqh_first; ia;
3805 ia = ia->ia_link.tqe_next)
3806 {
3807 if (sin->sin_family == ia->ia_addr.sin_family &&
3808 sin->sin_len == ia->ia_addr.sin_len &&
3809 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3810 {
3811 return 1;
3812 }
3813 }
3814 break;
3815#endif
3816#ifdef INET6
3817 case AF_INET6:
3818 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3819#endif
3820 }
3821
3822 return 0;
3823}
3824
3825#ifdef INET6
3826/*
3827 * compare my own address for IPv6.
3828 * 1: ours
3829 * 0: other
3830 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3831 */
3832#include <netinet6/in6_var.h>
3833
3834static int
3835key_ismyaddr6(sin6)
3836 struct sockaddr_in6 *sin6;
3837{
3838 struct in6_ifaddr *ia;
3839 struct in6_multi *in6m;
3840
3841 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3842 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3843 (struct sockaddr *)&ia->ia_addr, 0) == 0)
3844 return 1;
3845
3846 /*
3847 * XXX Multicast
3848 * XXX why do we care about multlicast here while we don't care
3849 * about IPv4 multicast??
3850 * XXX scope
3851 */
3852 in6m = NULL;
3853 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3854 if (in6m)
3855 return 1;
3856 }
3857
3858 /* loopback, just for safety */
3859 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3860 return 1;
3861
3862 return 0;
3863}
3864#endif /*INET6*/
3865
3866/*
3867 * compare two secasindex structure.
3868 * flag can specify to compare 2 saidxes.
3869 * compare two secasindex structure without both mode and reqid.
3870 * don't compare port.
3871 * IN:
3872 * saidx0: source, it can be in SAD.
3873 * saidx1: object.
3874 * OUT:
3875 * 1 : equal
3876 * 0 : not equal
3877 */
3878static int
3879key_cmpsaidx(saidx0, saidx1, flag)
3880 struct secasindex *saidx0, *saidx1;
3881 int flag;
3882{
3883 /* sanity */
3884 if (saidx0 == NULL && saidx1 == NULL)
3885 return 1;
3886
3887 if (saidx0 == NULL || saidx1 == NULL)
3888 return 0;
3889
3890 if (saidx0->proto != saidx1->proto)
3891 return 0;
3892
3893 if (flag == CMP_EXACTLY) {
3894 if (saidx0->mode != saidx1->mode)
3895 return 0;
3896 if (saidx0->reqid != saidx1->reqid)
3897 return 0;
3898 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.ss_len) != 0 ||
3899 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.ss_len) != 0)
3900 return 0;
3901 } else {
3902
3903 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3904 if (flag == CMP_MODE_REQID
3905 ||flag == CMP_REQID) {
3906 /*
3907 * If reqid of SPD is non-zero, unique SA is required.
3908 * The result must be of same reqid in this case.
3909 */
3910 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3911 return 0;
3912 }
3913
3914 if (flag == CMP_MODE_REQID) {
3915 if (saidx0->mode != IPSEC_MODE_ANY
3916 && saidx0->mode != saidx1->mode)
3917 return 0;
3918 }
3919
3920 if (key_sockaddrcmp((struct sockaddr *)&saidx0->src,
3921 (struct sockaddr *)&saidx1->src, 0) != 0) {
3922 return 0;
3923 }
3924 if (key_sockaddrcmp((struct sockaddr *)&saidx0->dst,
3925 (struct sockaddr *)&saidx1->dst, 0) != 0) {
3926 return 0;
3927 }
3928 }
3929
3930 return 1;
3931}
3932
3933/*
3934 * compare two secindex structure exactly.
3935 * IN:
3936 * spidx0: source, it is often in SPD.
3937 * spidx1: object, it is often from PFKEY message.
3938 * OUT:
3939 * 1 : equal
3940 * 0 : not equal
3941 */
3942static int
3943key_cmpspidx_exactly(spidx0, spidx1)
3944 struct secpolicyindex *spidx0, *spidx1;
3945{
3946 /* sanity */
3947 if (spidx0 == NULL && spidx1 == NULL)
3948 return 1;
3949
3950 if (spidx0 == NULL || spidx1 == NULL)
3951 return 0;
3952
3953 if (spidx0->prefs != spidx1->prefs
3954 || spidx0->prefd != spidx1->prefd
3955 || spidx0->ul_proto != spidx1->ul_proto)
3956 return 0;
3957
3958 if (key_sockaddrcmp((struct sockaddr *)&spidx0->src,
3959 (struct sockaddr *)&spidx1->src, 1) != 0) {
3960 return 0;
3961 }
3962 if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst,
3963 (struct sockaddr *)&spidx1->dst, 1) != 0) {
3964 return 0;
3965 }
3966
3967 return 1;
3968}
3969
3970/*
3971 * compare two secindex structure with mask.
3972 * IN:
3973 * spidx0: source, it is often in SPD.
3974 * spidx1: object, it is often from IP header.
3975 * OUT:
3976 * 1 : equal
3977 * 0 : not equal
3978 */
3979static int
3980key_cmpspidx_withmask(spidx0, spidx1)
3981 struct secpolicyindex *spidx0, *spidx1;
3982{
3983 /* sanity */
3984 if (spidx0 == NULL && spidx1 == NULL)
3985 return 1;
3986
3987 if (spidx0 == NULL || spidx1 == NULL)
3988 return 0;
3989
3990 if (spidx0->src.ss_family != spidx1->src.ss_family ||
3991 spidx0->dst.ss_family != spidx1->dst.ss_family ||
3992 spidx0->src.ss_len != spidx1->src.ss_len ||
3993 spidx0->dst.ss_len != spidx1->dst.ss_len)
3994 return 0;
3995
3996 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3997 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3998 && spidx0->ul_proto != spidx1->ul_proto)
3999 return 0;
4000
4001 switch (spidx0->src.ss_family) {
4002 case AF_INET:
4003 if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY
4004 && satosin(&spidx0->src)->sin_port !=
4005 satosin(&spidx1->src)->sin_port)
4006 return 0;
4007 if (!key_bbcmp((caddr_t)&satosin(&spidx0->src)->sin_addr,
4008 (caddr_t)&satosin(&spidx1->src)->sin_addr, spidx0->prefs))
4009 return 0;
4010 break;
4011 case AF_INET6:
4012 if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY
4013 && satosin6(&spidx0->src)->sin6_port !=
4014 satosin6(&spidx1->src)->sin6_port)
4015 return 0;
4016 /*
4017 * scope_id check. if sin6_scope_id is 0, we regard it
4018 * as a wildcard scope, which matches any scope zone ID.
4019 */
4020 if (satosin6(&spidx0->src)->sin6_scope_id &&
4021 satosin6(&spidx1->src)->sin6_scope_id &&
4022 satosin6(&spidx0->src)->sin6_scope_id !=
4023 satosin6(&spidx1->src)->sin6_scope_id)
4024 return 0;
4025 if (!key_bbcmp((caddr_t)&satosin6(&spidx0->src)->sin6_addr,
4026 (caddr_t)&satosin6(&spidx1->src)->sin6_addr, spidx0->prefs))
4027 return 0;
4028 break;
4029 default:
4030 /* XXX */
4031 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.ss_len) != 0)
4032 return 0;
4033 break;
4034 }
4035
4036 switch (spidx0->dst.ss_family) {
4037 case AF_INET:
4038 if (satosin(&spidx0->dst)->sin_port != IPSEC_PORT_ANY
4039 && satosin(&spidx0->dst)->sin_port !=
4040 satosin(&spidx1->dst)->sin_port)
4041 return 0;
4042 if (!key_bbcmp((caddr_t)&satosin(&spidx0->dst)->sin_addr,
4043 (caddr_t)&satosin(&spidx1->dst)->sin_addr, spidx0->prefd))
4044 return 0;
4045 break;
4046 case AF_INET6:
4047 if (satosin6(&spidx0->dst)->sin6_port != IPSEC_PORT_ANY
4048 && satosin6(&spidx0->dst)->sin6_port !=
4049 satosin6(&spidx1->dst)->sin6_port)
4050 return 0;
4051 /*
4052 * scope_id check. if sin6_scope_id is 0, we regard it
4053 * as a wildcard scope, which matches any scope zone ID.
4054 */
4055 if (satosin6(&spidx0->src)->sin6_scope_id &&
4056 satosin6(&spidx1->src)->sin6_scope_id &&
4057 satosin6(&spidx0->dst)->sin6_scope_id !=
4058 satosin6(&spidx1->dst)->sin6_scope_id)
4059 return 0;
4060 if (!key_bbcmp((caddr_t)&satosin6(&spidx0->dst)->sin6_addr,
4061 (caddr_t)&satosin6(&spidx1->dst)->sin6_addr, spidx0->prefd))
4062 return 0;
4063 break;
4064 default:
4065 /* XXX */
4066 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.ss_len) != 0)
4067 return 0;
4068 break;
4069 }
4070
4071 /* XXX Do we check other field ? e.g. flowinfo */
4072
4073 return 1;
4074}
4075
4076/* returns 0 on match */
4077static int
4078key_sockaddrcmp(sa1, sa2, port)
4079 struct sockaddr *sa1;
4080 struct sockaddr *sa2;
4081 int port;
4082{
4083 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4084 return 1;
4085
4086 switch (sa1->sa_family) {
4087 case AF_INET:
4088 if (sa1->sa_len != sizeof(struct sockaddr_in))
4089 return 1;
4090 if (satosin(sa1)->sin_addr.s_addr !=
4091 satosin(sa2)->sin_addr.s_addr) {
4092 return 1;
4093 }
4094 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4095 return 1;
4096 break;
4097 case AF_INET6:
4098 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4099 return 1; /*EINVAL*/
4100 if (satosin6(sa1)->sin6_scope_id !=
4101 satosin6(sa2)->sin6_scope_id) {
4102 return 1;
4103 }
4104 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4105 &satosin6(sa2)->sin6_addr)) {
4106 return 1;
4107 }
4108 if (port &&
4109 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4110 return 1;
4111 }
4112 default:
4113 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4114 return 1;
4115 break;
4116 }
4117