Import OpenSSL 1.0.1q.
[dragonfly.git] / crypto / openssl / crypto / bn / asm / x86_64-gf2m.pl
CommitLineData
672590bc
PA
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# May 2011
11#
12# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
13# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
14# the time being... Except that it has two code paths: code suitable
15# for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and
8be1fb4e 16# later. Improvement varies from one benchmark and µ-arch to another.
672590bc
PA
17# Vanilla code path is at most 20% faster than compiler-generated code
18# [not very impressive], while PCLMULQDQ - whole 85%-160% better on
19# 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that
20# these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not
21# all CPU time is burnt in it...
22
23$flavour = shift;
24$output = shift;
25if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
26
27$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
28
29$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
30( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
31( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
32die "can't locate x86_64-xlate.pl";
33
8b433ce3
PA
34open OUT,"| \"$^X\" $xlate $flavour $output";
35*STDOUT=*OUT;
672590bc
PA
36
37($lo,$hi)=("%rax","%rdx"); $a=$lo;
38($i0,$i1)=("%rsi","%rdi");
39($t0,$t1)=("%rbx","%rcx");
40($b,$mask)=("%rbp","%r8");
41($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15));
42($R,$Tx)=("%xmm0","%xmm1");
43
44$code.=<<___;
45.text
46
47.type _mul_1x1,\@abi-omnipotent
48.align 16
49_mul_1x1:
50 sub \$128+8,%rsp
51 mov \$-1,$a1
52 lea ($a,$a),$i0
53 shr \$3,$a1
54 lea (,$a,4),$i1
55 and $a,$a1 # a1=a&0x1fffffffffffffff
56 lea (,$a,8),$a8
57 sar \$63,$a # broadcast 63rd bit
58 lea ($a1,$a1),$a2
59 sar \$63,$i0 # broadcast 62nd bit
60 lea (,$a1,4),$a4
61 and $b,$a
62 sar \$63,$i1 # boardcast 61st bit
63 mov $a,$hi # $a is $lo
64 shl \$63,$lo
65 and $b,$i0
66 shr \$1,$hi
67 mov $i0,$t1
68 shl \$62,$i0
69 and $b,$i1
70 shr \$2,$t1
71 xor $i0,$lo
72 mov $i1,$t0
73 shl \$61,$i1
74 xor $t1,$hi
75 shr \$3,$t0
76 xor $i1,$lo
77 xor $t0,$hi
78
79 mov $a1,$a12
80 movq \$0,0(%rsp) # tab[0]=0
81 xor $a2,$a12 # a1^a2
82 mov $a1,8(%rsp) # tab[1]=a1
83 mov $a4,$a48
84 mov $a2,16(%rsp) # tab[2]=a2
85 xor $a8,$a48 # a4^a8
86 mov $a12,24(%rsp) # tab[3]=a1^a2
87
88 xor $a4,$a1
89 mov $a4,32(%rsp) # tab[4]=a4
90 xor $a4,$a2
91 mov $a1,40(%rsp) # tab[5]=a1^a4
92 xor $a4,$a12
93 mov $a2,48(%rsp) # tab[6]=a2^a4
94 xor $a48,$a1 # a1^a4^a4^a8=a1^a8
95 mov $a12,56(%rsp) # tab[7]=a1^a2^a4
96 xor $a48,$a2 # a2^a4^a4^a8=a1^a8
97
98 mov $a8,64(%rsp) # tab[8]=a8
99 xor $a48,$a12 # a1^a2^a4^a4^a8=a1^a2^a8
100 mov $a1,72(%rsp) # tab[9]=a1^a8
101 xor $a4,$a1 # a1^a8^a4
102 mov $a2,80(%rsp) # tab[10]=a2^a8
103 xor $a4,$a2 # a2^a8^a4
104 mov $a12,88(%rsp) # tab[11]=a1^a2^a8
105
106 xor $a4,$a12 # a1^a2^a8^a4
107 mov $a48,96(%rsp) # tab[12]=a4^a8
108 mov $mask,$i0
109 mov $a1,104(%rsp) # tab[13]=a1^a4^a8
110 and $b,$i0
111 mov $a2,112(%rsp) # tab[14]=a2^a4^a8
112 shr \$4,$b
113 mov $a12,120(%rsp) # tab[15]=a1^a2^a4^a8
114 mov $mask,$i1
115 and $b,$i1
116 shr \$4,$b
117
118 movq (%rsp,$i0,8),$R # half of calculations is done in SSE2
119 mov $mask,$i0
120 and $b,$i0
121 shr \$4,$b
122___
123 for ($n=1;$n<8;$n++) {
124 $code.=<<___;
125 mov (%rsp,$i1,8),$t1
126 mov $mask,$i1
127 mov $t1,$t0
128 shl \$`8*$n-4`,$t1
129 and $b,$i1
130 movq (%rsp,$i0,8),$Tx
131 shr \$`64-(8*$n-4)`,$t0
132 xor $t1,$lo
133 pslldq \$$n,$Tx
134 mov $mask,$i0
135 shr \$4,$b
136 xor $t0,$hi
137 and $b,$i0
138 shr \$4,$b
139 pxor $Tx,$R
140___
141 }
142$code.=<<___;
143 mov (%rsp,$i1,8),$t1
144 mov $t1,$t0
145 shl \$`8*$n-4`,$t1
146 movq $R,$i0
147 shr \$`64-(8*$n-4)`,$t0
148 xor $t1,$lo
149 psrldq \$8,$R
150 xor $t0,$hi
151 movq $R,$i1
152 xor $i0,$lo
153 xor $i1,$hi
154
155 add \$128+8,%rsp
156 ret
157.Lend_mul_1x1:
158.size _mul_1x1,.-_mul_1x1
159___
160
161($rp,$a1,$a0,$b1,$b0) = $win64? ("%rcx","%rdx","%r8", "%r9","%r10") : # Win64 order
162 ("%rdi","%rsi","%rdx","%rcx","%r8"); # Unix order
163
164$code.=<<___;
165.extern OPENSSL_ia32cap_P
166.globl bn_GF2m_mul_2x2
167.type bn_GF2m_mul_2x2,\@abi-omnipotent
168.align 16
169bn_GF2m_mul_2x2:
170 mov OPENSSL_ia32cap_P(%rip),%rax
171 bt \$33,%rax
172 jnc .Lvanilla_mul_2x2
173
174 movq $a1,%xmm0
175 movq $b1,%xmm1
176 movq $a0,%xmm2
177___
178$code.=<<___ if ($win64);
179 movq 40(%rsp),%xmm3
180___
181$code.=<<___ if (!$win64);
182 movq $b0,%xmm3
183___
184$code.=<<___;
185 movdqa %xmm0,%xmm4
186 movdqa %xmm1,%xmm5
8be1fb4e 187 pclmulqdq \$0,%xmm1,%xmm0 # a1·b1
672590bc
PA
188 pxor %xmm2,%xmm4
189 pxor %xmm3,%xmm5
8be1fb4e
SW
190 pclmulqdq \$0,%xmm3,%xmm2 # a0·b0
191 pclmulqdq \$0,%xmm5,%xmm4 # (a0+a1)·(b0+b1)
672590bc 192 xorps %xmm0,%xmm4
8be1fb4e 193 xorps %xmm2,%xmm4 # (a0+a1)·(b0+b1)-a0·b0-a1·b1
672590bc
PA
194 movdqa %xmm4,%xmm5
195 pslldq \$8,%xmm4
196 psrldq \$8,%xmm5
197 pxor %xmm4,%xmm2
198 pxor %xmm5,%xmm0
199 movdqu %xmm2,0($rp)
200 movdqu %xmm0,16($rp)
201 ret
202
203.align 16
204.Lvanilla_mul_2x2:
205 lea -8*17(%rsp),%rsp
206___
207$code.=<<___ if ($win64);
208 mov `8*17+40`(%rsp),$b0
209 mov %rdi,8*15(%rsp)
210 mov %rsi,8*16(%rsp)
211___
212$code.=<<___;
213 mov %r14,8*10(%rsp)
214 mov %r13,8*11(%rsp)
215 mov %r12,8*12(%rsp)
216 mov %rbp,8*13(%rsp)
217 mov %rbx,8*14(%rsp)
218.Lbody_mul_2x2:
219 mov $rp,32(%rsp) # save the arguments
220 mov $a1,40(%rsp)
221 mov $a0,48(%rsp)
222 mov $b1,56(%rsp)
223 mov $b0,64(%rsp)
224
225 mov \$0xf,$mask
226 mov $a1,$a
227 mov $b1,$b
8be1fb4e 228 call _mul_1x1 # a1·b1
672590bc
PA
229 mov $lo,16(%rsp)
230 mov $hi,24(%rsp)
231
232 mov 48(%rsp),$a
233 mov 64(%rsp),$b
8be1fb4e 234 call _mul_1x1 # a0·b0
672590bc
PA
235 mov $lo,0(%rsp)
236 mov $hi,8(%rsp)
237
238 mov 40(%rsp),$a
239 mov 56(%rsp),$b
240 xor 48(%rsp),$a
241 xor 64(%rsp),$b
8be1fb4e 242 call _mul_1x1 # (a0+a1)·(b0+b1)
672590bc
PA
243___
244 @r=("%rbx","%rcx","%rdi","%rsi");
245$code.=<<___;
246 mov 0(%rsp),@r[0]
247 mov 8(%rsp),@r[1]
248 mov 16(%rsp),@r[2]
249 mov 24(%rsp),@r[3]
250 mov 32(%rsp),%rbp
251
252 xor $hi,$lo
253 xor @r[1],$hi
254 xor @r[0],$lo
255 mov @r[0],0(%rbp)
256 xor @r[2],$hi
257 mov @r[3],24(%rbp)
258 xor @r[3],$lo
259 xor @r[3],$hi
260 xor $hi,$lo
261 mov $hi,16(%rbp)
262 mov $lo,8(%rbp)
263
264 mov 8*10(%rsp),%r14
265 mov 8*11(%rsp),%r13
266 mov 8*12(%rsp),%r12
267 mov 8*13(%rsp),%rbp
268 mov 8*14(%rsp),%rbx
269___
270$code.=<<___ if ($win64);
271 mov 8*15(%rsp),%rdi
272 mov 8*16(%rsp),%rsi
273___
274$code.=<<___;
275 lea 8*17(%rsp),%rsp
276 ret
277.Lend_mul_2x2:
278.size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
279.asciz "GF(2^m) Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
280.align 16
281___
282
283# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
284# CONTEXT *context,DISPATCHER_CONTEXT *disp)
285if ($win64) {
286$rec="%rcx";
287$frame="%rdx";
288$context="%r8";
289$disp="%r9";
290
291$code.=<<___;
292.extern __imp_RtlVirtualUnwind
293
294.type se_handler,\@abi-omnipotent
295.align 16
296se_handler:
297 push %rsi
298 push %rdi
299 push %rbx
300 push %rbp
301 push %r12
302 push %r13
303 push %r14
304 push %r15
305 pushfq
306 sub \$64,%rsp
307
308 mov 152($context),%rax # pull context->Rsp
309 mov 248($context),%rbx # pull context->Rip
310
311 lea .Lbody_mul_2x2(%rip),%r10
312 cmp %r10,%rbx # context->Rip<"prologue" label
313 jb .Lin_prologue
314
315 mov 8*10(%rax),%r14 # mimic epilogue
316 mov 8*11(%rax),%r13
317 mov 8*12(%rax),%r12
318 mov 8*13(%rax),%rbp
319 mov 8*14(%rax),%rbx
320 mov 8*15(%rax),%rdi
321 mov 8*16(%rax),%rsi
322
323 mov %rbx,144($context) # restore context->Rbx
324 mov %rbp,160($context) # restore context->Rbp
325 mov %rsi,168($context) # restore context->Rsi
326 mov %rdi,176($context) # restore context->Rdi
327 mov %r12,216($context) # restore context->R12
328 mov %r13,224($context) # restore context->R13
329 mov %r14,232($context) # restore context->R14
330
331.Lin_prologue:
332 lea 8*17(%rax),%rax
333 mov %rax,152($context) # restore context->Rsp
334
335 mov 40($disp),%rdi # disp->ContextRecord
336 mov $context,%rsi # context
337 mov \$154,%ecx # sizeof(CONTEXT)
338 .long 0xa548f3fc # cld; rep movsq
339
340 mov $disp,%rsi
341 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
342 mov 8(%rsi),%rdx # arg2, disp->ImageBase
343 mov 0(%rsi),%r8 # arg3, disp->ControlPc
344 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
345 mov 40(%rsi),%r10 # disp->ContextRecord
346 lea 56(%rsi),%r11 # &disp->HandlerData
347 lea 24(%rsi),%r12 # &disp->EstablisherFrame
348 mov %r10,32(%rsp) # arg5
349 mov %r11,40(%rsp) # arg6
350 mov %r12,48(%rsp) # arg7
351 mov %rcx,56(%rsp) # arg8, (NULL)
352 call *__imp_RtlVirtualUnwind(%rip)
353
354 mov \$1,%eax # ExceptionContinueSearch
355 add \$64,%rsp
356 popfq
357 pop %r15
358 pop %r14
359 pop %r13
360 pop %r12
361 pop %rbp
362 pop %rbx
363 pop %rdi
364 pop %rsi
365 ret
366.size se_handler,.-se_handler
367
368.section .pdata
369.align 4
370 .rva _mul_1x1
371 .rva .Lend_mul_1x1
372 .rva .LSEH_info_1x1
373
374 .rva .Lvanilla_mul_2x2
375 .rva .Lend_mul_2x2
376 .rva .LSEH_info_2x2
377.section .xdata
378.align 8
379.LSEH_info_1x1:
380 .byte 0x01,0x07,0x02,0x00
381 .byte 0x07,0x01,0x11,0x00 # sub rsp,128+8
382.LSEH_info_2x2:
383 .byte 9,0,0,0
384 .rva se_handler
385___
386}
387
388$code =~ s/\`([^\`]*)\`/eval($1)/gem;
389print $code;
390close STDOUT;