Use normal variable names for rtsold, provide default values.
[dragonfly.git] / sys / kern / kern_time.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
0143455b 35 * $DragonFly: src/sys/kern/kern_time.c,v 1.22 2005/04/18 13:27:44 joerg Exp $
984263bc
MD
36 */
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/buf.h>
41#include <sys/sysproto.h>
42#include <sys/resourcevar.h>
43#include <sys/signalvar.h>
44#include <sys/kernel.h>
45#include <sys/systm.h>
46#include <sys/sysent.h>
df2244e3 47#include <sys/sysunion.h>
984263bc
MD
48#include <sys/proc.h>
49#include <sys/time.h>
50#include <sys/vnode.h>
a94976ad 51#include <sys/sysctl.h>
984263bc
MD
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
245e4f17 54#include <sys/msgport2.h>
88c4d2f6 55#include <sys/thread2.h>
984263bc
MD
56
57struct timezone tz;
58
59/*
60 * Time of day and interval timer support.
61 *
62 * These routines provide the kernel entry points to get and set
63 * the time-of-day and per-process interval timers. Subroutines
64 * here provide support for adding and subtracting timeval structures
65 * and decrementing interval timers, optionally reloading the interval
66 * timers when they expire.
67 */
68
402ed7e1
RG
69static int nanosleep1 (struct timespec *rqt,
70 struct timespec *rmt);
71static int settime (struct timeval *);
72static void timevalfix (struct timeval *);
73static void no_lease_updatetime (int);
984263bc 74
88c4d2f6
MD
75static int sleep_hard_us = 100;
76SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
a94976ad 77
984263bc
MD
78static void
79no_lease_updatetime(deltat)
80 int deltat;
81{
82}
83
402ed7e1 84void (*lease_updatetime) (int) = no_lease_updatetime;
984263bc
MD
85
86static int
87settime(tv)
88 struct timeval *tv;
89{
90 struct timeval delta, tv1, tv2;
91 static struct timeval maxtime, laststep;
92 struct timespec ts;
984263bc 93
88c4d2f6 94 crit_enter();
984263bc
MD
95 microtime(&tv1);
96 delta = *tv;
97 timevalsub(&delta, &tv1);
98
99 /*
100 * If the system is secure, we do not allow the time to be
101 * set to a value earlier than 1 second less than the highest
102 * time we have yet seen. The worst a miscreant can do in
103 * this circumstance is "freeze" time. He couldn't go
104 * back to the past.
105 *
106 * We similarly do not allow the clock to be stepped more
107 * than one second, nor more than once per second. This allows
108 * a miscreant to make the clock march double-time, but no worse.
109 */
110 if (securelevel > 1) {
111 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
112 /*
113 * Update maxtime to latest time we've seen.
114 */
115 if (tv1.tv_sec > maxtime.tv_sec)
116 maxtime = tv1;
117 tv2 = *tv;
118 timevalsub(&tv2, &maxtime);
119 if (tv2.tv_sec < -1) {
120 tv->tv_sec = maxtime.tv_sec - 1;
121 printf("Time adjustment clamped to -1 second\n");
122 }
123 } else {
124 if (tv1.tv_sec == laststep.tv_sec) {
88c4d2f6 125 crit_exit();
984263bc
MD
126 return (EPERM);
127 }
128 if (delta.tv_sec > 1) {
129 tv->tv_sec = tv1.tv_sec + 1;
130 printf("Time adjustment clamped to +1 second\n");
131 }
132 laststep = *tv;
133 }
134 }
135
136 ts.tv_sec = tv->tv_sec;
137 ts.tv_nsec = tv->tv_usec * 1000;
88c4d2f6 138 set_timeofday(&ts);
984263bc 139 lease_updatetime(delta.tv_sec);
88c4d2f6 140 crit_exit();
984263bc
MD
141 resettodr();
142 return (0);
143}
144
984263bc
MD
145/* ARGSUSED */
146int
41c20dac 147clock_gettime(struct clock_gettime_args *uap)
984263bc
MD
148{
149 struct timespec ats;
150
26be1876
MD
151 switch(uap->clock_id) {
152 case CLOCK_REALTIME:
153 nanotime(&ats);
154 return (copyout(&ats, uap->tp, sizeof(ats)));
155 case CLOCK_MONOTONIC:
156 nanouptime(&ats);
157 return (copyout(&ats, uap->tp, sizeof(ats)));
158 default:
984263bc 159 return (EINVAL);
26be1876 160 }
984263bc
MD
161}
162
984263bc
MD
163/* ARGSUSED */
164int
41c20dac 165clock_settime(struct clock_settime_args *uap)
984263bc 166{
dadab5e9 167 struct thread *td = curthread;
984263bc
MD
168 struct timeval atv;
169 struct timespec ats;
170 int error;
171
dadab5e9 172 if ((error = suser(td)) != 0)
984263bc 173 return (error);
26be1876
MD
174 switch(uap->clock_id) {
175 case CLOCK_REALTIME:
176 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
177 return (error);
178 if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
179 return (EINVAL);
180 /* XXX Don't convert nsec->usec and back */
181 TIMESPEC_TO_TIMEVAL(&atv, &ats);
182 error = settime(&atv);
984263bc 183 return (error);
26be1876 184 default:
984263bc 185 return (EINVAL);
26be1876 186 }
984263bc
MD
187}
188
984263bc 189int
41c20dac 190clock_getres(struct clock_getres_args *uap)
984263bc
MD
191{
192 struct timespec ts;
984263bc 193
26be1876
MD
194 switch(uap->clock_id) {
195 case CLOCK_REALTIME:
196 case CLOCK_MONOTONIC:
984263bc 197 /*
26be1876
MD
198 * Round up the result of the division cheaply
199 * by adding 1. Rounding up is especially important
200 * if rounding down would give 0. Perfect rounding
201 * is unimportant.
984263bc 202 */
26be1876 203 ts.tv_sec = 0;
88c4d2f6 204 ts.tv_nsec = 1000000000 / cputimer_freq + 1;
26be1876
MD
205 return(copyout(&ts, uap->tp, sizeof(ts)));
206 default:
207 return(EINVAL);
984263bc 208 }
984263bc
MD
209}
210
88c4d2f6
MD
211/*
212 * nanosleep1()
213 *
214 * This is a general helper function for nanosleep() (aka sleep() aka
215 * usleep()).
216 *
217 * If there is less then one tick's worth of time left and
218 * we haven't done a yield, or the remaining microseconds is
219 * ridiculously low, do a yield. This avoids having
220 * to deal with systimer overheads when the system is under
221 * heavy loads. If we have done a yield already then use
222 * a systimer and an uninterruptable thread wait.
223 *
224 * If there is more then a tick's worth of time left,
225 * calculate the baseline ticks and use an interruptable
226 * tsleep, then handle the fine-grained delay on the next
227 * loop. This usually results in two sleeps occuring, a long one
228 * and a short one.
229 */
230static void
231ns1_systimer(systimer_t info)
232{
233 lwkt_schedule(info->data);
234}
984263bc
MD
235
236static int
41c20dac 237nanosleep1(struct timespec *rqt, struct timespec *rmt)
984263bc 238{
88c4d2f6 239 static int nanowait;
984263bc
MD
240 struct timespec ts, ts2, ts3;
241 struct timeval tv;
242 int error;
88c4d2f6 243 int tried_yield;
984263bc
MD
244
245 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
246 return (EINVAL);
247 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
248 return (0);
a94976ad
MD
249 nanouptime(&ts);
250 timespecadd(&ts, rqt); /* ts = target timestamp compare */
251 TIMESPEC_TO_TIMEVAL(&tv, rqt); /* tv = sleep interval */
88c4d2f6
MD
252 tried_yield = 0;
253
984263bc 254 for (;;) {
88c4d2f6
MD
255 int ticks;
256 struct systimer info;
257
258 ticks = tv.tv_usec / tick; /* approximate */
a94976ad 259
88c4d2f6 260 if (tv.tv_sec == 0 && ticks == 0) {
37af14fe 261 thread_t td = curthread;
88c4d2f6
MD
262 if (tried_yield || tv.tv_usec < sleep_hard_us) {
263 tried_yield = 0;
a94976ad 264 uio_yield();
a94976ad 265 } else {
37af14fe 266 crit_enter_quick(td);
88c4d2f6 267 systimer_init_oneshot(&info, ns1_systimer,
37af14fe
MD
268 td, tv.tv_usec);
269 lwkt_deschedule_self(td);
270 crit_exit_quick(td);
88c4d2f6
MD
271 lwkt_switch();
272 systimer_del(&info); /* make sure it's gone */
a94976ad 273 }
37af14fe 274 error = iscaught(td->td_proc);
88c4d2f6
MD
275 } else if (tv.tv_sec == 0) {
276 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
a94976ad 277 } else {
88c4d2f6
MD
278 ticks = tvtohz_low(&tv); /* also handles overflow */
279 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
a94976ad
MD
280 }
281 nanouptime(&ts2);
88c4d2f6 282 if (error && error != EWOULDBLOCK) {
984263bc
MD
283 if (error == ERESTART)
284 error = EINTR;
285 if (rmt != NULL) {
286 timespecsub(&ts, &ts2);
287 if (ts.tv_sec < 0)
288 timespecclear(&ts);
289 *rmt = ts;
290 }
291 return (error);
292 }
293 if (timespeccmp(&ts2, &ts, >=))
294 return (0);
295 ts3 = ts;
296 timespecsub(&ts3, &ts2);
297 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
298 }
299}
300
245e4f17 301static void nanosleep_done(void *arg);
df2244e3 302static void nanosleep_copyout(union sysunion *sysun);
245e4f17 303
984263bc
MD
304/* ARGSUSED */
305int
41c20dac 306nanosleep(struct nanosleep_args *uap)
984263bc 307{
245e4f17 308 int error;
df2244e3 309 struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
984263bc 310
df2244e3 311 error = copyin(uap->rqtp, &smsleep->rqt, sizeof(smsleep->rqt));
984263bc
MD
312 if (error)
313 return (error);
245e4f17
MD
314 /*
315 * YYY clean this up to always use the callout, note that an abort
316 * implementation should record the residual in the async case.
317 */
df2244e3 318 if (uap->sysmsg.lmsg.ms_flags & MSGF_ASYNC) {
245e4f17
MD
319 quad_t ticks;
320
df2244e3
MD
321 ticks = (quad_t)smsleep->rqt.tv_nsec * hz / 1000000000LL;
322 if (smsleep->rqt.tv_sec)
323 ticks += (quad_t)smsleep->rqt.tv_sec * hz;
245e4f17
MD
324 if (ticks <= 0) {
325 if (ticks == 0)
326 error = 0;
327 else
328 error = EINVAL;
329 } else {
df2244e3 330 uap->sysmsg.copyout = nanosleep_copyout;
1fa2b4b4 331 uap->sysmsg.lmsg.ms_flags &= ~MSGF_DONE;
df2244e3
MD
332 callout_init(&smsleep->timer);
333 callout_reset(&smsleep->timer, ticks, nanosleep_done, uap);
245e4f17
MD
334 error = EASYNC;
335 }
336 } else {
337 /*
338 * Old synchronous sleep code, copyout the residual if
339 * nanosleep was interrupted.
340 */
df2244e3 341 error = nanosleep1(&smsleep->rqt, &smsleep->rmt);
ab2eb4eb
DR
342 if (error && uap->rmtp)
343 error = copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
984263bc
MD
344 }
345 return (error);
346}
347
245e4f17
MD
348/*
349 * Asynch completion for the nanosleep() syscall. This function may be
350 * called from any context and cannot legally access the originating
351 * thread, proc, or its user space.
352 *
353 * YYY change the callout interface API so we can simply assign the replymsg
354 * function to it directly.
355 */
356static void
357nanosleep_done(void *arg)
358{
359 struct nanosleep_args *uap = arg;
1fa2b4b4 360 lwkt_msg_t msg = &uap->sysmsg.lmsg;
245e4f17 361
1fa2b4b4 362 lwkt_replymsg(msg, 0);
245e4f17
MD
363}
364
365/*
366 * Asynch return for the nanosleep() syscall, called in the context of the
367 * originating thread when it pulls the message off the reply port. This
368 * function is responsible for any copyouts to userland. Kernel threads
369 * which do their own internal system calls will not usually call the return
370 * function.
371 */
372static void
df2244e3 373nanosleep_copyout(union sysunion *sysun)
245e4f17 374{
df2244e3
MD
375 struct nanosleep_args *uap = &sysun->nanosleep;
376 struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
245e4f17 377
df2244e3
MD
378 if (sysun->lmsg.ms_error && uap->rmtp) {
379 sysun->lmsg.ms_error =
380 copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
245e4f17
MD
381 }
382}
383
984263bc
MD
384/* ARGSUSED */
385int
41c20dac 386gettimeofday(struct gettimeofday_args *uap)
984263bc
MD
387{
388 struct timeval atv;
389 int error = 0;
390
391 if (uap->tp) {
392 microtime(&atv);
393 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
394 sizeof (atv))))
395 return (error);
396 }
397 if (uap->tzp)
398 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
399 sizeof (tz));
400 return (error);
401}
402
984263bc
MD
403/* ARGSUSED */
404int
41c20dac 405settimeofday(struct settimeofday_args *uap)
984263bc 406{
dadab5e9 407 struct thread *td = curthread;
984263bc
MD
408 struct timeval atv;
409 struct timezone atz;
410 int error;
411
dadab5e9 412 if ((error = suser(td)))
984263bc
MD
413 return (error);
414 /* Verify all parameters before changing time. */
415 if (uap->tv) {
416 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
417 sizeof(atv))))
418 return (error);
419 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
420 return (EINVAL);
421 }
422 if (uap->tzp &&
423 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
424 return (error);
425 if (uap->tv && (error = settime(&atv)))
426 return (error);
427 if (uap->tzp)
428 tz = atz;
429 return (0);
430}
431
4026c000
JS
432static void
433kern_adjtime_common(void)
434{
435 if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
436 (ntp_delta < 0 && ntp_delta > ntp_default_tick_delta))
437 ntp_tick_delta = ntp_delta;
438 else if (ntp_delta > ntp_big_delta)
439 ntp_tick_delta = 10 * ntp_default_tick_delta;
440 else if (ntp_delta < -ntp_big_delta)
441 ntp_tick_delta = -10 * ntp_default_tick_delta;
442 else if (ntp_delta > 0)
443 ntp_tick_delta = ntp_default_tick_delta;
444 else
445 ntp_tick_delta = -ntp_default_tick_delta;
446}
447
448void
449kern_adjtime(int64_t delta, int64_t *odelta)
450{
451 int origcpu;
452
453 if ((origcpu = mycpu->gd_cpuid) != 0) {
454 lwkt_setcpu_self(globaldata_find(0));
455 cpu_mb1();
456 }
457
458 crit_enter();
459 *odelta = ntp_delta;
460 ntp_delta += delta;
461 kern_adjtime_common();
462 crit_exit();
463
464 if (origcpu != 0) {
465 lwkt_setcpu_self(globaldata_find(origcpu));
466 cpu_mb1();
467 }
468}
469
470void
471kern_reladjtime(int64_t delta)
472{
473 int origcpu;
474
475 if ((origcpu = mycpu->gd_cpuid) != 0) {
476 lwkt_setcpu_self(globaldata_find(0));
477 cpu_mb1();
478 }
479
480 crit_enter();
481 ntp_delta += delta;
482 kern_adjtime_common();
483 crit_exit();
484
485 if (origcpu != 0) {
486 lwkt_setcpu_self(globaldata_find(origcpu));
487 cpu_mb1();
488 }
489}
984263bc 490
0143455b
JS
491static void
492kern_adjfreq(int64_t rate)
493{
494 int origcpu;
495
496 if ((origcpu = mycpu->gd_cpuid) != 0) {
497 lwkt_setcpu_self(globaldata_find(0));
498 cpu_mb1();
499 }
500
501 crit_enter();
502 ntp_tick_permanent = rate;
503 crit_exit();
504
505 if (origcpu != 0) {
506 lwkt_setcpu_self(globaldata_find(origcpu));
507 cpu_mb1();
508 }
509}
510
984263bc
MD
511/* ARGSUSED */
512int
41c20dac 513adjtime(struct adjtime_args *uap)
984263bc 514{
dadab5e9 515 struct thread *td = curthread;
984263bc 516 struct timeval atv;
4026c000 517 int64_t ndelta, odelta;
88c4d2f6 518 int error;
984263bc 519
dadab5e9 520 if ((error = suser(td)))
984263bc
MD
521 return (error);
522 if ((error =
523 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
524 return (error);
525
526 /*
527 * Compute the total correction and the rate at which to apply it.
528 * Round the adjustment down to a whole multiple of the per-tick
529 * delta, so that after some number of incremental changes in
530 * hardclock(), tickdelta will become zero, lest the correction
531 * overshoot and start taking us away from the desired final time.
532 */
4026c000
JS
533 ndelta = atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
534 kern_adjtime(ndelta, &odelta);
984263bc
MD
535
536 if (uap->olddelta) {
4026c000
JS
537 atv.tv_sec = odelta / 1000000000;
538 atv.tv_usec = odelta % 1000000 / 1000;
984263bc
MD
539 (void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
540 sizeof(struct timeval));
541 }
542 return (0);
543}
544
4026c000
JS
545static int
546sysctl_adjtime(SYSCTL_HANDLER_ARGS)
547{
548 int64_t delta;
549 int error;
550
551 if (req->oldptr != NULL) {
552 delta = 0;
553 error = SYSCTL_OUT(req, &delta, sizeof(delta));
554 if (error)
555 return (error);
556 }
557 if (req->newptr != NULL) {
558 if (suser(curthread))
559 return (EPERM);
560 error = SYSCTL_IN(req, &delta, sizeof(delta));
561 if (error)
562 return (error);
563 kern_reladjtime(delta);
564 }
565 return (0);
566}
567
0143455b
JS
568static int
569sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
570{
571 int64_t freqdelta;
572 int error;
573
574 if (req->oldptr != NULL) {
575 freqdelta = ntp_tick_permanent * hz;
576 error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
577 if (error)
578 return (error);
579 }
580 if (req->newptr != NULL) {
581 if (suser(curthread))
582 return (EPERM);
583 error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
584 if (error)
585 return (error);
586
587 freqdelta /= hz;
588 kern_adjfreq(freqdelta);
589 }
590 return (0);
591}
592
4026c000 593SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
0143455b
JS
594SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
595 CTLTYPE_OPAQUE|CTLFLAG_RW, 0, 0,
596 sysctl_adjfreq, "LU", "permanent correction per second");
4026c000
JS
597SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, delta, CTLFLAG_RD,
598 &ntp_delta, sizeof(ntp_delta), "LU",
599 "one-time delta");
600SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
601 &ntp_big_delta, sizeof(ntp_big_delta), "LU",
602 "threshold for fast adjustment");
603SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
604 &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
605 "per-tick adjustment");
606SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
607 &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
608 "default per-tick adjustment");
48590578
JS
609SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
610 &ntp_leap_second, sizeof(ntp_leap_second), "LU",
611 "next leap second");
612SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
613 &ntp_leap_insert, 0, "insert or remove leap second");
4026c000
JS
614SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
615 CTLTYPE_OPAQUE|CTLFLAG_RW, 0, 0,
616 sysctl_adjtime, "", "relative adjust for delta");
617
984263bc
MD
618/*
619 * Get value of an interval timer. The process virtual and
620 * profiling virtual time timers are kept in the p_stats area, since
621 * they can be swapped out. These are kept internally in the
622 * way they are specified externally: in time until they expire.
623 *
624 * The real time interval timer is kept in the process table slot
625 * for the process, and its value (it_value) is kept as an
626 * absolute time rather than as a delta, so that it is easy to keep
627 * periodic real-time signals from drifting.
628 *
629 * Virtual time timers are processed in the hardclock() routine of
630 * kern_clock.c. The real time timer is processed by a timeout
631 * routine, called from the softclock() routine. Since a callout
632 * may be delayed in real time due to interrupt processing in the system,
633 * it is possible for the real time timeout routine (realitexpire, given below),
634 * to be delayed in real time past when it is supposed to occur. It
635 * does not suffice, therefore, to reload the real timer .it_value from the
636 * real time timers .it_interval. Rather, we compute the next time in
637 * absolute time the timer should go off.
638 */
984263bc
MD
639/* ARGSUSED */
640int
41c20dac 641getitimer(struct getitimer_args *uap)
984263bc 642{
41c20dac 643 struct proc *p = curproc;
984263bc
MD
644 struct timeval ctv;
645 struct itimerval aitv;
984263bc
MD
646
647 if (uap->which > ITIMER_PROF)
648 return (EINVAL);
88c4d2f6 649 crit_enter();
984263bc
MD
650 if (uap->which == ITIMER_REAL) {
651 /*
652 * Convert from absolute to relative time in .it_value
653 * part of real time timer. If time for real time timer
654 * has passed return 0, else return difference between
655 * current time and time for the timer to go off.
656 */
657 aitv = p->p_realtimer;
658 if (timevalisset(&aitv.it_value)) {
659 getmicrouptime(&ctv);
660 if (timevalcmp(&aitv.it_value, &ctv, <))
661 timevalclear(&aitv.it_value);
662 else
663 timevalsub(&aitv.it_value, &ctv);
664 }
88c4d2f6 665 } else {
984263bc 666 aitv = p->p_stats->p_timer[uap->which];
88c4d2f6
MD
667 }
668 crit_exit();
984263bc
MD
669 return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
670 sizeof (struct itimerval)));
671}
672
984263bc
MD
673/* ARGSUSED */
674int
41c20dac 675setitimer(struct setitimer_args *uap)
984263bc
MD
676{
677 struct itimerval aitv;
678 struct timeval ctv;
41c20dac
MD
679 struct itimerval *itvp;
680 struct proc *p = curproc;
88c4d2f6 681 int error;
984263bc
MD
682
683 if (uap->which > ITIMER_PROF)
684 return (EINVAL);
685 itvp = uap->itv;
686 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
687 sizeof(struct itimerval))))
688 return (error);
689 if ((uap->itv = uap->oitv) &&
41c20dac 690 (error = getitimer((struct getitimer_args *)uap)))
984263bc
MD
691 return (error);
692 if (itvp == 0)
693 return (0);
694 if (itimerfix(&aitv.it_value))
695 return (EINVAL);
696 if (!timevalisset(&aitv.it_value))
697 timevalclear(&aitv.it_interval);
698 else if (itimerfix(&aitv.it_interval))
699 return (EINVAL);
88c4d2f6 700 crit_enter();
984263bc
MD
701 if (uap->which == ITIMER_REAL) {
702 if (timevalisset(&p->p_realtimer.it_value))
8fbf9130 703 callout_stop(&p->p_ithandle);
984263bc 704 if (timevalisset(&aitv.it_value))
8fbf9130
JS
705 callout_reset(&p->p_ithandle,
706 tvtohz_high(&aitv.it_value), realitexpire, p);
984263bc
MD
707 getmicrouptime(&ctv);
708 timevaladd(&aitv.it_value, &ctv);
709 p->p_realtimer = aitv;
88c4d2f6 710 } else {
984263bc 711 p->p_stats->p_timer[uap->which] = aitv;
88c4d2f6
MD
712 }
713 crit_exit();
984263bc
MD
714 return (0);
715}
716
717/*
718 * Real interval timer expired:
719 * send process whose timer expired an alarm signal.
720 * If time is not set up to reload, then just return.
721 * Else compute next time timer should go off which is > current time.
722 * This is where delay in processing this timeout causes multiple
723 * SIGALRM calls to be compressed into one.
a94976ad 724 * tvtohz_high() always adds 1 to allow for the time until the next clock
984263bc
MD
725 * interrupt being strictly less than 1 clock tick, but we don't want
726 * that here since we want to appear to be in sync with the clock
727 * interrupt even when we're delayed.
728 */
729void
730realitexpire(arg)
731 void *arg;
732{
1fd87d54 733 struct proc *p;
984263bc 734 struct timeval ctv, ntv;
984263bc
MD
735
736 p = (struct proc *)arg;
737 psignal(p, SIGALRM);
738 if (!timevalisset(&p->p_realtimer.it_interval)) {
739 timevalclear(&p->p_realtimer.it_value);
740 return;
741 }
742 for (;;) {
88c4d2f6 743 crit_enter();
984263bc
MD
744 timevaladd(&p->p_realtimer.it_value,
745 &p->p_realtimer.it_interval);
746 getmicrouptime(&ctv);
747 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
748 ntv = p->p_realtimer.it_value;
749 timevalsub(&ntv, &ctv);
8fbf9130
JS
750 callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
751 realitexpire, p);
88c4d2f6 752 crit_exit();
984263bc
MD
753 return;
754 }
88c4d2f6 755 crit_exit();
984263bc
MD
756 }
757}
758
759/*
760 * Check that a proposed value to load into the .it_value or
761 * .it_interval part of an interval timer is acceptable, and
762 * fix it to have at least minimal value (i.e. if it is less
763 * than the resolution of the clock, round it up.)
764 */
765int
766itimerfix(tv)
767 struct timeval *tv;
768{
769
770 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
771 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
772 return (EINVAL);
773 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
774 tv->tv_usec = tick;
775 return (0);
776}
777
778/*
779 * Decrement an interval timer by a specified number
780 * of microseconds, which must be less than a second,
781 * i.e. < 1000000. If the timer expires, then reload
782 * it. In this case, carry over (usec - old value) to
783 * reduce the value reloaded into the timer so that
784 * the timer does not drift. This routine assumes
785 * that it is called in a context where the timers
786 * on which it is operating cannot change in value.
787 */
788int
789itimerdecr(itp, usec)
1fd87d54 790 struct itimerval *itp;
984263bc
MD
791 int usec;
792{
793
794 if (itp->it_value.tv_usec < usec) {
795 if (itp->it_value.tv_sec == 0) {
796 /* expired, and already in next interval */
797 usec -= itp->it_value.tv_usec;
798 goto expire;
799 }
800 itp->it_value.tv_usec += 1000000;
801 itp->it_value.tv_sec--;
802 }
803 itp->it_value.tv_usec -= usec;
804 usec = 0;
805 if (timevalisset(&itp->it_value))
806 return (1);
807 /* expired, exactly at end of interval */
808expire:
809 if (timevalisset(&itp->it_interval)) {
810 itp->it_value = itp->it_interval;
811 itp->it_value.tv_usec -= usec;
812 if (itp->it_value.tv_usec < 0) {
813 itp->it_value.tv_usec += 1000000;
814 itp->it_value.tv_sec--;
815 }
816 } else
817 itp->it_value.tv_usec = 0; /* sec is already 0 */
818 return (0);
819}
820
821/*
822 * Add and subtract routines for timevals.
823 * N.B.: subtract routine doesn't deal with
824 * results which are before the beginning,
825 * it just gets very confused in this case.
826 * Caveat emptor.
827 */
828void
829timevaladd(t1, t2)
830 struct timeval *t1, *t2;
831{
832
833 t1->tv_sec += t2->tv_sec;
834 t1->tv_usec += t2->tv_usec;
835 timevalfix(t1);
836}
837
838void
839timevalsub(t1, t2)
840 struct timeval *t1, *t2;
841{
842
843 t1->tv_sec -= t2->tv_sec;
844 t1->tv_usec -= t2->tv_usec;
845 timevalfix(t1);
846}
847
848static void
849timevalfix(t1)
850 struct timeval *t1;
851{
852
853 if (t1->tv_usec < 0) {
854 t1->tv_sec--;
855 t1->tv_usec += 1000000;
856 }
857 if (t1->tv_usec >= 1000000) {
858 t1->tv_sec++;
859 t1->tv_usec -= 1000000;
860 }
861}
cea4446f
HP
862
863/*
864 * ratecheck(): simple time-based rate-limit checking.
865 */
866int
867ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
868{
869 struct timeval tv, delta;
870 int rv = 0;
871
872 getmicrouptime(&tv); /* NB: 10ms precision */
873 delta = tv;
874 timevalsub(&delta, lasttime);
875
876 /*
877 * check for 0,0 is so that the message will be seen at least once,
878 * even if interval is huge.
879 */
880 if (timevalcmp(&delta, mininterval, >=) ||
881 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
882 *lasttime = tv;
883 rv = 1;
884 }
885
886 return (rv);
887}
888
889/*
890 * ppsratecheck(): packets (or events) per second limitation.
891 *
892 * Return 0 if the limit is to be enforced (e.g. the caller
893 * should drop a packet because of the rate limitation).
894 *
895 * maxpps of 0 always causes zero to be returned. maxpps of -1
896 * always causes 1 to be returned; this effectively defeats rate
897 * limiting.
898 *
899 * Note that we maintain the struct timeval for compatibility
900 * with other bsd systems. We reuse the storage and just monitor
901 * clock ticks for minimal overhead.
902 */
903int
904ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
905{
906 int now;
907
908 /*
909 * Reset the last time and counter if this is the first call
910 * or more than a second has passed since the last update of
911 * lasttime.
912 */
913 now = ticks;
914 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
915 lasttime->tv_sec = now;
916 *curpps = 1;
917 return (maxpps != 0);
918 } else {
919 (*curpps)++; /* NB: ignore potential overflow */
920 return (maxpps < 0 || *curpps < maxpps);
921 }
922}
923