kernel - Change legacy MBR partition type from 0xA5 to 0x6C
[dragonfly.git] / sys / kern / lwkt_thread.c
CommitLineData
8ad65e08 1/*
b12defdc 2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
60f60350 3 *
8c10bfcf
MD
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
60f60350 6 *
8ad65e08
MD
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
60f60350 10 *
8ad65e08
MD
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
8c10bfcf
MD
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
60f60350 20 *
8c10bfcf
MD
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
8ad65e08 32 * SUCH DAMAGE.
75cdbe6c
MD
33 */
34
35/*
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
8ad65e08
MD
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/proc.h>
46#include <sys/rtprio.h>
b37f18d6 47#include <sys/kinfo.h>
8ad65e08 48#include <sys/queue.h>
7d0bac62 49#include <sys/sysctl.h>
99df837e 50#include <sys/kthread.h>
f1d1c3fa 51#include <machine/cpu.h>
99df837e 52#include <sys/lock.h>
9d265729 53#include <sys/spinlock.h>
57aa743c 54#include <sys/ktr.h>
9d265729
MD
55
56#include <sys/thread2.h>
57#include <sys/spinlock2.h>
f1d1c3fa 58
8c72e3d5
AH
59#include <sys/dsched.h>
60
7d0bac62
MD
61#include <vm/vm.h>
62#include <vm/vm_param.h>
63#include <vm/vm_kern.h>
64#include <vm/vm_object.h>
65#include <vm/vm_page.h>
66#include <vm/vm_map.h>
67#include <vm/vm_pager.h>
68#include <vm/vm_extern.h>
7d0bac62 69
99df837e 70#include <machine/stdarg.h>
96728c05 71#include <machine/smp.h>
3a06728e 72#include <machine/clock.h>
99df837e 73
8cee56f4
MD
74#ifdef _KERNEL_VIRTUAL
75#include <pthread.h>
76#endif
77
3a06728e
MD
78#define LOOPMASK
79
d850923c
AE
80#if !defined(KTR_CTXSW)
81#define KTR_CTXSW KTR_ALL
82#endif
83KTR_INFO_MASTER(ctxsw);
5bf48697
AE
84KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
85KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
86KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
87KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
1541028a 88
40aaf5fc
NT
89static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
90
0f7a3396
MD
91#ifdef INVARIANTS
92static int panic_on_cscount = 0;
93#endif
e28c8ef4
SW
94static int64_t switch_count = 0;
95static int64_t preempt_hit = 0;
96static int64_t preempt_miss = 0;
97static int64_t preempt_weird = 0;
fb0f29c4 98static int lwkt_use_spin_port;
40aaf5fc 99static struct objcache *thread_cache;
a46b4a23 100int cpu_mwait_spin = 0;
05220613 101
e381e77c 102static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
cc9b6223 103static void lwkt_setcpu_remote(void *arg);
e381e77c 104
fb0f29c4
MD
105/*
106 * We can make all thread ports use the spin backend instead of the thread
107 * backend. This should only be set to debug the spin backend.
108 */
109TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
110
0f7a3396 111#ifdef INVARIANTS
0c52fa62
SG
112SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
113 "Panic if attempting to switch lwkt's while mastering cpusync");
0f7a3396 114#endif
0c52fa62
SG
115SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
116 "Number of switched threads");
9733f757 117SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
0c52fa62 118 "Successful preemption events");
9733f757 119SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
0c52fa62
SG
120 "Failed preemption events");
121SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
122 "Number of preempted threads.");
b12defdc 123static int fairq_enable = 0;
2a418930
MD
124SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
125 &fairq_enable, 0, "Turn on fairq priority accumulators");
85946b6c 126static int fairq_bypass = -1;
b12defdc
MD
127SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
128 &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
129extern int lwkt_sched_debug;
130int lwkt_sched_debug = 0;
131SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
132 &lwkt_sched_debug, 0, "Scheduler debug");
7fb451cb
MD
133static u_int lwkt_spin_loops = 10;
134SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
b12defdc 135 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
fbc024e4 136static int preempt_enable = 1;
2a418930
MD
137SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
138 &preempt_enable, 0, "Enable preemption");
7b234d8c 139static int lwkt_cache_threads = 0;
765b1ae0
MD
140SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
141 &lwkt_cache_threads, 0, "thread+kstack cache");
fbc024e4 142
4b5f931b
MD
143/*
144 * These helper procedures handle the runq, they can only be called from
145 * within a critical section.
75cdbe6c
MD
146 *
147 * WARNING! Prior to SMP being brought up it is possible to enqueue and
148 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
149 * instead of 'mycpu' when referencing the globaldata structure. Once
150 * SMP live enqueuing and dequeueing only occurs on the current cpu.
4b5f931b 151 */
f1d1c3fa
MD
152static __inline
153void
154_lwkt_dequeue(thread_t td)
155{
156 if (td->td_flags & TDF_RUNQ) {
75cdbe6c 157 struct globaldata *gd = td->td_gd;
4b5f931b 158
f1d1c3fa 159 td->td_flags &= ~TDF_RUNQ;
f9235b6d 160 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
de4d4cb0 161 --gd->gd_tdrunqcount;
f9235b6d 162 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
2a418930 163 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
f1d1c3fa
MD
164 }
165}
166
f9235b6d
MD
167/*
168 * Priority enqueue.
169 *
d992c377
MD
170 * There are a limited number of lwkt threads runnable since user
171 * processes only schedule one at a time per cpu. However, there can
172 * be many user processes in kernel mode exiting from a tsleep() which
e3e6be1f 173 * become runnable.
d992c377 174 *
e6b81333
MD
175 * We scan the queue in both directions to help deal with degenerate
176 * situations when hundreds or thousands (or more) threads are runnable.
177 *
d992c377
MD
178 * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
179 * will ignore user priority. This is to ensure that user threads in
180 * kernel mode get cpu at some point regardless of what the user
181 * scheduler thinks.
f9235b6d 182 */
f1d1c3fa
MD
183static __inline
184void
185_lwkt_enqueue(thread_t td)
186{
e6b81333
MD
187 thread_t xtd; /* forward scan */
188 thread_t rtd; /* reverse scan */
f9235b6d 189
7f5d7ed7 190 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
75cdbe6c 191 struct globaldata *gd = td->td_gd;
4b5f931b 192
f1d1c3fa 193 td->td_flags |= TDF_RUNQ;
f9235b6d
MD
194 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
195 if (xtd == NULL) {
85946b6c
MD
196 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
197 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
f9235b6d 198 } else {
e3e6be1f
MD
199 /*
200 * NOTE: td_upri - higher numbers more desireable, same sense
201 * as td_pri (typically reversed from lwp_upri).
202 *
203 * In the equal priority case we want the best selection
204 * at the beginning so the less desireable selections know
205 * that they have to setrunqueue/go-to-another-cpu, even
206 * though it means switching back to the 'best' selection.
207 * This also avoids degenerate situations when many threads
208 * are runnable or waking up at the same time.
209 *
210 * If upri matches exactly place at end/round-robin.
211 */
e6b81333
MD
212 rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
213
d992c377 214 while (xtd &&
e6b81333 215 (xtd->td_pri > td->td_pri ||
d992c377 216 (xtd->td_pri == td->td_pri &&
e3e6be1f 217 xtd->td_upri >= td->td_upri))) {
85946b6c 218 xtd = TAILQ_NEXT(xtd, td_threadq);
e6b81333
MD
219
220 /*
221 * Doing a reverse scan at the same time is an optimization
222 * for the insert-closer-to-tail case that avoids having to
223 * scan the entire list. This situation can occur when
224 * thousands of threads are woken up at the same time.
225 */
226 if (rtd->td_pri > td->td_pri ||
227 (rtd->td_pri == td->td_pri &&
228 rtd->td_upri >= td->td_upri)) {
229 TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
230 goto skip;
231 }
232 rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
d992c377 233 }
85946b6c
MD
234 if (xtd)
235 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
236 else
237 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
f9235b6d 238 }
e6b81333 239skip:
de4d4cb0 240 ++gd->gd_tdrunqcount;
b12defdc
MD
241
242 /*
85946b6c 243 * Request a LWKT reschedule if we are now at the head of the queue.
b12defdc 244 */
85946b6c
MD
245 if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
246 need_lwkt_resched();
f1d1c3fa
MD
247 }
248}
8ad65e08 249
e28c8ef4 250static boolean_t
40aaf5fc
NT
251_lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
252{
253 struct thread *td = (struct thread *)obj;
254
255 td->td_kstack = NULL;
256 td->td_kstack_size = 0;
257 td->td_flags = TDF_ALLOCATED_THREAD;
4643740a 258 td->td_mpflags = 0;
40aaf5fc
NT
259 return (1);
260}
261
262static void
263_lwkt_thread_dtor(void *obj, void *privdata)
264{
265 struct thread *td = (struct thread *)obj;
266
267 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
268 ("_lwkt_thread_dtor: not allocated from objcache"));
269 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
270 td->td_kstack_size > 0,
271 ("_lwkt_thread_dtor: corrupted stack"));
272 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
7b234d8c
MD
273 td->td_kstack = NULL;
274 td->td_flags = 0;
40aaf5fc
NT
275}
276
277/*
278 * Initialize the lwkt s/system.
765b1ae0 279 *
7b234d8c
MD
280 * Nominally cache up to 32 thread + kstack structures. Cache more on
281 * systems with a lot of cpu cores.
40aaf5fc 282 */
ced589cb 283static void
40aaf5fc
NT
284lwkt_init(void)
285{
765b1ae0 286 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
7b234d8c
MD
287 if (lwkt_cache_threads == 0) {
288 lwkt_cache_threads = ncpus * 4;
289 if (lwkt_cache_threads < 32)
290 lwkt_cache_threads = 32;
291 }
765b1ae0
MD
292 thread_cache = objcache_create_mbacked(
293 M_THREAD, sizeof(struct thread),
2fce2579 294 0, lwkt_cache_threads,
765b1ae0 295 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
40aaf5fc 296}
ced589cb 297SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
40aaf5fc 298
37af14fe
MD
299/*
300 * Schedule a thread to run. As the current thread we can always safely
301 * schedule ourselves, and a shortcut procedure is provided for that
302 * function.
303 *
304 * (non-blocking, self contained on a per cpu basis)
305 */
306void
307lwkt_schedule_self(thread_t td)
308{
cfaeae2a 309 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
37af14fe 310 crit_enter_quick(td);
f9235b6d
MD
311 KASSERT(td != &td->td_gd->gd_idlethread,
312 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
4643740a
MD
313 KKASSERT(td->td_lwp == NULL ||
314 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
37af14fe 315 _lwkt_enqueue(td);
37af14fe
MD
316 crit_exit_quick(td);
317}
318
319/*
320 * Deschedule a thread.
321 *
322 * (non-blocking, self contained on a per cpu basis)
323 */
324void
325lwkt_deschedule_self(thread_t td)
326{
327 crit_enter_quick(td);
37af14fe
MD
328 _lwkt_dequeue(td);
329 crit_exit_quick(td);
330}
331
8ad65e08
MD
332/*
333 * LWKTs operate on a per-cpu basis
334 *
73e4f7b9 335 * WARNING! Called from early boot, 'mycpu' may not work yet.
8ad65e08
MD
336 */
337void
338lwkt_gdinit(struct globaldata *gd)
339{
f9235b6d 340 TAILQ_INIT(&gd->gd_tdrunq);
73e4f7b9 341 TAILQ_INIT(&gd->gd_tdallq);
8ad65e08
MD
342}
343
7d0bac62
MD
344/*
345 * Create a new thread. The thread must be associated with a process context
75cdbe6c
MD
346 * or LWKT start address before it can be scheduled. If the target cpu is
347 * -1 the thread will be created on the current cpu.
0cfcada1
MD
348 *
349 * If you intend to create a thread without a process context this function
350 * does everything except load the startup and switcher function.
7d0bac62
MD
351 */
352thread_t
d3d32139 353lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
7d0bac62 354{
d2d8515b 355 static int cpu_rotator;
c070746a 356 globaldata_t gd = mycpu;
99df837e 357 void *stack;
7d0bac62 358
c070746a
MD
359 /*
360 * If static thread storage is not supplied allocate a thread. Reuse
361 * a cached free thread if possible. gd_freetd is used to keep an exiting
362 * thread intact through the exit.
363 */
ef0fdad1 364 if (td == NULL) {
cf709dd2
MD
365 crit_enter_gd(gd);
366 if ((td = gd->gd_freetd) != NULL) {
367 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
368 TDF_RUNQ)) == 0);
c070746a 369 gd->gd_freetd = NULL;
cf709dd2 370 } else {
c070746a 371 td = objcache_get(thread_cache, M_WAITOK);
cf709dd2
MD
372 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
373 TDF_RUNQ)) == 0);
374 }
375 crit_exit_gd(gd);
40aaf5fc 376 KASSERT((td->td_flags &
2af9d75d
MD
377 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
378 TDF_ALLOCATED_THREAD,
40aaf5fc
NT
379 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
380 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
ef0fdad1 381 }
c070746a
MD
382
383 /*
384 * Try to reuse cached stack.
385 */
f470d0c8
MD
386 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
387 if (flags & TDF_ALLOCATED_STACK) {
e4846942 388 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
f470d0c8
MD
389 stack = NULL;
390 }
391 }
392 if (stack == NULL) {
070a58b3
MD
393 if (cpu < 0)
394 stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
395 else
396 stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
397 KM_CPU(cpu));
ef0fdad1 398 flags |= TDF_ALLOCATED_STACK;
99df837e 399 }
d2d8515b
MD
400 if (cpu < 0) {
401 cpu = ++cpu_rotator;
402 cpu_ccfence();
403 cpu %= ncpus;
404 }
405 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
99df837e 406 return(td);
7d0bac62
MD
407}
408
409/*
410 * Initialize a preexisting thread structure. This function is used by
411 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
412 *
f8c3996b
MD
413 * All threads start out in a critical section at a priority of
414 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
75cdbe6c
MD
415 * appropriate. This function may send an IPI message when the
416 * requested cpu is not the current cpu and consequently gd_tdallq may
417 * not be initialized synchronously from the point of view of the originating
418 * cpu.
419 *
420 * NOTE! we have to be careful in regards to creating threads for other cpus
421 * if SMP has not yet been activated.
7d0bac62 422 */
75cdbe6c
MD
423static void
424lwkt_init_thread_remote(void *arg)
425{
426 thread_t td = arg;
427
52eedfb5
MD
428 /*
429 * Protected by critical section held by IPI dispatch
430 */
75cdbe6c
MD
431 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
432}
433
fdce8919
MD
434/*
435 * lwkt core thread structural initialization.
436 *
437 * NOTE: All threads are initialized as mpsafe threads.
438 */
7d0bac62 439void
f470d0c8
MD
440lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
441 struct globaldata *gd)
7d0bac62 442{
37af14fe
MD
443 globaldata_t mygd = mycpu;
444
99df837e
MD
445 bzero(td, sizeof(struct thread));
446 td->td_kstack = stack;
f470d0c8 447 td->td_kstack_size = stksize;
d3d32139 448 td->td_flags = flags;
4643740a 449 td->td_mpflags = 0;
f256b6c0 450 td->td_type = TD_TYPE_GENERIC;
26a0694b 451 td->td_gd = gd;
f9235b6d
MD
452 td->td_pri = TDPRI_KERN_DAEMON;
453 td->td_critcount = 1;
54341a3b 454 td->td_toks_have = NULL;
3b998fa9 455 td->td_toks_stop = &td->td_toks_base;
c068fb59
SZ
456 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
457 lwkt_initport_spin(&td->td_msgport, td,
458 (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
459 } else {
fb0f29c4 460 lwkt_initport_thread(&td->td_msgport, td);
c068fb59 461 }
99df837e 462 pmap_init_thread(td);
5d21b981
MD
463 /*
464 * Normally initializing a thread for a remote cpu requires sending an
465 * IPI. However, the idlethread is setup before the other cpus are
466 * activated so we have to treat it as a special case. XXX manipulation
467 * of gd_tdallq requires the BGL.
468 */
469 if (gd == mygd || td == &gd->gd_idlethread) {
37af14fe 470 crit_enter_gd(mygd);
75cdbe6c 471 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
37af14fe 472 crit_exit_gd(mygd);
75cdbe6c 473 } else {
2db3b277 474 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
75cdbe6c 475 }
3573cf7b 476 dsched_enter_thread(td);
73e4f7b9
MD
477}
478
479void
480lwkt_set_comm(thread_t td, const char *ctl, ...)
481{
e2565a42 482 __va_list va;
73e4f7b9 483
e2565a42 484 __va_start(va, ctl);
379210cb 485 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
e2565a42 486 __va_end(va);
5bf48697 487 KTR_LOG(ctxsw_newtd, td, td->td_comm);
7d0bac62
MD
488}
489
eb2adbf5
MD
490/*
491 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE
492 * this does not prevent the thread from migrating to another cpu so the
493 * gd_tdallq state is not protected by this.
494 */
99df837e 495void
73e4f7b9 496lwkt_hold(thread_t td)
99df837e 497{
74c9628e 498 atomic_add_int(&td->td_refs, 1);
73e4f7b9
MD
499}
500
501void
502lwkt_rele(thread_t td)
503{
504 KKASSERT(td->td_refs > 0);
74c9628e 505 atomic_add_int(&td->td_refs, -1);
73e4f7b9
MD
506}
507
73e4f7b9
MD
508void
509lwkt_free_thread(thread_t td)
510{
74c9628e 511 KKASSERT(td->td_refs == 0);
c17a6852
MD
512 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
513 TDF_RUNQ | TDF_TSLEEPQ)) == 0);
40aaf5fc
NT
514 if (td->td_flags & TDF_ALLOCATED_THREAD) {
515 objcache_put(thread_cache, td);
516 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
517 /* client-allocated struct with internally allocated stack */
518 KASSERT(td->td_kstack && td->td_kstack_size > 0,
519 ("lwkt_free_thread: corrupted stack"));
520 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
521 td->td_kstack = NULL;
522 td->td_kstack_size = 0;
99df837e 523 }
a86ce0cd 524
e7c0dbba 525 KTR_LOG(ctxsw_deadtd, td);
99df837e
MD
526}
527
528
8ad65e08
MD
529/*
530 * Switch to the next runnable lwkt. If no LWKTs are runnable then
f1d1c3fa
MD
531 * switch to the idlethread. Switching must occur within a critical
532 * section to avoid races with the scheduling queue.
533 *
534 * We always have full control over our cpu's run queue. Other cpus
535 * that wish to manipulate our queue must use the cpu_*msg() calls to
536 * talk to our cpu, so a critical section is all that is needed and
537 * the result is very, very fast thread switching.
538 *
96728c05
MD
539 * The LWKT scheduler uses a fixed priority model and round-robins at
540 * each priority level. User process scheduling is a totally
541 * different beast and LWKT priorities should not be confused with
542 * user process priorities.
f1d1c3fa 543 *
69d78e99
MD
544 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
545 * is not called by the current thread in the preemption case, only when
546 * the preempting thread blocks (in order to return to the original thread).
cfaeae2a
MD
547 *
548 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
549 * migration and tsleep deschedule the current lwkt thread and call
550 * lwkt_switch(). In particular, the target cpu of the migration fully
551 * expects the thread to become non-runnable and can deadlock against
552 * cpusync operations if we run any IPIs prior to switching the thread out.
553 *
554 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
95858b91 555 * THE CURRENT THREAD HAS BEEN DESCHEDULED!
8ad65e08
MD
556 */
557void
558lwkt_switch(void)
559{
37af14fe
MD
560 globaldata_t gd = mycpu;
561 thread_t td = gd->gd_curthread;
8ad65e08 562 thread_t ntd;
5411d8f1 563 int upri;
3a06728e
MD
564#ifdef LOOPMASK
565 uint64_t tsc_base = rdtsc();
566#endif
8ad65e08 567
da0b0e8b 568 KKASSERT(gd->gd_processing_ipiq == 0);
121f93bc 569 KKASSERT(td->td_flags & TDF_RUNNING);
da0b0e8b 570
46a3f46d 571 /*
27e88a6e
MD
572 * Switching from within a 'fast' (non thread switched) interrupt or IPI
573 * is illegal. However, we may have to do it anyway if we hit a fatal
574 * kernel trap or we have paniced.
575 *
576 * If this case occurs save and restore the interrupt nesting level.
46a3f46d 577 */
27e88a6e
MD
578 if (gd->gd_intr_nesting_level) {
579 int savegdnest;
580 int savegdtrap;
581
5fddbda2 582 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
4a28fe22 583 panic("lwkt_switch: Attempt to switch from a "
5a8df152 584 "fast interrupt, ipi, or hard code section, "
4a28fe22
MD
585 "td %p\n",
586 td);
27e88a6e
MD
587 } else {
588 savegdnest = gd->gd_intr_nesting_level;
589 savegdtrap = gd->gd_trap_nesting_level;
590 gd->gd_intr_nesting_level = 0;
591 gd->gd_trap_nesting_level = 0;
a7422615
MD
592 if ((td->td_flags & TDF_PANICWARN) == 0) {
593 td->td_flags |= TDF_PANICWARN;
4a28fe22
MD
594 kprintf("Warning: thread switch from interrupt, IPI, "
595 "or hard code section.\n"
a7422615 596 "thread %p (%s)\n", td, td->td_comm);
7ce2998e 597 print_backtrace(-1);
a7422615 598 }
27e88a6e
MD
599 lwkt_switch();
600 gd->gd_intr_nesting_level = savegdnest;
601 gd->gd_trap_nesting_level = savegdtrap;
602 return;
603 }
96728c05 604 }
ef0fdad1 605
cb973d15 606 /*
85946b6c
MD
607 * Release our current user process designation if we are blocking
608 * or if a user reschedule was requested.
609 *
610 * NOTE: This function is NOT called if we are switching into or
611 * returning from a preemption.
612 *
613 * NOTE: Releasing our current user process designation may cause
614 * it to be assigned to another thread, which in turn will
615 * cause us to block in the usched acquire code when we attempt
616 * to return to userland.
617 *
618 * NOTE: On SMP systems this can be very nasty when heavy token
619 * contention is present so we want to be careful not to
620 * release the designation gratuitously.
cb973d15 621 */
85946b6c
MD
622 if (td->td_release &&
623 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
cb973d15 624 td->td_release(td);
85946b6c 625 }
cb973d15 626
85946b6c 627 /*
5411d8f1
MD
628 * Release all tokens. Once we do this we must remain in the critical
629 * section and cannot run IPIs or other interrupts until we switch away
630 * because they may implode if they try to get a token using our thread
631 * context.
85946b6c 632 */
37af14fe 633 crit_enter_gd(gd);
3b998fa9 634 if (TD_TOKS_HELD(td))
9d265729
MD
635 lwkt_relalltokens(td);
636
637 /*
b02926de
MD
638 * We had better not be holding any spin locks, but don't get into an
639 * endless panic loop.
9d265729 640 */
0846e4ce 641 KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
d666840a 642 ("lwkt_switch: still holding %d exclusive spinlocks!",
0846e4ce 643 gd->gd_spinlocks));
9d265729 644
0f7a3396
MD
645#ifdef INVARIANTS
646 if (td->td_cscount) {
6ea70f76 647 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
0f7a3396
MD
648 td);
649 if (panic_on_cscount)
650 panic("switching while mastering cpusync");
651 }
8a8d5d85 652#endif
f9235b6d
MD
653
654 /*
655 * If we had preempted another thread on this cpu, resume the preempted
656 * thread. This occurs transparently, whether the preempted thread
657 * was scheduled or not (it may have been preempted after descheduling
658 * itself).
659 *
660 * We have to setup the MP lock for the original thread after backing
661 * out the adjustment that was made to curthread when the original
662 * was preempted.
663 */
99df837e 664 if ((ntd = td->td_preempted) != NULL) {
26a0694b
MD
665 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
666 ntd->td_flags |= TDF_PREEMPT_DONE;
7fb451cb 667 ntd->td_contended = 0; /* reset contended */
8ec60c3f
MD
668
669 /*
b9eb1c19
MD
670 * The interrupt may have woken a thread up, we need to properly
671 * set the reschedule flag if the originally interrupted thread is
672 * at a lower priority.
85946b6c
MD
673 *
674 * The interrupt may not have descheduled.
8ec60c3f 675 */
85946b6c 676 if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
8ec60c3f 677 need_lwkt_resched();
f9235b6d
MD
678 goto havethread_preempted;
679 }
680
b12defdc 681 /*
5411d8f1
MD
682 * Figure out switch target. If we cannot switch to our desired target
683 * look for a thread that we can switch to.
cfaeae2a 684 *
5411d8f1
MD
685 * NOTE! The limited spin loop and related parameters are extremely
686 * important for system performance, particularly for pipes and
687 * concurrent conflicting VM faults.
f9235b6d 688 */
5411d8f1
MD
689 clear_lwkt_resched();
690 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
691
692 if (ntd) {
693 do {
694 if (TD_TOKS_NOT_HELD(ntd) ||
695 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
696 {
697 goto havethread;
698 }
699 ++gd->gd_cnt.v_lock_colls;
7fb451cb 700 ++ntd->td_contended; /* overflow ok */
3a06728e
MD
701#ifdef LOOPMASK
702 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
703 kprintf("lwkt_switch: excessive contended %d "
704 "thread %p\n", ntd->td_contended, ntd);
705 tsc_base = rdtsc();
706 }
707#endif
5411d8f1
MD
708 } while (ntd->td_contended < (lwkt_spin_loops >> 1));
709 upri = ntd->td_upri;
f9235b6d 710
f9235b6d 711 /*
5411d8f1
MD
712 * Bleh, the thread we wanted to switch to has a contended token.
713 * See if we can switch to another thread.
2a418930 714 *
5411d8f1
MD
715 * We generally don't want to do this because it represents a
716 * priority inversion. Do not allow the case if the thread
717 * is returning to userland (not a kernel thread) AND the thread
718 * has a lower upri.
f9235b6d 719 */
b12defdc 720 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
5411d8f1
MD
721 if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
722 break;
723 upri = ntd->td_upri;
b12defdc 724
5411d8f1
MD
725 /*
726 * Try this one.
727 */
728 if (TD_TOKS_NOT_HELD(ntd) ||
729 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
730 goto havethread;
731 }
7fb451cb 732 ++ntd->td_contended; /* overflow ok */
5411d8f1 733 ++gd->gd_cnt.v_lock_colls;
b12defdc 734 }
b12defdc
MD
735
736 /*
5411d8f1
MD
737 * Fall through, switch to idle thread to get us out of the current
738 * context. Since we were contended, prevent HLT by flagging a
739 * LWKT reschedule.
b12defdc 740 */
5411d8f1 741 need_lwkt_resched();
f1d1c3fa 742 }
8a8d5d85 743
5411d8f1
MD
744 /*
745 * We either contended on ntd or the runq is empty. We must switch
746 * through the idle thread to get out of the current context.
747 */
748 ntd = &gd->gd_idlethread;
749 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
750 ASSERT_NO_TOKENS_HELD(ntd);
751 cpu_time.cp_msg[0] = 0;
5411d8f1
MD
752 goto haveidle;
753
2a418930 754havethread:
b12defdc 755 /*
be71787b
MD
756 * Clear gd_idle_repeat when doing a normal switch to a non-idle
757 * thread.
f9235b6d 758 */
9ac1ee6e 759 ntd->td_wmesg = NULL;
7fb451cb 760 ntd->td_contended = 0; /* reset once scheduled */
b12defdc 761 ++gd->gd_cnt.v_swtch;
be71787b 762 gd->gd_idle_repeat = 0;
2a418930 763
f9235b6d 764havethread_preempted:
f9235b6d
MD
765 /*
766 * If the new target does not need the MP lock and we are holding it,
767 * release the MP lock. If the new target requires the MP lock we have
768 * already acquired it for the target.
8a8d5d85 769 */
2a418930 770 ;
f9235b6d
MD
771haveidle:
772 KASSERT(ntd->td_critcount,
b5d16701
MD
773 ("priority problem in lwkt_switch %d %d",
774 td->td_critcount, ntd->td_critcount));
775
94f6d86e 776 if (td != ntd) {
cc9b6223
MD
777 /*
778 * Execute the actual thread switch operation. This function
779 * returns to the current thread and returns the previous thread
780 * (which may be different from the thread we switched to).
781 *
782 * We are responsible for marking ntd as TDF_RUNNING.
783 */
121f93bc 784 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
94f6d86e 785 ++switch_count;
a1f0fb66 786 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
cc9b6223
MD
787 ntd->td_flags |= TDF_RUNNING;
788 lwkt_switch_return(td->td_switch(ntd));
789 /* ntd invalid, td_switch() can return a different thread_t */
94f6d86e 790 }
b12defdc 791
b12defdc 792 /*
54341a3b 793 * catch-all. XXX is this strictly needed?
b12defdc
MD
794 */
795 splz_check();
54341a3b 796
37af14fe
MD
797 /* NOTE: current cpu may have changed after switch */
798 crit_exit_quick(td);
8ad65e08
MD
799}
800
cc9b6223
MD
801/*
802 * Called by assembly in the td_switch (thread restore path) for thread
803 * bootstrap cases which do not 'return' to lwkt_switch().
804 */
805void
806lwkt_switch_return(thread_t otd)
807{
cc9b6223 808 globaldata_t rgd;
3a06728e
MD
809#ifdef LOOPMASK
810 uint64_t tsc_base = rdtsc();
811#endif
812 int exiting;
813
814 exiting = otd->td_flags & TDF_EXITING;
815 cpu_ccfence();
cc9b6223
MD
816
817 /*
818 * Check if otd was migrating. Now that we are on ntd we can finish
819 * up the migration. This is a bit messy but it is the only place
820 * where td is known to be fully descheduled.
821 *
822 * We can only activate the migration if otd was migrating but not
823 * held on the cpu due to a preemption chain. We still have to
824 * clear TDF_RUNNING on the old thread either way.
825 *
826 * We are responsible for clearing the previously running thread's
827 * TDF_RUNNING.
828 */
829 if ((rgd = otd->td_migrate_gd) != NULL &&
830 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
831 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
832 (TDF_MIGRATING | TDF_RUNNING));
833 otd->td_migrate_gd = NULL;
834 otd->td_flags &= ~TDF_RUNNING;
835 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
836 } else {
837 otd->td_flags &= ~TDF_RUNNING;
838 }
2b07d9aa
MD
839
840 /*
841 * Final exit validations (see lwp_wait()). Note that otd becomes
842 * invalid the *instant* we set TDF_MP_EXITSIG.
3a06728e
MD
843 *
844 * Use the EXITING status loaded from before we clear TDF_RUNNING,
845 * because if it is not set otd becomes invalid the instant we clear
846 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
847 * might 'steal' TDF_EXITING from another switch-return!).
2b07d9aa 848 */
3a06728e 849 while (exiting) {
2b07d9aa
MD
850 u_int mpflags;
851
852 mpflags = otd->td_mpflags;
853 cpu_ccfence();
854
855 if (mpflags & TDF_MP_EXITWAIT) {
856 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
857 mpflags | TDF_MP_EXITSIG)) {
858 wakeup(otd);
859 break;
860 }
861 } else {
862 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
863 mpflags | TDF_MP_EXITSIG)) {
864 wakeup(otd);
865 break;
866 }
867 }
3a06728e
MD
868
869#ifdef LOOPMASK
870 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
871 kprintf("lwkt_switch_return: excessive TDF_EXITING "
872 "thread %p\n", otd);
873 tsc_base = rdtsc();
874 }
875#endif
2b07d9aa 876 }
cc9b6223
MD
877}
878
b68b7282 879/*
96728c05 880 * Request that the target thread preempt the current thread. Preemption
203592a0
MD
881 * can only occur only:
882 *
883 * - If our critical section is the one that we were called with
884 * - The relative priority of the target thread is higher
885 * - The target is not excessively interrupt-nested via td_nest_count
886 * - The target thread holds no tokens.
887 * - The target thread is not already scheduled and belongs to the
888 * current cpu.
889 * - The current thread is not holding any spin-locks.
96728c05
MD
890 *
891 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
892 * this is called via lwkt_schedule() through the td_preemptable callback.
f9235b6d 893 * critcount is the managed critical priority that we should ignore in order
96728c05
MD
894 * to determine whether preemption is possible (aka usually just the crit
895 * priority of lwkt_schedule() itself).
b68b7282 896 *
54341a3b
MD
897 * Preemption is typically limited to interrupt threads.
898 *
899 * Operation works in a fairly straight-forward manner. The normal
900 * scheduling code is bypassed and we switch directly to the target
901 * thread. When the target thread attempts to block or switch away
902 * code at the base of lwkt_switch() will switch directly back to our
903 * thread. Our thread is able to retain whatever tokens it holds and
904 * if the target needs one of them the target will switch back to us
905 * and reschedule itself normally.
b68b7282
MD
906 */
907void
f9235b6d 908lwkt_preempt(thread_t ntd, int critcount)
b68b7282 909{
46a3f46d 910 struct globaldata *gd = mycpu;
cc9b6223 911 thread_t xtd;
0a3f9b47 912 thread_t td;
2d910aaf 913 int save_gd_intr_nesting_level;
b68b7282 914
26a0694b 915 /*
96728c05
MD
916 * The caller has put us in a critical section. We can only preempt
917 * if the caller of the caller was not in a critical section (basically
f9235b6d 918 * a local interrupt), as determined by the 'critcount' parameter. We
47737962 919 * also can't preempt if the caller is holding any spinlocks (even if
d666840a 920 * he isn't in a critical section). This also handles the tokens test.
96728c05
MD
921 *
922 * YYY The target thread must be in a critical section (else it must
923 * inherit our critical section? I dunno yet).
26a0694b 924 */
f9235b6d 925 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
26a0694b 926
b12defdc 927 td = gd->gd_curthread;
fbc024e4
MD
928 if (preempt_enable == 0) {
929 ++preempt_miss;
930 return;
931 }
f9235b6d 932 if (ntd->td_pri <= td->td_pri) {
57c254db
MD
933 ++preempt_miss;
934 return;
935 }
f9235b6d 936 if (td->td_critcount > critcount) {
96728c05
MD
937 ++preempt_miss;
938 return;
939 }
203592a0
MD
940 if (td->td_nest_count >= 2) {
941 ++preempt_miss;
942 return;
943 }
121f93bc
MD
944 if (td->td_cscount) {
945 ++preempt_miss;
946 return;
947 }
46a3f46d 948 if (ntd->td_gd != gd) {
96728c05
MD
949 ++preempt_miss;
950 return;
951 }
ee89e80b 952
41a01a4d 953 /*
77912481
MD
954 * We don't have to check spinlocks here as they will also bump
955 * td_critcount.
d3d1cbc8
MD
956 *
957 * Do not try to preempt if the target thread is holding any tokens.
958 * We could try to acquire the tokens but this case is so rare there
959 * is no need to support it.
41a01a4d 960 */
0846e4ce 961 KKASSERT(gd->gd_spinlocks == 0);
77912481 962
3b998fa9 963 if (TD_TOKS_HELD(ntd)) {
d3d1cbc8 964 ++preempt_miss;
d3d1cbc8
MD
965 return;
966 }
26a0694b
MD
967 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
968 ++preempt_weird;
969 return;
970 }
971 if (ntd->td_preempted) {
4b5f931b 972 ++preempt_hit;
26a0694b 973 return;
b68b7282 974 }
da0b0e8b 975 KKASSERT(gd->gd_processing_ipiq == 0);
26a0694b 976
8ec60c3f
MD
977 /*
978 * Since we are able to preempt the current thread, there is no need to
979 * call need_lwkt_resched().
2d910aaf
MD
980 *
981 * We must temporarily clear gd_intr_nesting_level around the switch
982 * since switchouts from the target thread are allowed (they will just
983 * return to our thread), and since the target thread has its own stack.
cc9b6223
MD
984 *
985 * A preemption must switch back to the original thread, assert the
986 * case.
8ec60c3f 987 */
26a0694b
MD
988 ++preempt_hit;
989 ntd->td_preempted = td;
990 td->td_flags |= TDF_PREEMPT_LOCK;
a1f0fb66 991 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
2d910aaf
MD
992 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
993 gd->gd_intr_nesting_level = 0;
121f93bc
MD
994
995 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
cc9b6223
MD
996 ntd->td_flags |= TDF_RUNNING;
997 xtd = td->td_switch(ntd);
998 KKASSERT(xtd == ntd);
999 lwkt_switch_return(xtd);
2d910aaf 1000 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
b9eb1c19 1001
26a0694b
MD
1002 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1003 ntd->td_preempted = NULL;
1004 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
b68b7282
MD
1005}
1006
f1d1c3fa 1007/*
faaeffac 1008 * Conditionally call splz() if gd_reqflags indicates work is pending.
4a28fe22
MD
1009 * This will work inside a critical section but not inside a hard code
1010 * section.
ef0fdad1 1011 *
f1d1c3fa
MD
1012 * (self contained on a per cpu basis)
1013 */
1014void
faaeffac 1015splz_check(void)
f1d1c3fa 1016{
7966cb69
MD
1017 globaldata_t gd = mycpu;
1018 thread_t td = gd->gd_curthread;
ef0fdad1 1019
4a28fe22
MD
1020 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1021 gd->gd_intr_nesting_level == 0 &&
1022 td->td_nest_count < 2)
1023 {
f1d1c3fa 1024 splz();
4a28fe22
MD
1025 }
1026}
1027
1028/*
1029 * This version is integrated into crit_exit, reqflags has already
1030 * been tested but td_critcount has not.
1031 *
1032 * We only want to execute the splz() on the 1->0 transition of
1033 * critcount and not in a hard code section or if too deeply nested.
925040f2 1034 *
0846e4ce 1035 * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
4a28fe22
MD
1036 */
1037void
1038lwkt_maybe_splz(thread_t td)
1039{
1040 globaldata_t gd = td->td_gd;
1041
1042 if (td->td_critcount == 0 &&
1043 gd->gd_intr_nesting_level == 0 &&
1044 td->td_nest_count < 2)
1045 {
1046 splz();
1047 }
f1d1c3fa
MD
1048}
1049
e6546af9
MD
1050/*
1051 * Drivers which set up processing co-threads can call this function to
1052 * run the co-thread at a higher priority and to allow it to preempt
1053 * normal threads.
1054 */
1055void
1056lwkt_set_interrupt_support_thread(void)
1057{
1058 thread_t td = curthread;
1059
1060 lwkt_setpri_self(TDPRI_INT_SUPPORT);
1061 td->td_flags |= TDF_INTTHREAD;
1062 td->td_preemptable = lwkt_preempt;
1063}
1064
1065
8ad65e08 1066/*
f9235b6d
MD
1067 * This function is used to negotiate a passive release of the current
1068 * process/lwp designation with the user scheduler, allowing the user
1069 * scheduler to schedule another user thread. The related kernel thread
1070 * (curthread) continues running in the released state.
8ad65e08
MD
1071 */
1072void
f9235b6d 1073lwkt_passive_release(struct thread *td)
8ad65e08 1074{
f9235b6d
MD
1075 struct lwp *lp = td->td_lwp;
1076
1077 td->td_release = NULL;
1078 lwkt_setpri_self(TDPRI_KERN_USER);
d992c377 1079
f9235b6d 1080 lp->lwp_proc->p_usched->release_curproc(lp);
f1d1c3fa
MD
1081}
1082
f9235b6d 1083
3824f392 1084/*
d2d8515b
MD
1085 * This implements a LWKT yield, allowing a kernel thread to yield to other
1086 * kernel threads at the same or higher priority. This function can be
1087 * called in a tight loop and will typically only yield once per tick.
f9235b6d 1088 *
d2d8515b
MD
1089 * Most kernel threads run at the same priority in order to allow equal
1090 * sharing.
f9235b6d
MD
1091 *
1092 * (self contained on a per cpu basis)
3824f392
MD
1093 */
1094void
f9235b6d 1095lwkt_yield(void)
3824f392 1096{
f9235b6d
MD
1097 globaldata_t gd = mycpu;
1098 thread_t td = gd->gd_curthread;
3824f392 1099
fbe96076
MD
1100 /*
1101 * Should never be called with spinlocks held but there is a path
1102 * via ACPI where it might happen.
1103 */
1104 if (gd->gd_spinlocks)
1105 return;
1106
1107 /*
1108 * Safe to call splz if we are not too-heavily nested.
1109 */
f9235b6d
MD
1110 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1111 splz();
fbe96076
MD
1112
1113 /*
1114 * Caller allows switching
1115 */
85946b6c 1116 if (lwkt_resched_wanted()) {
f9235b6d
MD
1117 lwkt_schedule_self(curthread);
1118 lwkt_switch();
f9235b6d 1119 }
3824f392
MD
1120}
1121
40504122
MD
1122/*
1123 * The quick version processes pending interrupts and higher-priority
1124 * LWKT threads but will not round-robin same-priority LWKT threads.
de4d4cb0
MD
1125 *
1126 * When called while attempting to return to userland the only same-pri
1127 * threads are the ones which have already tried to become the current
1128 * user process.
40504122
MD
1129 */
1130void
1131lwkt_yield_quick(void)
1132{
1133 globaldata_t gd = mycpu;
1134 thread_t td = gd->gd_curthread;
1135
1136 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1137 splz();
1138 if (lwkt_resched_wanted()) {
9c99cb33 1139 crit_enter();
40504122
MD
1140 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1141 clear_lwkt_resched();
1142 } else {
1143 lwkt_schedule_self(curthread);
1144 lwkt_switch();
1145 }
9c99cb33 1146 crit_exit();
40504122
MD
1147 }
1148}
1149
3824f392 1150/*
f9235b6d
MD
1151 * This yield is designed for kernel threads with a user context.
1152 *
1153 * The kernel acting on behalf of the user is potentially cpu-bound,
1154 * this function will efficiently allow other threads to run and also
1155 * switch to other processes by releasing.
3824f392
MD
1156 *
1157 * The lwkt_user_yield() function is designed to have very low overhead
1158 * if no yield is determined to be needed.
1159 */
1160void
1161lwkt_user_yield(void)
1162{
f9235b6d
MD
1163 globaldata_t gd = mycpu;
1164 thread_t td = gd->gd_curthread;
1165
fbe96076
MD
1166 /*
1167 * Should never be called with spinlocks held but there is a path
1168 * via ACPI where it might happen.
1169 */
1170 if (gd->gd_spinlocks)
1171 return;
1172
f9235b6d
MD
1173 /*
1174 * Always run any pending interrupts in case we are in a critical
1175 * section.
1176 */
1177 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1178 splz();
3824f392 1179
3824f392 1180 /*
f9235b6d
MD
1181 * Switch (which forces a release) if another kernel thread needs
1182 * the cpu, if userland wants us to resched, or if our kernel
1183 * quantum has run out.
3824f392 1184 */
f9235b6d 1185 if (lwkt_resched_wanted() ||
85946b6c 1186 user_resched_wanted())
f9235b6d 1187 {
3824f392 1188 lwkt_switch();
3824f392
MD
1189 }
1190
f9235b6d 1191#if 0
3824f392 1192 /*
f9235b6d
MD
1193 * Reacquire the current process if we are released.
1194 *
1195 * XXX not implemented atm. The kernel may be holding locks and such,
1196 * so we want the thread to continue to receive cpu.
3824f392 1197 */
f9235b6d
MD
1198 if (td->td_release == NULL && lp) {
1199 lp->lwp_proc->p_usched->acquire_curproc(lp);
1200 td->td_release = lwkt_passive_release;
1201 lwkt_setpri_self(TDPRI_USER_NORM);
3824f392 1202 }
f9235b6d 1203#endif
b9eb1c19
MD
1204}
1205
8ad65e08 1206/*
f1d1c3fa
MD
1207 * Generic schedule. Possibly schedule threads belonging to other cpus and
1208 * deal with threads that might be blocked on a wait queue.
1209 *
0a3f9b47
MD
1210 * We have a little helper inline function which does additional work after
1211 * the thread has been enqueued, including dealing with preemption and
1212 * setting need_lwkt_resched() (which prevents the kernel from returning
1213 * to userland until it has processed higher priority threads).
6330a558
MD
1214 *
1215 * It is possible for this routine to be called after a failed _enqueue
1216 * (due to the target thread migrating, sleeping, or otherwise blocked).
1217 * We have to check that the thread is actually on the run queue!
8ad65e08 1218 */
0a3f9b47
MD
1219static __inline
1220void
85946b6c 1221_lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
0a3f9b47 1222{
6330a558 1223 if (ntd->td_flags & TDF_RUNQ) {
85946b6c 1224 if (ntd->td_preemptable) {
f9235b6d 1225 ntd->td_preemptable(ntd, ccount); /* YYY +token */
6330a558 1226 }
0a3f9b47
MD
1227 }
1228}
1229
361d01dd 1230static __inline
8ad65e08 1231void
85946b6c 1232_lwkt_schedule(thread_t td)
8ad65e08 1233{
37af14fe
MD
1234 globaldata_t mygd = mycpu;
1235
cf709dd2
MD
1236 KASSERT(td != &td->td_gd->gd_idlethread,
1237 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
cfaeae2a 1238 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
37af14fe 1239 crit_enter_gd(mygd);
4643740a
MD
1240 KKASSERT(td->td_lwp == NULL ||
1241 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1242
37af14fe 1243 if (td == mygd->gd_curthread) {
f1d1c3fa
MD
1244 _lwkt_enqueue(td);
1245 } else {
f1d1c3fa 1246 /*
7cd8d145
MD
1247 * If we own the thread, there is no race (since we are in a
1248 * critical section). If we do not own the thread there might
1249 * be a race but the target cpu will deal with it.
f1d1c3fa 1250 */
7cd8d145 1251 if (td->td_gd == mygd) {
9d265729 1252 _lwkt_enqueue(td);
85946b6c 1253 _lwkt_schedule_post(mygd, td, 1);
f1d1c3fa 1254 } else {
e381e77c 1255 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
7cd8d145 1256 }
8ad65e08 1257 }
37af14fe 1258 crit_exit_gd(mygd);
8ad65e08
MD
1259}
1260
361d01dd
MD
1261void
1262lwkt_schedule(thread_t td)
1263{
85946b6c 1264 _lwkt_schedule(td);
361d01dd
MD
1265}
1266
1267void
85946b6c 1268lwkt_schedule_noresched(thread_t td) /* XXX not impl */
361d01dd 1269{
85946b6c 1270 _lwkt_schedule(td);
361d01dd
MD
1271}
1272
e381e77c
MD
1273/*
1274 * When scheduled remotely if frame != NULL the IPIQ is being
1275 * run via doreti or an interrupt then preemption can be allowed.
1276 *
1277 * To allow preemption we have to drop the critical section so only
1278 * one is present in _lwkt_schedule_post.
1279 */
1280static void
1281lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1282{
1283 thread_t td = curthread;
1284 thread_t ntd = arg;
1285
1286 if (frame && ntd->td_preemptable) {
1287 crit_exit_noyield(td);
85946b6c 1288 _lwkt_schedule(ntd);
e381e77c
MD
1289 crit_enter_quick(td);
1290 } else {
85946b6c 1291 _lwkt_schedule(ntd);
e381e77c
MD
1292 }
1293}
1294
d9eea1a5 1295/*
52eedfb5
MD
1296 * Thread migration using a 'Pull' method. The thread may or may not be
1297 * the current thread. It MUST be descheduled and in a stable state.
1298 * lwkt_giveaway() must be called on the cpu owning the thread.
1299 *
1300 * At any point after lwkt_giveaway() is called, the target cpu may
1301 * 'pull' the thread by calling lwkt_acquire().
1302 *
ae8e83e6
MD
1303 * We have to make sure the thread is not sitting on a per-cpu tsleep
1304 * queue or it will blow up when it moves to another cpu.
1305 *
52eedfb5 1306 * MPSAFE - must be called under very specific conditions.
d9eea1a5 1307 */
52eedfb5
MD
1308void
1309lwkt_giveaway(thread_t td)
1310{
3b4192fb 1311 globaldata_t gd = mycpu;
52eedfb5 1312
3b4192fb
MD
1313 crit_enter_gd(gd);
1314 if (td->td_flags & TDF_TSLEEPQ)
1315 tsleep_remove(td);
1316 KKASSERT(td->td_gd == gd);
1317 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1318 td->td_flags |= TDF_MIGRATING;
1319 crit_exit_gd(gd);
52eedfb5
MD
1320}
1321
a2a5ad0d
MD
1322void
1323lwkt_acquire(thread_t td)
1324{
37af14fe
MD
1325 globaldata_t gd;
1326 globaldata_t mygd;
a2a5ad0d 1327
52eedfb5 1328 KKASSERT(td->td_flags & TDF_MIGRATING);
a2a5ad0d 1329 gd = td->td_gd;
37af14fe 1330 mygd = mycpu;
52eedfb5 1331 if (gd != mycpu) {
3a06728e
MD
1332#ifdef LOOPMASK
1333 uint64_t tsc_base = rdtsc();
1334#endif
35238fa5 1335 cpu_lfence();
52eedfb5 1336 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
37af14fe 1337 crit_enter_gd(mygd);
cfaeae2a 1338 DEBUG_PUSH_INFO("lwkt_acquire");
df910c23 1339 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
df910c23 1340 lwkt_process_ipiq();
52eedfb5 1341 cpu_lfence();
a86ce0cd
MD
1342#ifdef _KERNEL_VIRTUAL
1343 pthread_yield();
3a06728e
MD
1344#endif
1345#ifdef LOOPMASK
1346 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1347 kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1348 td, td->td_flags);
1349 tsc_base = rdtsc();
1350 }
a86ce0cd 1351#endif
df910c23 1352 }
cfaeae2a 1353 DEBUG_POP_INFO();
562273ea 1354 cpu_mfence();
37af14fe 1355 td->td_gd = mygd;
52eedfb5
MD
1356 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1357 td->td_flags &= ~TDF_MIGRATING;
1358 crit_exit_gd(mygd);
1359 } else {
1360 crit_enter_gd(mygd);
1361 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1362 td->td_flags &= ~TDF_MIGRATING;
37af14fe 1363 crit_exit_gd(mygd);
a2a5ad0d
MD
1364 }
1365}
1366
f1d1c3fa
MD
1367/*
1368 * Generic deschedule. Descheduling threads other then your own should be
1369 * done only in carefully controlled circumstances. Descheduling is
1370 * asynchronous.
1371 *
1372 * This function may block if the cpu has run out of messages.
8ad65e08
MD
1373 */
1374void
1375lwkt_deschedule(thread_t td)
1376{
f1d1c3fa
MD
1377 crit_enter();
1378 if (td == curthread) {
1379 _lwkt_dequeue(td);
1380 } else {
a72187e9 1381 if (td->td_gd == mycpu) {
f1d1c3fa
MD
1382 _lwkt_dequeue(td);
1383 } else {
b8a98473 1384 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
f1d1c3fa
MD
1385 }
1386 }
1387 crit_exit();
1388}
1389
4b5f931b
MD
1390/*
1391 * Set the target thread's priority. This routine does not automatically
1392 * switch to a higher priority thread, LWKT threads are not designed for
1393 * continuous priority changes. Yield if you want to switch.
4b5f931b
MD
1394 */
1395void
1396lwkt_setpri(thread_t td, int pri)
1397{
f9235b6d
MD
1398 if (td->td_pri != pri) {
1399 KKASSERT(pri >= 0);
1400 crit_enter();
1401 if (td->td_flags & TDF_RUNQ) {
d2d8515b 1402 KKASSERT(td->td_gd == mycpu);
f9235b6d
MD
1403 _lwkt_dequeue(td);
1404 td->td_pri = pri;
1405 _lwkt_enqueue(td);
1406 } else {
1407 td->td_pri = pri;
1408 }
1409 crit_exit();
26a0694b 1410 }
26a0694b
MD
1411}
1412
03bd0a5e
MD
1413/*
1414 * Set the initial priority for a thread prior to it being scheduled for
1415 * the first time. The thread MUST NOT be scheduled before or during
1416 * this call. The thread may be assigned to a cpu other then the current
1417 * cpu.
1418 *
1419 * Typically used after a thread has been created with TDF_STOPPREQ,
1420 * and before the thread is initially scheduled.
1421 */
1422void
1423lwkt_setpri_initial(thread_t td, int pri)
1424{
1425 KKASSERT(pri >= 0);
1426 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
f9235b6d 1427 td->td_pri = pri;
03bd0a5e
MD
1428}
1429
26a0694b
MD
1430void
1431lwkt_setpri_self(int pri)
1432{
1433 thread_t td = curthread;
1434
4b5f931b
MD
1435 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1436 crit_enter();
1437 if (td->td_flags & TDF_RUNQ) {
1438 _lwkt_dequeue(td);
f9235b6d 1439 td->td_pri = pri;
4b5f931b
MD
1440 _lwkt_enqueue(td);
1441 } else {
f9235b6d 1442 td->td_pri = pri;
4b5f931b
MD
1443 }
1444 crit_exit();
1445}
1446
f9235b6d 1447/*
85946b6c 1448 * hz tick scheduler clock for LWKT threads
f9235b6d
MD
1449 */
1450void
85946b6c 1451lwkt_schedulerclock(thread_t td)
f9235b6d 1452{
85946b6c
MD
1453 globaldata_t gd = td->td_gd;
1454 thread_t xtd;
2a418930 1455
85946b6c
MD
1456 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1457 /*
1458 * If the current thread is at the head of the runq shift it to the
1459 * end of any equal-priority threads and request a LWKT reschedule
1460 * if it moved.
d992c377
MD
1461 *
1462 * Ignore upri in this situation. There will only be one user thread
1463 * in user mode, all others will be user threads running in kernel
1464 * mode and we have to make sure they get some cpu.
85946b6c
MD
1465 */
1466 xtd = TAILQ_NEXT(td, td_threadq);
1467 if (xtd && xtd->td_pri == td->td_pri) {
1468 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1469 while (xtd && xtd->td_pri == td->td_pri)
1470 xtd = TAILQ_NEXT(xtd, td_threadq);
1471 if (xtd)
1472 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1473 else
1474 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1475 need_lwkt_resched();
f9235b6d 1476 }
85946b6c
MD
1477 } else {
1478 /*
1479 * If we scheduled a thread other than the one at the head of the
1480 * queue always request a reschedule every tick.
1481 */
1482 need_lwkt_resched();
f9235b6d
MD
1483 }
1484}
1485
5d21b981 1486/*
52eedfb5
MD
1487 * Migrate the current thread to the specified cpu.
1488 *
cc9b6223
MD
1489 * This is accomplished by descheduling ourselves from the current cpu
1490 * and setting td_migrate_gd. The lwkt_switch() code will detect that the
1491 * 'old' thread wants to migrate after it has been completely switched out
1492 * and will complete the migration.
1493 *
1494 * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1495 *
1496 * We must be sure to release our current process designation (if a user
1497 * process) before clearing out any tsleepq we are on because the release
1498 * code may re-add us.
ae8e83e6
MD
1499 *
1500 * We must be sure to remove ourselves from the current cpu's tsleepq
1501 * before potentially moving to another queue. The thread can be on
1502 * a tsleepq due to a left-over tsleep_interlock().
5d21b981 1503 */
5d21b981
MD
1504
1505void
1506lwkt_setcpu_self(globaldata_t rgd)
1507{
5d21b981
MD
1508 thread_t td = curthread;
1509
1510 if (td->td_gd != rgd) {
1511 crit_enter_quick(td);
cc9b6223 1512
95858b91
MD
1513 if (td->td_release)
1514 td->td_release(td);
ae8e83e6 1515 if (td->td_flags & TDF_TSLEEPQ)
3b4192fb 1516 tsleep_remove(td);
cc9b6223
MD
1517
1518 /*
1519 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1520 * trying to deschedule ourselves and switch away, then deschedule
1521 * ourself, remove us from tdallq, and set td_migrate_gd. Finally,
1522 * call lwkt_switch() to complete the operation.
1523 */
5d21b981
MD
1524 td->td_flags |= TDF_MIGRATING;
1525 lwkt_deschedule_self(td);
52eedfb5 1526 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
cc9b6223 1527 td->td_migrate_gd = rgd;
5d21b981 1528 lwkt_switch();
cc9b6223
MD
1529
1530 /*
1531 * We are now on the target cpu
1532 */
1533 KKASSERT(rgd == mycpu);
52eedfb5 1534 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
5d21b981
MD
1535 crit_exit_quick(td);
1536 }
5d21b981
MD
1537}
1538
ecdefdda
MD
1539void
1540lwkt_migratecpu(int cpuid)
1541{
ecdefdda
MD
1542 globaldata_t rgd;
1543
1544 rgd = globaldata_find(cpuid);
1545 lwkt_setcpu_self(rgd);
ecdefdda
MD
1546}
1547
5d21b981
MD
1548/*
1549 * Remote IPI for cpu migration (called while in a critical section so we
cc9b6223
MD
1550 * do not have to enter another one).
1551 *
1552 * The thread (td) has already been completely descheduled from the
1553 * originating cpu and we can simply assert the case. The thread is
1554 * assigned to the new cpu and enqueued.
5d21b981 1555 *
cc9b6223 1556 * The thread will re-add itself to tdallq when it resumes execution.
5d21b981
MD
1557 */
1558static void
1559lwkt_setcpu_remote(void *arg)
1560{
1561 thread_t td = arg;
1562 globaldata_t gd = mycpu;
1563
cc9b6223 1564 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
5d21b981 1565 td->td_gd = gd;
562273ea 1566 cpu_mfence();
5d21b981 1567 td->td_flags &= ~TDF_MIGRATING;
cc9b6223 1568 KKASSERT(td->td_migrate_gd == NULL);
4643740a
MD
1569 KKASSERT(td->td_lwp == NULL ||
1570 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
5d21b981
MD
1571 _lwkt_enqueue(td);
1572}
1573
553ea3c8 1574struct lwp *
4b5f931b
MD
1575lwkt_preempted_proc(void)
1576{
73e4f7b9 1577 thread_t td = curthread;
4b5f931b
MD
1578 while (td->td_preempted)
1579 td = td->td_preempted;
553ea3c8 1580 return(td->td_lwp);
4b5f931b
MD
1581}
1582
99df837e
MD
1583/*
1584 * Create a kernel process/thread/whatever. It shares it's address space
1585 * with proc0 - ie: kernel only.
1586 *
d2d8515b
MD
1587 * If the cpu is not specified one will be selected. In the future
1588 * specifying a cpu of -1 will enable kernel thread migration between
1589 * cpus.
99df837e
MD
1590 */
1591int
c9e9fb21
MD
1592lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1593 thread_t template, int tdflags, int cpu, const char *fmt, ...)
99df837e 1594{
73e4f7b9 1595 thread_t td;
e2565a42 1596 __va_list ap;
99df837e 1597
d3d32139 1598 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
dbcd0c9b 1599 tdflags);
a2a5ad0d
MD
1600 if (tdp)
1601 *tdp = td;
709799ea 1602 cpu_set_thread_handler(td, lwkt_exit, func, arg);
99df837e
MD
1603
1604 /*
1605 * Set up arg0 for 'ps' etc
1606 */
e2565a42 1607 __va_start(ap, fmt);
379210cb 1608 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
e2565a42 1609 __va_end(ap);
99df837e
MD
1610
1611 /*
1612 * Schedule the thread to run
1613 */
4643740a
MD
1614 if (td->td_flags & TDF_NOSTART)
1615 td->td_flags &= ~TDF_NOSTART;
ef0fdad1 1616 else
4643740a 1617 lwkt_schedule(td);
99df837e
MD
1618 return 0;
1619}
1620
1621/*
1622 * Destroy an LWKT thread. Warning! This function is not called when
1623 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1624 * uses a different reaping mechanism.
1625 */
1626void
1627lwkt_exit(void)
1628{
1629 thread_t td = curthread;
c070746a 1630 thread_t std;
8826f33a 1631 globaldata_t gd;
99df837e 1632
2883d2d8
MD
1633 /*
1634 * Do any cleanup that might block here
1635 */
99df837e 1636 if (td->td_flags & TDF_VERBOSE)
6ea70f76 1637 kprintf("kthread %p %s has exited\n", td, td->td_comm);
2883d2d8
MD
1638 biosched_done(td);
1639 dsched_exit_thread(td);
c070746a
MD
1640
1641 /*
1642 * Get us into a critical section to interlock gd_freetd and loop
1643 * until we can get it freed.
1644 *
1645 * We have to cache the current td in gd_freetd because objcache_put()ing
1646 * it would rip it out from under us while our thread is still active.
2af9d75d
MD
1647 *
1648 * We are the current thread so of course our own TDF_RUNNING bit will
1649 * be set, so unlike the lwp reap code we don't wait for it to clear.
c070746a
MD
1650 */
1651 gd = mycpu;
37af14fe 1652 crit_enter_quick(td);
2af9d75d
MD
1653 for (;;) {
1654 if (td->td_refs) {
1655 tsleep(td, 0, "tdreap", 1);
1656 continue;
1657 }
1658 if ((std = gd->gd_freetd) != NULL) {
1659 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1660 gd->gd_freetd = NULL;
1661 objcache_put(thread_cache, std);
1662 continue;
1663 }
1664 break;
c070746a 1665 }
3b4192fb
MD
1666
1667 /*
1668 * Remove thread resources from kernel lists and deschedule us for
2883d2d8
MD
1669 * the last time. We cannot block after this point or we may end
1670 * up with a stale td on the tsleepq.
eb2adbf5
MD
1671 *
1672 * None of this may block, the critical section is the only thing
1673 * protecting tdallq and the only thing preventing new lwkt_hold()
1674 * thread refs now.
3b4192fb
MD
1675 */
1676 if (td->td_flags & TDF_TSLEEPQ)
1677 tsleep_remove(td);
37af14fe 1678 lwkt_deschedule_self(td);
e56e4dea 1679 lwkt_remove_tdallq(td);
74c9628e 1680 KKASSERT(td->td_refs == 0);
2883d2d8
MD
1681
1682 /*
1683 * Final cleanup
1684 */
1685 KKASSERT(gd->gd_freetd == NULL);
c070746a
MD
1686 if (td->td_flags & TDF_ALLOCATED_THREAD)
1687 gd->gd_freetd = td;
99df837e
MD
1688 cpu_thread_exit();
1689}
1690
e56e4dea
MD
1691void
1692lwkt_remove_tdallq(thread_t td)
1693{
1694 KKASSERT(td->td_gd == mycpu);
1695 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1696}
1697
9cf43f91
MD
1698/*
1699 * Code reduction and branch prediction improvements. Call/return
1700 * overhead on modern cpus often degenerates into 0 cycles due to
1701 * the cpu's branch prediction hardware and return pc cache. We
1702 * can take advantage of this by not inlining medium-complexity
1703 * functions and we can also reduce the branch prediction impact
1704 * by collapsing perfectly predictable branches into a single
1705 * procedure instead of duplicating it.
1706 *
1707 * Is any of this noticeable? Probably not, so I'll take the
1708 * smaller code size.
1709 */
1710void
b6468f56 1711crit_exit_wrapper(__DEBUG_CRIT_ARG__)
9cf43f91 1712{
b6468f56 1713 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
9cf43f91
MD
1714}
1715
2d93b37a
MD
1716void
1717crit_panic(void)
1718{
1719 thread_t td = curthread;
850634cc 1720 int lcrit = td->td_critcount;
2d93b37a 1721
850634cc
AH
1722 td->td_critcount = 0;
1723 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
4a28fe22 1724 /* NOT REACHED */
2d93b37a
MD
1725}
1726
bd8015ca
MD
1727/*
1728 * Called from debugger/panic on cpus which have been stopped. We must still
b19f40a4 1729 * process the IPIQ while stopped.
bd8015ca
MD
1730 *
1731 * If we are dumping also try to process any pending interrupts. This may
1732 * or may not work depending on the state of the cpu at the point it was
1733 * stopped.
1734 */
1735void
1736lwkt_smp_stopped(void)
1737{
1738 globaldata_t gd = mycpu;
1739
bd8015ca
MD
1740 if (dumping) {
1741 lwkt_process_ipiq();
b19f40a4 1742 --gd->gd_intr_nesting_level;
bd8015ca 1743 splz();
b19f40a4 1744 ++gd->gd_intr_nesting_level;
bd8015ca
MD
1745 } else {
1746 lwkt_process_ipiq();
1747 }
63cff036 1748 cpu_smp_stopped();
bd8015ca 1749}