Import OpenSSL 1.0.1q.
[dragonfly.git] / crypto / openssl / crypto / sha / asm / sha1-586.pl
CommitLineData
5febbddd
PA
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
672590bc
PA
15# January, September 2004.
16#
5febbddd
PA
17# It was noted that Intel IA-32 C compiler generates code which
18# performs ~30% *faster* on P4 CPU than original *hand-coded*
19# SHA1 assembler implementation. To address this problem (and
20# prove that humans are still better than machines:-), the
21# original code was overhauled, which resulted in following
22# performance changes:
23#
24# compared with original compared with Intel cc
25# assembler impl. generated code
26# Pentium -16% +48%
27# PIII/AMD +8% +16%
28# P4 +85%(!) +45%
29#
30# As you can see Pentium came out as looser:-( Yet I reckoned that
31# improvement on P4 outweights the loss and incorporate this
32# re-tuned code to 0.9.7 and later.
33# ----------------------------------------------------------------
34# <appro@fy.chalmers.se>
35
672590bc
PA
36# August 2009.
37#
38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39# '(c&d) + (b&(c^d))', which allows to accumulate partial results
40# and lighten "pressure" on scratch registers. This resulted in
41# >12% performance improvement on contemporary AMD cores (with no
42# degradation on other CPUs:-). Also, the code was revised to maximize
43# "distance" between instructions producing input to 'lea' instruction
44# and the 'lea' instruction itself, which is essential for Intel Atom
45# core and resulted in ~15% improvement.
46
47# October 2010.
48#
49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50# is to offload message schedule denoted by Wt in NIST specification,
51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52# and in SSE2 context was first explored by Dean Gaudet in 2004, see
53# http://arctic.org/~dean/crypto/sha1.html. Since then several things
54# have changed that made it interesting again:
55#
56# a) XMM units became faster and wider;
57# b) instruction set became more versatile;
58# c) an important observation was made by Max Locktykhin, which made
59# it possible to reduce amount of instructions required to perform
60# the operation in question, for further details see
61# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63# April 2011.
64#
65# Add AVX code path, probably most controversial... The thing is that
66# switch to AVX alone improves performance by as little as 4% in
67# comparison to SSSE3 code path. But below result doesn't look like
68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
8be1fb4e 69# pair of µ-ops, and it's the additional µ-ops, two per round, that
672590bc 70# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
8be1fb4e 71# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
672590bc
PA
72# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73# cycles per processed byte. But 'sh[rl]d' is not something that used
74# to be fast, nor does it appear to be fast in upcoming Bulldozer
75# [according to its optimization manual]. Which is why AVX code path
76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78# makes no sense to keep the AVX code path. If somebody feels that
79# strongly, it's probably more appropriate to discuss possibility of
80# using vector rotate XOP on AMD...
81
82######################################################################
83# Current performance is summarized in following table. Numbers are
84# CPU clock cycles spent to process single byte (less is better).
85#
86# x86 SSSE3 AVX
87# Pentium 15.7 -
88# PIII 11.5 -
89# P4 10.6 -
90# AMD K8 7.1 -
91# Core2 7.3 6.1/+20% -
92# Atom 12.5 9.5(*)/+32% -
93# Westmere 7.3 5.6/+30% -
94# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70%
95#
96# (*) Loop is 1056 instructions long and expected result is ~8.25.
97# It remains mystery [to me] why ILP is limited to 1.7.
98#
99# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
100
5febbddd
PA
101$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
102push(@INC,"${dir}","${dir}../../perlasm");
103require "x86asm.pl";
104
105&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
106
672590bc
PA
107$xmm=$ymm=0;
108for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
109
110$ymm=1 if ($xmm &&
111 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
112 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113 $1>=2.19); # first version supporting AVX
114
115$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
116 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
117 $1>=2.03); # first version supporting AVX
118
119&external_label("OPENSSL_ia32cap_P") if ($xmm);
120
121
5febbddd
PA
122$A="eax";
123$B="ebx";
124$C="ecx";
125$D="edx";
126$E="edi";
127$T="esi";
128$tmp1="ebp";
129
130@V=($A,$B,$C,$D,$E,$T);
131
672590bc
PA
132$alt=0; # 1 denotes alternative IALU implementation, which performs
133 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
134 # Sandy Bridge...
135
5febbddd
PA
136sub BODY_00_15
137 {
138 local($n,$a,$b,$c,$d,$e,$f)=@_;
139
140 &comment("00_15 $n");
141
142 &mov($f,$c); # f to hold F_00_19(b,c,d)
143 if ($n==0) { &mov($tmp1,$a); }
144 else { &mov($a,$tmp1); }
145 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
146 &xor($f,$d);
147 &add($tmp1,$e); # tmp1+=e;
672590bc 148 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
5febbddd
PA
149 # with xi, also note that e becomes
150 # f in next round...
672590bc 151 &and($f,$b);
5febbddd 152 &rotr($b,2); # b=ROTATE(b,30)
672590bc
PA
153 &xor($f,$d); # f holds F_00_19(b,c,d)
154 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
5febbddd 155
672590bc
PA
156 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
157 &add($f,$tmp1); } # f+=tmp1
5febbddd 158 else { &add($tmp1,$f); } # f becomes a in next round
672590bc 159 &mov($tmp1,$a) if ($alt && $n==15);
5febbddd
PA
160 }
161
162sub BODY_16_19
163 {
164 local($n,$a,$b,$c,$d,$e,$f)=@_;
165
166 &comment("16_19 $n");
167
672590bc
PA
168if ($alt) {
169 &xor($c,$d);
170 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
171 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
172 &xor($f,&swtmp(($n+8)%16));
173 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
174 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
175 &rotl($f,1); # f=ROTATE(f,1)
176 &add($e,$tmp1); # e+=F_00_19(b,c,d)
177 &xor($c,$d); # restore $c
178 &mov($tmp1,$a); # b in next round
179 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
180 &mov(&swtmp($n%16),$f); # xi=f
181 &rotl($a,5); # ROTATE(a,5)
182 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
183 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
184 &add($f,$a); # f+=ROTATE(a,5)
185} else {
186 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
187 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
188 &xor($tmp1,$d);
189 &xor($f,&swtmp(($n+8)%16));
190 &and($tmp1,$b);
5febbddd
PA
191 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
192 &rotl($f,1); # f=ROTATE(f,1)
193 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
672590bc
PA
194 &add($e,$tmp1); # e+=F_00_19(b,c,d)
195 &mov($tmp1,$a);
196 &rotr($b,2); # b=ROTATE(b,30)
197 &mov(&swtmp($n%16),$f); # xi=f
198 &rotl($tmp1,5); # ROTATE(a,5)
199 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
200 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
201 &add($f,$tmp1); # f+=ROTATE(a,5)
202}
5febbddd
PA
203 }
204
205sub BODY_20_39
206 {
207 local($n,$a,$b,$c,$d,$e,$f)=@_;
208 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
209
210 &comment("20_39 $n");
211
672590bc
PA
212if ($alt) {
213 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
214 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
215 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
216 &xor($f,&swtmp(($n+8)%16));
217 &add($e,$tmp1); # e+=F_20_39(b,c,d)
218 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
219 &rotl($f,1); # f=ROTATE(f,1)
220 &mov($tmp1,$a); # b in next round
221 &rotr($b,7); # b=ROTATE(b,30)
222 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
223 &rotl($a,5); # ROTATE(a,5)
224 &xor($b,$c) if($n==39);# warm up for BODY_40_59
225 &and($tmp1,$b) if($n==39);
226 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
227 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
228 &add($f,$a); # f+=ROTATE(a,5)
229 &rotr($a,5) if ($n==79);
230} else {
5febbddd 231 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
672590bc 232 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
5febbddd
PA
233 &xor($tmp1,$c);
234 &xor($f,&swtmp(($n+8)%16));
235 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
236 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
237 &rotl($f,1); # f=ROTATE(f,1)
672590bc
PA
238 &add($e,$tmp1); # e+=F_20_39(b,c,d)
239 &rotr($b,2); # b=ROTATE(b,30)
240 &mov($tmp1,$a);
241 &rotl($tmp1,5); # ROTATE(a,5)
242 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
243 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
244 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
245 &add($f,$tmp1); # f+=ROTATE(a,5)
246}
5febbddd
PA
247 }
248
249sub BODY_40_59
250 {
251 local($n,$a,$b,$c,$d,$e,$f)=@_;
252
253 &comment("40_59 $n");
254
672590bc
PA
255if ($alt) {
256 &add($e,$tmp1); # e+=b&(c^d)
257 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
258 &mov($tmp1,$d);
259 &xor($f,&swtmp(($n+8)%16));
260 &xor($c,$d); # restore $c
261 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
5febbddd 262 &rotl($f,1); # f=ROTATE(f,1)
672590bc
PA
263 &and($tmp1,$c);
264 &rotr($b,7); # b=ROTATE(b,30)
265 &add($e,$tmp1); # e+=c&d
266 &mov($tmp1,$a); # b in next round
267 &mov(&swtmp($n%16),$f); # xi=f
268 &rotl($a,5); # ROTATE(a,5)
269 &xor($b,$c) if ($n<59);
270 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
271 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
272 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
273 &add($f,$a); # f+=ROTATE(a,5)
274} else {
275 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
276 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
277 &xor($tmp1,$d);
278 &xor($f,&swtmp(($n+8)%16));
279 &and($tmp1,$b);
280 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
281 &rotl($f,1); # f=ROTATE(f,1)
282 &add($tmp1,$e); # b&(c^d)+=e
5febbddd 283 &rotr($b,2); # b=ROTATE(b,30)
672590bc
PA
284 &mov($e,$a); # e becomes volatile
285 &rotl($e,5); # ROTATE(a,5)
286 &mov(&swtmp($n%16),$f); # xi=f
287 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
288 &mov($tmp1,$c);
5febbddd 289 &add($f,$e); # f+=ROTATE(a,5)
672590bc
PA
290 &and($tmp1,$d);
291 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
292 &add($f,$tmp1); # f+=c&d
293}
5febbddd
PA
294 }
295
296&function_begin("sha1_block_data_order");
672590bc
PA
297if ($xmm) {
298 &static_label("ssse3_shortcut");
299 &static_label("avx_shortcut") if ($ymm);
300 &static_label("K_XX_XX");
301
302 &call (&label("pic_point")); # make it PIC!
303 &set_label("pic_point");
304 &blindpop($tmp1);
305 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
306 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
307
308 &mov ($A,&DWP(0,$T));
309 &mov ($D,&DWP(4,$T));
310 &test ($D,1<<9); # check SSSE3 bit
311 &jz (&label("x86"));
312 &test ($A,1<<24); # check FXSR bit
313 &jz (&label("x86"));
314 if ($ymm) {
315 &and ($D,1<<28); # mask AVX bit
316 &and ($A,1<<30); # mask "Intel CPU" bit
317 &or ($A,$D);
318 &cmp ($A,1<<28|1<<30);
319 &je (&label("avx_shortcut"));
320 }
321 &jmp (&label("ssse3_shortcut"));
322 &set_label("x86",16);
323}
5febbddd
PA
324 &mov($tmp1,&wparam(0)); # SHA_CTX *c
325 &mov($T,&wparam(1)); # const void *input
326 &mov($A,&wparam(2)); # size_t num
672590bc 327 &stack_push(16+3); # allocate X[16]
5febbddd
PA
328 &shl($A,6);
329 &add($A,$T);
330 &mov(&wparam(2),$A); # pointer beyond the end of input
331 &mov($E,&DWP(16,$tmp1));# pre-load E
672590bc 332 &jmp(&label("loop"));
5febbddd 333
672590bc 334&set_label("loop",16);
5febbddd
PA
335
336 # copy input chunk to X, but reversing byte order!
337 for ($i=0; $i<16; $i+=4)
338 {
339 &mov($A,&DWP(4*($i+0),$T));
340 &mov($B,&DWP(4*($i+1),$T));
341 &mov($C,&DWP(4*($i+2),$T));
342 &mov($D,&DWP(4*($i+3),$T));
343 &bswap($A);
344 &bswap($B);
345 &bswap($C);
346 &bswap($D);
347 &mov(&swtmp($i+0),$A);
348 &mov(&swtmp($i+1),$B);
349 &mov(&swtmp($i+2),$C);
350 &mov(&swtmp($i+3),$D);
351 }
352 &mov(&wparam(1),$T); # redundant in 1st spin
353
354 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
355 &mov($B,&DWP(4,$tmp1));
356 &mov($C,&DWP(8,$tmp1));
357 &mov($D,&DWP(12,$tmp1));
358 # E is pre-loaded
359
360 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
361 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
362 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
363 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
364 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
365
366 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
367
368 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
369 &mov($D,&wparam(1)); # D is last "T" and is discarded
370
371 &add($E,&DWP(0,$tmp1)); # E is last "A"...
372 &add($T,&DWP(4,$tmp1));
373 &add($A,&DWP(8,$tmp1));
374 &add($B,&DWP(12,$tmp1));
375 &add($C,&DWP(16,$tmp1));
376
377 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
378 &add($D,64); # advance input pointer
379 &mov(&DWP(4,$tmp1),$T);
380 &cmp($D,&wparam(2)); # have we reached the end yet?
381 &mov(&DWP(8,$tmp1),$A);
382 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
383 &mov(&DWP(12,$tmp1),$B);
384 &mov($T,$D); # input pointer
385 &mov(&DWP(16,$tmp1),$C);
386 &jb(&label("loop"));
387
672590bc 388 &stack_pop(16+3);
5febbddd 389&function_end("sha1_block_data_order");
672590bc
PA
390
391if ($xmm) {
392######################################################################
393# The SSSE3 implementation.
394#
395# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
396# 32 elements of the message schedule or Xupdate outputs. First 4
397# quadruples are simply byte-swapped input, next 4 are calculated
398# according to method originally suggested by Dean Gaudet (modulo
399# being implemented in SSSE3). Once 8 quadruples or 32 elements are
400# collected, it switches to routine proposed by Max Locktyukhin.
401#
402# Calculations inevitably require temporary reqisters, and there are
403# no %xmm registers left to spare. For this reason part of the ring
404# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
405# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
406# X[-5], and X[4] - X[-4]...
407#
408# Another notable optimization is aggressive stack frame compression
409# aiming to minimize amount of 9-byte instructions...
410#
411# Yet another notable optimization is "jumping" $B variable. It means
412# that there is no register permanently allocated for $B value. This
413# allowed to eliminate one instruction from body_20_39...
414#
415my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
416my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
417my @V=($A,$B,$C,$D,$E);
418my $j=0; # hash round
419my @T=($T,$tmp1);
420my $inp;
421
422my $_rol=sub { &rol(@_) };
423my $_ror=sub { &ror(@_) };
424
425&function_begin("_sha1_block_data_order_ssse3");
426 &call (&label("pic_point")); # make it PIC!
427 &set_label("pic_point");
428 &blindpop($tmp1);
429 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
430&set_label("ssse3_shortcut");
431
432 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
433 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
434 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
435 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
436 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
437
438 &mov ($E,&wparam(0)); # load argument block
439 &mov ($inp=@T[1],&wparam(1));
440 &mov ($D,&wparam(2));
441 &mov (@T[0],"esp");
442
443 # stack frame layout
444 #
445 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
446 # X[4]+K X[5]+K X[6]+K X[7]+K
447 # X[8]+K X[9]+K X[10]+K X[11]+K
448 # X[12]+K X[13]+K X[14]+K X[15]+K
449 #
450 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
451 # X[4] X[5] X[6] X[7]
452 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
453 #
454 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
455 # K_40_59 K_40_59 K_40_59 K_40_59
456 # K_60_79 K_60_79 K_60_79 K_60_79
457 # K_00_19 K_00_19 K_00_19 K_00_19
458 # pbswap mask
459 #
460 # +192 ctx # argument block
461 # +196 inp
462 # +200 end
463 # +204 esp
464 &sub ("esp",208);
465 &and ("esp",-64);
466
467 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
468 &movdqa (&QWP(112+16,"esp"),@X[5]);
469 &movdqa (&QWP(112+32,"esp"),@X[6]);
470 &shl ($D,6); # len*64
471 &movdqa (&QWP(112+48,"esp"),@X[3]);
472 &add ($D,$inp); # end of input
473 &movdqa (&QWP(112+64,"esp"),@X[2]);
474 &add ($inp,64);
475 &mov (&DWP(192+0,"esp"),$E); # save argument block
476 &mov (&DWP(192+4,"esp"),$inp);
477 &mov (&DWP(192+8,"esp"),$D);
478 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
479
480 &mov ($A,&DWP(0,$E)); # load context
481 &mov ($B,&DWP(4,$E));
482 &mov ($C,&DWP(8,$E));
483 &mov ($D,&DWP(12,$E));
484 &mov ($E,&DWP(16,$E));
485 &mov (@T[0],$B); # magic seed
486
487 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
488 &movdqu (@X[-3&7],&QWP(-48,$inp));
489 &movdqu (@X[-2&7],&QWP(-32,$inp));
490 &movdqu (@X[-1&7],&QWP(-16,$inp));
491 &pshufb (@X[-4&7],@X[2]); # byte swap
492 &pshufb (@X[-3&7],@X[2]);
493 &pshufb (@X[-2&7],@X[2]);
494 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
495 &pshufb (@X[-1&7],@X[2]);
496 &paddd (@X[-4&7],@X[3]); # add K_00_19
497 &paddd (@X[-3&7],@X[3]);
498 &paddd (@X[-2&7],@X[3]);
499 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
500 &psubd (@X[-4&7],@X[3]); # restore X[]
501 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
502 &psubd (@X[-3&7],@X[3]);
503 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
504 &psubd (@X[-2&7],@X[3]);
505 &movdqa (@X[0],@X[-3&7]);
506 &jmp (&label("loop"));
507
508######################################################################
509# SSE instruction sequence is first broken to groups of indepentent
510# instructions, independent in respect to their inputs and shifter
511# (not all architectures have more than one). Then IALU instructions
512# are "knitted in" between the SSE groups. Distance is maintained for
513# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
514# [which allegedly also implements SSSE3]...
515#
516# Temporary registers usage. X[2] is volatile at the entry and at the
517# end is restored from backtrace ring buffer. X[3] is expected to
518# contain current K_XX_XX constant and is used to caclulate X[-1]+K
519# from previous round, it becomes volatile the moment the value is
520# saved to stack for transfer to IALU. X[4] becomes volatile whenever
521# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
522# end it is loaded with next K_XX_XX [which becomes X[3] in next
523# round]...
524#
525sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
526{ use integer;
527 my $body = shift;
528 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
529 my ($a,$b,$c,$d,$e);
530
531 eval(shift(@insns));
532 eval(shift(@insns));
533 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
534 &movdqa (@X[2],@X[-1&7]);
535 eval(shift(@insns));
536 eval(shift(@insns));
537
538 &paddd (@X[3],@X[-1&7]);
539 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
540 eval(shift(@insns));
541 eval(shift(@insns));
542 &psrldq (@X[2],4); # "X[-3]", 3 dwords
543 eval(shift(@insns));
544 eval(shift(@insns));
545 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
546 eval(shift(@insns));
547 eval(shift(@insns));
548
549 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
550 eval(shift(@insns));
551 eval(shift(@insns));
552 eval(shift(@insns));
553 eval(shift(@insns));
554
555 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
556 eval(shift(@insns));
557 eval(shift(@insns));
558 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
559 eval(shift(@insns));
560 eval(shift(@insns));
561
562 &movdqa (@X[4],@X[0]);
563 &movdqa (@X[2],@X[0]);
564 eval(shift(@insns));
565 eval(shift(@insns));
566 eval(shift(@insns));
567 eval(shift(@insns));
568
569 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
570 &paddd (@X[0],@X[0]);
571 eval(shift(@insns));
572 eval(shift(@insns));
573 eval(shift(@insns));
574 eval(shift(@insns));
575
576 &psrld (@X[2],31);
577 eval(shift(@insns));
578 eval(shift(@insns));
579 &movdqa (@X[3],@X[4]);
580 eval(shift(@insns));
581 eval(shift(@insns));
582
583 &psrld (@X[4],30);
584 &por (@X[0],@X[2]); # "X[0]"<<<=1
585 eval(shift(@insns));
586 eval(shift(@insns));
587 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
588 eval(shift(@insns));
589 eval(shift(@insns));
590
591 &pslld (@X[3],2);
592 &pxor (@X[0],@X[4]);
593 eval(shift(@insns));
594 eval(shift(@insns));
595 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
596 eval(shift(@insns));
597 eval(shift(@insns));
598
599 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
600 &movdqa (@X[1],@X[-2&7]) if ($Xi<7);
601 eval(shift(@insns));
602 eval(shift(@insns));
603
604 foreach (@insns) { eval; } # remaining instructions [if any]
605
606 $Xi++; push(@X,shift(@X)); # "rotate" X[]
607}
608
609sub Xupdate_ssse3_32_79()
610{ use integer;
611 my $body = shift;
612 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
613 my ($a,$b,$c,$d,$e);
614
615 &movdqa (@X[2],@X[-1&7]) if ($Xi==8);
616 eval(shift(@insns)); # body_20_39
617 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
618 &palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
619 eval(shift(@insns));
620 eval(shift(@insns));
621 eval(shift(@insns)); # rol
622
623 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
624 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
625 eval(shift(@insns));
626 eval(shift(@insns));
627 if ($Xi%5) {
628 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
629 } else { # ... or load next one
630 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
631 }
632 &paddd (@X[3],@X[-1&7]);
633 eval(shift(@insns)); # ror
634 eval(shift(@insns));
635
636 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
637 eval(shift(@insns)); # body_20_39
638 eval(shift(@insns));
639 eval(shift(@insns));
640 eval(shift(@insns)); # rol
641
642 &movdqa (@X[2],@X[0]);
643 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
644 eval(shift(@insns));
645 eval(shift(@insns));
646 eval(shift(@insns)); # ror
647 eval(shift(@insns));
648
649 &pslld (@X[0],2);
650 eval(shift(@insns)); # body_20_39
651 eval(shift(@insns));
652 &psrld (@X[2],30);
653 eval(shift(@insns));
654 eval(shift(@insns)); # rol
655 eval(shift(@insns));
656 eval(shift(@insns));
657 eval(shift(@insns)); # ror
658 eval(shift(@insns));
659
660 &por (@X[0],@X[2]); # "X[0]"<<<=2
661 eval(shift(@insns)); # body_20_39
662 eval(shift(@insns));
663 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
664 eval(shift(@insns));
665 eval(shift(@insns)); # rol
666 eval(shift(@insns));
667 eval(shift(@insns));
668 eval(shift(@insns)); # ror
669 &movdqa (@X[3],@X[0]) if ($Xi<19);
670 eval(shift(@insns));
671
672 foreach (@insns) { eval; } # remaining instructions
673
674 $Xi++; push(@X,shift(@X)); # "rotate" X[]
675}
676
677sub Xuplast_ssse3_80()
678{ use integer;
679 my $body = shift;
680 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
681 my ($a,$b,$c,$d,$e);
682
683 eval(shift(@insns));
684 &paddd (@X[3],@X[-1&7]);
685 eval(shift(@insns));
686 eval(shift(@insns));
687 eval(shift(@insns));
688 eval(shift(@insns));
689
690 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
691
692 foreach (@insns) { eval; } # remaining instructions
693
694 &mov ($inp=@T[1],&DWP(192+4,"esp"));
695 &cmp ($inp,&DWP(192+8,"esp"));
696 &je (&label("done"));
697
698 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
699 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
700 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
701 &movdqu (@X[-3&7],&QWP(16,$inp));
702 &movdqu (@X[-2&7],&QWP(32,$inp));
703 &movdqu (@X[-1&7],&QWP(48,$inp));
704 &add ($inp,64);
705 &pshufb (@X[-4&7],@X[2]); # byte swap
706 &mov (&DWP(192+4,"esp"),$inp);
707 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
708
709 $Xi=0;
710}
711
712sub Xloop_ssse3()
713{ use integer;
714 my $body = shift;
715 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
716 my ($a,$b,$c,$d,$e);
717
718 eval(shift(@insns));
719 eval(shift(@insns));
720 &pshufb (@X[($Xi-3)&7],@X[2]);
721 eval(shift(@insns));
722 eval(shift(@insns));
723 &paddd (@X[($Xi-4)&7],@X[3]);
724 eval(shift(@insns));
725 eval(shift(@insns));
726 eval(shift(@insns));
727 eval(shift(@insns));
728 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
729 eval(shift(@insns));
730 eval(shift(@insns));
731 &psubd (@X[($Xi-4)&7],@X[3]);
732
733 foreach (@insns) { eval; }
734 $Xi++;
735}
736
737sub Xtail_ssse3()
738{ use integer;
739 my $body = shift;
740 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
741 my ($a,$b,$c,$d,$e);
742
743 foreach (@insns) { eval; }
744}
745
746sub body_00_19 () {
747 (
748 '($a,$b,$c,$d,$e)=@V;'.
749 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
750 '&xor ($c,$d);',
751 '&mov (@T[1],$a);', # $b in next round
752 '&$_rol ($a,5);',
753 '&and (@T[0],$c);', # ($b&($c^$d))
754 '&xor ($c,$d);', # restore $c
755 '&xor (@T[0],$d);',
756 '&add ($e,$a);',
757 '&$_ror ($b,$j?7:2);', # $b>>>2
758 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
759 );
760}
761
762sub body_20_39 () {
763 (
764 '($a,$b,$c,$d,$e)=@V;'.
765 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
766 '&xor (@T[0],$d);', # ($b^$d)
767 '&mov (@T[1],$a);', # $b in next round
768 '&$_rol ($a,5);',
769 '&xor (@T[0],$c);', # ($b^$d^$c)
770 '&add ($e,$a);',
771 '&$_ror ($b,7);', # $b>>>2
772 '&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
773 );
774}
775
776sub body_40_59 () {
777 (
778 '($a,$b,$c,$d,$e)=@V;'.
779 '&mov (@T[1],$c);',
780 '&xor ($c,$d);',
781 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
782 '&and (@T[1],$d);',
783 '&and (@T[0],$c);', # ($b&($c^$d))
784 '&$_ror ($b,7);', # $b>>>2
785 '&add ($e,@T[1]);',
786 '&mov (@T[1],$a);', # $b in next round
787 '&$_rol ($a,5);',
788 '&add ($e,@T[0]);',
789 '&xor ($c,$d);', # restore $c
790 '&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
791 );
792}
793
794&set_label("loop",16);
795 &Xupdate_ssse3_16_31(\&body_00_19);
796 &Xupdate_ssse3_16_31(\&body_00_19);
797 &Xupdate_ssse3_16_31(\&body_00_19);
798 &Xupdate_ssse3_16_31(\&body_00_19);
799 &Xupdate_ssse3_32_79(\&body_00_19);
800 &Xupdate_ssse3_32_79(\&body_20_39);
801 &Xupdate_ssse3_32_79(\&body_20_39);
802 &Xupdate_ssse3_32_79(\&body_20_39);
803 &Xupdate_ssse3_32_79(\&body_20_39);
804 &Xupdate_ssse3_32_79(\&body_20_39);
805 &Xupdate_ssse3_32_79(\&body_40_59);
806 &Xupdate_ssse3_32_79(\&body_40_59);
807 &Xupdate_ssse3_32_79(\&body_40_59);
808 &Xupdate_ssse3_32_79(\&body_40_59);
809 &Xupdate_ssse3_32_79(\&body_40_59);
810 &Xupdate_ssse3_32_79(\&body_20_39);
811 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
812
813 $saved_j=$j; @saved_V=@V;
814
815 &Xloop_ssse3(\&body_20_39);
816 &Xloop_ssse3(\&body_20_39);
817 &Xloop_ssse3(\&body_20_39);
818
819 &mov (@T[1],&DWP(192,"esp")); # update context
820 &add ($A,&DWP(0,@T[1]));
821 &add (@T[0],&DWP(4,@T[1])); # $b
822 &add ($C,&DWP(8,@T[1]));
823 &mov (&DWP(0,@T[1]),$A);
824 &add ($D,&DWP(12,@T[1]));
825 &mov (&DWP(4,@T[1]),@T[0]);
826 &add ($E,&DWP(16,@T[1]));
827 &mov (&DWP(8,@T[1]),$C);
828 &mov ($B,@T[0]);
829 &mov (&DWP(12,@T[1]),$D);
830 &mov (&DWP(16,@T[1]),$E);
831 &movdqa (@X[0],@X[-3&7]);
832
833 &jmp (&label("loop"));
834
835&set_label("done",16); $j=$saved_j; @V=@saved_V;
836
837 &Xtail_ssse3(\&body_20_39);
838 &Xtail_ssse3(\&body_20_39);
839 &Xtail_ssse3(\&body_20_39);
840
841 &mov (@T[1],&DWP(192,"esp")); # update context
842 &add ($A,&DWP(0,@T[1]));
843 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
844 &add (@T[0],&DWP(4,@T[1])); # $b
845 &add ($C,&DWP(8,@T[1]));
846 &mov (&DWP(0,@T[1]),$A);
847 &add ($D,&DWP(12,@T[1]));
848 &mov (&DWP(4,@T[1]),@T[0]);
849 &add ($E,&DWP(16,@T[1]));
850 &mov (&DWP(8,@T[1]),$C);
851 &mov (&DWP(12,@T[1]),$D);
852 &mov (&DWP(16,@T[1]),$E);
853
854&function_end("_sha1_block_data_order_ssse3");
855
856if ($ymm) {
857my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
858my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
859my @V=($A,$B,$C,$D,$E);
860my $j=0; # hash round
861my @T=($T,$tmp1);
862my $inp;
863
864my $_rol=sub { &shld(@_[0],@_) };
865my $_ror=sub { &shrd(@_[0],@_) };
866
867&function_begin("_sha1_block_data_order_avx");
868 &call (&label("pic_point")); # make it PIC!
869 &set_label("pic_point");
870 &blindpop($tmp1);
871 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
872&set_label("avx_shortcut");
873 &vzeroall();
874
875 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
876 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
877 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
878 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
879 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
880
881 &mov ($E,&wparam(0)); # load argument block
882 &mov ($inp=@T[1],&wparam(1));
883 &mov ($D,&wparam(2));
884 &mov (@T[0],"esp");
885
886 # stack frame layout
887 #
888 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
889 # X[4]+K X[5]+K X[6]+K X[7]+K
890 # X[8]+K X[9]+K X[10]+K X[11]+K
891 # X[12]+K X[13]+K X[14]+K X[15]+K
892 #
893 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
894 # X[4] X[5] X[6] X[7]
895 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
896 #
897 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
898 # K_40_59 K_40_59 K_40_59 K_40_59
899 # K_60_79 K_60_79 K_60_79 K_60_79
900 # K_00_19 K_00_19 K_00_19 K_00_19
901 # pbswap mask
902 #
903 # +192 ctx # argument block
904 # +196 inp
905 # +200 end
906 # +204 esp
907 &sub ("esp",208);
908 &and ("esp",-64);
909
910 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
911 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
912 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
913 &shl ($D,6); # len*64
914 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
915 &add ($D,$inp); # end of input
916 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
917 &add ($inp,64);
918 &mov (&DWP(192+0,"esp"),$E); # save argument block
919 &mov (&DWP(192+4,"esp"),$inp);
920 &mov (&DWP(192+8,"esp"),$D);
921 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
922
923 &mov ($A,&DWP(0,$E)); # load context
924 &mov ($B,&DWP(4,$E));
925 &mov ($C,&DWP(8,$E));
926 &mov ($D,&DWP(12,$E));
927 &mov ($E,&DWP(16,$E));
928 &mov (@T[0],$B); # magic seed
929
930 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
931 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
932 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
933 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
934 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
935 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
936 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
937 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
938 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
939 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
940 &vpaddd (@X[1],@X[-3&7],@X[3]);
941 &vpaddd (@X[2],@X[-2&7],@X[3]);
942 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
943 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
944 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
945 &jmp (&label("loop"));
946
947sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
948{ use integer;
949 my $body = shift;
950 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
951 my ($a,$b,$c,$d,$e);
952
953 eval(shift(@insns));
954 eval(shift(@insns));
955 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
956 eval(shift(@insns));
957 eval(shift(@insns));
958
959 &vpaddd (@X[3],@X[3],@X[-1&7]);
960 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
961 eval(shift(@insns));
962 eval(shift(@insns));
963 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
964 eval(shift(@insns));
965 eval(shift(@insns));
966 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
967 eval(shift(@insns));
968 eval(shift(@insns));
969
970 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
971 eval(shift(@insns));
972 eval(shift(@insns));
973 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
974 eval(shift(@insns));
975 eval(shift(@insns));
976
977 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
978 eval(shift(@insns));
979 eval(shift(@insns));
980 eval(shift(@insns));
981 eval(shift(@insns));
982
983 &vpsrld (@X[2],@X[0],31);
984 eval(shift(@insns));
985 eval(shift(@insns));
986 eval(shift(@insns));
987 eval(shift(@insns));
988
989 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
990 &vpaddd (@X[0],@X[0],@X[0]);
991 eval(shift(@insns));
992 eval(shift(@insns));
993 eval(shift(@insns));
994 eval(shift(@insns));
995
996 &vpsrld (@X[3],@X[4],30);
997 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
998 eval(shift(@insns));
999 eval(shift(@insns));
1000 eval(shift(@insns));
1001 eval(shift(@insns));
1002
1003 &vpslld (@X[4],@X[4],2);
1004 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
1005 eval(shift(@insns));
1006 eval(shift(@insns));
1007 &vpxor (@X[0],@X[0],@X[3]);
1008 eval(shift(@insns));
1009 eval(shift(@insns));
1010 eval(shift(@insns));
1011 eval(shift(@insns));
1012
1013 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1014 eval(shift(@insns));
1015 eval(shift(@insns));
1016 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1017 eval(shift(@insns));
1018 eval(shift(@insns));
1019
1020 foreach (@insns) { eval; } # remaining instructions [if any]
1021
1022 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1023}
1024
1025sub Xupdate_avx_32_79()
1026{ use integer;
1027 my $body = shift;
1028 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
1029 my ($a,$b,$c,$d,$e);
1030
1031 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1032 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1033 eval(shift(@insns)); # body_20_39
1034 eval(shift(@insns));
1035 eval(shift(@insns));
1036 eval(shift(@insns)); # rol
1037
1038 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1039 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1040 eval(shift(@insns));
1041 eval(shift(@insns));
1042 if ($Xi%5) {
1043 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1044 } else { # ... or load next one
1045 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1046 }
1047 &vpaddd (@X[3],@X[3],@X[-1&7]);
1048 eval(shift(@insns)); # ror
1049 eval(shift(@insns));
1050
1051 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1052 eval(shift(@insns)); # body_20_39
1053 eval(shift(@insns));
1054 eval(shift(@insns));
1055 eval(shift(@insns)); # rol
1056
1057 &vpsrld (@X[2],@X[0],30);
1058 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1059 eval(shift(@insns));
1060 eval(shift(@insns));
1061 eval(shift(@insns)); # ror
1062 eval(shift(@insns));
1063
1064 &vpslld (@X[0],@X[0],2);
1065 eval(shift(@insns)); # body_20_39
1066 eval(shift(@insns));
1067 eval(shift(@insns));
1068 eval(shift(@insns)); # rol
1069 eval(shift(@insns));
1070 eval(shift(@insns));
1071 eval(shift(@insns)); # ror
1072 eval(shift(@insns));
1073
1074 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1075 eval(shift(@insns)); # body_20_39
1076 eval(shift(@insns));
1077 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1078 eval(shift(@insns));
1079 eval(shift(@insns)); # rol
1080 eval(shift(@insns));
1081 eval(shift(@insns));
1082 eval(shift(@insns)); # ror
1083 eval(shift(@insns));
1084
1085 foreach (@insns) { eval; } # remaining instructions
1086
1087 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1088}
1089
1090sub Xuplast_avx_80()
1091{ use integer;
1092 my $body = shift;
1093 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1094 my ($a,$b,$c,$d,$e);
1095
1096 eval(shift(@insns));
1097 &vpaddd (@X[3],@X[3],@X[-1&7]);
1098 eval(shift(@insns));
1099 eval(shift(@insns));
1100 eval(shift(@insns));
1101 eval(shift(@insns));
1102
1103 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1104
1105 foreach (@insns) { eval; } # remaining instructions
1106
1107 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1108 &cmp ($inp,&DWP(192+8,"esp"));
1109 &je (&label("done"));
1110
1111 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1112 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1113 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1114 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1115 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1116 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1117 &add ($inp,64);
1118 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1119 &mov (&DWP(192+4,"esp"),$inp);
1120 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1121
1122 $Xi=0;
1123}
1124
1125sub Xloop_avx()
1126{ use integer;
1127 my $body = shift;
1128 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1129 my ($a,$b,$c,$d,$e);
1130
1131 eval(shift(@insns));
1132 eval(shift(@insns));
1133 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1134 eval(shift(@insns));
1135 eval(shift(@insns));
1136 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1137 eval(shift(@insns));
1138 eval(shift(@insns));
1139 eval(shift(@insns));
1140 eval(shift(@insns));
1141 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1142 eval(shift(@insns));
1143 eval(shift(@insns));
1144
1145 foreach (@insns) { eval; }
1146 $Xi++;
1147}
1148
1149sub Xtail_avx()
1150{ use integer;
1151 my $body = shift;
1152 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1153 my ($a,$b,$c,$d,$e);
1154
1155 foreach (@insns) { eval; }
1156}
1157
1158&set_label("loop",16);
1159 &Xupdate_avx_16_31(\&body_00_19);
1160 &Xupdate_avx_16_31(\&body_00_19);
1161 &Xupdate_avx_16_31(\&body_00_19);
1162 &Xupdate_avx_16_31(\&body_00_19);
1163 &Xupdate_avx_32_79(\&body_00_19);
1164 &Xupdate_avx_32_79(\&body_20_39);
1165 &Xupdate_avx_32_79(\&body_20_39);
1166 &Xupdate_avx_32_79(\&body_20_39);
1167 &Xupdate_avx_32_79(\&body_20_39);
1168 &Xupdate_avx_32_79(\&body_20_39);
1169 &Xupdate_avx_32_79(\&body_40_59);
1170 &Xupdate_avx_32_79(\&body_40_59);
1171 &Xupdate_avx_32_79(\&body_40_59);
1172 &Xupdate_avx_32_79(\&body_40_59);
1173 &Xupdate_avx_32_79(\&body_40_59);
1174 &Xupdate_avx_32_79(\&body_20_39);
1175 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1176
1177 $saved_j=$j; @saved_V=@V;
1178
1179 &Xloop_avx(\&body_20_39);
1180 &Xloop_avx(\&body_20_39);
1181 &Xloop_avx(\&body_20_39);
1182
1183 &mov (@T[1],&DWP(192,"esp")); # update context
1184 &add ($A,&DWP(0,@T[1]));
1185 &add (@T[0],&DWP(4,@T[1])); # $b
1186 &add ($C,&DWP(8,@T[1]));
1187 &mov (&DWP(0,@T[1]),$A);
1188 &add ($D,&DWP(12,@T[1]));
1189 &mov (&DWP(4,@T[1]),@T[0]);
1190 &add ($E,&DWP(16,@T[1]));
1191 &mov (&DWP(8,@T[1]),$C);
1192 &mov ($B,@T[0]);
1193 &mov (&DWP(12,@T[1]),$D);
1194 &mov (&DWP(16,@T[1]),$E);
1195
1196 &jmp (&label("loop"));
1197
1198&set_label("done",16); $j=$saved_j; @V=@saved_V;
1199
1200 &Xtail_avx(\&body_20_39);
1201 &Xtail_avx(\&body_20_39);
1202 &Xtail_avx(\&body_20_39);
1203
1204 &vzeroall();
1205
1206 &mov (@T[1],&DWP(192,"esp")); # update context
1207 &add ($A,&DWP(0,@T[1]));
1208 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1209 &add (@T[0],&DWP(4,@T[1])); # $b
1210 &add ($C,&DWP(8,@T[1]));
1211 &mov (&DWP(0,@T[1]),$A);
1212 &add ($D,&DWP(12,@T[1]));
1213 &mov (&DWP(4,@T[1]),@T[0]);
1214 &add ($E,&DWP(16,@T[1]));
1215 &mov (&DWP(8,@T[1]),$C);
1216 &mov (&DWP(12,@T[1]),$D);
1217 &mov (&DWP(16,@T[1]),$E);
1218&function_end("_sha1_block_data_order_avx");
1219}
1220&set_label("K_XX_XX",64);
1221&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1222&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1223&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1224&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1225&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1226}
5febbddd
PA
1227&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1228
1229&asm_finish();