Initial import from FreeBSD RELENG_4:
[dragonfly.git] / sys / dev / netif / wi / if_wi.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD.
35 *
36 * Written by Bill Paul <wpaul@ctr.columbia.edu>
37 * Electrical Engineering Department
38 * Columbia University, New York City
39 */
40
41/*
42 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
43 * from Lucent. Unlike the older cards, the new ones are programmed
44 * entirely via a firmware-driven controller called the Hermes.
45 * Unfortunately, Lucent will not release the Hermes programming manual
46 * without an NDA (if at all). What they do release is an API library
47 * called the HCF (Hardware Control Functions) which is supposed to
48 * do the device-specific operations of a device driver for you. The
49 * publically available version of the HCF library (the 'HCF Light') is
50 * a) extremely gross, b) lacks certain features, particularly support
51 * for 802.11 frames, and c) is contaminated by the GNU Public License.
52 *
53 * This driver does not use the HCF or HCF Light at all. Instead, it
54 * programs the Hermes controller directly, using information gleaned
55 * from the HCF Light code and corresponding documentation.
56 *
57 * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
58 * WaveLan cards (based on the Hermes chipset), as well as the newer
59 * Prism 2 chipsets with firmware from Intersil and Symbol.
60 */
61
62#include <sys/param.h>
63#include <sys/systm.h>
64#if __FreeBSD_version >= 500033
65#include <sys/endian.h>
66#endif
67#include <sys/sockio.h>
68#include <sys/mbuf.h>
69#include <sys/proc.h>
70#include <sys/kernel.h>
71#include <sys/socket.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/random.h>
75#include <sys/syslog.h>
76#include <sys/sysctl.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <machine/clock.h>
81#include <sys/rman.h>
82
83#include <net/if.h>
84#include <net/if_arp.h>
85#include <net/ethernet.h>
86#include <net/if_dl.h>
87#include <net/if_media.h>
88#include <net/if_types.h>
89#include <net/if_ieee80211.h>
90
91#include <netinet/in.h>
92#include <netinet/in_systm.h>
93#include <netinet/in_var.h>
94#include <netinet/ip.h>
95#include <netinet/if_ether.h>
96
97#include <net/bpf.h>
98
99#include <dev/wi/if_wavelan_ieee.h>
100#include <dev/wi/wi_hostap.h>
101#include <dev/wi/if_wivar.h>
102#include <dev/wi/if_wireg.h>
103
104#if !defined(lint)
105static const char rcsid[] =
106 "$FreeBSD: src/sys/dev/wi/if_wi.c,v 1.103.2.2 2002/08/02 07:11:34 imp Exp $";
107#endif
108
109static void wi_intr(void *);
110static void wi_reset(struct wi_softc *);
111static int wi_ioctl(struct ifnet *, u_long, caddr_t);
112static void wi_init(void *);
113static void wi_start(struct ifnet *);
114static void wi_stop(struct wi_softc *);
115static void wi_watchdog(struct ifnet *);
116static void wi_rxeof(struct wi_softc *);
117static void wi_txeof(struct wi_softc *, int);
118static void wi_update_stats(struct wi_softc *);
119static void wi_setmulti(struct wi_softc *);
120
121static int wi_cmd(struct wi_softc *, int, int, int, int);
122static int wi_read_record(struct wi_softc *, struct wi_ltv_gen *);
123static int wi_write_record(struct wi_softc *, struct wi_ltv_gen *);
124static int wi_read_data(struct wi_softc *, int, int, caddr_t, int);
125static int wi_write_data(struct wi_softc *, int, int, caddr_t, int);
126static int wi_seek(struct wi_softc *, int, int, int);
127static int wi_alloc_nicmem(struct wi_softc *, int, int *);
128static void wi_inquire(void *);
129static void wi_setdef(struct wi_softc *, struct wi_req *);
130
131#ifdef WICACHE
132static
133void wi_cache_store(struct wi_softc *, struct ether_header *,
134 struct mbuf *, unsigned short);
135#endif
136
137static int wi_get_cur_ssid(struct wi_softc *, char *, int *);
138static void wi_get_id(struct wi_softc *);
139static int wi_media_change(struct ifnet *);
140static void wi_media_status(struct ifnet *, struct ifmediareq *);
141
142static int wi_get_debug(struct wi_softc *, struct wi_req *);
143static int wi_set_debug(struct wi_softc *, struct wi_req *);
144
145devclass_t wi_devclass;
146
147struct wi_card_ident wi_card_ident[] = {
148 /* CARD_ID CARD_NAME FIRM_TYPE */
149 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
150 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
151 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
152 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
153 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
154 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
155 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
156 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
157 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
158 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
159 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
160 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
161 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
162 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
163 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
164 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
165 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
166 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
167 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
168 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
169 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
170 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
171 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
172 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
173 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
174 { 0, NULL, 0 },
175};
176
177int
178wi_generic_detach(dev)
179 device_t dev;
180{
181 struct wi_softc *sc;
182 struct ifnet *ifp;
183 int s;
184
185 sc = device_get_softc(dev);
186 WI_LOCK(sc, s);
187 ifp = &sc->arpcom.ac_if;
188
189 if (sc->wi_gone) {
190 device_printf(dev, "already unloaded\n");
191 WI_UNLOCK(sc, s);
192 return(ENODEV);
193 }
194
195 wi_stop(sc);
196
197 /* Delete all remaining media. */
198 ifmedia_removeall(&sc->ifmedia);
199
200 ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
201 bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
202 wi_free(dev);
203 sc->wi_gone = 1;
204
205 WI_UNLOCK(sc, s);
206#if __FreeBSD_version >= 500000
207 mtx_destroy(&sc->wi_mtx);
208#endif
209
210 return(0);
211}
212
213int
214wi_generic_attach(device_t dev)
215{
216 struct wi_softc *sc;
217 struct wi_ltv_macaddr mac;
218 struct wi_ltv_gen gen;
219 struct ifnet *ifp;
220 int error;
221 int s;
222
223 /* XXX maybe we need the splimp stuff here XXX */
224 sc = device_get_softc(dev);
225 ifp = &sc->arpcom.ac_if;
226
227 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
228 wi_intr, sc, &sc->wi_intrhand);
229
230 if (error) {
231 device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
232 wi_free(dev);
233 return (error);
234 }
235
236#if __FreeBSD_version >= 500000
237 mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
238 MTX_DEF | MTX_RECURSE);
239#endif
240 WI_LOCK(sc, s);
241
242 /* Reset the NIC. */
243 wi_reset(sc);
244
245 /*
246 * Read the station address.
247 * And do it twice. I've seen PRISM-based cards that return
248 * an error when trying to read it the first time, which causes
249 * the probe to fail.
250 */
251 mac.wi_type = WI_RID_MAC_NODE;
252 mac.wi_len = 4;
253 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
254 if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) {
255 device_printf(dev, "mac read failed %d\n", error);
256 wi_free(dev);
257 return (error);
258 }
259 bcopy((char *)&mac.wi_mac_addr,
260 (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
261
262 device_printf(dev, "802.11 address: %6D\n", sc->arpcom.ac_enaddr, ":");
263
264 wi_get_id(sc);
265
266 ifp->if_softc = sc;
267 ifp->if_unit = sc->wi_unit;
268 ifp->if_name = "wi";
269 ifp->if_mtu = ETHERMTU;
270 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
271 ifp->if_ioctl = wi_ioctl;
272 ifp->if_output = ether_output;
273 ifp->if_start = wi_start;
274 ifp->if_watchdog = wi_watchdog;
275 ifp->if_init = wi_init;
276 ifp->if_baudrate = 10000000;
277 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
278
279 bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
280 bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name,
281 sizeof(WI_DEFAULT_NODENAME) - 1);
282
283 bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
284 bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name,
285 sizeof(WI_DEFAULT_NETNAME) - 1);
286
287 bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
288 bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name,
289 sizeof(WI_DEFAULT_IBSS) - 1);
290
291 sc->wi_portnum = WI_DEFAULT_PORT;
292 sc->wi_ptype = WI_PORTTYPE_BSS;
293 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
294 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
295 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
296 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
297 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
298 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
299 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
300 sc->wi_roaming = WI_DEFAULT_ROAMING;
301 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
302 sc->wi_authmode = IEEE80211_AUTH_OPEN;
303
304 /*
305 * Read the default channel from the NIC. This may vary
306 * depending on the country where the NIC was purchased, so
307 * we can't hard-code a default and expect it to work for
308 * everyone.
309 */
310 gen.wi_type = WI_RID_OWN_CHNL;
311 gen.wi_len = 2;
312 wi_read_record(sc, &gen);
313 sc->wi_channel = gen.wi_val;
314
315 /*
316 * Set flags based on firmware version.
317 */
318 switch (sc->sc_firmware_type) {
319 case WI_LUCENT:
320 sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
321 if (sc->sc_sta_firmware_ver >= 60000)
322 sc->wi_flags |= WI_FLAGS_HAS_MOR;
323 if (sc->sc_sta_firmware_ver >= 60006) {
324 sc->wi_flags |= WI_FLAGS_HAS_IBSS;
325 sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
326 }
327 sc->wi_ibss_port = htole16(1);
328 break;
329 case WI_INTERSIL:
330 sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
331 if (sc->sc_sta_firmware_ver >= 800) {
332 sc->wi_flags |= WI_FLAGS_HAS_IBSS;
333 sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
334 }
335 /*
336 * version 0.8.3 and newer are the only ones that are known
337 * to currently work. Earlier versions can be made to work,
338 * at least according to the Linux driver.
339 */
340 if (sc->sc_sta_firmware_ver >= 803)
341 sc->wi_flags |= WI_FLAGS_HAS_HOSTAP;
342 sc->wi_ibss_port = htole16(0);
343 break;
344 case WI_SYMBOL:
345 sc->wi_flags |= WI_FLAGS_HAS_DIVERSITY;
346 if (sc->sc_sta_firmware_ver >= 20000)
347 sc->wi_flags |= WI_FLAGS_HAS_IBSS;
348 /* Older Symbol firmware does not support IBSS creation. */
349 if (sc->sc_sta_firmware_ver >= 25000)
350 sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
351 sc->wi_ibss_port = htole16(4);
352 break;
353 }
354
355 /*
356 * Find out if we support WEP on this card.
357 */
358 gen.wi_type = WI_RID_WEP_AVAIL;
359 gen.wi_len = 2;
360 wi_read_record(sc, &gen);
361 sc->wi_has_wep = gen.wi_val;
362
363 if (bootverbose)
364 device_printf(sc->dev, "wi_has_wep = %d\n", sc->wi_has_wep);
365
366 /*
367 * Find supported rates.
368 */
369 gen.wi_type = WI_RID_DATA_RATES;
370 gen.wi_len = 2;
371 if (wi_read_record(sc, &gen))
372 sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M |
373 WI_SUPPRATES_5M | WI_SUPPRATES_11M;
374 else
375 sc->wi_supprates = gen.wi_val;
376
377 bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
378
379 wi_init(sc);
380 wi_stop(sc);
381
382 ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status);
383#define ADD(m, c) ifmedia_add(&sc->ifmedia, (m), (c), NULL)
384 if (sc->wi_supprates & WI_SUPPRATES_1M) {
385 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
386 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
387 IFM_IEEE80211_ADHOC, 0), 0);
388 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
389 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
390 IFM_IEEE80211_IBSS, 0), 0);
391 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
392 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
393 IFM_IEEE80211_IBSSMASTER, 0), 0);
394 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
395 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
396 IFM_IEEE80211_HOSTAP, 0), 0);
397 }
398 if (sc->wi_supprates & WI_SUPPRATES_2M) {
399 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
400 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
401 IFM_IEEE80211_ADHOC, 0), 0);
402 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
403 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
404 IFM_IEEE80211_IBSS, 0), 0);
405 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
406 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
407 IFM_IEEE80211_IBSSMASTER, 0), 0);
408 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
409 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
410 IFM_IEEE80211_HOSTAP, 0), 0);
411 }
412 if (sc->wi_supprates & WI_SUPPRATES_5M) {
413 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
414 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
415 IFM_IEEE80211_ADHOC, 0), 0);
416 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
417 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
418 IFM_IEEE80211_IBSS, 0), 0);
419 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
420 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
421 IFM_IEEE80211_IBSSMASTER, 0), 0);
422 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
423 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
424 IFM_IEEE80211_HOSTAP, 0), 0);
425 }
426 if (sc->wi_supprates & WI_SUPPRATES_11M) {
427 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
428 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
429 IFM_IEEE80211_ADHOC, 0), 0);
430 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
431 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
432 IFM_IEEE80211_IBSS, 0), 0);
433 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
434 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
435 IFM_IEEE80211_IBSSMASTER, 0), 0);
436 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
437 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
438 IFM_IEEE80211_HOSTAP, 0), 0);
439 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
440 }
441 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
442 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
443 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSS,
444 0), 0);
445 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
446 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
447 IFM_IEEE80211_IBSSMASTER, 0), 0);
448 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
449 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
450 IFM_IEEE80211_HOSTAP, 0), 0);
451 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
452#undef ADD
453 ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
454
455 /*
456 * Call MI attach routine.
457 */
458 ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
459 callout_handle_init(&sc->wi_stat_ch);
460 WI_UNLOCK(sc, s);
461
462 return(0);
463}
464
465static void
466wi_get_id(sc)
467 struct wi_softc *sc;
468{
469 struct wi_ltv_ver ver;
470 struct wi_card_ident *id;
471
472 /* getting chip identity */
473 memset(&ver, 0, sizeof(ver));
474 ver.wi_type = WI_RID_CARD_ID;
475 ver.wi_len = 5;
476 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
477 device_printf(sc->dev, "using ");
478 sc->sc_firmware_type = WI_NOTYPE;
479 for (id = wi_card_ident; id->card_name != NULL; id++) {
480 if (le16toh(ver.wi_ver[0]) == id->card_id) {
481 printf("%s", id->card_name);
482 sc->sc_firmware_type = id->firm_type;
483 break;
484 }
485 }
486 if (sc->sc_firmware_type == WI_NOTYPE) {
487 if (le16toh(ver.wi_ver[0]) & 0x8000) {
488 printf("Unknown PRISM2 chip");
489 sc->sc_firmware_type = WI_INTERSIL;
490 } else {
491 printf("Unknown Lucent chip");
492 sc->sc_firmware_type = WI_LUCENT;
493 }
494 }
495
496 if (sc->sc_firmware_type != WI_LUCENT) {
497 /* get primary firmware version */
498 memset(&ver, 0, sizeof(ver));
499 ver.wi_type = WI_RID_PRI_IDENTITY;
500 ver.wi_len = 5;
501 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
502 ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
503 ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
504 ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
505 sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
506 ver.wi_ver[3] * 100 + ver.wi_ver[1];
507 }
508
509 /* get station firmware version */
510 memset(&ver, 0, sizeof(ver));
511 ver.wi_type = WI_RID_STA_IDENTITY;
512 ver.wi_len = 5;
513 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
514 ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
515 ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
516 ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
517 sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
518 ver.wi_ver[3] * 100 + ver.wi_ver[1];
519 if (sc->sc_firmware_type == WI_INTERSIL &&
520 (sc->sc_sta_firmware_ver == 10102 ||
521 sc->sc_sta_firmware_ver == 20102)) {
522 struct wi_ltv_str sver;
523 char *p;
524
525 memset(&sver, 0, sizeof(sver));
526 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
527 sver.wi_len = 7;
528 /* value should be the format like "V2.00-11" */
529 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
530 *(p = (char *)sver.wi_str) >= 'A' &&
531 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
532 sc->sc_firmware_type = WI_SYMBOL;
533 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
534 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
535 (p[6] - '0') * 10 + (p[7] - '0');
536 }
537 }
538 printf("\n");
539 device_printf(sc->dev, "%s Firmware: ",
540 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
541 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
542
543 /*
544 * The primary firmware is only valid on Prism based chipsets
545 * (INTERSIL or SYMBOL).
546 */
547 if (sc->sc_firmware_type != WI_LUCENT)
548 printf("Primary %u.%02u.%02u, ", sc->sc_pri_firmware_ver / 10000,
549 (sc->sc_pri_firmware_ver % 10000) / 100,
550 sc->sc_pri_firmware_ver % 100);
551 printf("Station %u.%02u.%02u\n",
552 sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
553 sc->sc_sta_firmware_ver % 100);
554 return;
555}
556
557static void
558wi_rxeof(sc)
559 struct wi_softc *sc;
560{
561 struct ifnet *ifp;
562 struct ether_header *eh;
563 struct mbuf *m;
564 int id;
565
566 ifp = &sc->arpcom.ac_if;
567
568 id = CSR_READ_2(sc, WI_RX_FID);
569
570 /*
571 * if we have the procframe flag set, disregard all this and just
572 * read the data from the device.
573 */
574 if (sc->wi_procframe || sc->wi_debug.wi_monitor) {
575 struct wi_frame *rx_frame;
576 int datlen, hdrlen;
577
578 /* first allocate mbuf for packet storage */
579 MGETHDR(m, M_DONTWAIT, MT_DATA);
580 if (m == NULL) {
581 ifp->if_ierrors++;
582 return;
583 }
584 MCLGET(m, M_DONTWAIT);
585 if (!(m->m_flags & M_EXT)) {
586 m_freem(m);
587 ifp->if_ierrors++;
588 return;
589 }
590
591 m->m_pkthdr.rcvif = ifp;
592
593 /* now read wi_frame first so we know how much data to read */
594 if (wi_read_data(sc, id, 0, mtod(m, caddr_t),
595 sizeof(struct wi_frame))) {
596 m_freem(m);
597 ifp->if_ierrors++;
598 return;
599 }
600
601 rx_frame = mtod(m, struct wi_frame *);
602
603 switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) {
604 case 7:
605 switch (rx_frame->wi_frame_ctl & WI_FCTL_FTYPE) {
606 case WI_FTYPE_DATA:
607 hdrlen = WI_DATA_HDRLEN;
608 datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
609 break;
610 case WI_FTYPE_MGMT:
611 hdrlen = WI_MGMT_HDRLEN;
612 datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
613 break;
614 case WI_FTYPE_CTL:
615 /*
616 * prism2 cards don't pass control packets
617 * down properly or consistently, so we'll only
618 * pass down the header.
619 */
620 hdrlen = WI_CTL_HDRLEN;
621 datlen = 0;
622 break;
623 default:
624 device_printf(sc->dev, "received packet of "
625 "unknown type on port 7\n");
626 m_freem(m);
627 ifp->if_ierrors++;
628 return;
629 }
630 break;
631 case 0:
632 hdrlen = WI_DATA_HDRLEN;
633 datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
634 break;
635 default:
636 device_printf(sc->dev, "received packet on invalid "
637 "port (wi_status=0x%x)\n", rx_frame->wi_status);
638 m_freem(m);
639 ifp->if_ierrors++;
640 return;
641 }
642
643 if ((hdrlen + datlen + 2) > MCLBYTES) {
644 device_printf(sc->dev, "oversized packet received "
645 "(wi_dat_len=%d, wi_status=0x%x)\n",
646 datlen, rx_frame->wi_status);
647 m_freem(m);
648 ifp->if_ierrors++;
649 return;
650 }
651
652 if (wi_read_data(sc, id, hdrlen, mtod(m, caddr_t) + hdrlen,
653 datlen + 2)) {
654 m_freem(m);
655 ifp->if_ierrors++;
656 return;
657 }
658
659 m->m_pkthdr.len = m->m_len = hdrlen + datlen;
660
661 ifp->if_ipackets++;
662
663 /* Handle BPF listeners. */
664 if (ifp->if_bpf)
665 bpf_mtap(ifp, m);
666
667 m_freem(m);
668 } else {
669 struct wi_frame rx_frame;
670
671 /* First read in the frame header */
672 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame,
673 sizeof(rx_frame))) {
674 ifp->if_ierrors++;
675 return;
676 }
677
678 if (rx_frame.wi_status & WI_STAT_ERRSTAT) {
679 ifp->if_ierrors++;
680 return;
681 }
682
683 MGETHDR(m, M_DONTWAIT, MT_DATA);
684 if (m == NULL) {
685 ifp->if_ierrors++;
686 return;
687 }
688 MCLGET(m, M_DONTWAIT);
689 if (!(m->m_flags & M_EXT)) {
690 m_freem(m);
691 ifp->if_ierrors++;
692 return;
693 }
694
695 eh = mtod(m, struct ether_header *);
696 m->m_pkthdr.rcvif = ifp;
697
698 if (rx_frame.wi_status == WI_STAT_MGMT &&
699 sc->wi_ptype == WI_PORTTYPE_AP) {
700 if ((WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len + 2) >
701 MCLBYTES) {
702 device_printf(sc->dev, "oversized mgmt packet "
703 "received in hostap mode "
704 "(wi_dat_len=%d, wi_status=0x%x)\n",
705 rx_frame.wi_dat_len, rx_frame.wi_status);
706 m_freem(m);
707 ifp->if_ierrors++;
708 return;
709 }
710
711 /* Put the whole header in there. */
712 bcopy(&rx_frame, mtod(m, void *),
713 sizeof(struct wi_frame));
714 if (wi_read_data(sc, id, WI_802_11_OFFSET_RAW,
715 mtod(m, caddr_t) + WI_802_11_OFFSET_RAW,
716 rx_frame.wi_dat_len + 2)) {
717 m_freem(m);
718 ifp->if_ierrors++;
719 return;
720 }
721 m->m_pkthdr.len = m->m_len =
722 WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len;
723 /* XXX: consider giving packet to bhp? */
724 wihap_mgmt_input(sc, &rx_frame, m);
725 return;
726 }
727
728 if (rx_frame.wi_status == WI_STAT_1042 ||
729 rx_frame.wi_status == WI_STAT_TUNNEL ||
730 rx_frame.wi_status == WI_STAT_WMP_MSG) {
731 if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) {
732 device_printf(sc->dev,
733 "oversized packet received "
734 "(wi_dat_len=%d, wi_status=0x%x)\n",
735 rx_frame.wi_dat_len, rx_frame.wi_status);
736 m_freem(m);
737 ifp->if_ierrors++;
738 return;
739 }
740 m->m_pkthdr.len = m->m_len =
741 rx_frame.wi_dat_len + WI_SNAPHDR_LEN;
742
743#if 0
744 bcopy((char *)&rx_frame.wi_addr1,
745 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
746 if (sc->wi_ptype == WI_PORTTYPE_ADHOC) {
747 bcopy((char *)&rx_frame.wi_addr2,
748 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
749 } else {
750 bcopy((char *)&rx_frame.wi_addr3,
751 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
752 }
753#else
754 bcopy((char *)&rx_frame.wi_dst_addr,
755 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
756 bcopy((char *)&rx_frame.wi_src_addr,
757 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
758#endif
759
760 bcopy((char *)&rx_frame.wi_type,
761 (char *)&eh->ether_type, ETHER_TYPE_LEN);
762
763 if (wi_read_data(sc, id, WI_802_11_OFFSET,
764 mtod(m, caddr_t) + sizeof(struct ether_header),
765 m->m_len + 2)) {
766 m_freem(m);
767 ifp->if_ierrors++;
768 return;
769 }
770 } else {
771 if((rx_frame.wi_dat_len +
772 sizeof(struct ether_header)) > MCLBYTES) {
773 device_printf(sc->dev,
774 "oversized packet received "
775 "(wi_dat_len=%d, wi_status=0x%x)\n",
776 rx_frame.wi_dat_len, rx_frame.wi_status);
777 m_freem(m);
778 ifp->if_ierrors++;
779 return;
780 }
781 m->m_pkthdr.len = m->m_len =
782 rx_frame.wi_dat_len + sizeof(struct ether_header);
783
784 if (wi_read_data(sc, id, WI_802_3_OFFSET,
785 mtod(m, caddr_t), m->m_len + 2)) {
786 m_freem(m);
787 ifp->if_ierrors++;
788 return;
789 }
790 }
791
792 ifp->if_ipackets++;
793
794 if (sc->wi_ptype == WI_PORTTYPE_AP) {
795 /*
796 * Give host AP code first crack at data
797 * packets. If it decides to handle it (or
798 * drop it), it will return a non-zero.
799 * Otherwise, it is destined for this host.
800 */
801 if (wihap_data_input(sc, &rx_frame, m))
802 return;
803 }
804 /* Receive packet. */
805 m_adj(m, sizeof(struct ether_header));
806#ifdef WICACHE
807 wi_cache_store(sc, eh, m, rx_frame.wi_q_info);
808#endif
809 ether_input(ifp, eh, m);
810 }
811}
812
813static void
814wi_txeof(sc, status)
815 struct wi_softc *sc;
816 int status;
817{
818 struct ifnet *ifp;
819
820 ifp = &sc->arpcom.ac_if;
821
822 ifp->if_timer = 0;
823 ifp->if_flags &= ~IFF_OACTIVE;
824
825 if (status & WI_EV_TX_EXC)
826 ifp->if_oerrors++;
827 else
828 ifp->if_opackets++;
829
830 return;
831}
832
833void
834wi_inquire(xsc)
835 void *xsc;
836{
837 struct wi_softc *sc;
838 struct ifnet *ifp;
839 int s;
840
841 sc = xsc;
842 ifp = &sc->arpcom.ac_if;
843
844 sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
845
846 /* Don't do this while we're transmitting */
847 if (ifp->if_flags & IFF_OACTIVE)
848 return;
849
850 WI_LOCK(sc, s);
851 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0);
852 WI_UNLOCK(sc, s);
853
854 return;
855}
856
857void
858wi_update_stats(sc)
859 struct wi_softc *sc;
860{
861 struct wi_ltv_gen gen;
862 u_int16_t id;
863 struct ifnet *ifp;
864 u_int32_t *ptr;
865 int len, i;
866 u_int16_t t;
867
868 ifp = &sc->arpcom.ac_if;
869
870 id = CSR_READ_2(sc, WI_INFO_FID);
871
872 wi_read_data(sc, id, 0, (char *)&gen, 4);
873
874 /*
875 * if we just got our scan results, copy it over into the scan buffer
876 * so we can return it to anyone that asks for it. (add a little
877 * compatibility with the prism2 scanning mechanism)
878 */
879 if (gen.wi_type == WI_INFO_SCAN_RESULTS)
880 {
881 sc->wi_scanbuf_len = gen.wi_len;
882 wi_read_data(sc, id, 4, (char *)sc->wi_scanbuf,
883 sc->wi_scanbuf_len * 2);
884
885 return;
886 }
887 else if (gen.wi_type != WI_INFO_COUNTERS)
888 return;
889
890 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
891 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
892 ptr = (u_int32_t *)&sc->wi_stats;
893
894 for (i = 0; i < len - 1; i++) {
895 t = CSR_READ_2(sc, WI_DATA1);
896#ifdef WI_HERMES_STATS_WAR
897 if (t > 0xF000)
898 t = ~t & 0xFFFF;
899#endif
900 ptr[i] += t;
901 }
902
903 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
904 sc->wi_stats.wi_tx_multi_retries +
905 sc->wi_stats.wi_tx_retry_limit;
906
907 return;
908}
909
910static void
911wi_intr(xsc)
912 void *xsc;
913{
914 struct wi_softc *sc = xsc;
915 struct ifnet *ifp;
916 u_int16_t status;
917 int s;
918
919 WI_LOCK(sc, s);
920
921 ifp = &sc->arpcom.ac_if;
922
923 if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) {
924 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
925 CSR_WRITE_2(sc, WI_INT_EN, 0);
926 WI_UNLOCK(sc, s);
927 return;
928 }
929
930 /* Disable interrupts. */
931 CSR_WRITE_2(sc, WI_INT_EN, 0);
932
933 status = CSR_READ_2(sc, WI_EVENT_STAT);
934 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
935
936 if (status & WI_EV_RX) {
937 wi_rxeof(sc);
938 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
939 }
940
941 if (status & WI_EV_TX) {
942 wi_txeof(sc, status);
943 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
944 }
945
946 if (status & WI_EV_ALLOC) {
947 int id;
948
949 id = CSR_READ_2(sc, WI_ALLOC_FID);
950 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
951 if (id == sc->wi_tx_data_id)
952 wi_txeof(sc, status);
953 }
954
955 if (status & WI_EV_INFO) {
956 wi_update_stats(sc);
957 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
958 }
959
960 if (status & WI_EV_TX_EXC) {
961 wi_txeof(sc, status);
962 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
963 }
964
965 if (status & WI_EV_INFO_DROP) {
966 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
967 }
968
969 /* Re-enable interrupts. */
970 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
971
972 if (ifp->if_snd.ifq_head != NULL) {
973 wi_start(ifp);
974 }
975
976 WI_UNLOCK(sc, s);
977
978 return;
979}
980
981static int
982wi_cmd(sc, cmd, val0, val1, val2)
983 struct wi_softc *sc;
984 int cmd;
985 int val0;
986 int val1;
987 int val2;
988{
989 int i, s = 0;
990 static volatile int count = 0;
991
992 if (count > 1)
993 panic("Hey partner, hold on there!");
994 count++;
995
996 /* wait for the busy bit to clear */
997 for (i = 500; i > 0; i--) { /* 5s */
998 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
999 break;
1000 }
1001 DELAY(10*1000); /* 10 m sec */
1002 }
1003 if (i == 0) {
1004 device_printf(sc->dev, "wi_cmd: busy bit won't clear.\n" );
1005 count--;
1006 return(ETIMEDOUT);
1007 }
1008
1009 CSR_WRITE_2(sc, WI_PARAM0, val0);
1010 CSR_WRITE_2(sc, WI_PARAM1, val1);
1011 CSR_WRITE_2(sc, WI_PARAM2, val2);
1012 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1013
1014 for (i = 0; i < WI_TIMEOUT; i++) {
1015 /*
1016 * Wait for 'command complete' bit to be
1017 * set in the event status register.
1018 */
1019 s = CSR_READ_2(sc, WI_EVENT_STAT);
1020 if (s & WI_EV_CMD) {
1021 /* Ack the event and read result code. */
1022 s = CSR_READ_2(sc, WI_STATUS);
1023 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1024#ifdef foo
1025 if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
1026 return(EIO);
1027#endif
1028 if (s & WI_STAT_CMD_RESULT) {
1029 count--;
1030 return(EIO);
1031 }
1032 break;
1033 }
1034 DELAY(WI_DELAY);
1035 }
1036
1037 count--;
1038 if (i == WI_TIMEOUT) {
1039 device_printf(sc->dev,
1040 "timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
1041 return(ETIMEDOUT);
1042 }
1043 return(0);
1044}
1045
1046static void
1047wi_reset(sc)
1048 struct wi_softc *sc;
1049{
1050#define WI_INIT_TRIES 3
1051 int i;
1052 int tries;
1053
1054 /* Symbol firmware cannot be initialized more than once */
1055 if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_enabled)
1056 return;
1057 if (sc->sc_firmware_type == WI_SYMBOL)
1058 tries = 1;
1059 else
1060 tries = WI_INIT_TRIES;
1061
1062 for (i = 0; i < tries; i++) {
1063 if (wi_cmd(sc, WI_CMD_INI, 0, 0, 0) == 0)
1064 break;
1065 DELAY(WI_DELAY * 1000);
1066 }
1067 sc->sc_enabled = 1;
1068
1069 if (i == tries) {
1070 device_printf(sc->dev, "init failed\n");
1071 return;
1072 }
1073
1074 CSR_WRITE_2(sc, WI_INT_EN, 0);
1075 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
1076
1077 /* Calibrate timer. */
1078 WI_SETVAL(WI_RID_TICK_TIME, 8);
1079
1080 return;
1081}
1082
1083/*
1084 * Read an LTV record from the NIC.
1085 */
1086static int
1087wi_read_record(sc, ltv)
1088 struct wi_softc *sc;
1089 struct wi_ltv_gen *ltv;
1090{
1091 u_int16_t *ptr;
1092 int i, len, code;
1093 struct wi_ltv_gen *oltv, p2ltv;
1094
1095 oltv = ltv;
1096 if (sc->sc_firmware_type != WI_LUCENT) {
1097 switch (ltv->wi_type) {
1098 case WI_RID_ENCRYPTION:
1099 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1100 p2ltv.wi_len = 2;
1101 ltv = &p2ltv;
1102 break;
1103 case WI_RID_TX_CRYPT_KEY:
1104 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1105 p2ltv.wi_len = 2;
1106 ltv = &p2ltv;
1107 break;
1108 case WI_RID_ROAMING_MODE:
1109 if (sc->sc_firmware_type == WI_INTERSIL)
1110 break;
1111 /* not supported */
1112 ltv->wi_len = 1;
1113 return 0;
1114 case WI_RID_MICROWAVE_OVEN:
1115 /* not supported */
1116 ltv->wi_len = 1;
1117 return 0;
1118 }
1119 }
1120
1121 /* Tell the NIC to enter record read mode. */
1122 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0))
1123 return(EIO);
1124
1125 /* Seek to the record. */
1126 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1127 return(EIO);
1128
1129 /*
1130 * Read the length and record type and make sure they
1131 * match what we expect (this verifies that we have enough
1132 * room to hold all of the returned data).
1133 */
1134 len = CSR_READ_2(sc, WI_DATA1);
1135 if (len > ltv->wi_len)
1136 return(ENOSPC);
1137 code = CSR_READ_2(sc, WI_DATA1);
1138 if (code != ltv->wi_type)
1139 return(EIO);
1140
1141 ltv->wi_len = len;
1142 ltv->wi_type = code;
1143
1144 /* Now read the data. */
1145 ptr = &ltv->wi_val;
1146 for (i = 0; i < ltv->wi_len - 1; i++)
1147 ptr[i] = CSR_READ_2(sc, WI_DATA1);
1148
1149 if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS
1150 && ltv->wi_val == sc->wi_ibss_port) {
1151 /*
1152 * Convert vendor IBSS port type to WI_PORTTYPE_IBSS.
1153 * Since Lucent uses port type 1 for BSS *and* IBSS we
1154 * have to rely on wi_ptype to distinguish this for us.
1155 */
1156 ltv->wi_val = htole16(WI_PORTTYPE_IBSS);
1157 } else if (sc->sc_firmware_type != WI_LUCENT) {
1158 switch (oltv->wi_type) {
1159 case WI_RID_TX_RATE:
1160 case WI_RID_CUR_TX_RATE:
1161 switch (ltv->wi_val) {
1162 case 1: oltv->wi_val = 1; break;
1163 case 2: oltv->wi_val = 2; break;
1164 case 3: oltv->wi_val = 6; break;
1165 case 4: oltv->wi_val = 5; break;
1166 case 7: oltv->wi_val = 7; break;
1167 case 8: oltv->wi_val = 11; break;
1168 case 15: oltv->wi_val = 3; break;
1169 default: oltv->wi_val = 0x100 + ltv->wi_val; break;
1170 }
1171 break;
1172 case WI_RID_ENCRYPTION:
1173 oltv->wi_len = 2;
1174 if (ltv->wi_val & 0x01)
1175 oltv->wi_val = 1;
1176 else
1177 oltv->wi_val = 0;
1178 break;
1179 case WI_RID_TX_CRYPT_KEY:
1180 oltv->wi_len = 2;
1181 oltv->wi_val = ltv->wi_val;
1182 break;
1183 case WI_RID_CNFAUTHMODE:
1184 oltv->wi_len = 2;
1185 if (le16toh(ltv->wi_val) & 0x01)
1186 oltv->wi_val = htole16(1);
1187 else if (le16toh(ltv->wi_val) & 0x02)
1188 oltv->wi_val = htole16(2);
1189 break;
1190 }
1191 }
1192
1193 return(0);
1194}
1195
1196/*
1197 * Same as read, except we inject data instead of reading it.
1198 */
1199static int
1200wi_write_record(sc, ltv)
1201 struct wi_softc *sc;
1202 struct wi_ltv_gen *ltv;
1203{
1204 u_int16_t *ptr;
1205 int i;
1206 struct wi_ltv_gen p2ltv;
1207
1208 if (ltv->wi_type == WI_RID_PORTTYPE &&
1209 le16toh(ltv->wi_val) == WI_PORTTYPE_IBSS) {
1210 /* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */
1211 p2ltv.wi_type = WI_RID_PORTTYPE;
1212 p2ltv.wi_len = 2;
1213 p2ltv.wi_val = sc->wi_ibss_port;
1214 ltv = &p2ltv;
1215 } else if (sc->sc_firmware_type != WI_LUCENT) {
1216 switch (ltv->wi_type) {
1217 case WI_RID_TX_RATE:
1218 p2ltv.wi_type = WI_RID_TX_RATE;
1219 p2ltv.wi_len = 2;
1220 switch (ltv->wi_val) {
1221 case 1: p2ltv.wi_val = 1; break;
1222 case 2: p2ltv.wi_val = 2; break;
1223 case 3: p2ltv.wi_val = 15; break;
1224 case 5: p2ltv.wi_val = 4; break;
1225 case 6: p2ltv.wi_val = 3; break;
1226 case 7: p2ltv.wi_val = 7; break;
1227 case 11: p2ltv.wi_val = 8; break;
1228 default: return EINVAL;
1229 }
1230 ltv = &p2ltv;
1231 break;
1232 case WI_RID_ENCRYPTION:
1233 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1234 p2ltv.wi_len = 2;
1235 if (le16toh(ltv->wi_val)) {
1236 p2ltv.wi_val =htole16(PRIVACY_INVOKED |
1237 EXCLUDE_UNENCRYPTED);
1238 if (sc->wi_ptype == WI_PORTTYPE_AP)
1239 /*
1240 * Disable tx encryption...
1241 * it's broken.
1242 */
1243 p2ltv.wi_val |= htole16(HOST_ENCRYPT);
1244 } else
1245 p2ltv.wi_val =
1246 htole16(HOST_ENCRYPT | HOST_DECRYPT);
1247 ltv = &p2ltv;
1248 break;
1249 case WI_RID_TX_CRYPT_KEY:
1250 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1251 p2ltv.wi_len = 2;
1252 p2ltv.wi_val = ltv->wi_val;
1253 ltv = &p2ltv;
1254 break;
1255 case WI_RID_DEFLT_CRYPT_KEYS:
1256 {
1257 int error;
1258 int keylen;
1259 struct wi_ltv_str ws;
1260 struct wi_ltv_keys *wk =
1261 (struct wi_ltv_keys *)ltv;
1262
1263 keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1264
1265 for (i = 0; i < 4; i++) {
1266 bzero(&ws, sizeof(ws));
1267 ws.wi_len = (keylen > 5) ? 8 : 4;
1268 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1269 memcpy(ws.wi_str,
1270 &wk->wi_keys[i].wi_keydat, keylen);
1271 error = wi_write_record(sc,
1272 (struct wi_ltv_gen *)&ws);
1273 if (error)
1274 return error;
1275 }
1276 return 0;
1277 }
1278 case WI_RID_CNFAUTHMODE:
1279 p2ltv.wi_type = WI_RID_CNFAUTHMODE;
1280 p2ltv.wi_len = 2;
1281 if (le16toh(ltv->wi_val) == 1)
1282 p2ltv.wi_val = htole16(0x01);
1283 else if (le16toh(ltv->wi_val) == 2)
1284 p2ltv.wi_val = htole16(0x02);
1285 ltv = &p2ltv;
1286 break;
1287 case WI_RID_ROAMING_MODE:
1288 if (sc->sc_firmware_type == WI_INTERSIL)
1289 break;
1290 /* not supported */
1291 return 0;
1292 case WI_RID_MICROWAVE_OVEN:
1293 /* not supported */
1294 return 0;
1295 }
1296 } else {
1297 /* LUCENT */
1298 switch (ltv->wi_type) {
1299 case WI_RID_TX_RATE:
1300 switch (ltv->wi_val) {
1301 case 1: ltv->wi_val = 1; break; /* 1Mb/s fixed */
1302 case 2: ltv->wi_val = 2; break; /* 2Mb/s fixed */
1303 case 3: ltv->wi_val = 3; break; /* 11Mb/s auto */
1304 case 5: ltv->wi_val = 4; break; /* 5.5Mb/s fixed */
1305 case 6: ltv->wi_val = 6; break; /* 2Mb/s auto */
1306 case 7: ltv->wi_val = 7; break; /* 5.5Mb/s auto */
1307 case 11: ltv->wi_val = 5; break; /* 11Mb/s fixed */
1308 default: return EINVAL;
1309 }
1310 }
1311 }
1312
1313 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1314 return(EIO);
1315
1316 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1317 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1318
1319 ptr = &ltv->wi_val;
1320 for (i = 0; i < ltv->wi_len - 1; i++)
1321 CSR_WRITE_2(sc, WI_DATA1, ptr[i]);
1322
1323 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0))
1324 return(EIO);
1325
1326 return(0);
1327}
1328
1329static int
1330wi_seek(sc, id, off, chan)
1331 struct wi_softc *sc;
1332 int id, off, chan;
1333{
1334 int i;
1335 int selreg, offreg;
1336 int status;
1337
1338 switch (chan) {
1339 case WI_BAP0:
1340 selreg = WI_SEL0;
1341 offreg = WI_OFF0;
1342 break;
1343 case WI_BAP1:
1344 selreg = WI_SEL1;
1345 offreg = WI_OFF1;
1346 break;
1347 default:
1348 device_printf(sc->dev, "invalid data path: %x\n", chan);
1349 return(EIO);
1350 }
1351
1352 CSR_WRITE_2(sc, selreg, id);
1353 CSR_WRITE_2(sc, offreg, off);
1354
1355 for (i = 0; i < WI_TIMEOUT; i++) {
1356 status = CSR_READ_2(sc, offreg);
1357 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1358 break;
1359 DELAY(WI_DELAY);
1360 }
1361
1362 if (i == WI_TIMEOUT) {
1363 device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n",
1364 id, off, status);
1365 return(ETIMEDOUT);
1366 }
1367
1368 return(0);
1369}
1370
1371static int
1372wi_read_data(sc, id, off, buf, len)
1373 struct wi_softc *sc;
1374 int id, off;
1375 caddr_t buf;
1376 int len;
1377{
1378 int i;
1379 u_int16_t *ptr;
1380
1381 if (wi_seek(sc, id, off, WI_BAP1))
1382 return(EIO);
1383
1384 ptr = (u_int16_t *)buf;
1385 for (i = 0; i < len / 2; i++)
1386 ptr[i] = CSR_READ_2(sc, WI_DATA1);
1387
1388 return(0);
1389}
1390
1391/*
1392 * According to the comments in the HCF Light code, there is a bug in
1393 * the Hermes (or possibly in certain Hermes firmware revisions) where
1394 * the chip's internal autoincrement counter gets thrown off during
1395 * data writes: the autoincrement is missed, causing one data word to
1396 * be overwritten and subsequent words to be written to the wrong memory
1397 * locations. The end result is that we could end up transmitting bogus
1398 * frames without realizing it. The workaround for this is to write a
1399 * couple of extra guard words after the end of the transfer, then
1400 * attempt to read then back. If we fail to locate the guard words where
1401 * we expect them, we preform the transfer over again.
1402 */
1403static int
1404wi_write_data(sc, id, off, buf, len)
1405 struct wi_softc *sc;
1406 int id, off;
1407 caddr_t buf;
1408 int len;
1409{
1410 int i;
1411 u_int16_t *ptr;
1412#ifdef WI_HERMES_AUTOINC_WAR
1413 int retries;
1414
1415 retries = 512;
1416again:
1417#endif
1418
1419 if (wi_seek(sc, id, off, WI_BAP0))
1420 return(EIO);
1421
1422 ptr = (u_int16_t *)buf;
1423 for (i = 0; i < (len / 2); i++)
1424 CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
1425
1426#ifdef WI_HERMES_AUTOINC_WAR
1427 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1428 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1429
1430 if (wi_seek(sc, id, off + len, WI_BAP0))
1431 return(EIO);
1432
1433 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1434 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1435 if (--retries >= 0)
1436 goto again;
1437 device_printf(sc->dev, "wi_write_data device timeout\n");
1438 return (EIO);
1439 }
1440#endif
1441
1442 return(0);
1443}
1444
1445/*
1446 * Allocate a region of memory inside the NIC and zero
1447 * it out.
1448 */
1449static int
1450wi_alloc_nicmem(sc, len, id)
1451 struct wi_softc *sc;
1452 int len;
1453 int *id;
1454{
1455 int i;
1456
1457 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1458 device_printf(sc->dev,
1459 "failed to allocate %d bytes on NIC\n", len);
1460 return(ENOMEM);
1461 }
1462
1463 for (i = 0; i < WI_TIMEOUT; i++) {
1464 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1465 break;
1466 DELAY(WI_DELAY);
1467 }
1468
1469 if (i == WI_TIMEOUT) {
1470 device_printf(sc->dev, "time out allocating memory on card\n");
1471 return(ETIMEDOUT);
1472 }
1473
1474 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1475 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1476
1477 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1478 device_printf(sc->dev, "seek failed while allocating memory on card\n");
1479 return(EIO);
1480 }
1481
1482 for (i = 0; i < len / 2; i++)
1483 CSR_WRITE_2(sc, WI_DATA0, 0);
1484
1485 return(0);
1486}
1487
1488static void
1489wi_setmulti(sc)
1490 struct wi_softc *sc;
1491{
1492 struct ifnet *ifp;
1493 int i = 0;
1494 struct ifmultiaddr *ifma;
1495 struct wi_ltv_mcast mcast;
1496
1497 ifp = &sc->arpcom.ac_if;
1498
1499 bzero((char *)&mcast, sizeof(mcast));
1500
1501 mcast.wi_type = WI_RID_MCAST_LIST;
1502 mcast.wi_len = (3 * 16) + 1;
1503
1504 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1505 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1506 return;
1507 }
1508
1509#if __FreeBSD_version < 500000
1510 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1511#else
1512 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1513#endif
1514 if (ifma->ifma_addr->sa_family != AF_LINK)
1515 continue;
1516 if (i < 16) {
1517 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1518 (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
1519 i++;
1520 } else {
1521 bzero((char *)&mcast, sizeof(mcast));
1522 break;
1523 }
1524 }
1525
1526 mcast.wi_len = (i * 3) + 1;
1527 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1528
1529 return;
1530}
1531
1532static void
1533wi_setdef(sc, wreq)
1534 struct wi_softc *sc;
1535 struct wi_req *wreq;
1536{
1537 struct sockaddr_dl *sdl;
1538 struct ifaddr *ifa;
1539 struct ifnet *ifp;
1540
1541 ifp = &sc->arpcom.ac_if;
1542
1543 switch(wreq->wi_type) {
1544 case WI_RID_MAC_NODE:
1545 ifa = ifaddr_byindex(ifp->if_index);
1546 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1547 bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr,
1548 ETHER_ADDR_LEN);
1549 bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1550 break;
1551 case WI_RID_PORTTYPE:
1552 sc->wi_ptype = le16toh(wreq->wi_val[0]);
1553 break;
1554 case WI_RID_TX_RATE:
1555 sc->wi_tx_rate = le16toh(wreq->wi_val[0]);
1556 break;
1557 case WI_RID_MAX_DATALEN:
1558 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1559 break;
1560 case WI_RID_RTS_THRESH:
1561 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1562 break;
1563 case WI_RID_SYSTEM_SCALE:
1564 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1565 break;
1566 case WI_RID_CREATE_IBSS:
1567 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1568 break;
1569 case WI_RID_OWN_CHNL:
1570 sc->wi_channel = le16toh(wreq->wi_val[0]);
1571 break;
1572 case WI_RID_NODENAME:
1573 bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
1574 bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30);
1575 break;
1576 case WI_RID_DESIRED_SSID:
1577 bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
1578 bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30);
1579 break;
1580 case WI_RID_OWN_SSID:
1581 bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
1582 bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30);
1583 break;
1584 case WI_RID_PM_ENABLED:
1585 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1586 break;
1587 case WI_RID_MICROWAVE_OVEN:
1588 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1589 break;
1590 case WI_RID_MAX_SLEEP:
1591 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1592 break;
1593 case WI_RID_CNFAUTHMODE:
1594 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1595 break;
1596 case WI_RID_ROAMING_MODE:
1597 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1598 break;
1599 case WI_RID_ENCRYPTION:
1600 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1601 break;
1602 case WI_RID_TX_CRYPT_KEY:
1603 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1604 break;
1605 case WI_RID_DEFLT_CRYPT_KEYS:
1606 bcopy((char *)wreq, (char *)&sc->wi_keys,
1607 sizeof(struct wi_ltv_keys));
1608 break;
1609 default:
1610 break;
1611 }
1612
1613 /* Reinitialize WaveLAN. */
1614 wi_init(sc);
1615
1616 return;
1617}
1618
1619static int
1620wi_ioctl(ifp, command, data)
1621 struct ifnet *ifp;
1622 u_long command;
1623 caddr_t data;
1624{
1625 int error = 0;
1626 int len;
1627 u_int8_t tmpkey[14];
1628 char tmpssid[IEEE80211_NWID_LEN];
1629 struct wi_softc *sc;
1630 struct wi_req wreq;
1631 struct ifreq *ifr;
1632 struct ieee80211req *ireq;
1633#if __FreeBSD_version >= 500000
1634 struct thread *td = curthread;
1635#else
1636 struct proc *td = curproc; /* Little white lie */
1637#endif
1638 int s;
1639
1640 sc = ifp->if_softc;
1641 WI_LOCK(sc, s);
1642 ifr = (struct ifreq *)data;
1643 ireq = (struct ieee80211req *)data;
1644
1645 if (sc->wi_gone) {
1646 error = ENODEV;
1647 goto out;
1648 }
1649
1650 switch(command) {
1651 case SIOCSIFADDR:
1652 case SIOCGIFADDR:
1653 case SIOCSIFMTU:
1654 error = ether_ioctl(ifp, command, data);
1655 break;
1656 case SIOCSIFFLAGS:
1657 /*
1658 * Can't do promisc and hostap at the same time. If all that's
1659 * changing is the promisc flag, try to short-circuit a call to
1660 * wi_init() by just setting PROMISC in the hardware.
1661 */
1662 if (ifp->if_flags & IFF_UP) {
1663 if (sc->wi_ptype != WI_PORTTYPE_AP &&
1664 ifp->if_flags & IFF_RUNNING) {
1665 if (ifp->if_flags & IFF_PROMISC &&
1666 !(sc->wi_if_flags & IFF_PROMISC)) {
1667 WI_SETVAL(WI_RID_PROMISC, 1);
1668 } else if (!(ifp->if_flags & IFF_PROMISC) &&
1669 sc->wi_if_flags & IFF_PROMISC) {
1670 WI_SETVAL(WI_RID_PROMISC, 0);
1671 } else {
1672 wi_init(sc);
1673 }
1674 } else {
1675 wi_init(sc);
1676 }
1677 } else {
1678 if (ifp->if_flags & IFF_RUNNING) {
1679 wi_stop(sc);
1680 }
1681 }
1682 sc->wi_if_flags = ifp->if_flags;
1683 error = 0;
1684 break;
1685 case SIOCSIFMEDIA:
1686 case SIOCGIFMEDIA:
1687 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1688 break;
1689 case SIOCADDMULTI:
1690 case SIOCDELMULTI:
1691 wi_setmulti(sc);
1692 error = 0;
1693 break;
1694 case SIOCGWAVELAN:
1695 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1696 if (error)
1697 break;
1698 if (wreq.wi_len > WI_MAX_DATALEN) {
1699 error = EINVAL;
1700 break;
1701 }
1702 /* Don't show WEP keys to non-root users. */
1703 if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(td))
1704 break;
1705 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1706 bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
1707 sizeof(sc->wi_stats));
1708 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1709 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1710 bcopy((char *)&sc->wi_keys, (char *)&wreq,
1711 sizeof(struct wi_ltv_keys));
1712 }
1713#ifdef WICACHE
1714 else if (wreq.wi_type == WI_RID_ZERO_CACHE) {
1715 sc->wi_sigitems = sc->wi_nextitem = 0;
1716 } else if (wreq.wi_type == WI_RID_READ_CACHE) {
1717 char *pt = (char *)&wreq.wi_val;
1718 bcopy((char *)&sc->wi_sigitems,
1719 (char *)pt, sizeof(int));
1720 pt += (sizeof (int));
1721 wreq.wi_len = sizeof(int) / 2;
1722 bcopy((char *)&sc->wi_sigcache, (char *)pt,
1723 sizeof(struct wi_sigcache) * sc->wi_sigitems);
1724 wreq.wi_len += ((sizeof(struct wi_sigcache) *
1725 sc->wi_sigitems) / 2) + 1;
1726 }
1727#endif
1728 else if (wreq.wi_type == WI_RID_PROCFRAME) {
1729 wreq.wi_len = 2;
1730 wreq.wi_val[0] = sc->wi_procframe;
1731 } else if (wreq.wi_type == WI_RID_PRISM2) {
1732 wreq.wi_len = 2;
1733 wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT;
1734 } else if (wreq.wi_type == WI_RID_SCAN_RES &&
1735 sc->sc_firmware_type == WI_LUCENT) {
1736 memcpy((char *)wreq.wi_val, (char *)sc->wi_scanbuf,
1737 sc->wi_scanbuf_len * 2);
1738 wreq.wi_len = sc->wi_scanbuf_len;
1739 } else {
1740 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) {
1741 error = EINVAL;
1742 break;
1743 }
1744 }
1745 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1746 break;
1747 case SIOCSWAVELAN:
1748 if ((error = suser(td)))
1749 goto out;
1750 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1751 if (error)
1752 break;
1753 if (wreq.wi_len > WI_MAX_DATALEN) {
1754 error = EINVAL;
1755 break;
1756 }
1757 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1758 error = EINVAL;
1759 break;
1760 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1761 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1762 wreq.wi_len);
1763 } else if (wreq.wi_type == WI_RID_PROCFRAME) {
1764 sc->wi_procframe = wreq.wi_val[0];
1765 /*
1766 * if we're getting a scan request from a wavelan card
1767 * (non-prism2), send out a cmd_inquire to the card to scan
1768 * results for the scan will be received through the info
1769 * interrupt handler. otherwise the scan request can be
1770 * directly handled by a prism2 card's rid interface.
1771 */
1772 } else if (wreq.wi_type == WI_RID_SCAN_REQ &&
1773 sc->sc_firmware_type == WI_LUCENT) {
1774 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1775 } else {
1776 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
1777 if (!error)
1778 wi_setdef(sc, &wreq);
1779 }
1780 break;
1781 case SIOCGPRISM2DEBUG:
1782 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1783 if (error)
1784 break;
1785 if (!(ifp->if_flags & IFF_RUNNING) ||
1786 sc->sc_firmware_type == WI_LUCENT) {
1787 error = EIO;
1788 break;
1789 }
1790 error = wi_get_debug(sc, &wreq);
1791 if (error == 0)
1792 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1793 break;
1794 case SIOCSPRISM2DEBUG:
1795 if ((error = suser(td)))
1796 goto out;
1797 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1798 if (error)
1799 break;
1800 error = wi_set_debug(sc, &wreq);
1801 break;
1802 case SIOCG80211:
1803 switch(ireq->i_type) {
1804 case IEEE80211_IOC_SSID:
1805 if(ireq->i_val == -1) {
1806 bzero(tmpssid, IEEE80211_NWID_LEN);
1807 error = wi_get_cur_ssid(sc, tmpssid, &len);
1808 if (error != 0)
1809 break;
1810 error = copyout(tmpssid, ireq->i_data,
1811 IEEE80211_NWID_LEN);
1812 ireq->i_len = len;
1813 } else if (ireq->i_val == 0) {
1814 error = copyout(sc->wi_net_name,
1815 ireq->i_data,
1816 IEEE80211_NWID_LEN);
1817 ireq->i_len = IEEE80211_NWID_LEN;
1818 } else
1819 error = EINVAL;
1820 break;
1821 case IEEE80211_IOC_NUMSSIDS:
1822 ireq->i_val = 1;
1823 break;
1824 case IEEE80211_IOC_WEP:
1825 if(!sc->wi_has_wep) {
1826 ireq->i_val = IEEE80211_WEP_NOSUP;
1827 } else {
1828 if(sc->wi_use_wep) {
1829 ireq->i_val =
1830 IEEE80211_WEP_MIXED;
1831 } else {
1832 ireq->i_val =
1833 IEEE80211_WEP_OFF;
1834 }
1835 }
1836 break;
1837 case IEEE80211_IOC_WEPKEY:
1838 if(!sc->wi_has_wep ||
1839 ireq->i_val < 0 || ireq->i_val > 3) {
1840 error = EINVAL;
1841 break;
1842 }
1843 len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen;
1844 if (suser(td))
1845 bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1846 tmpkey, len);
1847 else
1848 bzero(tmpkey, len);
1849
1850 ireq->i_len = len;
1851 error = copyout(tmpkey, ireq->i_data, len);
1852
1853 break;
1854 case IEEE80211_IOC_NUMWEPKEYS:
1855 if(!sc->wi_has_wep)
1856 error = EINVAL;
1857 else
1858 ireq->i_val = 4;
1859 break;
1860 case IEEE80211_IOC_WEPTXKEY:
1861 if(!sc->wi_has_wep)
1862 error = EINVAL;
1863 else
1864 ireq->i_val = sc->wi_tx_key;
1865 break;
1866 case IEEE80211_IOC_AUTHMODE:
1867 ireq->i_val = sc->wi_authmode;
1868 break;
1869 case IEEE80211_IOC_STATIONNAME:
1870 error = copyout(sc->wi_node_name,
1871 ireq->i_data, IEEE80211_NWID_LEN);
1872 ireq->i_len = IEEE80211_NWID_LEN;
1873 break;
1874 case IEEE80211_IOC_CHANNEL:
1875 wreq.wi_type = WI_RID_CURRENT_CHAN;
1876 wreq.wi_len = WI_MAX_DATALEN;
1877 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1878 error = EINVAL;
1879 else {
1880 ireq->i_val = wreq.wi_val[0];
1881 }
1882 break;
1883 case IEEE80211_IOC_POWERSAVE:
1884 if(sc->wi_pm_enabled)
1885 ireq->i_val = IEEE80211_POWERSAVE_ON;
1886 else
1887 ireq->i_val = IEEE80211_POWERSAVE_OFF;
1888 break;
1889 case IEEE80211_IOC_POWERSAVESLEEP:
1890 ireq->i_val = sc->wi_max_sleep;
1891 break;
1892 default:
1893 error = EINVAL;
1894 }
1895 break;
1896 case SIOCS80211:
1897 if ((error = suser(td)))
1898 goto out;
1899 switch(ireq->i_type) {
1900 case IEEE80211_IOC_SSID:
1901 if (ireq->i_val != 0 ||
1902 ireq->i_len > IEEE80211_NWID_LEN) {
1903 error = EINVAL;
1904 break;
1905 }
1906 /* We set both of them */
1907 bzero(sc->wi_net_name, IEEE80211_NWID_LEN);
1908 error = copyin(ireq->i_data,
1909 sc->wi_net_name, ireq->i_len);
1910 bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN);
1911 break;
1912 case IEEE80211_IOC_WEP:
1913 /*
1914 * These cards only support one mode so
1915 * we just turn wep on what ever is
1916 * passed in if it's not OFF.
1917 */
1918 if (ireq->i_val == IEEE80211_WEP_OFF) {
1919 sc->wi_use_wep = 0;
1920 } else {
1921 sc->wi_use_wep = 1;
1922 }
1923 break;
1924 case IEEE80211_IOC_WEPKEY:
1925 if (ireq->i_val < 0 || ireq->i_val > 3 ||
1926 ireq->i_len > 13) {
1927 error = EINVAL;
1928 break;
1929 }
1930 bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13);
1931 error = copyin(ireq->i_data,
1932 sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1933 ireq->i_len);
1934 if(error)
1935 break;
1936 sc->wi_keys.wi_keys[ireq->i_val].wi_keylen =
1937 ireq->i_len;
1938 break;
1939 case IEEE80211_IOC_WEPTXKEY:
1940 if (ireq->i_val < 0 || ireq->i_val > 3) {
1941 error = EINVAL;
1942 break;
1943 }
1944 sc->wi_tx_key = ireq->i_val;
1945 break;
1946 case IEEE80211_IOC_AUTHMODE:
1947 sc->wi_authmode = ireq->i_val;
1948 break;
1949 case IEEE80211_IOC_STATIONNAME:
1950 if (ireq->i_len > 32) {
1951 error = EINVAL;
1952 break;
1953 }
1954 bzero(sc->wi_node_name, 32);
1955 error = copyin(ireq->i_data,
1956 sc->wi_node_name, ireq->i_len);
1957 break;
1958 case IEEE80211_IOC_CHANNEL:
1959 /*
1960 * The actual range is 1-14, but if you
1961 * set it to 0 you get the default. So
1962 * we let that work too.
1963 */
1964 if (ireq->i_val < 0 || ireq->i_val > 14) {
1965 error = EINVAL;
1966 break;
1967 }
1968 sc->wi_channel = ireq->i_val;
1969 break;
1970 case IEEE80211_IOC_POWERSAVE:
1971 switch (ireq->i_val) {
1972 case IEEE80211_POWERSAVE_OFF:
1973 sc->wi_pm_enabled = 0;
1974 break;
1975 case IEEE80211_POWERSAVE_ON:
1976 sc->wi_pm_enabled = 1;
1977 break;
1978 default:
1979 error = EINVAL;
1980 break;
1981 }
1982 break;
1983 case IEEE80211_IOC_POWERSAVESLEEP:
1984 if (ireq->i_val < 0) {
1985 error = EINVAL;
1986 break;
1987 }
1988 sc->wi_max_sleep = ireq->i_val;
1989 break;
1990 default:
1991 error = EINVAL;
1992 break;
1993 }
1994
1995 /* Reinitialize WaveLAN. */
1996 wi_init(sc);
1997
1998 break;
1999 case SIOCHOSTAP_ADD:
2000 case SIOCHOSTAP_DEL:
2001 case SIOCHOSTAP_GET:
2002 case SIOCHOSTAP_GETALL:
2003 case SIOCHOSTAP_GFLAGS:
2004 case SIOCHOSTAP_SFLAGS:
2005 /* Send all Host AP specific ioctl's to Host AP code. */
2006 error = wihap_ioctl(sc, command, data);
2007 break;
2008 default:
2009 error = EINVAL;
2010 break;
2011 }
2012out:
2013 WI_UNLOCK(sc, s);
2014
2015 return(error);
2016}
2017
2018static void
2019wi_init(xsc)
2020 void *xsc;
2021{
2022 struct wi_softc *sc = xsc;
2023 struct ifnet *ifp = &sc->arpcom.ac_if;
2024 struct wi_ltv_macaddr mac;
2025 int id = 0;
2026 int s;
2027
2028 WI_LOCK(sc, s);
2029
2030 if (sc->wi_gone) {
2031 WI_UNLOCK(sc, s);
2032 return;
2033 }
2034
2035 if (ifp->if_flags & IFF_RUNNING)
2036 wi_stop(sc);
2037
2038 wi_reset(sc);
2039
2040 /* Program max data length. */
2041 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
2042
2043 /* Set the port type. */
2044 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
2045
2046 /* Enable/disable IBSS creation. */
2047 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
2048
2049 /* Program the RTS/CTS threshold. */
2050 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
2051
2052 /* Program the TX rate */
2053 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
2054
2055 /* Access point density */
2056 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
2057
2058 /* Power Management Enabled */
2059 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
2060
2061 /* Power Managment Max Sleep */
2062 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
2063
2064 /* Roaming type */
2065 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
2066
2067 /* Specify the IBSS name */
2068 WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
2069
2070 /* Specify the network name */
2071 WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
2072
2073 /* Specify the frequency to use */
2074 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
2075
2076 /* Program the nodename. */
2077 WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
2078
2079 /* Specify the authentication mode. */
2080 WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authmode);
2081
2082 /* Set our MAC address. */
2083 mac.wi_len = 4;
2084 mac.wi_type = WI_RID_MAC_NODE;
2085 bcopy((char *)&sc->arpcom.ac_enaddr,
2086 (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN);
2087 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
2088
2089 /*
2090 * Initialize promisc mode.
2091 * Being in the Host-AP mode causes
2092 * great deal of pain if promisc mode is set.
2093 * Therefore we avoid confusing the firmware
2094 * and always reset promisc mode in Host-AP regime,
2095 * it shows us all the packets anyway.
2096 */
2097 if (sc->wi_ptype != WI_PORTTYPE_AP && ifp->if_flags & IFF_PROMISC)
2098 WI_SETVAL(WI_RID_PROMISC, 1);
2099 else
2100 WI_SETVAL(WI_RID_PROMISC, 0);
2101
2102 /* Configure WEP. */
2103 if (sc->wi_has_wep) {
2104 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
2105 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
2106 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
2107 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2108 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
2109 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
2110 /*
2111 * ONLY HWB3163 EVAL-CARD Firmware version
2112 * less than 0.8 variant2
2113 *
2114 * If promiscuous mode disable, Prism2 chip
2115 * does not work with WEP.
2116 * It is under investigation for details.
2117 * (ichiro@netbsd.org)
2118 *
2119 * And make sure that we don't need to do it
2120 * in hostap mode, since it interferes with
2121 * the above hostap workaround.
2122 */
2123 if (sc->wi_ptype != WI_PORTTYPE_AP &&
2124 sc->sc_firmware_type == WI_INTERSIL &&
2125 sc->sc_sta_firmware_ver < 802 ) {
2126 /* firm ver < 0.8 variant 2 */
2127 WI_SETVAL(WI_RID_PROMISC, 1);
2128 }
2129 WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authtype);
2130 }
2131 }
2132
2133 /* Set multicast filter. */
2134 wi_setmulti(sc);
2135
2136 /* Enable desired port */
2137 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0);
2138
2139 if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
2140 device_printf(sc->dev, "tx buffer allocation failed\n");
2141 sc->wi_tx_data_id = id;
2142
2143 if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
2144 device_printf(sc->dev, "mgmt. buffer allocation failed\n");
2145 sc->wi_tx_mgmt_id = id;
2146
2147 /* enable interrupts */
2148 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
2149
2150 wihap_init(sc);
2151
2152 ifp->if_flags |= IFF_RUNNING;
2153 ifp->if_flags &= ~IFF_OACTIVE;
2154
2155 sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
2156 WI_UNLOCK(sc, s);
2157
2158 return;
2159}
2160
2161#define RC4STATE 256
2162#define RC4KEYLEN 16
2163#define RC4SWAP(x,y) \
2164 do { u_int8_t t = state[x]; state[x] = state[y]; state[y] = t; } while(0)
2165
2166static void
2167wi_do_hostencrypt(struct wi_softc *sc, caddr_t buf, int len)
2168{
2169 u_int32_t i, crc, klen;
2170 u_int8_t state[RC4STATE], key[RC4KEYLEN];
2171 u_int8_t x, y, *dat;
2172
2173 if (!sc->wi_icv_flag) {
2174 sc->wi_icv = arc4random();
2175 sc->wi_icv_flag++;
2176 } else
2177 sc->wi_icv++;
2178 /*
2179 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2180 * (B, 255, N) with 3 <= B < 8
2181 */
2182 if (sc->wi_icv >= 0x03ff00 &&
2183 (sc->wi_icv & 0xf8ff00) == 0x00ff00)
2184 sc->wi_icv += 0x000100;
2185
2186 /* prepend 24bit IV to tx key, byte order does not matter */
2187 key[0] = sc->wi_icv >> 16;
2188 key[1] = sc->wi_icv >> 8;
2189 key[2] = sc->wi_icv;
2190
2191 klen = sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keylen +
2192 IEEE80211_WEP_IVLEN;
2193 klen = (klen >= RC4KEYLEN) ? RC4KEYLEN : RC4KEYLEN/2;
2194 bcopy((char *)&sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keydat,
2195 (char *)key + IEEE80211_WEP_IVLEN, klen - IEEE80211_WEP_IVLEN);
2196
2197 /* rc4 keysetup */
2198 x = y = 0;
2199 for (i = 0; i < RC4STATE; i++)
2200 state[i] = i;
2201 for (i = 0; i < RC4STATE; i++) {
2202 y = (key[x] + state[i] + y) % RC4STATE;
2203 RC4SWAP(i, y);
2204 x = (x + 1) % klen;
2205 }
2206
2207 /* output: IV, tx keyid, rc4(data), rc4(crc32(data)) */
2208 dat = buf;
2209 dat[0] = key[0];
2210 dat[1] = key[1];
2211 dat[2] = key[2];
2212 dat[3] = sc->wi_tx_key << 6; /* pad and keyid */
2213 dat += 4;
2214
2215 /* compute rc4 over data, crc32 over data */
2216 crc = ~0;
2217 x = y = 0;
2218 for (i = 0; i < len; i++) {
2219 x = (x + 1) % RC4STATE;
2220 y = (state[x] + y) % RC4STATE;
2221 RC4SWAP(x, y);
2222 crc = crc32_tab[(crc ^ dat[i]) & 0xff] ^ (crc >> 8);
2223 dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
2224 }
2225 crc = ~crc;
2226 dat += len;
2227
2228 /* append little-endian crc32 and encrypt */
2229 dat[0] = crc;
2230 dat[1] = crc >> 8;
2231 dat[2] = crc >> 16;
2232 dat[3] = crc >> 24;
2233 for (i = 0; i < IEEE80211_WEP_CRCLEN; i++) {
2234 x = (x + 1) % RC4STATE;
2235 y = (state[x] + y) % RC4STATE;
2236 RC4SWAP(x, y);
2237 dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
2238 }
2239}
2240
2241static void
2242wi_start(ifp)
2243 struct ifnet *ifp;
2244{
2245 struct wi_softc *sc;
2246 struct mbuf *m0;
2247 struct wi_frame tx_frame;
2248 struct ether_header *eh;
2249 int id;
2250 int s;
2251
2252 sc = ifp->if_softc;
2253 WI_LOCK(sc, s);
2254
2255 if (sc->wi_gone) {
2256 WI_UNLOCK(sc, s);
2257 return;
2258 }
2259
2260 if (ifp->if_flags & IFF_OACTIVE) {
2261 WI_UNLOCK(sc, s);
2262 return;
2263 }
2264
2265nextpkt:
2266 IF_DEQUEUE(&ifp->if_snd, m0);
2267 if (m0 == NULL) {
2268 WI_UNLOCK(sc, s);
2269 return;
2270 }
2271
2272 bzero((char *)&tx_frame, sizeof(tx_frame));
2273 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
2274 id = sc->wi_tx_data_id;
2275 eh = mtod(m0, struct ether_header *);
2276
2277 if (sc->wi_ptype == WI_PORTTYPE_AP) {
2278 if (!wihap_check_tx(&sc->wi_hostap_info,
2279 eh->ether_dhost, &tx_frame.wi_tx_rate)) {
2280 if (ifp->if_flags & IFF_DEBUG)
2281 printf("wi_start: dropping unassoc "
2282 "dst %6D\n", eh->ether_dhost, ":");
2283 m_freem(m0);
2284 goto nextpkt;
2285 }
2286 }
2287 /*
2288 * Use RFC1042 encoding for IP and ARP datagrams,
2289 * 802.3 for anything else.
2290 */
2291 if (ntohs(eh->ether_type) > ETHER_MAX_LEN) {
2292 bcopy((char *)&eh->ether_dhost,
2293 (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
2294 if (sc->wi_ptype == WI_PORTTYPE_AP) {
2295 tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT; /* XXX */
2296 tx_frame.wi_frame_ctl |= WI_FCTL_FROMDS;
2297 if (sc->wi_use_wep)
2298 tx_frame.wi_frame_ctl |= WI_FCTL_WEP;
2299 bcopy((char *)&sc->arpcom.ac_enaddr,
2300 (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
2301 bcopy((char *)&eh->ether_shost,
2302 (char *)&tx_frame.wi_addr3, ETHER_ADDR_LEN);
2303 }
2304 else
2305 bcopy((char *)&eh->ether_shost,
2306 (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
2307 bcopy((char *)&eh->ether_dhost,
2308 (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
2309 bcopy((char *)&eh->ether_shost,
2310 (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
2311
2312 tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
2313 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
2314 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
2315 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
2316 tx_frame.wi_type = eh->ether_type;
2317
2318 if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
2319 /* Do host encryption. */
2320 bcopy(&tx_frame.wi_dat[0], &sc->wi_txbuf[4], 8);
2321 m_copydata(m0, sizeof(struct ether_header),
2322 m0->m_pkthdr.len - sizeof(struct ether_header),
2323 (caddr_t)&sc->wi_txbuf[12]);
2324 wi_do_hostencrypt(sc, &sc->wi_txbuf[0],
2325 tx_frame.wi_dat_len);
2326 tx_frame.wi_dat_len += IEEE80211_WEP_IVLEN +
2327 IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN;
2328 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2329 sizeof(struct wi_frame));
2330 wi_write_data(sc, id, WI_802_11_OFFSET_RAW,
2331 (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
2332 sizeof(struct ether_header)) + 18);
2333 } else {
2334 m_copydata(m0, sizeof(struct ether_header),
2335 m0->m_pkthdr.len - sizeof(struct ether_header),
2336 (caddr_t)&sc->wi_txbuf);
2337 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2338 sizeof(struct wi_frame));
2339 wi_write_data(sc, id, WI_802_11_OFFSET,
2340 (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
2341 sizeof(struct ether_header)) + 2);
2342 }
2343 } else {
2344 tx_frame.wi_dat_len = m0->m_pkthdr.len;
2345
2346 if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
2347 /* Do host encryption. */
2348 printf( "XXX: host encrypt not implemented for 802.3\n" );
2349 } else {
2350 eh->ether_type = htons(m0->m_pkthdr.len -
2351 WI_SNAPHDR_LEN);
2352 m_copydata(m0, 0, m0->m_pkthdr.len,
2353 (caddr_t)&sc->wi_txbuf);
2354
2355 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2356 sizeof(struct wi_frame));
2357 wi_write_data(sc, id, WI_802_3_OFFSET,
2358 (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2);
2359 }
2360 }
2361
2362 /*
2363 * If there's a BPF listner, bounce a copy of
2364 * this frame to him. Also, don't send this to the bpf sniffer
2365 * if we're in procframe or monitor sniffing mode.
2366 */
2367 if (!(sc->wi_procframe || sc->wi_debug.wi_monitor) && ifp->if_bpf)
2368 bpf_mtap(ifp, m0);
2369
2370 m_freem(m0);
2371
2372 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0))
2373 device_printf(sc->dev, "xmit failed\n");
2374
2375 ifp->if_flags |= IFF_OACTIVE;
2376
2377 /*
2378 * Set a timeout in case the chip goes out to lunch.
2379 */
2380 ifp->if_timer = 5;
2381
2382 WI_UNLOCK(sc, s);
2383 return;
2384}
2385
2386int
2387wi_mgmt_xmit(sc, data, len)
2388 struct wi_softc *sc;
2389 caddr_t data;
2390 int len;
2391{
2392 struct wi_frame tx_frame;
2393 int id;
2394 struct wi_80211_hdr *hdr;
2395 caddr_t dptr;
2396
2397 if (sc->wi_gone)
2398 return(ENODEV);
2399
2400 hdr = (struct wi_80211_hdr *)data;
2401 dptr = data + sizeof(struct wi_80211_hdr);
2402
2403 bzero((char *)&tx_frame, sizeof(tx_frame));
2404 id = sc->wi_tx_mgmt_id;
2405
2406 bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl,
2407 sizeof(struct wi_80211_hdr));
2408
2409 tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT;
2410 tx_frame.wi_dat_len = len - sizeof(struct wi_80211_hdr);
2411 tx_frame.wi_len = htons(tx_frame.wi_dat_len);
2412
2413 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
2414 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
2415 len - sizeof(struct wi_80211_hdr) + 2);
2416
2417 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) {
2418 device_printf(sc->dev, "xmit failed\n");
2419 return(EIO);
2420 }
2421
2422 return(0);
2423}
2424
2425static void
2426wi_stop(sc)
2427 struct wi_softc *sc;
2428{
2429 struct ifnet *ifp;
2430 int s;
2431
2432 WI_LOCK(sc, s);
2433
2434 if (sc->wi_gone) {
2435 WI_UNLOCK(sc, s);
2436 return;
2437 }
2438
2439 wihap_shutdown(sc);
2440
2441 ifp = &sc->arpcom.ac_if;
2442
2443 /*
2444 * If the card is gone and the memory port isn't mapped, we will
2445 * (hopefully) get 0xffff back from the status read, which is not
2446 * a valid status value.
2447 */
2448 if (CSR_READ_2(sc, WI_STATUS) != 0xffff) {
2449 CSR_WRITE_2(sc, WI_INT_EN, 0);
2450 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0);
2451 }
2452
2453 untimeout(wi_inquire, sc, sc->wi_stat_ch);
2454
2455 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2456
2457 WI_UNLOCK(sc, s);
2458 return;
2459}
2460
2461static void
2462wi_watchdog(ifp)
2463 struct ifnet *ifp;
2464{
2465 struct wi_softc *sc;
2466
2467 sc = ifp->if_softc;
2468
2469 device_printf(sc->dev, "watchdog timeout\n");
2470
2471 wi_init(sc);
2472
2473 ifp->if_oerrors++;
2474
2475 return;
2476}
2477
2478int
2479wi_alloc(dev, rid)
2480 device_t dev;
2481 int rid;
2482{
2483 struct wi_softc *sc = device_get_softc(dev);
2484
2485 if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
2486 sc->iobase_rid = rid;
2487 sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
2488 &sc->iobase_rid, 0, ~0, (1 << 6),
2489 rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
2490 if (!sc->iobase) {
2491 device_printf(dev, "No I/O space?!\n");
2492 return (ENXIO);
2493 }
2494
2495 sc->wi_io_addr = rman_get_start(sc->iobase);
2496 sc->wi_btag = rman_get_bustag(sc->iobase);
2497 sc->wi_bhandle = rman_get_bushandle(sc->iobase);
2498 } else {
2499 sc->mem_rid = rid;
2500 sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY,
2501 &sc->mem_rid, 0, ~0, 1, RF_ACTIVE);
2502
2503 if (!sc->mem) {
2504 device_printf(dev, "No Mem space on prism2.5?\n");
2505 return (ENXIO);
2506 }
2507
2508 sc->wi_btag = rman_get_bustag(sc->mem);
2509 sc->wi_bhandle = rman_get_bushandle(sc->mem);
2510 }
2511
2512
2513 sc->irq_rid = 0;
2514 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
2515 0, ~0, 1, RF_ACTIVE |
2516 ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
2517
2518 if (!sc->irq) {
2519 wi_free(dev);
2520 device_printf(dev, "No irq?!\n");
2521 return (ENXIO);
2522 }
2523
2524 sc->dev = dev;
2525 sc->wi_unit = device_get_unit(dev);
2526
2527 return (0);
2528}
2529
2530void
2531wi_free(dev)
2532 device_t dev;
2533{
2534 struct wi_softc *sc = device_get_softc(dev);
2535
2536 if (sc->iobase != NULL) {
2537 bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
2538 sc->iobase = NULL;
2539 }
2540 if (sc->irq != NULL) {
2541 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
2542 sc->irq = NULL;
2543 }
2544 if (sc->mem != NULL) {
2545 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
2546 sc->mem = NULL;
2547 }
2548
2549 return;
2550}
2551
2552void
2553wi_shutdown(dev)
2554 device_t dev;
2555{
2556 struct wi_softc *sc;
2557
2558 sc = device_get_softc(dev);
2559 wi_stop(sc);
2560
2561 return;
2562}
2563
2564#ifdef WICACHE
2565/* wavelan signal strength cache code.
2566 * store signal/noise/quality on per MAC src basis in
2567 * a small fixed cache. The cache wraps if > MAX slots
2568 * used. The cache may be zeroed out to start over.
2569 * Two simple filters exist to reduce computation:
2570 * 1. ip only (literally 0x800) which may be used
2571 * to ignore some packets. It defaults to ip only.
2572 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2573 * 2. multicast/broadcast only. This may be used to
2574 * ignore unicast packets and only cache signal strength
2575 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2576 * beacons and not unicast traffic.
2577 *
2578 * The cache stores (MAC src(index), IP src (major clue), signal,
2579 * quality, noise)
2580 *
2581 * No apologies for storing IP src here. It's easy and saves much
2582 * trouble elsewhere. The cache is assumed to be INET dependent,
2583 * although it need not be.
2584 */
2585
2586#ifdef documentation
2587
2588int wi_sigitems; /* number of cached entries */
2589struct wi_sigcache wi_sigcache[MAXWICACHE]; /* array of cache entries */
2590int wi_nextitem; /* index/# of entries */
2591
2592
2593#endif
2594
2595/* control variables for cache filtering. Basic idea is
2596 * to reduce cost (e.g., to only Mobile-IP agent beacons
2597 * which are broadcast or multicast). Still you might
2598 * want to measure signal strength with unicast ping packets
2599 * on a pt. to pt. ant. setup.
2600 */
2601/* set true if you want to limit cache items to broadcast/mcast
2602 * only packets (not unicast). Useful for mobile-ip beacons which
2603 * are broadcast/multicast at network layer. Default is all packets
2604 * so ping/unicast will work say with pt. to pt. antennae setup.
2605 */
2606static int wi_cache_mcastonly = 0;
2607SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW,
2608 &wi_cache_mcastonly, 0, "");
2609
2610/* set true if you want to limit cache items to IP packets only
2611*/
2612static int wi_cache_iponly = 1;
2613SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW,
2614 &wi_cache_iponly, 0, "");
2615
2616/*
2617 * Original comments:
2618 * -----------------
2619 * wi_cache_store, per rx packet store signal
2620 * strength in MAC (src) indexed cache.
2621 *
2622 * follows linux driver in how signal strength is computed.
2623 * In ad hoc mode, we use the rx_quality field.
2624 * signal and noise are trimmed to fit in the range from 47..138.
2625 * rx_quality field MSB is signal strength.
2626 * rx_quality field LSB is noise.
2627 * "quality" is (signal - noise) as is log value.
2628 * note: quality CAN be negative.
2629 *
2630 * In BSS mode, we use the RID for communication quality.
2631 * TBD: BSS mode is currently untested.
2632 *
2633 * Bill's comments:
2634 * ---------------
2635 * Actually, we use the rx_quality field all the time for both "ad-hoc"
2636 * and BSS modes. Why? Because reading an RID is really, really expensive:
2637 * there's a bunch of PIO operations that have to be done to read a record
2638 * from the NIC, and reading the comms quality RID each time a packet is
2639 * received can really hurt performance. We don't have to do this anyway:
2640 * the comms quality field only reflects the values in the rx_quality field
2641 * anyway. The comms quality RID is only meaningful in infrastructure mode,
2642 * but the values it contains are updated based on the rx_quality from
2643 * frames received from the access point.
2644 *
2645 * Also, according to Lucent, the signal strength and noise level values
2646 * can be converted to dBms by subtracting 149, so I've modified the code
2647 * to do that instead of the scaling it did originally.
2648 */
2649static void
2650wi_cache_store(struct wi_softc *sc, struct ether_header *eh,
2651 struct mbuf *m, unsigned short rx_quality)
2652{
2653 struct ip *ip = 0;
2654 int i;
2655 static int cache_slot = 0; /* use this cache entry */
2656 static int wrapindex = 0; /* next "free" cache entry */
2657 int sig, noise;
2658 int sawip=0;
2659
2660 /*
2661 * filters:
2662 * 1. ip only
2663 * 2. configurable filter to throw out unicast packets,
2664 * keep multicast only.
2665 */
2666
2667 if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
2668 sawip = 1;
2669 }
2670
2671 /*
2672 * filter for ip packets only
2673 */
2674 if (wi_cache_iponly && !sawip) {
2675 return;
2676 }
2677
2678 /*
2679 * filter for broadcast/multicast only
2680 */
2681 if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2682 return;
2683 }
2684
2685#ifdef SIGDEBUG
2686 printf("wi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit,
2687 rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
2688#endif
2689
2690 /*
2691 * find the ip header. we want to store the ip_src
2692 * address.
2693 */
2694 if (sawip)
2695 ip = mtod(m, struct ip *);
2696
2697 /*
2698 * do a linear search for a matching MAC address
2699 * in the cache table
2700 * . MAC address is 6 bytes,
2701 * . var w_nextitem holds total number of entries already cached
2702 */
2703 for(i = 0; i < sc->wi_nextitem; i++) {
2704 if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc, 6 )) {
2705 /*
2706 * Match!,
2707 * so we already have this entry,
2708 * update the data
2709 */
2710 break;
2711 }
2712 }
2713
2714 /*
2715 * did we find a matching mac address?
2716 * if yes, then overwrite a previously existing cache entry
2717 */
2718 if (i < sc->wi_nextitem ) {
2719 cache_slot = i;
2720 }
2721 /*
2722 * else, have a new address entry,so
2723 * add this new entry,
2724 * if table full, then we need to replace LRU entry
2725 */
2726 else {
2727
2728 /*
2729 * check for space in cache table
2730 * note: wi_nextitem also holds number of entries
2731 * added in the cache table
2732 */
2733 if ( sc->wi_nextitem < MAXWICACHE ) {
2734 cache_slot = sc->wi_nextitem;
2735 sc->wi_nextitem++;
2736 sc->wi_sigitems = sc->wi_nextitem;
2737 }
2738 /* no space found, so simply wrap with wrap index
2739 * and "zap" the next entry
2740 */
2741 else {
2742 if (wrapindex == MAXWICACHE) {
2743 wrapindex = 0;
2744 }
2745 cache_slot = wrapindex++;
2746 }
2747 }
2748
2749 /*
2750 * invariant: cache_slot now points at some slot
2751 * in cache.
2752 */
2753 if (cache_slot < 0 || cache_slot >= MAXWICACHE) {
2754 log(LOG_ERR, "wi_cache_store, bad index: %d of "
2755 "[0..%d], gross cache error\n",
2756 cache_slot, MAXWICACHE);
2757 return;
2758 }
2759
2760 /*
2761 * store items in cache
2762 * .ip source address
2763 * .mac src
2764 * .signal, etc.
2765 */
2766 if (sawip)
2767 sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2768 bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc, 6);
2769
2770 sig = (rx_quality >> 8) & 0xFF;
2771 noise = rx_quality & 0xFF;
2772 sc->wi_sigcache[cache_slot].signal = sig - 149;
2773 sc->wi_sigcache[cache_slot].noise = noise - 149;
2774 sc->wi_sigcache[cache_slot].quality = sig - noise;
2775
2776 return;
2777}
2778#endif
2779
2780static int
2781wi_get_cur_ssid(sc, ssid, len)
2782 struct wi_softc *sc;
2783 char *ssid;
2784 int *len;
2785{
2786 int error = 0;
2787 struct wi_req wreq;
2788
2789 wreq.wi_len = WI_MAX_DATALEN;
2790 switch (sc->wi_ptype) {
2791 case WI_PORTTYPE_AP:
2792 *len = IEEE80211_NWID_LEN;
2793 bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2794 break;
2795 case WI_PORTTYPE_ADHOC:
2796 wreq.wi_type = WI_RID_CURRENT_SSID;
2797 error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2798 if (error != 0)
2799 break;
2800 if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2801 error = EINVAL;
2802 break;
2803 }
2804 *len = wreq.wi_val[0];
2805 bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2806 break;
2807 case WI_PORTTYPE_BSS:
2808 wreq.wi_type = WI_RID_COMMQUAL;
2809 error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2810 if (error != 0)
2811 break;
2812 if (wreq.wi_val[0] != 0) /* associated */ {
2813 wreq.wi_type = WI_RID_CURRENT_SSID;
2814 wreq.wi_len = WI_MAX_DATALEN;
2815 error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2816 if (error != 0)
2817 break;
2818 if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2819 error = EINVAL;
2820 break;
2821 }
2822 *len = wreq.wi_val[0];
2823 bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2824 } else {
2825 *len = IEEE80211_NWID_LEN;
2826 bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2827 }
2828 break;
2829 default:
2830 error = EINVAL;
2831 break;
2832 }
2833
2834 return error;
2835}
2836
2837static int
2838wi_media_change(ifp)
2839 struct ifnet *ifp;
2840{
2841 struct wi_softc *sc = ifp->if_softc;
2842 int otype = sc->wi_ptype;
2843 int orate = sc->wi_tx_rate;
2844 int ocreate_ibss = sc->wi_create_ibss;
2845
2846 if ((sc->ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_HOSTAP) &&
2847 sc->sc_firmware_type != WI_INTERSIL)
2848 return (EINVAL);
2849
2850 sc->wi_create_ibss = 0;
2851
2852 switch (sc->ifmedia.ifm_cur->ifm_media & IFM_OMASK) {
2853 case 0:
2854 sc->wi_ptype = WI_PORTTYPE_BSS;
2855 break;
2856 case IFM_IEEE80211_ADHOC:
2857 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2858 break;
2859 case IFM_IEEE80211_HOSTAP:
2860 sc->wi_ptype = WI_PORTTYPE_AP;
2861 break;
2862 case IFM_IEEE80211_IBSSMASTER:
2863 case IFM_IEEE80211_IBSSMASTER|IFM_IEEE80211_IBSS:
2864 if (!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS))
2865 return (EINVAL);
2866 sc->wi_create_ibss = 1;
2867 /* FALLTHROUGH */
2868 case IFM_IEEE80211_IBSS:
2869 sc->wi_ptype = WI_PORTTYPE_IBSS;
2870 break;
2871 default:
2872 /* Invalid combination. */
2873 return (EINVAL);
2874 }
2875
2876 switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) {
2877 case IFM_IEEE80211_DS1:
2878 sc->wi_tx_rate = 1;
2879 break;
2880 case IFM_IEEE80211_DS2:
2881 sc->wi_tx_rate = 2;
2882 break;
2883 case IFM_IEEE80211_DS5:
2884 sc->wi_tx_rate = 5;
2885 break;
2886 case IFM_IEEE80211_DS11:
2887 sc->wi_tx_rate = 11;
2888 break;
2889 case IFM_AUTO:
2890 sc->wi_tx_rate = 3;
2891 break;
2892 }
2893
2894 if (ocreate_ibss != sc->wi_create_ibss || otype != sc->wi_ptype ||
2895 orate != sc->wi_tx_rate)
2896 wi_init(sc);
2897
2898 return(0);
2899}
2900
2901static void
2902wi_media_status(ifp, imr)
2903 struct ifnet *ifp;
2904 struct ifmediareq *imr;
2905{
2906 struct wi_req wreq;
2907 struct wi_softc *sc = ifp->if_softc;
2908
2909 if (sc->wi_tx_rate == 3) {
2910 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
2911 if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
2912 imr->ifm_active |= IFM_IEEE80211_ADHOC;
2913 else if (sc->wi_ptype == WI_PORTTYPE_AP)
2914 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
2915 else if (sc->wi_ptype == WI_PORTTYPE_IBSS) {
2916 if (sc->wi_create_ibss)
2917 imr->ifm_active |= IFM_IEEE80211_IBSSMASTER;
2918 else
2919 imr->ifm_active |= IFM_IEEE80211_IBSS;
2920 }
2921 wreq.wi_type = WI_RID_CUR_TX_RATE;
2922 wreq.wi_len = WI_MAX_DATALEN;
2923 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
2924 switch(wreq.wi_val[0]) {
2925 case 1:
2926 imr->ifm_active |= IFM_IEEE80211_DS1;
2927 break;
2928 case 2:
2929 imr->ifm_active |= IFM_IEEE80211_DS2;
2930 break;
2931 case 6:
2932 imr->ifm_active |= IFM_IEEE80211_DS5;
2933 break;
2934 case 11:
2935 imr->ifm_active |= IFM_IEEE80211_DS11;
2936 break;
2937 }
2938 }
2939 } else {
2940 imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media;
2941 }
2942
2943 imr->ifm_status = IFM_AVALID;
2944 if (sc->wi_ptype == WI_PORTTYPE_ADHOC ||
2945 sc->wi_ptype == WI_PORTTYPE_IBSS)
2946 /*
2947 * XXX: It would be nice if we could give some actually
2948 * useful status like whether we joined another IBSS or
2949 * created one ourselves.
2950 */
2951 imr->ifm_status |= IFM_ACTIVE;
2952 else if (sc->wi_ptype == WI_PORTTYPE_AP)
2953 imr->ifm_status |= IFM_ACTIVE;
2954 else {
2955 wreq.wi_type = WI_RID_COMMQUAL;
2956 wreq.wi_len = WI_MAX_DATALEN;
2957 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
2958 wreq.wi_val[0] != 0)
2959 imr->ifm_status |= IFM_ACTIVE;
2960 }
2961}
2962
2963static int
2964wi_get_debug(sc, wreq)
2965 struct wi_softc *sc;
2966 struct wi_req *wreq;
2967{
2968 int error = 0;
2969
2970 wreq->wi_len = 1;
2971
2972 switch (wreq->wi_type) {
2973 case WI_DEBUG_SLEEP:
2974 wreq->wi_len++;
2975 wreq->wi_val[0] = sc->wi_debug.wi_sleep;
2976 break;
2977 case WI_DEBUG_DELAYSUPP:
2978 wreq->wi_len++;
2979 wreq->wi_val[0] = sc->wi_debug.wi_delaysupp;
2980 break;
2981 case WI_DEBUG_TXSUPP:
2982 wreq->wi_len++;
2983 wreq->wi_val[0] = sc->wi_debug.wi_txsupp;
2984 break;
2985 case WI_DEBUG_MONITOR:
2986 wreq->wi_len++;
2987 wreq->wi_val[0] = sc->wi_debug.wi_monitor;
2988 break;
2989 case WI_DEBUG_LEDTEST:
2990 wreq->wi_len += 3;
2991 wreq->wi_val[0] = sc->wi_debug.wi_ledtest;
2992 wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0;
2993 wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1;
2994 break;
2995 case WI_DEBUG_CONTTX:
2996 wreq->wi_len += 2;
2997 wreq->wi_val[0] = sc->wi_debug.wi_conttx;
2998 wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0;
2999 break;
3000 case WI_DEBUG_CONTRX:
3001 wreq->wi_len++;
3002 wreq->wi_val[0] = sc->wi_debug.wi_contrx;
3003 break;
3004 case WI_DEBUG_SIGSTATE:
3005 wreq->wi_len += 2;
3006 wreq->wi_val[0] = sc->wi_debug.wi_sigstate;
3007 wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0;
3008 break;
3009 case WI_DEBUG_CONFBITS:
3010 wreq->wi_len += 2;
3011 wreq->wi_val[0] = sc->wi_debug.wi_confbits;
3012 wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0;
3013 break;
3014 default:
3015 error = EIO;
3016 break;
3017 }
3018
3019 return (error);
3020}
3021
3022static int
3023wi_set_debug(sc, wreq)
3024 struct wi_softc *sc;
3025 struct wi_req *wreq;
3026{
3027 int error = 0;
3028 u_int16_t cmd, param0 = 0, param1 = 0;
3029
3030 switch (wreq->wi_type) {
3031 case WI_DEBUG_RESET:
3032 case WI_DEBUG_INIT:
3033 case WI_DEBUG_CALENABLE:
3034 break;
3035 case WI_DEBUG_SLEEP:
3036 sc->wi_debug.wi_sleep = 1;
3037 break;
3038 case WI_DEBUG_WAKE:
3039 sc->wi_debug.wi_sleep = 0;
3040 break;
3041 case WI_DEBUG_CHAN:
3042 param0 = wreq->wi_val[0];
3043 break;
3044 case WI_DEBUG_DELAYSUPP:
3045 sc->wi_debug.wi_delaysupp = 1;
3046 break;
3047 case WI_DEBUG_TXSUPP:
3048 sc->wi_debug.wi_txsupp = 1;
3049 break;
3050 case WI_DEBUG_MONITOR:
3051 sc->wi_debug.wi_monitor = 1;
3052 break;
3053 case WI_DEBUG_LEDTEST:
3054 param0 = wreq->wi_val[0];
3055 param1 = wreq->wi_val[1];
3056 sc->wi_debug.wi_ledtest = 1;
3057 sc->wi_debug.wi_ledtest_param0 = param0;
3058 sc->wi_debug.wi_ledtest_param1 = param1;
3059 break;
3060 case WI_DEBUG_CONTTX:
3061 param0 = wreq->wi_val[0];
3062 sc->wi_debug.wi_conttx = 1;
3063 sc->wi_debug.wi_conttx_param0 = param0;
3064 break;
3065 case WI_DEBUG_STOPTEST:
3066 sc->wi_debug.wi_delaysupp = 0;
3067 sc->wi_debug.wi_txsupp = 0;
3068 sc->wi_debug.wi_monitor = 0;
3069 sc->wi_debug.wi_ledtest = 0;
3070 sc->wi_debug.wi_ledtest_param0 = 0;
3071 sc->wi_debug.wi_ledtest_param1 = 0;
3072 sc->wi_debug.wi_conttx = 0;
3073 sc->wi_debug.wi_conttx_param0 = 0;
3074 sc->wi_debug.wi_contrx = 0;
3075 sc->wi_debug.wi_sigstate = 0;
3076 sc->wi_debug.wi_sigstate_param0 = 0;
3077 break;
3078 case WI_DEBUG_CONTRX:
3079 sc->wi_debug.wi_contrx = 1;
3080 break;
3081 case WI_DEBUG_SIGSTATE:
3082 param0 = wreq->wi_val[0];
3083 sc->wi_debug.wi_sigstate = 1;
3084 sc->wi_debug.wi_sigstate_param0 = param0;
3085 break;
3086 case WI_DEBUG_CONFBITS:
3087 param0 = wreq->wi_val[0];
3088 param1 = wreq->wi_val[1];
3089 sc->wi_debug.wi_confbits = param0;
3090 sc->wi_debug.wi_confbits_param0 = param1;
3091 break;
3092 default:
3093 error = EIO;
3094 break;
3095 }
3096
3097 if (error)
3098 return (error);
3099
3100 cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
3101 error = wi_cmd(sc, cmd, param0, param1, 0);
3102
3103 return (error);
3104}