Style(9) cleanup.
[dragonfly.git] / sys / dev / netif / an / if_an.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
0a8b5977 33 * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.10 2004/03/14 15:36:48 joerg Exp $
1de703da
MD
34 *
35 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
984263bc
MD
36 */
37
38/*
39 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Electrical Engineering Department
43 * Columbia University, New York City
44 */
45
46/*
47 * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
48 * This driver supports all three device types (PCI devices are supported
49 * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
50 * supported either using hard-coded IO port/IRQ settings or via Plug
51 * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
52 * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
53 *
54 * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
55 * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
56 * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
57 * a couple of important differences though:
58 *
59 * - Lucent ISA card looks to the host like a PCMCIA controller with
60 * a PCMCIA WaveLAN card inserted. This means that even desktop
61 * machines need to be configured with PCMCIA support in order to
62 * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
63 * actually look like normal ISA and PCI devices to the host, so
64 * no PCMCIA controller support is needed
65 *
66 * The latter point results in a small gotcha. The Aironet PCMCIA
67 * cards can be configured for one of two operating modes depending
68 * on how the Vpp1 and Vpp2 programming voltages are set when the
69 * card is activated. In order to put the card in proper PCMCIA
70 * operation (where the CIS table is visible and the interface is
71 * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
72 * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
73 * which leaves the card in ISA/PCI mode, which prevents it from
74 * being activated as an PCMCIA device.
75 *
76 * Note that some PCMCIA controller software packages for Windows NT
77 * fail to set the voltages as well.
78 *
79 * The Aironet devices can operate in both station mode and access point
80 * mode. Typically, when programmed for station mode, the card can be set
81 * to automatically perform encapsulation/decapsulation of Ethernet II
82 * and 802.3 frames within 802.11 frames so that the host doesn't have
83 * to do it itself. This driver doesn't program the card that way: the
84 * driver handles all of the encapsulation/decapsulation itself.
85 */
86
87#include "opt_inet.h"
88
89#ifdef INET
90#define ANCACHE /* enable signal strength cache */
91#endif
92
93#include <sys/param.h>
94#include <sys/systm.h>
95#include <sys/sockio.h>
96#include <sys/mbuf.h>
97#include <sys/proc.h>
98#include <sys/kernel.h>
99#include <sys/proc.h>
100#include <sys/ucred.h>
101#include <sys/socket.h>
102#ifdef ANCACHE
103#include <sys/syslog.h>
104#endif
105#include <sys/sysctl.h>
106#include <machine/clock.h> /* for DELAY */
107
108#include <sys/module.h>
109#include <sys/sysctl.h>
110#include <sys/bus.h>
111#include <machine/bus.h>
112#include <sys/rman.h>
113#include <machine/resource.h>
114#include <sys/malloc.h>
115
116#include <net/if.h>
117#include <net/if_arp.h>
118#include <net/ethernet.h>
119#include <net/if_dl.h>
120#include <net/if_types.h>
121#include <net/if_ieee80211.h>
122#include <net/if_media.h>
123
124#ifdef INET
125#include <netinet/in.h>
126#include <netinet/in_systm.h>
127#include <netinet/in_var.h>
128#include <netinet/ip.h>
129#endif
130
131#include <net/bpf.h>
132
133#include <machine/md_var.h>
134
1f2de5d4
MD
135#include "if_aironet_ieee.h"
136#include "if_anreg.h"
984263bc 137
984263bc 138/* These are global because we need them in sys/pci/if_an_p.c. */
b5101a88
RG
139static void an_reset (struct an_softc *);
140static int an_init_mpi350_desc (struct an_softc *);
141static int an_ioctl (struct ifnet *, u_long, caddr_t);
142static void an_init (void *);
143static int an_init_tx_ring (struct an_softc *);
144static void an_start (struct ifnet *);
145static void an_watchdog (struct ifnet *);
146static void an_rxeof (struct an_softc *);
147static void an_txeof (struct an_softc *, int);
148
149static void an_promisc (struct an_softc *, int);
150static int an_cmd (struct an_softc *, int, int);
151static int an_cmd_struct (struct an_softc *, struct an_command *,
152 struct an_reply *);
153static int an_read_record (struct an_softc *, struct an_ltv_gen *);
154static int an_write_record (struct an_softc *, struct an_ltv_gen *);
155static int an_read_data (struct an_softc *, int,
156 int, caddr_t, int);
157static int an_write_data (struct an_softc *, int,
158 int, caddr_t, int);
159static int an_seek (struct an_softc *, int, int, int);
160static int an_alloc_nicmem (struct an_softc *, int, int *);
161static int an_dma_malloc (struct an_softc *, bus_size_t,
162 struct an_dma_alloc *, int);
163static void an_dma_free (struct an_softc *,
164 struct an_dma_alloc *);
165static void an_dma_malloc_cb (void *, bus_dma_segment_t *, int, int);
166static void an_stats_update (void *);
167static void an_setdef (struct an_softc *, struct an_req *);
984263bc 168#ifdef ANCACHE
b5101a88
RG
169static void an_cache_store (struct an_softc *, struct ether_header *,
170 struct mbuf *, u_int8_t, u_int8_t);
984263bc
MD
171#endif
172
173/* function definitions for use with the Cisco's Linux configuration
174 utilities
175*/
176
b5101a88
RG
177static int readrids (struct ifnet*, struct aironet_ioctl*);
178static int writerids (struct ifnet*, struct aironet_ioctl*);
179static int flashcard (struct ifnet*, struct aironet_ioctl*);
984263bc 180
b5101a88
RG
181static int cmdreset (struct ifnet *);
182static int setflashmode (struct ifnet *);
183static int flashgchar (struct ifnet *,int,int);
184static int flashpchar (struct ifnet *,int,int);
185static int flashputbuf (struct ifnet *);
186static int flashrestart (struct ifnet *);
187static int WaitBusy (struct ifnet *, int);
188static int unstickbusy (struct ifnet *);
984263bc 189
b5101a88
RG
190static void an_dump_record (struct an_softc *,struct an_ltv_gen *,
191 char *);
984263bc 192
b5101a88
RG
193static int an_media_change (struct ifnet *);
194static void an_media_status (struct ifnet *, struct ifmediareq *);
984263bc
MD
195
196static int an_dump = 0;
197static int an_cache_mode = 0;
198
199#define DBM 0
200#define PERCENT 1
201#define RAW 2
202
203static char an_conf[256];
204static char an_conf_cache[256];
205
32832096
MD
206DECLARE_DUMMY_MODULE(if_an);
207
984263bc
MD
208/* sysctl vars */
209
210SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
211
212static int
213sysctl_an_dump(SYSCTL_HANDLER_ARGS)
214{
215 int error, r, last;
216 char *s = an_conf;
217
218 last = an_dump;
219
220 switch (an_dump) {
221 case 0:
222 strcpy(an_conf, "off");
223 break;
224 case 1:
225 strcpy(an_conf, "type");
226 break;
227 case 2:
228 strcpy(an_conf, "dump");
229 break;
230 default:
231 snprintf(an_conf, 5, "%x", an_dump);
232 break;
233 }
234
235 error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
236
237 if (strncmp(an_conf,"off", 3) == 0) {
238 an_dump = 0;
239 }
240 if (strncmp(an_conf,"dump", 4) == 0) {
241 an_dump = 1;
242 }
243 if (strncmp(an_conf,"type", 4) == 0) {
244 an_dump = 2;
245 }
246 if (*s == 'f') {
247 r = 0;
248 for (;;s++) {
249 if ((*s >= '0') && (*s <= '9')) {
250 r = r * 16 + (*s - '0');
251 } else if ((*s >= 'a') && (*s <= 'f')) {
252 r = r * 16 + (*s - 'a' + 10);
253 } else {
254 break;
255 }
256 }
257 an_dump = r;
258 }
259 if (an_dump != last)
260 printf("Sysctl changed for Aironet driver\n");
261
262 return error;
263}
264
265SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
266 0, sizeof(an_conf), sysctl_an_dump, "A", "");
267
268static int
269sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
270{
271 int error, last;
272
273 last = an_cache_mode;
274
275 switch (an_cache_mode) {
276 case 1:
277 strcpy(an_conf_cache, "per");
278 break;
279 case 2:
280 strcpy(an_conf_cache, "raw");
281 break;
282 default:
283 strcpy(an_conf_cache, "dbm");
284 break;
285 }
286
287 error = sysctl_handle_string(oidp, an_conf_cache,
288 sizeof(an_conf_cache), req);
289
290 if (strncmp(an_conf_cache,"dbm", 3) == 0) {
291 an_cache_mode = 0;
292 }
293 if (strncmp(an_conf_cache,"per", 3) == 0) {
294 an_cache_mode = 1;
295 }
296 if (strncmp(an_conf_cache,"raw", 3) == 0) {
297 an_cache_mode = 2;
298 }
299
300 return error;
301}
302
303SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
304 0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
305
306/*
307 * We probe for an Aironet 4500/4800 card by attempting to
308 * read the default SSID list. On reset, the first entry in
309 * the SSID list will contain the name "tsunami." If we don't
310 * find this, then there's no card present.
311 */
312int
313an_probe(dev)
314 device_t dev;
315{
316 struct an_softc *sc = device_get_softc(dev);
317 struct an_ltv_ssidlist ssid;
318 int error;
319
320 bzero((char *)&ssid, sizeof(ssid));
321
322 error = an_alloc_port(dev, 0, AN_IOSIZ);
323 if (error != 0)
324 return (0);
325
326 /* can't do autoprobing */
327 if (rman_get_start(sc->port_res) == -1)
328 return(0);
329
330 /*
331 * We need to fake up a softc structure long enough
332 * to be able to issue commands and call some of the
333 * other routines.
334 */
335 sc->an_bhandle = rman_get_bushandle(sc->port_res);
336 sc->an_btag = rman_get_bustag(sc->port_res);
337 sc->an_unit = device_get_unit(dev);
338
339 ssid.an_len = sizeof(ssid);
340 ssid.an_type = AN_RID_SSIDLIST;
341
342 /* Make sure interrupts are disabled. */
343 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
344 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
345
346 an_reset(sc);
347 /* No need for an_init_mpi350_desc since it will be done in attach */
348
349 if (an_cmd(sc, AN_CMD_READCFG, 0))
350 return(0);
351
352 if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
353 return(0);
354
355 /* See if the ssid matches what we expect ... but doesn't have to */
356 if (strcmp(ssid.an_ssid1, AN_DEF_SSID))
357 return(0);
358
359 return(AN_IOSIZ);
360}
361
362/*
363 * Allocate a port resource with the given resource id.
364 */
365int
366an_alloc_port(dev, rid, size)
367 device_t dev;
368 int rid;
369 int size;
370{
371 struct an_softc *sc = device_get_softc(dev);
372 struct resource *res;
373
374 res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
375 0ul, ~0ul, size, RF_ACTIVE);
376 if (res) {
377 sc->port_rid = rid;
378 sc->port_res = res;
379 return (0);
380 } else {
381 return (ENOENT);
382 }
383}
384
385/*
386 * Allocate a memory resource with the given resource id.
387 */
388int an_alloc_memory(device_t dev, int rid, int size)
389{
390 struct an_softc *sc = device_get_softc(dev);
391 struct resource *res;
392
393 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
394 0ul, ~0ul, size, RF_ACTIVE);
395 if (res) {
396 sc->mem_rid = rid;
397 sc->mem_res = res;
398 sc->mem_used = size;
399 return (0);
400 } else {
401 return (ENOENT);
402 }
403}
404
405/*
406 * Allocate a auxilary memory resource with the given resource id.
407 */
408int an_alloc_aux_memory(device_t dev, int rid, int size)
409{
410 struct an_softc *sc = device_get_softc(dev);
411 struct resource *res;
412
413 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
414 0ul, ~0ul, size, RF_ACTIVE);
415 if (res) {
416 sc->mem_aux_rid = rid;
417 sc->mem_aux_res = res;
418 sc->mem_aux_used = size;
419 return (0);
420 } else {
421 return (ENOENT);
422 }
423}
424
425/*
426 * Allocate an irq resource with the given resource id.
427 */
428int
429an_alloc_irq(dev, rid, flags)
430 device_t dev;
431 int rid;
432 int flags;
433{
434 struct an_softc *sc = device_get_softc(dev);
435 struct resource *res;
436
437 res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
438 0ul, ~0ul, 1, (RF_ACTIVE | flags));
439 if (res) {
440 sc->irq_rid = rid;
441 sc->irq_res = res;
442 return (0);
443 } else {
444 return (ENOENT);
445 }
446}
447
448static void
449an_dma_malloc_cb(arg, segs, nseg, error)
450 void *arg;
451 bus_dma_segment_t *segs;
452 int nseg;
453 int error;
454{
455 bus_addr_t *paddr = (bus_addr_t*) arg;
456 *paddr = segs->ds_addr;
457}
458
459/*
460 * Alloc DMA memory and set the pointer to it
461 */
462static int
463an_dma_malloc(sc, size, dma, mapflags)
464 struct an_softc *sc;
465 bus_size_t size;
466 struct an_dma_alloc *dma;
467 int mapflags;
468{
469 int r;
470
471 r = bus_dmamap_create(sc->an_dtag, BUS_DMA_NOWAIT, &dma->an_dma_map);
472 if (r != 0)
473 goto fail_0;
474
475 r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
476 BUS_DMA_NOWAIT, &dma->an_dma_map);
477 if (r != 0)
478 goto fail_1;
479
480 r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
481 size,
482 an_dma_malloc_cb,
483 &dma->an_dma_paddr,
484 mapflags | BUS_DMA_NOWAIT);
485 if (r != 0)
486 goto fail_2;
487
488 dma->an_dma_size = size;
489 return (0);
490
491fail_2:
492 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
493fail_1:
494 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
495fail_0:
496 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
497 dma->an_dma_map = NULL;
498 return (r);
499}
500
501static void
502an_dma_free(sc, dma)
503 struct an_softc *sc;
504 struct an_dma_alloc *dma;
505{
506 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
507 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
508 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
509}
510
511/*
512 * Release all resources
513 */
514void
515an_release_resources(dev)
516 device_t dev;
517{
518 struct an_softc *sc = device_get_softc(dev);
519 int i;
520
521 if (sc->port_res) {
522 bus_release_resource(dev, SYS_RES_IOPORT,
523 sc->port_rid, sc->port_res);
524 sc->port_res = 0;
525 }
526 if (sc->mem_res) {
527 bus_release_resource(dev, SYS_RES_MEMORY,
528 sc->mem_rid, sc->mem_res);
529 sc->mem_res = 0;
530 }
531 if (sc->mem_aux_res) {
532 bus_release_resource(dev, SYS_RES_MEMORY,
533 sc->mem_aux_rid, sc->mem_aux_res);
534 sc->mem_aux_res = 0;
535 }
536 if (sc->irq_res) {
537 bus_release_resource(dev, SYS_RES_IRQ,
538 sc->irq_rid, sc->irq_res);
539 sc->irq_res = 0;
540 }
541 if (sc->an_rid_buffer.an_dma_paddr) {
542 an_dma_free(sc, &sc->an_rid_buffer);
543 }
544 for (i = 0; i < AN_MAX_RX_DESC; i++)
545 if (sc->an_rx_buffer[i].an_dma_paddr) {
546 an_dma_free(sc, &sc->an_rx_buffer[i]);
547 }
548 for (i = 0; i < AN_MAX_TX_DESC; i++)
549 if (sc->an_tx_buffer[i].an_dma_paddr) {
550 an_dma_free(sc, &sc->an_tx_buffer[i]);
551 }
552 if (sc->an_dtag) {
553 bus_dma_tag_destroy(sc->an_dtag);
554 }
555
556}
557
558int
559an_init_mpi350_desc(sc)
560 struct an_softc *sc;
561{
562 struct an_command cmd_struct;
563 struct an_reply reply;
564 struct an_card_rid_desc an_rid_desc;
565 struct an_card_rx_desc an_rx_desc;
566 struct an_card_tx_desc an_tx_desc;
567 int i, desc;
568
569 if(!sc->an_rid_buffer.an_dma_paddr)
570 an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
571 &sc->an_rid_buffer, 0);
572 for (i = 0; i < AN_MAX_RX_DESC; i++)
573 if(!sc->an_rx_buffer[i].an_dma_paddr)
574 an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
575 &sc->an_rx_buffer[i], 0);
576 for (i = 0; i < AN_MAX_TX_DESC; i++)
577 if(!sc->an_tx_buffer[i].an_dma_paddr)
578 an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
579 &sc->an_tx_buffer[i], 0);
580
581 /*
582 * Allocate RX descriptor
583 */
584 bzero(&reply,sizeof(reply));
585 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
586 cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
587 cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
588 cmd_struct.an_parm2 = AN_MAX_RX_DESC;
589 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
590 printf("an%d: failed to allocate RX descriptor\n",
591 sc->an_unit);
592 return(EIO);
593 }
594
595 for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
596 bzero(&an_rx_desc, sizeof(an_rx_desc));
597 an_rx_desc.an_valid = 1;
598 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
599 an_rx_desc.an_done = 0;
600 an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
601
602 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
603 CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET
604 + (desc * sizeof(an_rx_desc))
605 + (i * 4),
606 ((u_int32_t*)&an_rx_desc)[i]);
607 }
608
609 /*
610 * Allocate TX descriptor
611 */
612
613 bzero(&reply,sizeof(reply));
614 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
615 cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
616 cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
617 cmd_struct.an_parm2 = AN_MAX_TX_DESC;
618 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
619 printf("an%d: failed to allocate TX descriptor\n",
620 sc->an_unit);
621 return(EIO);
622 }
623
624 for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
625 bzero(&an_tx_desc, sizeof(an_tx_desc));
626 an_tx_desc.an_offset = 0;
627 an_tx_desc.an_eoc = 0;
628 an_tx_desc.an_valid = 0;
629 an_tx_desc.an_len = 0;
630 an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
631
632 for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
633 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
634 + (desc * sizeof(an_tx_desc))
635 + (i * 4),
636 ((u_int32_t*)&an_tx_desc)[i]);
637 }
638
639 /*
640 * Allocate RID descriptor
641 */
642
643 bzero(&reply,sizeof(reply));
644 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
645 cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
646 cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
647 cmd_struct.an_parm2 = 1;
648 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
649 printf("an%d: failed to allocate host descriptor\n",
650 sc->an_unit);
651 return(EIO);
652 }
653
654 bzero(&an_rid_desc, sizeof(an_rid_desc));
655 an_rid_desc.an_valid = 1;
656 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
657 an_rid_desc.an_rid = 0;
658 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
659
660 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
661 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
662 ((u_int32_t*)&an_rid_desc)[i]);
663
664 return(0);
665}
666
667int
668an_attach(sc, unit, flags)
669 struct an_softc *sc;
670 int unit;
671 int flags;
672{
673 struct ifnet *ifp = &sc->arpcom.ac_if;
674 int error;
675
676 sc->an_gone = 0;
677 sc->an_associated = 0;
678 sc->an_monitor = 0;
679 sc->an_was_monitor = 0;
680 sc->an_flash_buffer = NULL;
681
682 /* Reset the NIC. */
683 an_reset(sc);
684 if (sc->mpi350) {
685 error = an_init_mpi350_desc(sc);
686 if (error)
687 return(error);
688 }
689
690 /* Load factory config */
691 if (an_cmd(sc, AN_CMD_READCFG, 0)) {
692 printf("an%d: failed to load config data\n", sc->an_unit);
693 return(EIO);
694 }
695
696 /* Read the current configuration */
697 sc->an_config.an_type = AN_RID_GENCONFIG;
698 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
699 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
700 printf("an%d: read record failed\n", sc->an_unit);
701 return(EIO);
702 }
703
704 /* Read the card capabilities */
705 sc->an_caps.an_type = AN_RID_CAPABILITIES;
706 sc->an_caps.an_len = sizeof(struct an_ltv_caps);
707 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
708 printf("an%d: read record failed\n", sc->an_unit);
709 return(EIO);
710 }
711
712 /* Read ssid list */
713 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
714 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
715 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
716 printf("an%d: read record failed\n", sc->an_unit);
717 return(EIO);
718 }
719
720 /* Read AP list */
721 sc->an_aplist.an_type = AN_RID_APLIST;
722 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
723 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
724 printf("an%d: read record failed\n", sc->an_unit);
725 return(EIO);
726 }
727
728#ifdef ANCACHE
729 /* Read the RSSI <-> dBm map */
730 sc->an_have_rssimap = 0;
731 if (sc->an_caps.an_softcaps & 8) {
732 sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
733 sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
734 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
735 printf("an%d: unable to get RSSI <-> dBM map\n", sc->an_unit);
736 } else {
737 printf("an%d: got RSSI <-> dBM map\n", sc->an_unit);
738 sc->an_have_rssimap = 1;
739 }
740 } else {
741 printf("an%d: no RSSI <-> dBM map\n", sc->an_unit);
742 }
743#endif
744
984263bc
MD
745 printf("an%d: Ethernet address: %6D\n", sc->an_unit,
746 sc->arpcom.ac_enaddr, ":");
747
748 ifp->if_softc = sc;
cdb7d804 749 if_initname(ifp, "an", unit);
984263bc
MD
750 ifp->if_mtu = ETHERMTU;
751 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752 ifp->if_ioctl = an_ioctl;
753 ifp->if_output = ether_output;
754 ifp->if_start = an_start;
755 ifp->if_watchdog = an_watchdog;
756 ifp->if_init = an_init;
757 ifp->if_baudrate = 10000000;
758 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
759
760 bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
761 bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
762 sizeof(AN_DEFAULT_NODENAME) - 1);
763
764 bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1));
765 bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1,
766 sizeof(AN_DEFAULT_NETNAME) - 1);
767 sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME);
768
769 sc->an_config.an_opmode =
770 AN_OPMODE_INFRASTRUCTURE_STATION;
771
772 sc->an_tx_rate = 0;
773 bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
774
775 ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
776#define ADD(m, c) ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
777 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
778 IFM_IEEE80211_ADHOC, 0), 0);
779 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
780 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
781 IFM_IEEE80211_ADHOC, 0), 0);
782 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
783 if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
784 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
785 IFM_IEEE80211_ADHOC, 0), 0);
786 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
787 }
788 if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
789 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
790 IFM_IEEE80211_ADHOC, 0), 0);
791 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
792 }
793 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
794 IFM_IEEE80211_ADHOC, 0), 0);
795 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
796#undef ADD
797 ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
798 0, 0));
799
800 /*
801 * Call MI attach routine.
802 */
0a8b5977 803 ether_ifattach(ifp, sc->an_caps.an_oemaddr);
984263bc
MD
804 callout_handle_init(&sc->an_stat_ch);
805
806 return(0);
807}
808
809static void
810an_rxeof(sc)
811 struct an_softc *sc;
812{
813 struct ifnet *ifp;
814 struct ether_header *eh;
815 struct ieee80211_frame *ih;
816 struct an_rxframe rx_frame;
817 struct an_rxframe_802_3 rx_frame_802_3;
818 struct mbuf *m;
819 int len, id, error = 0, i, count = 0;
820 int ieee80211_header_len;
821 u_char *bpf_buf;
822 u_short fc1;
823 struct an_card_rx_desc an_rx_desc;
824 u_int8_t *buf;
825
826 ifp = &sc->arpcom.ac_if;
827
828 if (!sc->mpi350) {
829 id = CSR_READ_2(sc, AN_RX_FID);
830
831 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
832 /* read raw 802.11 packet */
833 bpf_buf = sc->buf_802_11;
834
835 /* read header */
836 if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
837 sizeof(rx_frame))) {
838 ifp->if_ierrors++;
839 return;
840 }
841
842 /*
843 * skip beacon by default since this increases the
844 * system load a lot
845 */
846
847 if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
848 (rx_frame.an_frame_ctl &
849 IEEE80211_FC0_SUBTYPE_BEACON)) {
850 return;
851 }
852
853 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
854 len = rx_frame.an_rx_payload_len
855 + sizeof(rx_frame);
856 /* Check for insane frame length */
857 if (len > sizeof(sc->buf_802_11)) {
858 printf("an%d: oversized packet "
859 "received (%d, %d)\n",
860 sc->an_unit, len, MCLBYTES);
861 ifp->if_ierrors++;
862 return;
863 }
864
865 bcopy((char *)&rx_frame,
866 bpf_buf, sizeof(rx_frame));
867
868 error = an_read_data(sc, id, sizeof(rx_frame),
869 (caddr_t)bpf_buf+sizeof(rx_frame),
870 rx_frame.an_rx_payload_len);
871 } else {
872 fc1=rx_frame.an_frame_ctl >> 8;
873 ieee80211_header_len =
874 sizeof(struct ieee80211_frame);
875 if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
876 (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
877 ieee80211_header_len += ETHER_ADDR_LEN;
878 }
879
880 len = rx_frame.an_rx_payload_len
881 + ieee80211_header_len;
882 /* Check for insane frame length */
883 if (len > sizeof(sc->buf_802_11)) {
884 printf("an%d: oversized packet "
885 "received (%d, %d)\n",
886 sc->an_unit, len, MCLBYTES);
887 ifp->if_ierrors++;
888 return;
889 }
890
891 ih = (struct ieee80211_frame *)bpf_buf;
892
893 bcopy((char *)&rx_frame.an_frame_ctl,
894 (char *)ih, ieee80211_header_len);
895
896 error = an_read_data(sc, id, sizeof(rx_frame) +
897 rx_frame.an_gaplen,
898 (caddr_t)ih +ieee80211_header_len,
899 rx_frame.an_rx_payload_len);
900 }
901 /* dump raw 802.11 packet to bpf and skip ip stack */
902 if (ifp->if_bpf != NULL) {
903 bpf_tap(ifp, bpf_buf, len);
904 }
905 } else {
906 MGETHDR(m, M_NOWAIT, MT_DATA);
907 if (m == NULL) {
908 ifp->if_ierrors++;
909 return;
910 }
911 MCLGET(m, M_NOWAIT);
912 if (!(m->m_flags & M_EXT)) {
913 m_freem(m);
914 ifp->if_ierrors++;
915 return;
916 }
917 m->m_pkthdr.rcvif = ifp;
918 /* Read Ethernet encapsulated packet */
919
920#ifdef ANCACHE
921 /* Read NIC frame header */
922 if (an_read_data(sc, id, 0, (caddr_t)&rx_frame,
923 sizeof(rx_frame))) {
924 ifp->if_ierrors++;
925 return;
926 }
927#endif
928 /* Read in the 802_3 frame header */
929 if (an_read_data(sc, id, 0x34,
930 (caddr_t)&rx_frame_802_3,
931 sizeof(rx_frame_802_3))) {
932 ifp->if_ierrors++;
933 return;
934 }
935 if (rx_frame_802_3.an_rx_802_3_status != 0) {
936 ifp->if_ierrors++;
937 return;
938 }
939 /* Check for insane frame length */
940 len = rx_frame_802_3.an_rx_802_3_payload_len;
941 if (len > sizeof(sc->buf_802_11)) {
942 printf("an%d: oversized packet "
943 "received (%d, %d)\n",
944 sc->an_unit, len, MCLBYTES);
945 ifp->if_ierrors++;
946 return;
947 }
948 m->m_pkthdr.len = m->m_len =
949 rx_frame_802_3.an_rx_802_3_payload_len + 12;
950
951 eh = mtod(m, struct ether_header *);
952
953 bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
954 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
955 bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
956 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
957
958 /* in mbuf header type is just before payload */
959 error = an_read_data(sc, id, 0x44,
960 (caddr_t)&(eh->ether_type),
961 rx_frame_802_3.an_rx_802_3_payload_len);
962
963 if (error) {
964 m_freem(m);
965 ifp->if_ierrors++;
966 return;
967 }
968 ifp->if_ipackets++;
969
970 /* Receive packet. */
971 m_adj(m, sizeof(struct ether_header));
972#ifdef ANCACHE
973 an_cache_store(sc, eh, m,
974 rx_frame.an_rx_signal_strength,
975 rx_frame.an_rsvd0);
976#endif
977 ether_input(ifp, eh, m);
978 }
979
980 } else { /* MPI-350 */
981 for (count = 0; count < AN_MAX_RX_DESC; count++){
982 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
983 ((u_int32_t*)&an_rx_desc)[i]
984 = CSR_MEM_AUX_READ_4(sc,
985 AN_RX_DESC_OFFSET
986 + (count * sizeof(an_rx_desc))
987 + (i * 4));
988
989 if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
990 buf = sc->an_rx_buffer[count].an_dma_vaddr;
991
992 MGETHDR(m, M_NOWAIT, MT_DATA);
993 if (m == NULL) {
994 ifp->if_ierrors++;
995 return;
996 }
997 MCLGET(m, M_NOWAIT);
998 if (!(m->m_flags & M_EXT)) {
999 m_freem(m);
1000 ifp->if_ierrors++;
1001 return;
1002 }
1003 m->m_pkthdr.rcvif = ifp;
1004 /* Read Ethernet encapsulated packet */
1005
1006 /*
1007 * No ANCACHE support since we just get back
1008 * an Ethernet packet no 802.11 info
1009 */
1010#if 0
1011#ifdef ANCACHE
1012 /* Read NIC frame header */
1013 bcopy(buf, (caddr_t)&rx_frame,
1014 sizeof(rx_frame));
1015#endif
1016#endif
1017 /* Check for insane frame length */
1018 len = an_rx_desc.an_len + 12;
1019 if (len > MCLBYTES) {
1020 printf("an%d: oversized packet "
1021 "received (%d, %d)\n",
1022 sc->an_unit, len, MCLBYTES);
1023 ifp->if_ierrors++;
1024 return;
1025 }
1026
1027 m->m_pkthdr.len = m->m_len =
1028 an_rx_desc.an_len + 12;
1029
1030 eh = mtod(m, struct ether_header *);
1031
1032 bcopy(buf, (char *)eh,
1033 m->m_pkthdr.len);
1034
1035 ifp->if_ipackets++;
1036
1037 /* Receive packet. */
1038 m_adj(m, sizeof(struct ether_header));
1039#if 0
1040#ifdef ANCACHE
1041 an_cache_store(sc, eh, m,
1042 rx_frame.an_rx_signal_strength,
1043 rx_frame.an_rsvd0);
1044#endif
1045#endif
1046 ether_input(ifp, eh, m);
1047
1048 an_rx_desc.an_valid = 1;
1049 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1050 an_rx_desc.an_done = 0;
1051 an_rx_desc.an_phys =
1052 sc->an_rx_buffer[count].an_dma_paddr;
1053
1054 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1055 CSR_MEM_AUX_WRITE_4(sc,
1056 AN_RX_DESC_OFFSET
1057 + (count * sizeof(an_rx_desc))
1058 + (i * 4),
1059 ((u_int32_t*)&an_rx_desc)[i]);
1060
1061 } else {
1062 printf("an%d: Didn't get valid RX packet "
1063 "%x %x %d\n",
1064 sc->an_unit,
1065 an_rx_desc.an_done,
1066 an_rx_desc.an_valid, an_rx_desc.an_len);
1067 }
1068 }
1069 }
1070}
1071
1072static void
1073an_txeof(sc, status)
1074 struct an_softc *sc;
1075 int status;
1076{
1077 struct ifnet *ifp;
1078 int id, i;
1079
1080 ifp = &sc->arpcom.ac_if;
1081
1082 ifp->if_timer = 0;
1083 ifp->if_flags &= ~IFF_OACTIVE;
1084
1085 if (!sc->mpi350) {
1086 id = CSR_READ_2(sc, AN_TX_CMP_FID);
1087
1088 if (status & AN_EV_TX_EXC) {
1089 ifp->if_oerrors++;
1090 } else
1091 ifp->if_opackets++;
1092
1093 for (i = 0; i < AN_TX_RING_CNT; i++) {
1094 if (id == sc->an_rdata.an_tx_ring[i]) {
1095 sc->an_rdata.an_tx_ring[i] = 0;
1096 break;
1097 }
1098 }
1099
1100 AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1101 } else { /* MPI 350 */
1102 AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1103 if (sc->an_rdata.an_tx_prod ==
1104 sc->an_rdata.an_tx_cons)
1105 sc->an_rdata.an_tx_empty = 1;
1106 }
1107
1108 return;
1109}
1110
1111/*
1112 * We abuse the stats updater to check the current NIC status. This
1113 * is important because we don't want to allow transmissions until
1114 * the NIC has synchronized to the current cell (either as the master
1115 * in an ad-hoc group, or as a station connected to an access point).
1116 */
1117static void
1118an_stats_update(xsc)
1119 void *xsc;
1120{
1121 struct an_softc *sc;
1122 struct ifnet *ifp;
1123 int s;
1124
1125 s = splimp();
1126
1127 sc = xsc;
1128 ifp = &sc->arpcom.ac_if;
1129
1130 sc->an_status.an_type = AN_RID_STATUS;
1131 sc->an_status.an_len = sizeof(struct an_ltv_status);
1132 an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
1133
1134 if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1135 sc->an_associated = 1;
1136 else
1137 sc->an_associated = 0;
1138
1139 /* Don't do this while we're transmitting */
1140 if (ifp->if_flags & IFF_OACTIVE) {
1141 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
1142 splx(s);
1143 return;
1144 }
1145
1146 sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1147 sc->an_stats.an_type = AN_RID_32BITS_CUM;
1148 an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
1149
1150 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
1151 splx(s);
1152
1153 return;
1154}
1155
1156void
1157an_intr(xsc)
1158 void *xsc;
1159{
1160 struct an_softc *sc;
1161 struct ifnet *ifp;
1162 u_int16_t status;
1163
1164 sc = (struct an_softc*)xsc;
1165
1166 if (sc->an_gone)
1167 return;
1168
1169 ifp = &sc->arpcom.ac_if;
1170
1171 /* Disable interrupts. */
1172 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1173
1174 status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1175 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS);
1176
1177 if (status & AN_EV_AWAKE) {
1178 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_AWAKE);
1179 }
1180
1181 if (status & AN_EV_LINKSTAT) {
1182 if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350))
1183 == AN_LINKSTAT_ASSOCIATED)
1184 sc->an_associated = 1;
1185 else
1186 sc->an_associated = 0;
1187 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1188 }
1189
1190 if (status & AN_EV_RX) {
1191 an_rxeof(sc);
1192 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1193 }
1194
1195 if (status & AN_EV_TX) {
1196 an_txeof(sc, status);
1197 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1198 }
1199
1200 if (status & AN_EV_TX_EXC) {
1201 an_txeof(sc, status);
1202 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1203 }
1204
1205 if (status & AN_EV_ALLOC)
1206 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1207
1208 /* Re-enable interrupts. */
1209 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS);
1210
1211 if ((ifp->if_flags & IFF_UP) && (ifp->if_snd.ifq_head != NULL))
1212 an_start(ifp);
1213
1214 return;
1215}
1216
1217static int
1218an_cmd_struct(sc, cmd, reply)
1219 struct an_softc *sc;
1220 struct an_command *cmd;
1221 struct an_reply *reply;
1222{
1223 int i;
1224
1225 for (i = 0; i != AN_TIMEOUT; i++) {
1226 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1227 DELAY(1000);
1228 } else
1229 break;
1230 }
1231 if( i == AN_TIMEOUT) {
1232 printf("BUSY\n");
1233 return(ETIMEDOUT);
1234 }
1235
1236 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1237 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1238 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1239 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1240
1241 for (i = 0; i < AN_TIMEOUT; i++) {
1242 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1243 break;
1244 DELAY(1000);
1245 }
1246
1247 reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1248 reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1249 reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1250 reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1251
1252 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1253 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1254
1255 /* Ack the command */
1256 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1257
1258 if (i == AN_TIMEOUT)
1259 return(ETIMEDOUT);
1260
1261 return(0);
1262}
1263
1264static int
1265an_cmd(sc, cmd, val)
1266 struct an_softc *sc;
1267 int cmd;
1268 int val;
1269{
1270 int i, s = 0;
1271
1272 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1273 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1274 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1275 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1276
1277 for (i = 0; i < AN_TIMEOUT; i++) {
1278 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1279 break;
1280 else {
1281 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1282 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1283 }
1284 }
1285
1286 for (i = 0; i < AN_TIMEOUT; i++) {
1287 CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1288 CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1289 CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1290 s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1291 if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1292 break;
1293 }
1294
1295 /* Ack the command */
1296 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1297
1298 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1299 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1300
1301 if (i == AN_TIMEOUT)
1302 return(ETIMEDOUT);
1303
1304 return(0);
1305}
1306
1307/*
1308 * This reset sequence may look a little strange, but this is the
1309 * most reliable method I've found to really kick the NIC in the
1310 * head and force it to reboot correctly.
1311 */
1312static void
1313an_reset(sc)
1314 struct an_softc *sc;
1315{
1316 if (sc->an_gone)
1317 return;
1318
1319 an_cmd(sc, AN_CMD_ENABLE, 0);
1320 an_cmd(sc, AN_CMD_FW_RESTART, 0);
1321 an_cmd(sc, AN_CMD_NOOP2, 0);
1322
1323 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1324 printf("an%d: reset failed\n", sc->an_unit);
1325
1326 an_cmd(sc, AN_CMD_DISABLE, 0);
1327
1328 return;
1329}
1330
1331/*
1332 * Read an LTV record from the NIC.
1333 */
1334static int
1335an_read_record(sc, ltv)
1336 struct an_softc *sc;
1337 struct an_ltv_gen *ltv;
1338{
1339 struct an_ltv_gen *an_ltv;
1340 struct an_card_rid_desc an_rid_desc;
1341 struct an_command cmd;
1342 struct an_reply reply;
1343 u_int16_t *ptr;
1344 u_int8_t *ptr2;
1345 int i, len;
1346
1347 if (ltv->an_len < 4 || ltv->an_type == 0)
1348 return(EINVAL);
1349
1350 if (!sc->mpi350){
1351 /* Tell the NIC to enter record read mode. */
1352 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1353 printf("an%d: RID access failed\n", sc->an_unit);
1354 return(EIO);
1355 }
1356
1357 /* Seek to the record. */
1358 if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1359 printf("an%d: seek to record failed\n", sc->an_unit);
1360 return(EIO);
1361 }
1362
1363 /*
1364 * Read the length and record type and make sure they
1365 * match what we expect (this verifies that we have enough
1366 * room to hold all of the returned data).
1367 * Length includes type but not length.
1368 */
1369 len = CSR_READ_2(sc, AN_DATA1);
1370 if (len > (ltv->an_len - 2)) {
1371 printf("an%d: record length mismatch -- expected %d, "
1372 "got %d for Rid %x\n", sc->an_unit,
1373 ltv->an_len - 2, len, ltv->an_type);
1374 len = ltv->an_len - 2;
1375 } else {
1376 ltv->an_len = len + 2;
1377 }
1378
1379 /* Now read the data. */
1380 len -= 2; /* skip the type */
1381 ptr = &ltv->an_val;
1382 for (i = len; i > 1; i -= 2)
1383 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1384 if (i) {
1385 ptr2 = (u_int8_t *)ptr;
1386 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1387 }
1388 } else { /* MPI-350 */
1389 an_rid_desc.an_valid = 1;
1390 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1391 an_rid_desc.an_rid = 0;
1392 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1393 bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1394
1395 bzero(&cmd, sizeof(cmd));
1396 bzero(&reply, sizeof(reply));
1397 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1398 cmd.an_parm0 = ltv->an_type;
1399
1400 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1401 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1402 ((u_int32_t*)&an_rid_desc)[i]);
1403
1404 if (an_cmd_struct(sc, &cmd, &reply)
1405 || reply.an_status & AN_CMD_QUAL_MASK) {
1406 printf("an%d: failed to read RID %x %x %x %x %x, %d\n",
1407 sc->an_unit, ltv->an_type,
1408 reply.an_status,
1409 reply.an_resp0,
1410 reply.an_resp1,
1411 reply.an_resp2,
1412 i);
1413 return(EIO);
1414 }
1415
1416 an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1417 if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1418 an_rid_desc.an_len = an_ltv->an_len;
1419 }
1420
1421 if (an_rid_desc.an_len > 2)
1422 bcopy(&an_ltv->an_type,
1423 &ltv->an_val,
1424 an_rid_desc.an_len - 2);
1425 ltv->an_len = an_rid_desc.an_len + 2;
1426 }
1427
1428 if (an_dump)
1429 an_dump_record(sc, ltv, "Read");
1430
1431 return(0);
1432}
1433
1434/*
1435 * Same as read, except we inject data instead of reading it.
1436 */
1437static int
1438an_write_record(sc, ltv)
1439 struct an_softc *sc;
1440 struct an_ltv_gen *ltv;
1441{
1442 struct an_card_rid_desc an_rid_desc;
1443 struct an_command cmd;
1444 struct an_reply reply;
1445 char *buf;
1446 u_int16_t *ptr;
1447 u_int8_t *ptr2;
1448 int i, len;
1449
1450 if (an_dump)
1451 an_dump_record(sc, ltv, "Write");
1452
1453 if (!sc->mpi350){
1454 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1455 return(EIO);
1456
1457 if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1458 return(EIO);
1459
1460 /*
1461 * Length includes type but not length.
1462 */
1463 len = ltv->an_len - 2;
1464 CSR_WRITE_2(sc, AN_DATA1, len);
1465
1466 len -= 2; /* skip the type */
1467 ptr = &ltv->an_val;
1468 for (i = len; i > 1; i -= 2)
1469 CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1470 if (i) {
1471 ptr2 = (u_int8_t *)ptr;
1472 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1473 }
1474
1475 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1476 return(EIO);
1477 } else {
1478 /* MPI-350 */
1479
1480 for (i = 0; i != AN_TIMEOUT; i++) {
1481 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350))
1482 & AN_CMD_BUSY) {
1483 DELAY(10);
1484 } else
1485 break;
1486 }
1487 if (i == AN_TIMEOUT) {
1488 printf("BUSY\n");
1489 }
1490
1491 an_rid_desc.an_valid = 1;
1492 an_rid_desc.an_len = ltv->an_len - 2;
1493 an_rid_desc.an_rid = ltv->an_type;
1494 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1495
1496 bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1497 an_rid_desc.an_len);
1498
1499 bzero(&cmd,sizeof(cmd));
1500 bzero(&reply,sizeof(reply));
1501 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1502 cmd.an_parm0 = ltv->an_type;
1503
1504 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1505 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1506 ((u_int32_t*)&an_rid_desc)[i]);
1507
1508 if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1509 printf("an%d: failed to write RID 1 %x %x %x %x %x, %d\n",
1510 sc->an_unit, ltv->an_type,
1511 reply.an_status,
1512 reply.an_resp0,
1513 reply.an_resp1,
1514 reply.an_resp2,
1515 i);
1516 return(EIO);
1517 }
1518
1519 ptr = (u_int16_t *)buf;
1520
1521 if (reply.an_status & AN_CMD_QUAL_MASK) {
1522 printf("an%d: failed to write RID 2 %x %x %x %x %x, %d\n",
1523 sc->an_unit, ltv->an_type,
1524 reply.an_status,
1525 reply.an_resp0,
1526 reply.an_resp1,
1527 reply.an_resp2,
1528 i);
1529 return(EIO);
1530 }
1531 }
1532
1533 return(0);
1534}
1535
1536static void
1537an_dump_record(sc, ltv, string)
1538 struct an_softc *sc;
1539 struct an_ltv_gen *ltv;
1540 char *string;
1541{
1542 u_int8_t *ptr2;
1543 int len;
1544 int i;
1545 int count = 0;
1546 char buf[17], temp;
1547
1548 len = ltv->an_len - 4;
1549 printf("an%d: RID %4x, Length %4d, Mode %s\n",
1550 sc->an_unit, ltv->an_type, ltv->an_len - 4, string);
1551
1552 if (an_dump == 1 || (an_dump == ltv->an_type)) {
1553 printf("an%d:\t", sc->an_unit);
1554 bzero(buf,sizeof(buf));
1555
1556 ptr2 = (u_int8_t *)&ltv->an_val;
1557 for (i = len; i > 0; i--) {
1558 printf("%02x ", *ptr2);
1559
1560 temp = *ptr2++;
1561 if (temp >= ' ' && temp <= '~')
1562 buf[count] = temp;
1563 else if (temp >= 'A' && temp <= 'Z')
1564 buf[count] = temp;
1565 else
1566 buf[count] = '.';
1567 if (++count == 16) {
1568 count = 0;
1569 printf("%s\n",buf);
1570 printf("an%d:\t", sc->an_unit);
1571 bzero(buf,sizeof(buf));
1572 }
1573 }
1574 for (; count != 16; count++) {
1575 printf(" ");
1576 }
1577 printf(" %s\n",buf);
1578 }
1579}
1580
1581static int
1582an_seek(sc, id, off, chan)
1583 struct an_softc *sc;
1584 int id, off, chan;
1585{
1586 int i;
1587 int selreg, offreg;
1588
1589 switch (chan) {
1590 case AN_BAP0:
1591 selreg = AN_SEL0;
1592 offreg = AN_OFF0;
1593 break;
1594 case AN_BAP1:
1595 selreg = AN_SEL1;
1596 offreg = AN_OFF1;
1597 break;
1598 default:
1599 printf("an%d: invalid data path: %x\n", sc->an_unit, chan);
1600 return(EIO);
1601 }
1602
1603 CSR_WRITE_2(sc, selreg, id);
1604 CSR_WRITE_2(sc, offreg, off);
1605
1606 for (i = 0; i < AN_TIMEOUT; i++) {
1607 if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1608 break;
1609 }
1610
1611 if (i == AN_TIMEOUT)
1612 return(ETIMEDOUT);
1613
1614 return(0);
1615}
1616
1617static int
1618an_read_data(sc, id, off, buf, len)
1619 struct an_softc *sc;
1620 int id, off;
1621 caddr_t buf;
1622 int len;
1623{
1624 int i;
1625 u_int16_t *ptr;
1626 u_int8_t *ptr2;
1627
1628 if (off != -1) {
1629 if (an_seek(sc, id, off, AN_BAP1))
1630 return(EIO);
1631 }
1632
1633 ptr = (u_int16_t *)buf;
1634 for (i = len; i > 1; i -= 2)
1635 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1636 if (i) {
1637 ptr2 = (u_int8_t *)ptr;
1638 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1639 }
1640
1641 return(0);
1642}
1643
1644static int
1645an_write_data(sc, id, off, buf, len)
1646 struct an_softc *sc;
1647 int id, off;
1648 caddr_t buf;
1649 int len;
1650{
1651 int i;
1652 u_int16_t *ptr;
1653 u_int8_t *ptr2;
1654
1655 if (off != -1) {
1656 if (an_seek(sc, id, off, AN_BAP0))
1657 return(EIO);
1658 }
1659
1660 ptr = (u_int16_t *)buf;
1661 for (i = len; i > 1; i -= 2)
1662 CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1663 if (i) {
1664 ptr2 = (u_int8_t *)ptr;
1665 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1666 }
1667
1668 return(0);
1669}
1670
1671/*
1672 * Allocate a region of memory inside the NIC and zero
1673 * it out.
1674 */
1675static int
1676an_alloc_nicmem(sc, len, id)
1677 struct an_softc *sc;
1678 int len;
1679 int *id;
1680{
1681 int i;
1682
1683 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1684 printf("an%d: failed to allocate %d bytes on NIC\n",
1685 sc->an_unit, len);
1686 return(ENOMEM);
1687 }
1688
1689 for (i = 0; i < AN_TIMEOUT; i++) {
1690 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1691 break;
1692 }
1693
1694 if (i == AN_TIMEOUT)
1695 return(ETIMEDOUT);
1696
1697 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1698 *id = CSR_READ_2(sc, AN_ALLOC_FID);
1699
1700 if (an_seek(sc, *id, 0, AN_BAP0))
1701 return(EIO);
1702
1703 for (i = 0; i < len / 2; i++)
1704 CSR_WRITE_2(sc, AN_DATA0, 0);
1705
1706 return(0);
1707}
1708
1709static void
1710an_setdef(sc, areq)
1711 struct an_softc *sc;
1712 struct an_req *areq;
1713{
1714 struct sockaddr_dl *sdl;
1715 struct ifaddr *ifa;
1716 struct ifnet *ifp;
1717 struct an_ltv_genconfig *cfg;
1718 struct an_ltv_ssidlist *ssid;
1719 struct an_ltv_aplist *ap;
1720 struct an_ltv_gen *sp;
1721
1722 ifp = &sc->arpcom.ac_if;
1723
1724 switch (areq->an_type) {
1725 case AN_RID_GENCONFIG:
1726 cfg = (struct an_ltv_genconfig *)areq;
1727
1728 ifa = ifnet_addrs[ifp->if_index - 1];
1729 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1730 bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1731 ETHER_ADDR_LEN);
1732 bcopy((char *)&cfg->an_macaddr, LLADDR(sdl), ETHER_ADDR_LEN);
1733
1734 bcopy((char *)cfg, (char *)&sc->an_config,
1735 sizeof(struct an_ltv_genconfig));
1736 break;
1737 case AN_RID_SSIDLIST:
1738 ssid = (struct an_ltv_ssidlist *)areq;
1739 bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1740 sizeof(struct an_ltv_ssidlist));
1741 break;
1742 case AN_RID_APLIST:
1743 ap = (struct an_ltv_aplist *)areq;
1744 bcopy((char *)ap, (char *)&sc->an_aplist,
1745 sizeof(struct an_ltv_aplist));
1746 break;
1747 case AN_RID_TX_SPEED:
1748 sp = (struct an_ltv_gen *)areq;
1749 sc->an_tx_rate = sp->an_val;
1750
1751 /* Read the current configuration */
1752 sc->an_config.an_type = AN_RID_GENCONFIG;
1753 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1754 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1755 cfg = &sc->an_config;
1756
1757 /* clear other rates and set the only one we want */
1758 bzero(cfg->an_rates, sizeof(cfg->an_rates));
1759 cfg->an_rates[0] = sc->an_tx_rate;
1760
1761 /* Save the new rate */
1762 sc->an_config.an_type = AN_RID_GENCONFIG;
1763 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1764 break;
1765 case AN_RID_WEP_TEMP:
1766 /* Cache the temp keys */
1767 bcopy(areq,
1768 &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex],
1769 sizeof(struct an_ltv_key));
1770 case AN_RID_WEP_PERM:
1771 case AN_RID_LEAPUSERNAME:
1772 case AN_RID_LEAPPASSWORD:
1773 /* Disable the MAC. */
1774 an_cmd(sc, AN_CMD_DISABLE, 0);
1775
1776 /* Write the key */
1777 an_write_record(sc, (struct an_ltv_gen *)areq);
1778
1779 /* Turn the MAC back on. */
1780 an_cmd(sc, AN_CMD_ENABLE, 0);
1781
1782 break;
1783 case AN_RID_MONITOR_MODE:
1784 cfg = (struct an_ltv_genconfig *)areq;
1785 bpfdetach(ifp);
1786 if (ng_ether_detach_p != NULL)
1787 (*ng_ether_detach_p) (ifp);
1788 sc->an_monitor = cfg->an_len;
1789
1790 if (sc->an_monitor & AN_MONITOR) {
1791 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1792 bpfattach(ifp, DLT_AIRONET_HEADER,
1793 sizeof(struct ether_header));
1794 } else {
1795 bpfattach(ifp, DLT_IEEE802_11,
1796 sizeof(struct ether_header));
1797 }
1798 } else {
1799 bpfattach(ifp, DLT_EN10MB,
1800 sizeof(struct ether_header));
1801 if (ng_ether_attach_p != NULL)
1802 (*ng_ether_attach_p) (ifp);
1803 }
1804 break;
1805 default:
1806 printf("an%d: unknown RID: %x\n", sc->an_unit, areq->an_type);
1807 return;
1808 break;
1809 }
1810
1811
1812 /* Reinitialize the card. */
1813 if (ifp->if_flags)
1814 an_init(sc);
1815
1816 return;
1817}
1818
1819/*
1820 * Derived from Linux driver to enable promiscious mode.
1821 */
1822
1823static void
1824an_promisc(sc, promisc)
1825 struct an_softc *sc;
1826 int promisc;
1827{
1828 if (sc->an_was_monitor)
1829 an_reset(sc);
1830 if (sc->mpi350)
1831 an_init_mpi350_desc(sc);
1832 if (sc->an_monitor || sc->an_was_monitor)
1833 an_init(sc);
1834
1835 sc->an_was_monitor = sc->an_monitor;
1836 an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1837
1838 return;
1839}
1840
1841static int
1842an_ioctl(ifp, command, data)
1843 struct ifnet *ifp;
1844 u_long command;
1845 caddr_t data;
1846{
1847 int s, error = 0;
1848 int len;
1849 int i;
1850 struct an_softc *sc;
1851 struct ifreq *ifr;
dadab5e9 1852 struct thread *td = curthread;
984263bc
MD
1853 struct ieee80211req *ireq;
1854 u_int8_t tmpstr[IEEE80211_NWID_LEN*2];
1855 u_int8_t *tmpptr;
1856 struct an_ltv_genconfig *config;
1857 struct an_ltv_key *key;
1858 struct an_ltv_status *status;
1859 struct an_ltv_ssidlist *ssids;
1860 int mode;
1861 struct aironet_ioctl l_ioctl;
1862
1863 sc = ifp->if_softc;
1864 s = splimp();
1865 ifr = (struct ifreq *)data;
1866 ireq = (struct ieee80211req *)data;
1867
1868 config = (struct an_ltv_genconfig *)&sc->areq;
1869 key = (struct an_ltv_key *)&sc->areq;
1870 status = (struct an_ltv_status *)&sc->areq;
1871 ssids = (struct an_ltv_ssidlist *)&sc->areq;
1872
1873 if (sc->an_gone) {
1874 error = ENODEV;
1875 goto out;
1876 }
1877
1878 switch (command) {
1879 case SIOCSIFADDR:
1880 case SIOCGIFADDR:
1881 case SIOCSIFMTU:
1882 error = ether_ioctl(ifp, command, data);
1883 break;
1884 case SIOCSIFFLAGS:
1885 if (ifp->if_flags & IFF_UP) {
1886 if (ifp->if_flags & IFF_RUNNING &&
1887 ifp->if_flags & IFF_PROMISC &&
1888 !(sc->an_if_flags & IFF_PROMISC)) {
1889 an_promisc(sc, 1);
1890 } else if (ifp->if_flags & IFF_RUNNING &&
1891 !(ifp->if_flags & IFF_PROMISC) &&
1892 sc->an_if_flags & IFF_PROMISC) {
1893 an_promisc(sc, 0);
1894 } else
1895 an_init(sc);
1896 } else {
1897 if (ifp->if_flags & IFF_RUNNING)
1898 an_stop(sc);
1899 }
1900 sc->an_if_flags = ifp->if_flags;
1901 error = 0;
1902 break;
1903 case SIOCSIFMEDIA:
1904 case SIOCGIFMEDIA:
1905 error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1906 break;
1907 case SIOCADDMULTI:
1908 case SIOCDELMULTI:
1909 /* The Aironet has no multicast filter. */
1910 error = 0;
1911 break;
1912 case SIOCGAIRONET:
1913 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1914 if (error != 0)
1915 break;
1916#ifdef ANCACHE
1917 if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
dadab5e9 1918 error = suser(td);
984263bc
MD
1919 if (error)
1920 break;
1921 sc->an_sigitems = sc->an_nextitem = 0;
1922 break;
1923 } else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1924 char *pt = (char *)&sc->areq.an_val;
1925 bcopy((char *)&sc->an_sigitems, (char *)pt,
1926 sizeof(int));
1927 pt += sizeof(int);
1928 sc->areq.an_len = sizeof(int) / 2;
1929 bcopy((char *)&sc->an_sigcache, (char *)pt,
1930 sizeof(struct an_sigcache) * sc->an_sigitems);
1931 sc->areq.an_len += ((sizeof(struct an_sigcache) *
1932 sc->an_sigitems) / 2) + 1;
1933 } else
1934#endif
1935 if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1936 error = EINVAL;
1937 break;
1938 }
1939 error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1940 break;
1941 case SIOCSAIRONET:
dadab5e9 1942 if ((error = suser(td)))
984263bc
MD
1943 goto out;
1944 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1945 if (error != 0)
1946 break;
1947 an_setdef(sc, &sc->areq);
1948 break;
1949 case SIOCGPRIVATE_0: /* used by Cisco client utility */
dadab5e9 1950 if ((error = suser(td)))
984263bc
MD
1951 goto out;
1952 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1953 mode = l_ioctl.command;
1954
1955 if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1956 error = readrids(ifp, &l_ioctl);
1957 } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1958 error = writerids(ifp, &l_ioctl);
1959 } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1960 error = flashcard(ifp, &l_ioctl);
1961 } else {
1962 error =-1;
1963 }
1964
1965 /* copy out the updated command info */
1966 copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1967
1968 break;
1969 case SIOCGPRIVATE_1: /* used by Cisco client utility */
dadab5e9 1970 if ((error = suser(td)))
984263bc
MD
1971 goto out;
1972 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1973 l_ioctl.command = 0;
1974 error = AIROMAGIC;
1975 copyout(&error, l_ioctl.data, sizeof(error));
1976 error = 0;
1977 break;
1978 case SIOCG80211:
1979 sc->areq.an_len = sizeof(sc->areq);
1980 /* was that a good idea DJA we are doing a short-cut */
1981 switch (ireq->i_type) {
1982 case IEEE80211_IOC_SSID:
1983 if (ireq->i_val == -1) {
1984 sc->areq.an_type = AN_RID_STATUS;
1985 if (an_read_record(sc,
1986 (struct an_ltv_gen *)&sc->areq)) {
1987 error = EINVAL;
1988 break;
1989 }
1990 len = status->an_ssidlen;
1991 tmpptr = status->an_ssid;
1992 } else if (ireq->i_val >= 0) {
1993 sc->areq.an_type = AN_RID_SSIDLIST;
1994 if (an_read_record(sc,
1995 (struct an_ltv_gen *)&sc->areq)) {
1996 error = EINVAL;
1997 break;
1998 }
1999 if (ireq->i_val == 0) {
2000 len = ssids->an_ssid1_len;
2001 tmpptr = ssids->an_ssid1;
2002 } else if (ireq->i_val == 1) {
2003 len = ssids->an_ssid2_len;
2004 tmpptr = ssids->an_ssid2;
2005 } else if (ireq->i_val == 2) {
2006 len = ssids->an_ssid3_len;
2007 tmpptr = ssids->an_ssid3;
2008 } else {
2009 error = EINVAL;
2010 break;
2011 }
2012 } else {
2013 error = EINVAL;
2014 break;
2015 }
2016 if (len > IEEE80211_NWID_LEN) {
2017 error = EINVAL;
2018 break;
2019 }
2020 ireq->i_len = len;
2021 bzero(tmpstr, IEEE80211_NWID_LEN);
2022 bcopy(tmpptr, tmpstr, len);
2023 error = copyout(tmpstr, ireq->i_data,
2024 IEEE80211_NWID_LEN);
2025 break;
2026 case IEEE80211_IOC_NUMSSIDS:
2027 ireq->i_val = 3;
2028 break;
2029 case IEEE80211_IOC_WEP:
2030 sc->areq.an_type = AN_RID_ACTUALCFG;
2031 if (an_read_record(sc,
2032 (struct an_ltv_gen *)&sc->areq)) {
2033 error = EINVAL;
2034 break;
2035 }
2036 if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2037 if (config->an_authtype &
2038 AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2039 ireq->i_val = IEEE80211_WEP_MIXED;
2040 else
2041 ireq->i_val = IEEE80211_WEP_ON;
2042 } else {
2043 ireq->i_val = IEEE80211_WEP_OFF;
2044 }
2045 break;
2046 case IEEE80211_IOC_WEPKEY:
2047 /*
2048 * XXX: I'm not entierly convinced this is
2049 * correct, but it's what is implemented in
2050 * ancontrol so it will have to do until we get
2051 * access to actual Cisco code.
2052 */
2053 if (ireq->i_val < 0 || ireq->i_val > 8) {
2054 error = EINVAL;
2055 break;
2056 }
2057 len = 0;
2058 if (ireq->i_val < 5) {
2059 sc->areq.an_type = AN_RID_WEP_TEMP;
2060 for (i = 0; i < 5; i++) {
2061 if (an_read_record(sc,
2062 (struct an_ltv_gen *)&sc->areq)) {
2063 error = EINVAL;
2064 break;
2065 }
2066 if (key->kindex == 0xffff)
2067 break;
2068 if (key->kindex == ireq->i_val)
2069 len = key->klen;
2070 /* Required to get next entry */
2071 sc->areq.an_type = AN_RID_WEP_PERM;
2072 }
2073 if (error != 0)
2074 break;
2075 }
2076 /* We aren't allowed to read the value of the
2077 * key from the card so we just output zeros
2078 * like we would if we could read the card, but
2079 * denied the user access.
2080 */
2081 bzero(tmpstr, len);
2082 ireq->i_len = len;
2083 error = copyout(tmpstr, ireq->i_data, len);
2084 break;
2085 case IEEE80211_IOC_NUMWEPKEYS:
2086 ireq->i_val = 9; /* include home key */
2087 break;
2088 case IEEE80211_IOC_WEPTXKEY:
2089 /*
2090 * For some strange reason, you have to read all
2091 * keys before you can read the txkey.
2092 */
2093 sc->areq.an_type = AN_RID_WEP_TEMP;
2094 for (i = 0; i < 5; i++) {
2095 if (an_read_record(sc,
2096 (struct an_ltv_gen *) &sc->areq)) {
2097 error = EINVAL;
2098 break;
2099 }
2100 if (key->kindex == 0xffff)
2101 break;
2102 /* Required to get next entry */
2103 sc->areq.an_type = AN_RID_WEP_PERM;
2104 }
2105 if (error != 0)
2106 break;
2107
2108 sc->areq.an_type = AN_RID_WEP_PERM;
2109 key->kindex = 0xffff;
2110 if (an_read_record(sc,
2111 (struct an_ltv_gen *)&sc->areq)) {
2112 error = EINVAL;
2113 break;
2114 }
2115 ireq->i_val = key->mac[0];
2116 /*
2117 * Check for home mode. Map home mode into
2118 * 5th key since that is how it is stored on
2119 * the card
2120 */
2121 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2122 sc->areq.an_type = AN_RID_GENCONFIG;
2123 if (an_read_record(sc,
2124 (struct an_ltv_gen *)&sc->areq)) {
2125 error = EINVAL;
2126 break;
2127 }
2128 if (config->an_home_product & AN_HOME_NETWORK)
2129 ireq->i_val = 4;
2130 break;
2131 case IEEE80211_IOC_AUTHMODE:
2132 sc->areq.an_type = AN_RID_ACTUALCFG;
2133 if (an_read_record(sc,
2134 (struct an_ltv_gen *)&sc->areq)) {
2135 error = EINVAL;
2136 break;
2137 }
2138 if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2139 AN_AUTHTYPE_NONE) {
2140 ireq->i_val = IEEE80211_AUTH_NONE;
2141 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2142 AN_AUTHTYPE_OPEN) {
2143 ireq->i_val = IEEE80211_AUTH_OPEN;
2144 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2145 AN_AUTHTYPE_SHAREDKEY) {
2146 ireq->i_val = IEEE80211_AUTH_SHARED;
2147 } else
2148 error = EINVAL;
2149 break;
2150 case IEEE80211_IOC_STATIONNAME:
2151 sc->areq.an_type = AN_RID_ACTUALCFG;
2152 if (an_read_record(sc,
2153 (struct an_ltv_gen *)&sc->areq)) {
2154 error = EINVAL;
2155 break;
2156 }
2157 ireq->i_len = sizeof(config->an_nodename);
2158 tmpptr = config->an_nodename;
2159 bzero(tmpstr, IEEE80211_NWID_LEN);
2160 bcopy(tmpptr, tmpstr, ireq->i_len);
2161 error = copyout(tmpstr, ireq->i_data,
2162 IEEE80211_NWID_LEN);
2163 break;
2164 case IEEE80211_IOC_CHANNEL:
2165 sc->areq.an_type = AN_RID_STATUS;
2166 if (an_read_record(sc,
2167 (struct an_ltv_gen *)&sc->areq)) {
2168 error = EINVAL;
2169 break;
2170 }
2171 ireq->i_val = status->an_cur_channel;
2172 break;
2173 case IEEE80211_IOC_POWERSAVE:
2174 sc->areq.an_type = AN_RID_ACTUALCFG;
2175 if (an_read_record(sc,
2176 (struct an_ltv_gen *)&sc->areq)) {
2177 error = EINVAL;
2178 break;
2179 }
2180 if (config->an_psave_mode == AN_PSAVE_NONE) {
2181 ireq->i_val = IEEE80211_POWERSAVE_OFF;
2182 } else if (config->an_psave_mode == AN_PSAVE_CAM) {
2183 ireq->i_val = IEEE80211_POWERSAVE_CAM;
2184 } else if (config->an_psave_mode == AN_PSAVE_PSP) {
2185 ireq->i_val = IEEE80211_POWERSAVE_PSP;
2186 } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2187 ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2188 } else
2189 error = EINVAL;
2190 break;
2191 case IEEE80211_IOC_POWERSAVESLEEP:
2192 sc->areq.an_type = AN_RID_ACTUALCFG;
2193 if (an_read_record(sc,
2194 (struct an_ltv_gen *)&sc->areq)) {
2195 error = EINVAL;
2196 break;
2197 }
2198 ireq->i_val = config->an_listen_interval;
2199 break;
2200 }
2201 break;
2202 case SIOCS80211:
dadab5e9 2203 if ((error = suser(td)))
984263bc
MD
2204 goto out;
2205 sc->areq.an_len = sizeof(sc->areq);
2206 /*
2207 * We need a config structure for everything but the WEP
2208 * key management and SSIDs so we get it now so avoid
2209 * duplicating this code every time.
2210 */
2211 if (ireq->i_type != IEEE80211_IOC_SSID &&
2212 ireq->i_type != IEEE80211_IOC_WEPKEY &&
2213 ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2214 sc->areq.an_type = AN_RID_GENCONFIG;
2215 if (an_read_record(sc,
2216 (struct an_ltv_gen *)&sc->areq)) {
2217 error = EINVAL;
2218 break;
2219 }
2220 }
2221 switch (ireq->i_type) {
2222 case IEEE80211_IOC_SSID:
2223 sc->areq.an_type = AN_RID_SSIDLIST;
2224 if (an_read_record(sc,
2225 (struct an_ltv_gen *)&sc->areq)) {
2226 error = EINVAL;
2227 break;
2228 }
2229 if (ireq->i_len > IEEE80211_NWID_LEN) {
2230 error = EINVAL;
2231 break;
2232 }
2233 switch (ireq->i_val) {
2234 case 0:
2235 error = copyin(ireq->i_data,
2236 ssids->an_ssid1, ireq->i_len);
2237 ssids->an_ssid1_len = ireq->i_len;
2238 break;
2239 case 1:
2240 error = copyin(ireq->i_data,
2241 ssids->an_ssid2, ireq->i_len);
2242 ssids->an_ssid2_len = ireq->i_len;
2243 break;
2244 case 2:
2245 error = copyin(ireq->i_data,
2246 ssids->an_ssid3, ireq->i_len);
2247 ssids->an_ssid3_len = ireq->i_len;
2248 break;
2249 default:
2250 error = EINVAL;
2251 break;
2252 }
2253 break;
2254 case IEEE80211_IOC_WEP:
2255 switch (ireq->i_val) {
2256 case IEEE80211_WEP_OFF:
2257 config->an_authtype &=
2258 ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2259 AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2260 break;
2261 case IEEE80211_WEP_ON:
2262 config->an_authtype |=
2263 AN_AUTHTYPE_PRIVACY_IN_USE;
2264 config->an_authtype &=
2265 ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2266 break;
2267 case IEEE80211_WEP_MIXED:
2268 config->an_authtype |=
2269 AN_AUTHTYPE_PRIVACY_IN_USE |
2270 AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2271 break;
2272 default:
2273 error = EINVAL;
2274 break;
2275 }
2276 break;
2277 case IEEE80211_IOC_WEPKEY:
2278 if (ireq->i_val < 0 || ireq->i_val > 8 ||
2279 ireq->i_len > 13) {
2280 error = EINVAL;
2281 break;
2282 }
2283 error = copyin(ireq->i_data, tmpstr, 13);
2284 if (error != 0)
2285 break;
2286 /*
2287 * Map the 9th key into the home mode
2288 * since that is how it is stored on
2289 * the card
2290 */
2291 bzero(&sc->areq, sizeof(struct an_ltv_key));
2292 sc->areq.an_len = sizeof(struct an_ltv_key);
2293 key->mac[0] = 1; /* The others are 0. */
2294 if (ireq->i_val < 4) {
2295 sc->areq.an_type = AN_RID_WEP_TEMP;
2296 key->kindex = ireq->i_val;
2297 } else {
2298 sc->areq.an_type = AN_RID_WEP_PERM;
2299 key->kindex = ireq->i_val - 4;
2300 }
2301 key->klen = ireq->i_len;
2302 bcopy(tmpstr, key->key, key->klen);
2303 break;
2304 case IEEE80211_IOC_WEPTXKEY:
2305 if (ireq->i_val < 0 || ireq->i_val > 4) {
2306 error = EINVAL;
2307 break;
2308 }
2309
2310 /*
2311 * Map the 5th key into the home mode
2312 * since that is how it is stored on
2313 * the card
2314 */
2315 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2316 sc->areq.an_type = AN_RID_ACTUALCFG;
2317 if (an_read_record(sc,
2318 (struct an_ltv_gen *)&sc->areq)) {
2319 error = EINVAL;
2320 break;
2321 }
2322 if (ireq->i_val == 4) {
2323 config->an_home_product |= AN_HOME_NETWORK;
2324 ireq->i_val = 0;
2325 } else {
2326 config->an_home_product &= ~AN_HOME_NETWORK;
2327 }
2328
2329 sc->an_config.an_home_product
2330 = config->an_home_product;
2331
2332 /* update configuration */
2333 an_init(sc);
2334
2335 bzero(&sc->areq, sizeof(struct an_ltv_key));
2336 sc->areq.an_len = sizeof(struct an_ltv_key);
2337 sc->areq.an_type = AN_RID_WEP_PERM;
2338 key->kindex = 0xffff;
2339 key->mac[0] = ireq->i_val;
2340 break;
2341 case IEEE80211_IOC_AUTHMODE:
2342 switch (ireq->i_val) {
2343 case IEEE80211_AUTH_NONE:
2344 config->an_authtype = AN_AUTHTYPE_NONE |
2345 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2346 break;
2347 case IEEE80211_AUTH_OPEN:
2348 config->an_authtype = AN_AUTHTYPE_OPEN |
2349 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2350 break;
2351 case IEEE80211_AUTH_SHARED:
2352 config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2353 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2354 break;
2355 default:
2356 error = EINVAL;
2357 }
2358 break;
2359 case IEEE80211_IOC_STATIONNAME:
2360 if (ireq->i_len > 16) {
2361 error = EINVAL;
2362 break;
2363 }
2364 bzero(config->an_nodename, 16);
2365 error = copyin(ireq->i_data,
2366 config->an_nodename, ireq->i_len);
2367 break;
2368 case IEEE80211_IOC_CHANNEL:
2369 /*
2370 * The actual range is 1-14, but if you set it
2371 * to 0 you get the default so we let that work
2372 * too.
2373 */
2374 if (ireq->i_val < 0 || ireq->i_val >14) {
2375 error = EINVAL;
2376 break;
2377 }
2378 config->an_ds_channel = ireq->i_val;
2379 break;
2380 case IEEE80211_IOC_POWERSAVE:
2381 switch (ireq->i_val) {
2382 case IEEE80211_POWERSAVE_OFF:
2383 config->an_psave_mode = AN_PSAVE_NONE;
2384 break;
2385 case IEEE80211_POWERSAVE_CAM:
2386 config->an_psave_mode = AN_PSAVE_CAM;
2387 break;
2388 case IEEE80211_POWERSAVE_PSP:
2389 config->an_psave_mode = AN_PSAVE_PSP;
2390 break;
2391 case IEEE80211_POWERSAVE_PSP_CAM:
2392 config->an_psave_mode = AN_PSAVE_PSP_CAM;
2393 break;
2394 default:
2395 error = EINVAL;
2396 break;
2397 }
2398 break;
2399 case IEEE80211_IOC_POWERSAVESLEEP:
2400 config->an_listen_interval = ireq->i_val;
2401 break;
2402 }
2403
2404 if (!error)
2405 an_setdef(sc, &sc->areq);
2406 break;
2407 default:
2408 error = EINVAL;
2409 break;
2410 }
2411out:
2412 splx(s);
2413
2414 return(error != 0);
2415}
2416
2417static int
2418an_init_tx_ring(sc)
2419 struct an_softc *sc;
2420{
2421 int i;
2422 int id;
2423
2424 if (sc->an_gone)
2425 return (0);
2426
2427 if (!sc->mpi350) {
2428 for (i = 0; i < AN_TX_RING_CNT; i++) {
2429 if (an_alloc_nicmem(sc, 1518 +
2430 0x44, &id))
2431 return(ENOMEM);
2432 sc->an_rdata.an_tx_fids[i] = id;
2433 sc->an_rdata.an_tx_ring[i] = 0;
2434 }
2435 }
2436
2437 sc->an_rdata.an_tx_prod = 0;
2438 sc->an_rdata.an_tx_cons = 0;
2439 sc->an_rdata.an_tx_empty = 1;
2440
2441 return(0);
2442}
2443
2444static void
2445an_init(xsc)
2446 void *xsc;
2447{
2448 struct an_softc *sc = xsc;
2449 struct ifnet *ifp = &sc->arpcom.ac_if;
2450 int s;
2451
2452 s = splimp();
2453
2454 if (sc->an_gone) {
2455 splx(s);
2456 return;
2457 }
2458
2459 if (ifp->if_flags & IFF_RUNNING)
2460 an_stop(sc);
2461
2462 sc->an_associated = 0;
2463
2464 /* Allocate the TX buffers */
2465 if (an_init_tx_ring(sc)) {
2466 an_reset(sc);
2467 if (sc->mpi350)
2468 an_init_mpi350_desc(sc);
2469 if (an_init_tx_ring(sc)) {
2470 printf("an%d: tx buffer allocation "
2471 "failed\n", sc->an_unit);
2472 splx(s);
2473 return;
2474 }
2475 }
2476
2477 /* Set our MAC address. */
2478 bcopy((char *)&sc->arpcom.ac_enaddr,
2479 (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2480
2481 if (ifp->if_flags & IFF_BROADCAST)
2482 sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2483 else
2484 sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2485
2486 if (ifp->if_flags & IFF_MULTICAST)
2487 sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2488
2489 if (ifp->if_flags & IFF_PROMISC) {
2490 if (sc->an_monitor & AN_MONITOR) {
2491 if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2492 sc->an_config.an_rxmode |=
2493 AN_RXMODE_80211_MONITOR_ANYBSS |
2494 AN_RXMODE_NO_8023_HEADER;
2495 } else {
2496 sc->an_config.an_rxmode |=
2497 AN_RXMODE_80211_MONITOR_CURBSS |
2498 AN_RXMODE_NO_8023_HEADER;
2499 }
2500 }
2501 }
2502
2503 if (sc->an_have_rssimap)
2504 sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2505
2506 /* Set the ssid list */
2507 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2508 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
2509 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2510 printf("an%d: failed to set ssid list\n", sc->an_unit);
2511 splx(s);
2512 return;
2513 }
2514
2515 /* Set the AP list */
2516 sc->an_aplist.an_type = AN_RID_APLIST;
2517 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2518 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2519 printf("an%d: failed to set AP list\n", sc->an_unit);
2520 splx(s);
2521 return;
2522 }
2523
2524 /* Set the configuration in the NIC */
2525 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2526 sc->an_config.an_type = AN_RID_GENCONFIG;
2527 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2528 printf("an%d: failed to set configuration\n", sc->an_unit);
2529 splx(s);
2530 return;
2531 }
2532
2533 /* Enable the MAC */
2534 if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2535 printf("an%d: failed to enable MAC\n", sc->an_unit);
2536 splx(s);
2537 return;
2538 }
2539
2540 if (ifp->if_flags & IFF_PROMISC)
2541 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2542
2543 /* enable interrupts */
2544 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS);
2545
2546 ifp->if_flags |= IFF_RUNNING;
2547 ifp->if_flags &= ~IFF_OACTIVE;
2548
2549 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
2550 splx(s);
2551
2552 return;
2553}
2554
2555static void
2556an_start(ifp)
2557 struct ifnet *ifp;
2558{
2559 struct an_softc *sc;
2560 struct mbuf *m0 = NULL;
2561 struct an_txframe_802_3 tx_frame_802_3;
2562 struct ether_header *eh;
2563 int id, idx, i;
2564 unsigned char txcontrol;
2565 struct an_card_tx_desc an_tx_desc;
2566 u_int8_t *ptr;
2567 u_int8_t *buf;
2568
2569 sc = ifp->if_softc;
2570
2571 if (sc->an_gone)
2572 return;
2573
2574 if (ifp->if_flags & IFF_OACTIVE)
2575 return;
2576
2577 if (!sc->an_associated)
2578 return;
2579
2580 /* We can't send in monitor mode so toss any attempts. */
2581 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2582 for (;;) {
2583 IF_DEQUEUE(&ifp->if_snd, m0);
2584 if (m0 == NULL)
2585 break;
2586 m_freem(m0);
2587 }
2588 return;
2589 }
2590
2591 idx = sc->an_rdata.an_tx_prod;
2592
2593 if (!sc->mpi350) {
2594 bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2595
2596 while (sc->an_rdata.an_tx_ring[idx] == 0) {
2597 IF_DEQUEUE(&ifp->if_snd, m0);
2598 if (m0 == NULL)
2599 break;
2600
2601 id = sc->an_rdata.an_tx_fids[idx];
2602 eh = mtod(m0, struct ether_header *);
2603
2604 bcopy((char *)&eh->ether_dhost,
2605 (char *)&tx_frame_802_3.an_tx_dst_addr,
2606 ETHER_ADDR_LEN);
2607 bcopy((char *)&eh->ether_shost,
2608 (char *)&tx_frame_802_3.an_tx_src_addr,
2609 ETHER_ADDR_LEN);
2610
2611 /* minus src/dest mac & type */
2612 tx_frame_802_3.an_tx_802_3_payload_len =
2613 m0->m_pkthdr.len - 12;
2614
2615 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2616 tx_frame_802_3.an_tx_802_3_payload_len,
2617 (caddr_t)&sc->an_txbuf);
2618
2619 txcontrol = AN_TXCTL_8023;
2620 /* write the txcontrol only */
2621 an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2622 sizeof(txcontrol));
2623
2624 /* 802_3 header */
2625 an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2626 sizeof(struct an_txframe_802_3));
2627
2628 /* in mbuf header type is just before payload */
2629 an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2630 tx_frame_802_3.an_tx_802_3_payload_len);
2631
2632 /*
2633 * If there's a BPF listner, bounce a copy of
2634 * this frame to him.
2635 */
2636 if (ifp->if_bpf)
2637 bpf_mtap(ifp, m0);
2638
2639 m_freem(m0);
2640 m0 = NULL;
2641
2642 sc->an_rdata.an_tx_ring[idx] = id;
2643 if (an_cmd(sc, AN_CMD_TX, id))
2644 printf("an%d: xmit failed\n", sc->an_unit);
2645
2646 AN_INC(idx, AN_TX_RING_CNT);
2647 }
2648 } else { /* MPI-350 */
2649 while (sc->an_rdata.an_tx_empty ||
2650 idx != sc->an_rdata.an_tx_cons) {
2651 IF_DEQUEUE(&ifp->if_snd, m0);
2652 if (m0 == NULL) {
2653 break;
2654 }
2655 buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2656
2657 eh = mtod(m0, struct ether_header *);
2658
2659 /* DJA optimize this to limit bcopy */
2660 bcopy((char *)&eh->ether_dhost,
2661 (char *)&tx_frame_802_3.an_tx_dst_addr,
2662 ETHER_ADDR_LEN);
2663 bcopy((char *)&eh->ether_shost,
2664 (char *)&tx_frame_802_3.an_tx_src_addr,
2665 ETHER_ADDR_LEN);
2666
2667 /* minus src/dest mac & type */
2668 tx_frame_802_3.an_tx_802_3_payload_len =
2669 m0->m_pkthdr.len - 12;
2670
2671 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2672 tx_frame_802_3.an_tx_802_3_payload_len,
2673 (caddr_t)&sc->an_txbuf);
2674
2675 txcontrol = AN_TXCTL_8023;
2676 /* write the txcontrol only */
2677 bcopy((caddr_t)&txcontrol, &buf[0x08],
2678 sizeof(txcontrol));
2679
2680 /* 802_3 header */
2681 bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2682 sizeof(struct an_txframe_802_3));
2683
2684 /* in mbuf header type is just before payload */
2685 bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2686 tx_frame_802_3.an_tx_802_3_payload_len);
2687
2688
2689 bzero(&an_tx_desc, sizeof(an_tx_desc));
2690 an_tx_desc.an_offset = 0;
2691 an_tx_desc.an_eoc = 1;
2692 an_tx_desc.an_valid = 1;
2693 an_tx_desc.an_len = 0x44 +
2694 tx_frame_802_3.an_tx_802_3_payload_len;
2695 an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr;
2696 ptr = (u_int8_t*)&an_tx_desc;
2697 for (i = 0; i < sizeof(an_tx_desc); i++) {
2698 CSR_MEM_AUX_WRITE_1(sc, AN_TX_DESC_OFFSET + i,
2699 ptr[i]);
2700 }
2701
2702 /*
2703 * If there's a BPF listner, bounce a copy of
2704 * this frame to him.
2705 */
2706 if (ifp->if_bpf)
2707 bpf_mtap(ifp, m0);
2708
2709 m_freem(m0);
2710 m0 = NULL;
2711
2712 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2713
2714 AN_INC(idx, AN_MAX_TX_DESC);
2715 sc->an_rdata.an_tx_empty = 0;
2716 }
2717 }
2718
2719 if (m0 != NULL)
2720 ifp->if_flags |= IFF_OACTIVE;
2721
2722 sc->an_rdata.an_tx_prod = idx;
2723
2724 /*
2725 * Set a timeout in case the chip goes out to lunch.
2726 */
2727 ifp->if_timer = 5;
2728
2729 return;
2730}
2731
2732void
2733an_stop(sc)
2734 struct an_softc *sc;
2735{
2736 struct ifnet *ifp;
2737 int i;
2738 int s;
2739
2740 s = splimp();
2741
2742 if (sc->an_gone) {
2743 splx(s);
2744 return;
2745 }
2746
2747 ifp = &sc->arpcom.ac_if;
2748
2749 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2750 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2751 an_cmd(sc, AN_CMD_DISABLE, 0);
2752
2753 for (i = 0; i < AN_TX_RING_CNT; i++)
2754 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2755
2756 untimeout(an_stats_update, sc, sc->an_stat_ch);
2757
2758 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2759
2760 if (sc->an_flash_buffer) {
2761 free(sc->an_flash_buffer, M_DEVBUF);
2762 sc->an_flash_buffer = NULL;
2763 }
2764
2765 splx(s);
2766
2767 return;
2768}
2769
2770static void
2771an_watchdog(ifp)
2772 struct ifnet *ifp;
2773{
2774 struct an_softc *sc;
2775 int s;
2776
2777 sc = ifp->if_softc;
2778 s = splimp();
2779
2780 if (sc->an_gone) {
2781 splx(s);
2782 return;
2783 }
2784
2785 printf("an%d: device timeout\n", sc->an_unit);
2786
2787 an_reset(sc);
2788 if (sc->mpi350)
2789 an_init_mpi350_desc(sc);
2790 an_init(sc);
2791
2792 ifp->if_oerrors++;
2793 splx(s);
2794
2795 return;
2796}
2797
2798void
2799an_shutdown(dev)
2800 device_t dev;
2801{
2802 struct an_softc *sc;
2803
2804 sc = device_get_softc(dev);
2805 an_stop(sc);
2806
2807 return;
2808}
2809
2810void
2811an_resume(dev)
2812 device_t dev;
2813{
2814 struct an_softc *sc;
2815 struct ifnet *ifp;
2816 int i;
2817
2818 sc = device_get_softc(dev);
2819 ifp = &sc->arpcom.ac_if;
2820
2821 an_reset(sc);
2822 if (sc->mpi350)
2823 an_init_mpi350_desc(sc);
2824 an_init(sc);
2825
2826 /* Recovery temporary keys */
2827 for (i = 0; i < 4; i++) {
2828 sc->areq.an_type = AN_RID_WEP_TEMP;
2829 sc->areq.an_len = sizeof(struct an_ltv_key);
2830 bcopy(&sc->an_temp_keys[i],
2831 &sc->areq, sizeof(struct an_ltv_key));
2832 an_setdef(sc, &sc->areq);
2833 }
2834
2835 if (ifp->if_flags & IFF_UP)
2836 an_start(ifp);
2837
2838 return;
2839}
2840
2841#ifdef ANCACHE
2842/* Aironet signal strength cache code.
2843 * store signal/noise/quality on per MAC src basis in
2844 * a small fixed cache. The cache wraps if > MAX slots
2845 * used. The cache may be zeroed out to start over.
2846 * Two simple filters exist to reduce computation:
2847 * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2848 * to ignore some packets. It defaults to ip only.
2849 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2850 * 2. multicast/broadcast only. This may be used to
2851 * ignore unicast packets and only cache signal strength
2852 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2853 * beacons and not unicast traffic.
2854 *
2855 * The cache stores (MAC src(index), IP src (major clue), signal,
2856 * quality, noise)
2857 *
2858 * No apologies for storing IP src here. It's easy and saves much
2859 * trouble elsewhere. The cache is assumed to be INET dependent,
2860 * although it need not be.
2861 *
2862 * Note: the Aironet only has a single byte of signal strength value
2863 * in the rx frame header, and it's not scaled to anything sensible.
2864 * This is kind of lame, but it's all we've got.
2865 */
2866
2867#ifdef documentation
2868
2869int an_sigitems; /* number of cached entries */
2870struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */
2871int an_nextitem; /* index/# of entries */
2872
2873
2874#endif
2875
2876/* control variables for cache filtering. Basic idea is
2877 * to reduce cost (e.g., to only Mobile-IP agent beacons
2878 * which are broadcast or multicast). Still you might
2879 * want to measure signal strength anth unicast ping packets
2880 * on a pt. to pt. ant. setup.
2881 */
2882/* set true if you want to limit cache items to broadcast/mcast
2883 * only packets (not unicast). Useful for mobile-ip beacons which
2884 * are broadcast/multicast at network layer. Default is all packets
2885 * so ping/unicast anll work say anth pt. to pt. antennae setup.
2886 */
2887static int an_cache_mcastonly = 0;
2888SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2889 &an_cache_mcastonly, 0, "");
2890
2891/* set true if you want to limit cache items to IP packets only
2892*/
2893static int an_cache_iponly = 1;
2894SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2895 &an_cache_iponly, 0, "");
2896
2897/*
2898 * an_cache_store, per rx packet store signal
2899 * strength in MAC (src) indexed cache.
2900 */
2901static void
2902an_cache_store (sc, eh, m, rx_rssi, rx_quality)
2903 struct an_softc *sc;
2904 struct ether_header *eh;
2905 struct mbuf *m;
2906 u_int8_t rx_rssi;
2907 u_int8_t rx_quality;
2908{
2909 struct ip *ip = 0;
2910 int i;
2911 static int cache_slot = 0; /* use this cache entry */
2912 static int wrapindex = 0; /* next "free" cache entry */
2913 int type_ipv4 = 0;
2914
2915 /* filters:
2916 * 1. ip only
2917 * 2. configurable filter to throw out unicast packets,
2918 * keep multicast only.
2919 */
2920
2921 if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
2922 type_ipv4 = 1;
2923 }
2924
2925 /* filter for ip packets only
2926 */
2927 if ( an_cache_iponly && !type_ipv4) {
2928 return;
2929 }
2930
2931 /* filter for broadcast/multicast only
2932 */
2933 if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2934 return;
2935 }
2936
2937#ifdef SIGDEBUG
2938 printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n",
2939 rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
2940#endif
2941
2942 /* find the ip header. we want to store the ip_src
2943 * address.
2944 */
2945 if (type_ipv4) {
2946 ip = mtod(m, struct ip *);
2947 }
2948
2949 /* do a linear search for a matching MAC address
2950 * in the cache table
2951 * . MAC address is 6 bytes,
2952 * . var w_nextitem holds total number of entries already cached
2953 */
2954 for (i = 0; i < sc->an_nextitem; i++) {
2955 if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) {
2956 /* Match!,
2957 * so we already have this entry,
2958 * update the data
2959 */
2960 break;
2961 }
2962 }
2963
2964 /* did we find a matching mac address?
2965 * if yes, then overwrite a previously existing cache entry
2966 */
2967 if (i < sc->an_nextitem ) {
2968 cache_slot = i;
2969 }
2970 /* else, have a new address entry,so
2971 * add this new entry,
2972 * if table full, then we need to replace LRU entry
2973 */
2974 else {
2975
2976 /* check for space in cache table
2977 * note: an_nextitem also holds number of entries
2978 * added in the cache table
2979 */
2980 if ( sc->an_nextitem < MAXANCACHE ) {
2981 cache_slot = sc->an_nextitem;
2982 sc->an_nextitem++;
2983 sc->an_sigitems = sc->an_nextitem;
2984 }
2985 /* no space found, so simply wrap anth wrap index
2986 * and "zap" the next entry
2987 */
2988 else {
2989 if (wrapindex == MAXANCACHE) {
2990 wrapindex = 0;
2991 }
2992 cache_slot = wrapindex++;
2993 }
2994 }
2995
2996 /* invariant: cache_slot now points at some slot
2997 * in cache.
2998 */
2999 if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
3000 log(LOG_ERR, "an_cache_store, bad index: %d of "
3001 "[0..%d], gross cache error\n",
3002 cache_slot, MAXANCACHE);
3003 return;
3004 }
3005
3006 /* store items in cache
3007 * .ip source address
3008 * .mac src
3009 * .signal, etc.
3010 */
3011 if (type_ipv4) {
3012 sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
3013 }
3014 bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6);
3015
3016
3017 switch (an_cache_mode) {
3018 case DBM:
3019 if (sc->an_have_rssimap) {
3020 sc->an_sigcache[cache_slot].signal =
3021 - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
3022 sc->an_sigcache[cache_slot].quality =
3023 - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
3024 } else {
3025 sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
3026 sc->an_sigcache[cache_slot].quality = rx_quality - 100;
3027 }
3028 break;
3029 case PERCENT:
3030 if (sc->an_have_rssimap) {
3031 sc->an_sigcache[cache_slot].signal =
3032 sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
3033 sc->an_sigcache[cache_slot].quality =
3034 sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
3035 } else {
3036 if (rx_rssi > 100)
3037 rx_rssi = 100;
3038 if (rx_quality > 100)
3039 rx_quality = 100;
3040 sc->an_sigcache[cache_slot].signal = rx_rssi;
3041 sc->an_sigcache[cache_slot].quality = rx_quality;
3042 }
3043 break;
3044 case RAW:
3045 sc->an_sigcache[cache_slot].signal = rx_rssi;
3046 sc->an_sigcache[cache_slot].quality = rx_quality;
3047 break;
3048 }
3049
3050 sc->an_sigcache[cache_slot].noise = 0;
3051
3052 return;
3053}
3054#endif
3055
3056static int
3057an_media_change(ifp)
3058 struct ifnet *ifp;
3059{
3060 struct an_softc *sc = ifp->if_softc;
3061 struct an_ltv_genconfig *cfg;
3062 int otype = sc->an_config.an_opmode;
3063 int orate = sc->an_tx_rate;
3064
3065 if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
3066 sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
3067 else
3068 sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION;
3069
3070 switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
3071 case IFM_IEEE80211_DS1:
3072 sc->an_tx_rate = AN_RATE_1MBPS;
3073 break;
3074 case IFM_IEEE80211_DS2:
3075 sc->an_tx_rate = AN_RATE_2MBPS;
3076 break;
3077 case IFM_IEEE80211_DS5:
3078 sc->an_tx_rate = AN_RATE_5_5MBPS;
3079 break;
3080 case IFM_IEEE80211_DS11:
3081 sc->an_tx_rate = AN_RATE_11MBPS;
3082 break;
3083 case IFM_AUTO:
3084 sc->an_tx_rate = 0;
3085 break;
3086 }
3087
3088 if (orate != sc->an_tx_rate) {
3089 /* Read the current configuration */
3090 sc->an_config.an_type = AN_RID_GENCONFIG;
3091 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3092 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3093 cfg = &sc->an_config;
3094
3095 /* clear other rates and set the only one we want */
3096 bzero(cfg->an_rates, sizeof(cfg->an_rates));
3097 cfg->an_rates[0] = sc->an_tx_rate;
3098
3099 /* Save the new rate */
3100 sc->an_config.an_type = AN_RID_GENCONFIG;
3101 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3102 }
3103
3104 if (otype != sc->an_config.an_opmode ||
3105 orate != sc->an_tx_rate)
3106 an_init(sc);
3107
3108 return(0);
3109}
3110
3111static void
3112an_media_status(ifp, imr)
3113 struct ifnet *ifp;
3114 struct ifmediareq *imr;
3115{
3116 struct an_ltv_status status;
3117 struct an_softc *sc = ifp->if_softc;
3118
3119 status.an_len = sizeof(status);
3120 status.an_type = AN_RID_STATUS;
3121 if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3122 /* If the status read fails, just lie. */
3123 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3124 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3125 }
3126
3127 if (sc->an_tx_rate == 0) {
3128 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3129 if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3130 imr->ifm_active |= IFM_IEEE80211_ADHOC;
3131 switch (status.an_current_tx_rate) {
3132 case AN_RATE_1MBPS:
3133 imr->ifm_active |= IFM_IEEE80211_DS1;
3134 break;
3135 case AN_RATE_2MBPS:
3136 imr->ifm_active |= IFM_IEEE80211_DS2;
3137 break;
3138 case AN_RATE_5_5MBPS:
3139 imr->ifm_active |= IFM_IEEE80211_DS5;
3140 break;
3141 case AN_RATE_11MBPS:
3142 imr->ifm_active |= IFM_IEEE80211_DS11;
3143 break;
3144 }
3145 } else {
3146 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3147 }
3148
3149 imr->ifm_status = IFM_AVALID;
3150 if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3151 imr->ifm_status |= IFM_ACTIVE;
3152}
3153
3154/********************** Cisco utility support routines *************/
3155
3156/*
3157 * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3158 * Linux driver
3159 */
3160
3161static int
3162readrids(ifp, l_ioctl)
3163 struct ifnet *ifp;
3164 struct aironet_ioctl *l_ioctl;
3165{
3166 unsigned short rid;
3167 struct an_softc *sc;
3168
3169 switch (l_ioctl->command) {
3170 case AIROGCAP:
3171 rid = AN_RID_CAPABILITIES;
3172 break;
3173 case AIROGCFG:
3174 rid = AN_RID_GENCONFIG;
3175 break;
3176 case AIROGSLIST:
3177 rid = AN_RID_SSIDLIST;
3178 break;
3179 case AIROGVLIST:
3180 rid = AN_RID_APLIST;
3181 break;
3182 case AIROGDRVNAM:
3183 rid = AN_RID_DRVNAME;
3184 break;
3185 case AIROGEHTENC:
3186 rid = AN_RID_ENCAPPROTO;
3187 break;
3188 case AIROGWEPKTMP:
3189 rid = AN_RID_WEP_TEMP;
3190 break;
3191 case AIROGWEPKNV:
3192 rid = AN_RID_WEP_PERM;
3193 break;
3194 case AIROGSTAT:
3195 rid = AN_RID_STATUS;
3196 break;
3197 case AIROGSTATSD32:
3198 rid = AN_RID_32BITS_DELTA;
3199 break;
3200 case AIROGSTATSC32:
3201 rid = AN_RID_32BITS_CUM;
3202 break;
3203 default:
3204 rid = 999;
3205 break;
3206 }
3207
3208 if (rid == 999) /* Is bad command */
3209 return -EINVAL;
3210
3211 sc = ifp->if_softc;
3212 sc->areq.an_len = AN_MAX_DATALEN;
3213 sc->areq.an_type = rid;
3214
3215 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3216
3217 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3218
3219 /* the data contains the length at first */
3220 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3221 sizeof(sc->areq.an_len))) {
3222 return -EFAULT;
3223 }
3224 /* Just copy the data back */
3225 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3226 l_ioctl->len)) {
3227 return -EFAULT;
3228 }
3229 return 0;
3230}
3231
3232static int
3233writerids(ifp, l_ioctl)
3234 struct ifnet *ifp;
3235 struct aironet_ioctl *l_ioctl;
3236{
3237 struct an_softc *sc;
3238 int rid, command;
3239
3240 sc = ifp->if_softc;
3241 rid = 0;
3242 command = l_ioctl->command;
3243
3244 switch (command) {
3245 case AIROPSIDS:
3246 rid = AN_RID_SSIDLIST;
3247 break;
3248 case AIROPCAP:
3249 rid = AN_RID_CAPABILITIES;
3250 break;
3251 case AIROPAPLIST:
3252 rid = AN_RID_APLIST;
3253 break;
3254 case AIROPCFG:
3255 rid = AN_RID_GENCONFIG;
3256 break;
3257 case AIROPMACON:
3258 an_cmd(sc, AN_CMD_ENABLE, 0);
3259 return 0;
3260 break;
3261 case AIROPMACOFF:
3262 an_cmd(sc, AN_CMD_DISABLE, 0);
3263 return 0;
3264 break;
3265 case AIROPSTCLR:
3266 /*
3267 * This command merely clears the counts does not actually
3268 * store any data only reads rid. But as it changes the cards
3269 * state, I put it in the writerid routines.
3270 */
3271
3272 rid = AN_RID_32BITS_DELTACLR;
3273 sc = ifp->if_softc;
3274 sc->areq.an_len = AN_MAX_DATALEN;
3275 sc->areq.an_type = rid;
3276
3277 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3278 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3279
3280 /* the data contains the length at first */
3281 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3282 sizeof(sc->areq.an_len))) {
3283 return -EFAULT;
3284 }
3285 /* Just copy the data */
3286 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3287 l_ioctl->len)) {
3288 return -EFAULT;
3289 }
3290 return 0;
3291 break;
3292 case AIROPWEPKEY:
3293 rid = AN_RID_WEP_TEMP;
3294 break;
3295 case AIROPWEPKEYNV:
3296 rid = AN_RID_WEP_PERM;
3297 break;
3298 case AIROPLEAPUSR:
3299 rid = AN_RID_LEAPUSERNAME;
3300 break;
3301 case AIROPLEAPPWD:
3302 rid = AN_RID_LEAPPASSWORD;
3303 break;
3304 default:
3305 return -EOPNOTSUPP;
3306 }
3307
3308 if (rid) {
3309 if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3310 return -EINVAL;
3311 sc->areq.an_len = l_ioctl->len + 4; /* add type & length */
3312 sc->areq.an_type = rid;
3313
3314 /* Just copy the data back */
3315 copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3316 l_ioctl->len);
3317
3318 an_cmd(sc, AN_CMD_DISABLE, 0);
3319 an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3320 an_cmd(sc, AN_CMD_ENABLE, 0);
3321 return 0;
3322 }
3323 return -EOPNOTSUPP;
3324}
3325
3326/*
3327 * General Flash utilities derived from Cisco driver additions to Ben Reed's
3328 * Linux driver
3329 */
3330
377d4740 3331#define FLASH_DELAY(x) tsleep(ifp, 0, "flash", ((x) / hz) + 1);
984263bc
MD
3332#define FLASH_COMMAND 0x7e7e
3333#define FLASH_SIZE 32 * 1024
3334
3335static int
3336unstickbusy(ifp)
3337 struct ifnet *ifp;
3338{
3339 struct an_softc *sc = ifp->if_softc;
3340
3341 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3342 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
3343 AN_EV_CLR_STUCK_BUSY);
3344 return 1;
3345 }
3346 return 0;
3347}
3348
3349/*
3350 * Wait for busy completion from card wait for delay uSec's Return true for
3351 * success meaning command reg is clear
3352 */
3353
3354static int
3355WaitBusy(ifp, uSec)
3356 struct ifnet *ifp;
3357 int uSec;
3358{
3359 int statword = 0xffff;
3360 int delay = 0;
3361 struct an_softc *sc = ifp->if_softc;
3362
3363 while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3364 FLASH_DELAY(10);
3365 delay += 10;
3366 statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3367
3368 if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3369 unstickbusy(ifp);
3370 }
3371 }
3372
3373 return 0 == (AN_CMD_BUSY & statword);
3374}
3375
3376/*
3377 * STEP 1) Disable MAC and do soft reset on card.
3378 */
3379
3380static int
3381cmdreset(ifp)
3382 struct ifnet *ifp;
3383{
3384 int status;
3385 struct an_softc *sc = ifp->if_softc;
3386
3387 an_stop(sc);
3388
3389 an_cmd(sc, AN_CMD_DISABLE, 0);
3390
3391 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3392 printf("an%d: Waitbusy hang b4 RESET =%d\n",
3393 sc->an_unit, status);
3394 return -EBUSY;
3395 }
3396 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3397
3398 FLASH_DELAY(1000); /* WAS 600 12/7/00 */
3399
3400
3401 if (!(status = WaitBusy(ifp, 100))) {
3402 printf("an%d: Waitbusy hang AFTER RESET =%d\n",
3403 sc->an_unit, status);
3404 return -EBUSY;
3405 }
3406 return 0;
3407}
3408
3409/*
3410 * STEP 2) Put the card in legendary flash mode
3411 */
3412
3413static int
3414setflashmode(ifp)
3415 struct ifnet *ifp;
3416{
3417 int status;
3418 struct an_softc *sc = ifp->if_softc;
3419
3420 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3421 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3422 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3423 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3424
3425 /*
3426 * mdelay(500); // 500ms delay
3427 */
3428
3429 FLASH_DELAY(500);
3430
3431 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3432 printf("Waitbusy hang after setflash mode\n");
3433 return -EIO;
3434 }
3435 return 0;
3436}
3437
3438/*
3439 * Get a character from the card matching matchbyte Step 3)
3440 */
3441
3442static int
3443flashgchar(ifp, matchbyte, dwelltime)
3444 struct ifnet *ifp;
3445 int matchbyte;
3446 int dwelltime;
3447{
3448 int rchar;
3449 unsigned char rbyte = 0;
3450 int success = -1;
3451 struct an_softc *sc = ifp->if_softc;
3452
3453
3454 do {
3455 rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3456
3457 if (dwelltime && !(0x8000 & rchar)) {
3458 dwelltime -= 10;
3459 FLASH_DELAY(10);
3460 continue;
3461 }
3462 rbyte = 0xff & rchar;
3463
3464 if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3465 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3466 success = 1;
3467 break;
3468 }
3469 if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3470 break;
3471 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3472
3473 } while (dwelltime > 0);
3474 return success;
3475}
3476
3477/*
3478 * Put character to SWS0 wait for dwelltime x 50us for echo .
3479 */
3480
3481static int
3482flashpchar(ifp, byte, dwelltime)
3483 struct ifnet *ifp;
3484 int byte;
3485 int dwelltime;
3486{
3487 int echo;
3488 int pollbusy, waittime;
3489 struct an_softc *sc = ifp->if_softc;
3490
3491 byte |= 0x8000;
3492
3493 if (dwelltime == 0)
3494 dwelltime = 200;
3495
3496 waittime = dwelltime;
3497
3498 /*
3499 * Wait for busy bit d15 to go false indicating buffer empty
3500 */
3501 do {
3502 pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3503
3504 if (pollbusy & 0x8000) {
3505 FLASH_DELAY(50);
3506 waittime -= 50;
3507 continue;
3508 } else
3509 break;
3510 }
3511 while (waittime >= 0);
3512
3513 /* timeout for busy clear wait */
3514
3515 if (waittime <= 0) {
3516 printf("an%d: flash putchar busywait timeout! \n",
3517 sc->an_unit);
3518 return -1;
3519 }
3520 /*
3521 * Port is clear now write byte and wait for it to echo back
3522 */
3523 do {
3524 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3525 FLASH_DELAY(50);
3526 dwelltime -= 50;
3527 echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3528 } while (dwelltime >= 0 && echo != byte);
3529
3530
3531 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3532
3533 return echo == byte;
3534}
3535
3536/*
3537 * Transfer 32k of firmware data from user buffer to our buffer and send to
3538 * the card
3539 */
3540
3541static int
3542flashputbuf(ifp)
3543 struct ifnet *ifp;
3544{
3545 unsigned short *bufp;
3546 int nwords;
3547 struct an_softc *sc = ifp->if_softc;
3548
3549 /* Write stuff */
3550
3551 bufp = sc->an_flash_buffer;
3552
3553 if (!sc->mpi350) {
3554 CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3555 CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3556
3557 for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3558 CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3559 }
3560 } else {
3561 for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3562 CSR_MEM_AUX_WRITE_4(sc, 0x8000,
3563 ((u_int32_t *)bufp)[nwords] & 0xffff);
3564 }
3565 }
3566
3567 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3568
3569 return 0;
3570}
3571
3572/*
3573 * After flashing restart the card.
3574 */
3575
3576static int
3577flashrestart(ifp)
3578 struct ifnet *ifp;
3579{
3580 int status = 0;
3581 struct an_softc *sc = ifp->if_softc;
3582
3583 FLASH_DELAY(1024); /* Added 12/7/00 */
3584
3585 an_init(sc);
3586
3587 FLASH_DELAY(1024); /* Added 12/7/00 */
3588 return status;
3589}
3590
3591/*
3592 * Entry point for flash ioclt.
3593 */
3594
3595static int
3596flashcard(ifp, l_ioctl)
3597 struct ifnet *ifp;
3598 struct aironet_ioctl *l_ioctl;
3599{
3600 int z = 0, status;
3601 struct an_softc *sc;
3602
3603 sc = ifp->if_softc;
3604 if (sc->mpi350) {
3605 printf("an%d: flashing not supported on MPI 350 yet\n",
3606 sc->an_unit);
3607 return(-1);
3608 }
3609 status = l_ioctl->command;
3610
3611 switch (l_ioctl->command) {
3612 case AIROFLSHRST:
3613 return cmdreset(ifp);
3614 break;
3615 case AIROFLSHSTFL:
3616 if (sc->an_flash_buffer) {
3617 free(sc->an_flash_buffer, M_DEVBUF);
3618 sc->an_flash_buffer = NULL;
3619 }
3620 sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, 0);
3621 if (sc->an_flash_buffer)
3622 return setflashmode(ifp);
3623 else
3624 return ENOBUFS;
3625 break;
3626 case AIROFLSHGCHR: /* Get char from aux */
3627 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3628 z = *(int *)&sc->areq;
3629 if ((status = flashgchar(ifp, z, 8000)) == 1)
3630 return 0;
3631 else
3632 return -1;
3633 break;
3634 case AIROFLSHPCHR: /* Send char to card. */
3635 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3636 z = *(int *)&sc->areq;
3637 if ((status = flashpchar(ifp, z, 8000)) == -1)
3638 return -EIO;
3639 else
3640 return 0;
3641 break;
3642 case AIROFLPUTBUF: /* Send 32k to card */
3643 if (l_ioctl->len > FLASH_SIZE) {
3644 printf("an%d: Buffer to big, %x %x\n", sc->an_unit,
3645 l_ioctl->len, FLASH_SIZE);
3646 return -EINVAL;
3647 }
3648 copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3649
3650 if ((status = flashputbuf(ifp)) != 0)
3651 return -EIO;
3652 else
3653 return 0;
3654 break;
3655 case AIRORESTART:
3656 if ((status = flashrestart(ifp)) != 0) {
3657 printf("an%d: FLASHRESTART returned %d\n",
3658 sc->an_unit, status);
3659 return -EIO;
3660 } else
3661 return 0;
3662
3663 break;
3664 default:
3665 return -EINVAL;
3666 }
3667
3668 return -EINVAL;
3669}