Add KTR_TESTLOG and debug.ktr.testlogcnt, which issues three ktrlog() calls
[dragonfly.git] / sys / kern / kern_slaballoc.c
CommitLineData
a108bf71 1/*
38e34349 2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator (MP SAFE)
8c10bfcf
MD
3 *
4 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
a108bf71
MD
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
8c10bfcf 12 *
a108bf71
MD
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
8c10bfcf
MD
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
a108bf71 34 * SUCH DAMAGE.
8c10bfcf 35 *
270ac911 36 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.36 2005/11/21 21:59:50 dillon Exp $
a108bf71
MD
37 *
38 * This module implements a slab allocator drop-in replacement for the
39 * kernel malloc().
40 *
41 * A slab allocator reserves a ZONE for each chunk size, then lays the
42 * chunks out in an array within the zone. Allocation and deallocation
43 * is nearly instantanious, and fragmentation/overhead losses are limited
44 * to a fixed worst-case amount.
45 *
46 * The downside of this slab implementation is in the chunk size
47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
48 * In a kernel implementation all this memory will be physical so
49 * the zone size is adjusted downward on machines with less physical
50 * memory. The upside is that overhead is bounded... this is the *worst*
51 * case overhead.
52 *
53 * Slab management is done on a per-cpu basis and no locking or mutexes
54 * are required, only a critical section. When one cpu frees memory
55 * belonging to another cpu's slab manager an asynchronous IPI message
56 * will be queued to execute the operation. In addition, both the
57 * high level slab allocator and the low level zone allocator optimize
58 * M_ZERO requests, and the slab allocator does not have to pre initialize
59 * the linked list of chunks.
60 *
61 * XXX Balancing is needed between cpus. Balance will be handled through
62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63 *
64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65 * the new zone should be restricted to M_USE_RESERVE requests only.
66 *
67 * Alloc Size Chunking Number of zones
68 * 0-127 8 16
69 * 128-255 16 8
70 * 256-511 32 8
71 * 512-1023 64 8
72 * 1024-2047 128 8
73 * 2048-4095 256 8
74 * 4096-8191 512 8
75 * 8192-16383 1024 8
76 * 16384-32767 2048 8
77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78 *
46a3f46d 79 * Allocations >= ZoneLimit go directly to kmem.
a108bf71
MD
80 *
81 * API REQUIREMENTS AND SIDE EFFECTS
82 *
83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84 * have remained compatible with the following API requirements:
85 *
86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
3d177b31 87 * + all power-of-2 sized allocations are power-of-2 aligned (twe)
a108bf71
MD
88 * + malloc(0) is allowed and returns non-NULL (ahc driver)
89 * + ability to allocate arbitrarily large chunks of memory
90 */
91
92#include "opt_vm.h"
93
a108bf71
MD
94#include <sys/param.h>
95#include <sys/systm.h>
96#include <sys/kernel.h>
97#include <sys/slaballoc.h>
98#include <sys/mbuf.h>
99#include <sys/vmmeter.h>
100#include <sys/lock.h>
101#include <sys/thread.h>
102#include <sys/globaldata.h>
d2182dc1 103#include <sys/sysctl.h>
f2b5daf9 104#include <sys/ktr.h>
a108bf71
MD
105
106#include <vm/vm.h>
107#include <vm/vm_param.h>
108#include <vm/vm_kern.h>
109#include <vm/vm_extern.h>
110#include <vm/vm_object.h>
111#include <vm/pmap.h>
112#include <vm/vm_map.h>
113#include <vm/vm_page.h>
114#include <vm/vm_pageout.h>
115
116#include <machine/cpu.h>
117
118#include <sys/thread2.h>
119
120#define arysize(ary) (sizeof(ary)/sizeof((ary)[0]))
121
f2b5daf9
MD
122#define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x"
123#define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \
124 sizeof(int))
125
126#if !defined(KTR_MEMORY)
127#define KTR_MEMORY KTR_ALL
128#endif
129KTR_INFO_MASTER(memory);
130KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE);
131KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
017ba73b
MD
132KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
f2b5daf9 135#ifdef SMP
017ba73b
MD
136KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
137KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
f2b5daf9
MD
138#endif
139
140#define logmemory(name, ptr, type, size, flags) \
141 KTR_LOG(memory_ ## name, ptr, type, size, flags)
142
a108bf71
MD
143/*
144 * Fixed globals (not per-cpu)
145 */
146static int ZoneSize;
46a3f46d 147static int ZoneLimit;
a108bf71 148static int ZonePageCount;
a108bf71
MD
149static int ZoneMask;
150static struct malloc_type *kmemstatistics;
151static struct kmemusage *kmemusage;
152static int32_t weirdary[16];
153
154static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
155static void kmem_slab_free(void *ptr, vm_size_t bytes);
10cc6608
MD
156#if defined(INVARIANTS)
157static void chunk_mark_allocated(SLZone *z, void *chunk);
158static void chunk_mark_free(SLZone *z, void *chunk);
159#endif
a108bf71
MD
160
161/*
162 * Misc constants. Note that allocations that are exact multiples of
163 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
164 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
165 */
166#define MIN_CHUNK_SIZE 8 /* in bytes */
167#define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
168#define ZONE_RELS_THRESH 2 /* threshold number of zones */
169#define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
170
171/*
172 * The WEIRD_ADDR is used as known text to copy into free objects to
173 * try to create deterministic failure cases if the data is accessed after
174 * free.
175 */
176#define WEIRD_ADDR 0xdeadc0de
177#define MAX_COPY sizeof(weirdary)
178#define ZERO_LENGTH_PTR ((void *)-8)
179
180/*
181 * Misc global malloc buckets
182 */
183
184MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
185MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
186MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
187
188MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
189MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
190
191/*
192 * Initialize the slab memory allocator. We have to choose a zone size based
193 * on available physical memory. We choose a zone side which is approximately
194 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
195 * 128K. The zone size is limited to the bounds set in slaballoc.h
196 * (typically 32K min, 128K max).
197 */
198static void kmeminit(void *dummy);
199
200SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
201
d2182dc1
MD
202#ifdef INVARIANTS
203/*
204 * If enabled any memory allocated without M_ZERO is initialized to -1.
205 */
206static int use_malloc_pattern;
207SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
208 &use_malloc_pattern, 0, "");
209#endif
210
a108bf71
MD
211static void
212kmeminit(void *dummy)
213{
214 vm_poff_t limsize;
215 int usesize;
216 int i;
217 vm_pindex_t npg;
218
219 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
220 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
221 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
222
223 usesize = (int)(limsize / 1024); /* convert to KB */
224
225 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
226 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
227 ZoneSize <<= 1;
46a3f46d
MD
228 ZoneLimit = ZoneSize / 4;
229 if (ZoneLimit > ZALLOC_ZONE_LIMIT)
230 ZoneLimit = ZALLOC_ZONE_LIMIT;
a108bf71 231 ZoneMask = ZoneSize - 1;
a108bf71
MD
232 ZonePageCount = ZoneSize / PAGE_SIZE;
233
234 npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE;
dc1fd4b3 235 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_WAITOK|M_ZERO);
a108bf71
MD
236
237 for (i = 0; i < arysize(weirdary); ++i)
238 weirdary[i] = WEIRD_ADDR;
239
240 if (bootverbose)
241 printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
242}
243
244/*
bba6a44d 245 * Initialize a malloc type tracking structure.
a108bf71
MD
246 */
247void
248malloc_init(void *data)
249{
250 struct malloc_type *type = data;
251 vm_poff_t limsize;
252
253 if (type->ks_magic != M_MAGIC)
254 panic("malloc type lacks magic");
255
256 if (type->ks_limit != 0)
257 return;
258
259 if (vmstats.v_page_count == 0)
260 panic("malloc_init not allowed before vm init");
261
262 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
263 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
264 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
265 type->ks_limit = limsize / 10;
266
267 type->ks_next = kmemstatistics;
268 kmemstatistics = type;
269}
270
271void
272malloc_uninit(void *data)
273{
274 struct malloc_type *type = data;
275 struct malloc_type *t;
bba6a44d
MD
276#ifdef INVARIANTS
277 int i;
1d712609 278 long ttl;
bba6a44d 279#endif
a108bf71
MD
280
281 if (type->ks_magic != M_MAGIC)
282 panic("malloc type lacks magic");
283
284 if (vmstats.v_page_count == 0)
285 panic("malloc_uninit not allowed before vm init");
286
287 if (type->ks_limit == 0)
288 panic("malloc_uninit on uninitialized type");
289
290#ifdef INVARIANTS
1d712609
MD
291 /*
292 * memuse is only correct in aggregation. Due to memory being allocated
293 * on one cpu and freed on another individual array entries may be
294 * negative or positive (canceling each other out).
295 */
296 for (i = ttl = 0; i < ncpus; ++i)
297 ttl += type->ks_memuse[i];
298 if (ttl) {
299 printf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
300 ttl, type->ks_shortdesc, i);
a108bf71
MD
301 }
302#endif
303 if (type == kmemstatistics) {
304 kmemstatistics = type->ks_next;
305 } else {
306 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
307 if (t->ks_next == type) {
308 t->ks_next = type->ks_next;
309 break;
310 }
311 }
312 }
313 type->ks_next = NULL;
314 type->ks_limit = 0;
315}
316
317/*
318 * Calculate the zone index for the allocation request size and set the
319 * allocation request size to that particular zone's chunk size.
320 */
321static __inline int
322zoneindex(unsigned long *bytes)
323{
324 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */
325 if (n < 128) {
326 *bytes = n = (n + 7) & ~7;
327 return(n / 8 - 1); /* 8 byte chunks, 16 zones */
328 }
329 if (n < 256) {
330 *bytes = n = (n + 15) & ~15;
331 return(n / 16 + 7);
332 }
333 if (n < 8192) {
334 if (n < 512) {
335 *bytes = n = (n + 31) & ~31;
336 return(n / 32 + 15);
337 }
338 if (n < 1024) {
339 *bytes = n = (n + 63) & ~63;
340 return(n / 64 + 23);
341 }
342 if (n < 2048) {
343 *bytes = n = (n + 127) & ~127;
344 return(n / 128 + 31);
345 }
346 if (n < 4096) {
347 *bytes = n = (n + 255) & ~255;
348 return(n / 256 + 39);
349 }
350 *bytes = n = (n + 511) & ~511;
351 return(n / 512 + 47);
352 }
353#if ZALLOC_ZONE_LIMIT > 8192
354 if (n < 16384) {
355 *bytes = n = (n + 1023) & ~1023;
356 return(n / 1024 + 55);
357 }
358#endif
359#if ZALLOC_ZONE_LIMIT > 16384
360 if (n < 32768) {
361 *bytes = n = (n + 2047) & ~2047;
362 return(n / 2048 + 63);
363 }
364#endif
365 panic("Unexpected byte count %d", n);
366 return(0);
367}
368
369/*
270ac911 370 * malloc() (SLAB ALLOCATOR) (MPSAFE)
a108bf71
MD
371 *
372 * Allocate memory via the slab allocator. If the request is too large,
373 * or if it page-aligned beyond a certain size, we fall back to the
374 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
375 * &SlabMisc if you don't care.
376 *
8cb2bf45
JS
377 * M_RNOWAIT - don't block.
378 * M_NULLOK - return NULL instead of blocking.
a108bf71 379 * M_ZERO - zero the returned memory.
dc1fd4b3
MD
380 * M_USE_RESERVE - allow greater drawdown of the free list
381 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
a108bf71
MD
382 */
383void *
384malloc(unsigned long size, struct malloc_type *type, int flags)
385{
386 SLZone *z;
387 SLChunk *chunk;
388 SLGlobalData *slgd;
bba6a44d 389 struct globaldata *gd;
a108bf71 390 int zi;
d2182dc1
MD
391#ifdef INVARIANTS
392 int i;
393#endif
a108bf71 394
bba6a44d
MD
395 gd = mycpu;
396 slgd = &gd->gd_slab;
a108bf71
MD
397
398 /*
399 * XXX silly to have this in the critical path.
400 */
401 if (type->ks_limit == 0) {
402 crit_enter();
403 if (type->ks_limit == 0)
404 malloc_init(type);
405 crit_exit();
406 }
407 ++type->ks_calls;
408
409 /*
38e34349
MD
410 * Handle the case where the limit is reached. Panic if we can't return
411 * NULL. The original malloc code looped, but this tended to
a108bf71 412 * simply deadlock the computer.
38e34349
MD
413 *
414 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
415 * to determine if a more complete limit check should be done. The
416 * actual memory use is tracked via ks_memuse[cpu].
a108bf71 417 */
bba6a44d
MD
418 while (type->ks_loosememuse >= type->ks_limit) {
419 int i;
420 long ttl;
421
422 for (i = ttl = 0; i < ncpus; ++i)
423 ttl += type->ks_memuse[i];
38e34349 424 type->ks_loosememuse = ttl; /* not MP synchronized */
bba6a44d 425 if (ttl >= type->ks_limit) {
f2b5daf9
MD
426 if (flags & M_NULLOK) {
427 logmemory(malloc, NULL, type, size, flags);
bba6a44d 428 return(NULL);
f2b5daf9 429 }
bba6a44d
MD
430 panic("%s: malloc limit exceeded", type->ks_shortdesc);
431 }
a108bf71
MD
432 }
433
434 /*
435 * Handle the degenerate size == 0 case. Yes, this does happen.
436 * Return a special pointer. This is to maintain compatibility with
437 * the original malloc implementation. Certain devices, such as the
438 * adaptec driver, not only allocate 0 bytes, they check for NULL and
439 * also realloc() later on. Joy.
440 */
f2b5daf9
MD
441 if (size == 0) {
442 logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags);
a108bf71 443 return(ZERO_LENGTH_PTR);
f2b5daf9 444 }
a108bf71 445
a7cf0021
MD
446 /*
447 * Handle hysteresis from prior frees here in malloc(). We cannot
448 * safely manipulate the kernel_map in free() due to free() possibly
449 * being called via an IPI message or from sensitive interrupt code.
450 */
dc1fd4b3 451 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
46a3f46d
MD
452 crit_enter();
453 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */
454 z = slgd->FreeZones;
455 slgd->FreeZones = z->z_Next;
456 --slgd->NFreeZones;
457 kmem_slab_free(z, ZoneSize); /* may block */
458 }
459 crit_exit();
460 }
461 /*
462 * XXX handle oversized frees that were queued from free().
463 */
dc1fd4b3 464 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
46a3f46d
MD
465 crit_enter();
466 if ((z = slgd->FreeOvZones) != NULL) {
467 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
468 slgd->FreeOvZones = z->z_Next;
469 kmem_slab_free(z, z->z_ChunkSize); /* may block */
470 }
471 crit_exit();
a7cf0021
MD
472 }
473
a108bf71
MD
474 /*
475 * Handle large allocations directly. There should not be very many of
476 * these so performance is not a big issue.
477 *
478 * Guarentee page alignment for allocations in multiples of PAGE_SIZE
479 */
46a3f46d 480 if (size >= ZoneLimit || (size & PAGE_MASK) == 0) {
a108bf71
MD
481 struct kmemusage *kup;
482
483 size = round_page(size);
484 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
f2b5daf9
MD
485 if (chunk == NULL) {
486 logmemory(malloc, NULL, type, size, flags);
a108bf71 487 return(NULL);
f2b5daf9 488 }
a108bf71 489 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */
8f1d5415 490 flags |= M_PASSIVE_ZERO;
a108bf71
MD
491 kup = btokup(chunk);
492 kup->ku_pagecnt = size / PAGE_SIZE;
bba6a44d 493 kup->ku_cpu = gd->gd_cpuid;
a108bf71
MD
494 crit_enter();
495 goto done;
496 }
497
498 /*
499 * Attempt to allocate out of an existing zone. First try the free list,
500 * then allocate out of unallocated space. If we find a good zone move
501 * it to the head of the list so later allocations find it quickly
502 * (we might have thousands of zones in the list).
503 *
504 * Note: zoneindex() will panic of size is too large.
505 */
506 zi = zoneindex(&size);
507 KKASSERT(zi < NZONES);
508 crit_enter();
509 if ((z = slgd->ZoneAry[zi]) != NULL) {
510 KKASSERT(z->z_NFree > 0);
511
512 /*
513 * Remove us from the ZoneAry[] when we become empty
514 */
515 if (--z->z_NFree == 0) {
516 slgd->ZoneAry[zi] = z->z_Next;
517 z->z_Next = NULL;
518 }
519
520 /*
521 * Locate a chunk in a free page. This attempts to localize
522 * reallocations into earlier pages without us having to sort
523 * the chunk list. A chunk may still overlap a page boundary.
524 */
525 while (z->z_FirstFreePg < ZonePageCount) {
526 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
527#ifdef DIAGNOSTIC
528 /*
529 * Diagnostic: c_Next is not total garbage.
530 */
531 KKASSERT(chunk->c_Next == NULL ||
532 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
533 ((intptr_t)chunk & IN_SAME_PAGE_MASK));
534#endif
6ab8e1da
MD
535#ifdef INVARIANTS
536 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
a108bf71 537 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
6ab8e1da 538 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
a108bf71 539 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
10cc6608 540 chunk_mark_allocated(z, chunk);
6ab8e1da 541#endif
a108bf71
MD
542 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
543 goto done;
544 }
545 ++z->z_FirstFreePg;
546 }
547
548 /*
1c5ca4f3
MD
549 * No chunks are available but NFree said we had some memory, so
550 * it must be available in the never-before-used-memory area
551 * governed by UIndex. The consequences are very serious if our zone
552 * got corrupted so we use an explicit panic rather then a KASSERT.
a108bf71 553 */
1c5ca4f3
MD
554 if (z->z_UIndex + 1 != z->z_NMax)
555 z->z_UIndex = z->z_UIndex + 1;
556 else
557 z->z_UIndex = 0;
558 if (z->z_UIndex == z->z_UEndIndex)
559 panic("slaballoc: corrupted zone");
560 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
8f1d5415 561 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
6ab8e1da 562 flags &= ~M_ZERO;
8f1d5415
MD
563 flags |= M_PASSIVE_ZERO;
564 }
10cc6608
MD
565#if defined(INVARIANTS)
566 chunk_mark_allocated(z, chunk);
567#endif
a108bf71
MD
568 goto done;
569 }
570
571 /*
572 * If all zones are exhausted we need to allocate a new zone for this
573 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
6ab8e1da
MD
574 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
575 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
576 * we do not pre-zero it because we do not want to mess up the L1 cache.
a108bf71
MD
577 *
578 * At least one subsystem, the tty code (see CROUND) expects power-of-2
579 * allocations to be power-of-2 aligned. We maintain compatibility by
580 * adjusting the base offset below.
581 */
582 {
583 int off;
584
585 if ((z = slgd->FreeZones) != NULL) {
586 slgd->FreeZones = z->z_Next;
587 --slgd->NFreeZones;
588 bzero(z, sizeof(SLZone));
6ab8e1da 589 z->z_Flags |= SLZF_UNOTZEROD;
a108bf71
MD
590 } else {
591 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
592 if (z == NULL)
593 goto fail;
594 }
595
10cc6608
MD
596 /*
597 * How big is the base structure?
598 */
599#if defined(INVARIANTS)
600 /*
601 * Make room for z_Bitmap. An exact calculation is somewhat more
602 * complicated so don't make an exact calculation.
603 */
604 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
605 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
606#else
607 off = sizeof(SLZone);
608#endif
609
a108bf71
MD
610 /*
611 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
612 * Otherwise just 8-byte align the data.
613 */
614 if ((size | (size - 1)) + 1 == (size << 1))
10cc6608 615 off = (off + size - 1) & ~(size - 1);
a108bf71 616 else
10cc6608 617 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
a108bf71
MD
618 z->z_Magic = ZALLOC_SLAB_MAGIC;
619 z->z_ZoneIndex = zi;
620 z->z_NMax = (ZoneSize - off) / size;
621 z->z_NFree = z->z_NMax - 1;
1c5ca4f3
MD
622 z->z_BasePtr = (char *)z + off;
623 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
a108bf71
MD
624 z->z_ChunkSize = size;
625 z->z_FirstFreePg = ZonePageCount;
2db3b277 626 z->z_CpuGd = gd;
bba6a44d 627 z->z_Cpu = gd->gd_cpuid;
1c5ca4f3 628 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
a108bf71
MD
629 z->z_Next = slgd->ZoneAry[zi];
630 slgd->ZoneAry[zi] = z;
8f1d5415 631 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
6ab8e1da 632 flags &= ~M_ZERO; /* already zero'd */
8f1d5415
MD
633 flags |= M_PASSIVE_ZERO;
634 }
10cc6608
MD
635#if defined(INVARIANTS)
636 chunk_mark_allocated(z, chunk);
637#endif
1c5ca4f3
MD
638
639 /*
640 * Slide the base index for initial allocations out of the next
641 * zone we create so we do not over-weight the lower part of the
642 * cpu memory caches.
643 */
644 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
645 & (ZALLOC_MAX_ZONE_SIZE - 1);
a108bf71
MD
646 }
647done:
bba6a44d
MD
648 ++type->ks_inuse[gd->gd_cpuid];
649 type->ks_memuse[gd->gd_cpuid] += size;
38e34349 650 type->ks_loosememuse += size; /* not MP synchronized */
a108bf71
MD
651 crit_exit();
652 if (flags & M_ZERO)
653 bzero(chunk, size);
bba6a44d 654#ifdef INVARIANTS
d2182dc1
MD
655 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
656 if (use_malloc_pattern) {
657 for (i = 0; i < size; i += sizeof(int)) {
658 *(int *)((char *)chunk + i) = -1;
659 }
660 }
bba6a44d 661 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
d2182dc1 662 }
bba6a44d 663#endif
f2b5daf9 664 logmemory(malloc, chunk, type, size, flags);
a108bf71
MD
665 return(chunk);
666fail:
667 crit_exit();
f2b5daf9 668 logmemory(malloc, NULL, type, size, flags);
a108bf71
MD
669 return(NULL);
670}
671
38e34349
MD
672/*
673 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE)
674 *
675 * Generally speaking this routine is not called very often and we do
676 * not attempt to optimize it beyond reusing the same pointer if the
677 * new size fits within the chunking of the old pointer's zone.
678 */
a108bf71
MD
679void *
680realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
681{
682 SLZone *z;
683 void *nptr;
684 unsigned long osize;
685
eb7f3e3c
MD
686 KKASSERT((flags & M_ZERO) == 0); /* not supported */
687
a108bf71
MD
688 if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
689 return(malloc(size, type, flags));
690 if (size == 0) {
691 free(ptr, type);
692 return(NULL);
693 }
694
695 /*
696 * Handle oversized allocations. XXX we really should require that a
697 * size be passed to free() instead of this nonsense.
698 */
699 {
700 struct kmemusage *kup;
701
702 kup = btokup(ptr);
703 if (kup->ku_pagecnt) {
704 osize = kup->ku_pagecnt << PAGE_SHIFT;
705 if (osize == round_page(size))
706 return(ptr);
707 if ((nptr = malloc(size, type, flags)) == NULL)
708 return(NULL);
709 bcopy(ptr, nptr, min(size, osize));
710 free(ptr, type);
711 return(nptr);
712 }
713 }
714
715 /*
716 * Get the original allocation's zone. If the new request winds up
717 * using the same chunk size we do not have to do anything.
718 */
719 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
720 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
721
722 zoneindex(&size);
723 if (z->z_ChunkSize == size)
724 return(ptr);
725
726 /*
727 * Allocate memory for the new request size. Note that zoneindex has
728 * already adjusted the request size to the appropriate chunk size, which
729 * should optimize our bcopy(). Then copy and return the new pointer.
730 */
731 if ((nptr = malloc(size, type, flags)) == NULL)
732 return(NULL);
733 bcopy(ptr, nptr, min(size, z->z_ChunkSize));
734 free(ptr, type);
735 return(nptr);
736}
737
38e34349
MD
738/*
739 * Allocate a copy of the specified string.
740 *
741 * (MP SAFE) (MAY BLOCK)
742 */
1ac06773
MD
743char *
744strdup(const char *str, struct malloc_type *type)
745{
746 int zlen; /* length inclusive of terminating NUL */
747 char *nstr;
748
749 if (str == NULL)
750 return(NULL);
751 zlen = strlen(str) + 1;
752 nstr = malloc(zlen, type, M_WAITOK);
753 bcopy(str, nstr, zlen);
754 return(nstr);
755}
756
1d712609 757#ifdef SMP
a108bf71
MD
758/*
759 * free() (SLAB ALLOCATOR)
760 *
bba6a44d 761 * Free the specified chunk of memory.
a108bf71
MD
762 */
763static
764void
765free_remote(void *ptr)
766{
f2b5daf9 767 logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0);
a108bf71
MD
768 free(ptr, *(struct malloc_type **)ptr);
769}
770
1d712609
MD
771#endif
772
38e34349
MD
773/*
774 * free (SLAB ALLOCATOR) (MP SAFE)
775 *
776 * Free a memory block previously allocated by malloc. Note that we do not
777 * attempt to uplodate ks_loosememuse as MP races could prevent us from
778 * checking memory limits in malloc.
779 */
a108bf71
MD
780void
781free(void *ptr, struct malloc_type *type)
782{
783 SLZone *z;
784 SLChunk *chunk;
785 SLGlobalData *slgd;
bba6a44d 786 struct globaldata *gd;
a108bf71
MD
787 int pgno;
788
bba6a44d
MD
789 gd = mycpu;
790 slgd = &gd->gd_slab;
a108bf71 791
d39911d9
JS
792 if (ptr == NULL)
793 panic("trying to free NULL pointer");
794
a108bf71
MD
795 /*
796 * Handle special 0-byte allocations
797 */
f2b5daf9
MD
798 if (ptr == ZERO_LENGTH_PTR) {
799 logmemory(free_zero, ptr, type, -1, 0);
a108bf71 800 return;
f2b5daf9 801 }
a108bf71
MD
802
803 /*
804 * Handle oversized allocations. XXX we really should require that a
805 * size be passed to free() instead of this nonsense.
bba6a44d
MD
806 *
807 * This code is never called via an ipi.
a108bf71
MD
808 */
809 {
810 struct kmemusage *kup;
811 unsigned long size;
812
813 kup = btokup(ptr);
814 if (kup->ku_pagecnt) {
815 size = kup->ku_pagecnt << PAGE_SHIFT;
816 kup->ku_pagecnt = 0;
a108bf71
MD
817#ifdef INVARIANTS
818 KKASSERT(sizeof(weirdary) <= size);
819 bcopy(weirdary, ptr, sizeof(weirdary));
820#endif
bba6a44d
MD
821 /*
822 * note: we always adjust our cpu's slot, not the originating
823 * cpu (kup->ku_cpuid). The statistics are in aggregate.
81f5fc99
MD
824 *
825 * note: XXX we have still inherited the interrupts-can't-block
826 * assumption. An interrupt thread does not bump
827 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
828 * primarily until we can fix softupdate's assumptions about free().
bba6a44d
MD
829 */
830 crit_enter();
831 --type->ks_inuse[gd->gd_cpuid];
832 type->ks_memuse[gd->gd_cpuid] -= size;
81f5fc99 833 if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
f2b5daf9 834 logmemory(free_ovsz_delayed, ptr, type, size, 0);
46a3f46d
MD
835 z = (SLZone *)ptr;
836 z->z_Magic = ZALLOC_OVSZ_MAGIC;
837 z->z_Next = slgd->FreeOvZones;
838 z->z_ChunkSize = size;
839 slgd->FreeOvZones = z;
840 crit_exit();
841 } else {
bba6a44d 842 crit_exit();
f2b5daf9 843 logmemory(free_ovsz, ptr, type, size, 0);
46a3f46d
MD
844 kmem_slab_free(ptr, size); /* may block */
845 }
a108bf71
MD
846 return;
847 }
848 }
849
850 /*
851 * Zone case. Figure out the zone based on the fact that it is
852 * ZoneSize aligned.
853 */
854 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
855 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
856
857 /*
858 * If we do not own the zone then forward the request to the
4c9f5a7f
MD
859 * cpu that does. Since the timing is non-critical, a passive
860 * message is sent.
a108bf71 861 */
2db3b277 862 if (z->z_CpuGd != gd) {
a108bf71 863 *(struct malloc_type **)ptr = type;
75c7ffea 864#ifdef SMP
f2b5daf9 865 logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
4c9f5a7f 866 lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr);
75c7ffea
MD
867#else
868 panic("Corrupt SLZone");
869#endif
a108bf71
MD
870 return;
871 }
872
f2b5daf9
MD
873 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
874
a108bf71
MD
875 if (type->ks_magic != M_MAGIC)
876 panic("free: malloc type lacks magic");
877
878 crit_enter();
879 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
880 chunk = ptr;
881
bba6a44d 882#ifdef INVARIANTS
a108bf71 883 /*
bba6a44d
MD
884 * Attempt to detect a double-free. To reduce overhead we only check
885 * if there appears to be link pointer at the base of the data.
a108bf71
MD
886 */
887 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
888 SLChunk *scan;
889 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
890 if (scan == chunk)
891 panic("Double free at %p", chunk);
892 }
893 }
10cc6608 894 chunk_mark_free(z, chunk);
a108bf71
MD
895#endif
896
897 /*
898 * Put weird data into the memory to detect modifications after freeing,
899 * illegal pointer use after freeing (we should fault on the odd address),
900 * and so forth. XXX needs more work, see the old malloc code.
901 */
902#ifdef INVARIANTS
903 if (z->z_ChunkSize < sizeof(weirdary))
904 bcopy(weirdary, chunk, z->z_ChunkSize);
905 else
906 bcopy(weirdary, chunk, sizeof(weirdary));
907#endif
908
909 /*
910 * Add this free non-zero'd chunk to a linked list for reuse, adjust
911 * z_FirstFreePg.
912 */
6ab8e1da
MD
913#ifdef INVARIANTS
914 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
fc92d4aa 915 panic("BADFREE %p", chunk);
a108bf71
MD
916#endif
917 chunk->c_Next = z->z_PageAry[pgno];
918 z->z_PageAry[pgno] = chunk;
6ab8e1da
MD
919#ifdef INVARIANTS
920 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
a108bf71 921 panic("BADFREE2");
6ab8e1da 922#endif
a108bf71
MD
923 if (z->z_FirstFreePg > pgno)
924 z->z_FirstFreePg = pgno;
925
926 /*
927 * Bump the number of free chunks. If it becomes non-zero the zone
928 * must be added back onto the appropriate list.
929 */
930 if (z->z_NFree++ == 0) {
931 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
932 slgd->ZoneAry[z->z_ZoneIndex] = z;
933 }
934
bba6a44d
MD
935 --type->ks_inuse[z->z_Cpu];
936 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
a108bf71
MD
937
938 /*
939 * If the zone becomes totally free, and there are other zones we
a7cf0021
MD
940 * can allocate from, move this zone to the FreeZones list. Since
941 * this code can be called from an IPI callback, do *NOT* try to mess
942 * with kernel_map here. Hysteresis will be performed at malloc() time.
a108bf71
MD
943 */
944 if (z->z_NFree == z->z_NMax &&
945 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
946 ) {
947 SLZone **pz;
948
949 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
950 ;
951 *pz = z->z_Next;
952 z->z_Magic = -1;
a7cf0021
MD
953 z->z_Next = slgd->FreeZones;
954 slgd->FreeZones = z;
955 ++slgd->NFreeZones;
a108bf71
MD
956 }
957 crit_exit();
958}
959
10cc6608
MD
960#if defined(INVARIANTS)
961/*
962 * Helper routines for sanity checks
963 */
964static
965void
966chunk_mark_allocated(SLZone *z, void *chunk)
967{
968 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
969 __uint32_t *bitptr;
970
971 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex));
972 bitptr = &z->z_Bitmap[bitdex >> 5];
973 bitdex &= 31;
974 KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk));
975 *bitptr |= 1 << bitdex;
976}
977
978static
979void
980chunk_mark_free(SLZone *z, void *chunk)
981{
982 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
983 __uint32_t *bitptr;
984
985 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
986 bitptr = &z->z_Bitmap[bitdex >> 5];
987 bitdex &= 31;
988 KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk));
989 *bitptr &= ~(1 << bitdex);
990}
991
992#endif
993
a108bf71 994/*
38e34349 995 * kmem_slab_alloc() (MP SAFE) (GETS BGL)
a108bf71
MD
996 *
997 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
998 * specified alignment. M_* flags are expected in the flags field.
999 *
1000 * Alignment must be a multiple of PAGE_SIZE.
1001 *
1002 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1003 * but when we move zalloc() over to use this function as its backend
1004 * we will have to switch to kreserve/krelease and call reserve(0)
1005 * after the new space is made available.
dc1fd4b3
MD
1006 *
1007 * Interrupt code which has preempted other code is not allowed to
c397c465
MD
1008 * use PQ_CACHE pages. However, if an interrupt thread is run
1009 * non-preemptively or blocks and then runs non-preemptively, then
1010 * it is free to use PQ_CACHE pages.
38e34349
MD
1011 *
1012 * This routine will currently obtain the BGL.
a108bf71
MD
1013 */
1014static void *
1015kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1016{
1017 vm_size_t i;
1018 vm_offset_t addr;
1019 vm_offset_t offset;
1de1e800 1020 int count, vmflags, base_vmflags;
dc1fd4b3 1021 thread_t td;
a108bf71
MD
1022 vm_map_t map = kernel_map;
1023
1024 size = round_page(size);
1025 addr = vm_map_min(map);
1026
1027 /*
5c39c498
MD
1028 * Reserve properly aligned space from kernel_map. RNOWAIT allocations
1029 * cannot block.
a108bf71 1030 */
5c39c498
MD
1031 if (flags & M_RNOWAIT) {
1032 if (try_mplock() == 0)
1033 return(NULL);
1034 } else {
1035 get_mplock();
1036 }
a108bf71
MD
1037 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1038 crit_enter();
1039 vm_map_lock(map);
1040 if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) {
1041 vm_map_unlock(map);
8cb2bf45 1042 if ((flags & M_NULLOK) == 0)
a108bf71
MD
1043 panic("kmem_slab_alloc(): kernel_map ran out of space!");
1044 crit_exit();
1045 vm_map_entry_release(count);
38e34349 1046 rel_mplock();
a108bf71
MD
1047 return(NULL);
1048 }
1049 offset = addr - VM_MIN_KERNEL_ADDRESS;
1050 vm_object_reference(kernel_object);
1051 vm_map_insert(map, &count,
1052 kernel_object, offset, addr, addr + size,
1053 VM_PROT_ALL, VM_PROT_ALL, 0);
1054
dc1fd4b3 1055 td = curthread;
dc1fd4b3 1056
1de1e800
JS
1057 base_vmflags = 0;
1058 if (flags & M_ZERO)
1059 base_vmflags |= VM_ALLOC_ZERO;
1060 if (flags & M_USE_RESERVE)
1061 base_vmflags |= VM_ALLOC_SYSTEM;
1062 if (flags & M_USE_INTERRUPT_RESERVE)
1063 base_vmflags |= VM_ALLOC_INTERRUPT;
1064 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
1065 panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
1066
1067
a108bf71
MD
1068 /*
1069 * Allocate the pages. Do not mess with the PG_ZERO flag yet.
1070 */
1071 for (i = 0; i < size; i += PAGE_SIZE) {
1072 vm_page_t m;
1073 vm_pindex_t idx = OFF_TO_IDX(offset + i);
fe1e98d0
MD
1074
1075 /*
c397c465
MD
1076 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1077 *
1078 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1079 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1080 * implied in this case), though I'm sure if we really need to do
1081 * that.
fe1e98d0 1082 */
1de1e800 1083 vmflags = base_vmflags;
c397c465 1084 if (flags & M_WAITOK) {
1de1e800 1085 if (td->td_preempted)
fe1e98d0 1086 vmflags |= VM_ALLOC_SYSTEM;
1de1e800 1087 else
dc1fd4b3 1088 vmflags |= VM_ALLOC_NORMAL;
dc1fd4b3 1089 }
a108bf71 1090
dc1fd4b3
MD
1091 m = vm_page_alloc(kernel_object, idx, vmflags);
1092
1093 /*
1094 * If the allocation failed we either return NULL or we retry.
1095 *
c397c465
MD
1096 * If M_WAITOK is specified we wait for more memory and retry.
1097 * If M_WAITOK is specified from a preemption we yield instead of
1098 * wait. Livelock will not occur because the interrupt thread
1099 * will not be preempting anyone the second time around after the
1100 * yield.
dc1fd4b3 1101 */
a108bf71 1102 if (m == NULL) {
c397c465 1103 if (flags & M_WAITOK) {
fe1e98d0 1104 if (td->td_preempted) {
dc1fd4b3
MD
1105 vm_map_unlock(map);
1106 lwkt_yield();
1107 vm_map_lock(map);
1108 } else {
dc1fd4b3
MD
1109 vm_map_unlock(map);
1110 vm_wait();
1111 vm_map_lock(map);
1112 }
a108bf71
MD
1113 i -= PAGE_SIZE; /* retry */
1114 continue;
1115 }
dc1fd4b3
MD
1116
1117 /*
1118 * We were unable to recover, cleanup and return NULL
1119 */
a108bf71
MD
1120 while (i != 0) {
1121 i -= PAGE_SIZE;
1122 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
1123 vm_page_free(m);
1124 }
1125 vm_map_delete(map, addr, addr + size, &count);
1126 vm_map_unlock(map);
1127 crit_exit();
1128 vm_map_entry_release(count);
38e34349 1129 rel_mplock();
a108bf71
MD
1130 return(NULL);
1131 }
1132 }
1133
1134 /*
dc1fd4b3
MD
1135 * Success!
1136 *
a108bf71
MD
1137 * Mark the map entry as non-pageable using a routine that allows us to
1138 * populate the underlying pages.
1139 */
1140 vm_map_set_wired_quick(map, addr, size, &count);
1141 crit_exit();
1142
1143 /*
1144 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1145 */
1146 for (i = 0; i < size; i += PAGE_SIZE) {
1147 vm_page_t m;
1148
1149 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
1150 m->valid = VM_PAGE_BITS_ALL;
1151 vm_page_wire(m);
1152 vm_page_wakeup(m);
1153 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1154 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1155 bzero((char *)addr + i, PAGE_SIZE);
1156 vm_page_flag_clear(m, PG_ZERO);
1157 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
1158 }
1159 vm_map_unlock(map);
1160 vm_map_entry_release(count);
38e34349 1161 rel_mplock();
a108bf71
MD
1162 return((void *)addr);
1163}
1164
38e34349
MD
1165/*
1166 * kmem_slab_free() (MP SAFE) (GETS BGL)
1167 */
a108bf71
MD
1168static void
1169kmem_slab_free(void *ptr, vm_size_t size)
1170{
38e34349 1171 get_mplock();
a108bf71
MD
1172 crit_enter();
1173 vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1174 crit_exit();
38e34349 1175 rel_mplock();
a108bf71
MD
1176}
1177