Rewrite of the CAM error recovery code.
[dragonfly.git] / sys / bus / cam / scsi / scsi_ses.c
CommitLineData
984263bc 1/* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
b05e84c9 2/* $DragonFly: src/sys/bus/cam/scsi/scsi_ses.c,v 1.24 2007/11/18 17:53:01 pavalos Exp $ */
984263bc
MD
3/*
4 * Copyright (c) 2000 Matthew Jacob
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification, immediately at the beginning of the file.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29#include <sys/param.h>
30#include <sys/queue.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/types.h>
34#include <sys/malloc.h>
35#include <sys/fcntl.h>
984263bc
MD
36#include <sys/conf.h>
37#include <sys/buf.h>
38#include <sys/errno.h>
39#include <sys/devicestat.h>
4e01b467 40#include <sys/thread2.h>
984263bc
MD
41#include <machine/stdarg.h>
42
1f2de5d4
MD
43#include "../cam.h"
44#include "../cam_ccb.h"
45#include "../cam_extend.h"
46#include "../cam_periph.h"
47#include "../cam_xpt_periph.h"
1f2de5d4 48#include "../cam_debug.h"
984263bc 49
1f2de5d4
MD
50#include "scsi_all.h"
51#include "scsi_message.h"
984263bc 52#include <sys/ioccom.h>
1f2de5d4 53#include "scsi_ses.h"
984263bc
MD
54
55#include <opt_ses.h>
56
57/*
58 * Platform Independent Driver Internal Definitions for SES devices.
59 */
60typedef enum {
61 SES_NONE,
62 SES_SES_SCSI2,
63 SES_SES,
64 SES_SES_PASSTHROUGH,
65 SES_SEN,
66 SES_SAFT
67} enctyp;
68
69struct ses_softc;
70typedef struct ses_softc ses_softc_t;
71typedef struct {
72 int (*softc_init)(ses_softc_t *, int);
73 int (*init_enc)(ses_softc_t *);
74 int (*get_encstat)(ses_softc_t *, int);
75 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
76 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
77 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
78} encvec;
79
80#define ENCI_SVALID 0x80
81
82typedef struct {
83 uint32_t
84 enctype : 8, /* enclosure type */
85 subenclosure : 8, /* subenclosure id */
86 svalid : 1, /* enclosure information valid */
87 priv : 15; /* private data, per object */
88 uint8_t encstat[4]; /* state && stats */
89} encobj;
90
91#define SEN_ID "UNISYS SUN_SEN"
92#define SEN_ID_LEN 24
93
94
95static enctyp ses_type(void *, int);
96
97
98/* Forward reference to Enclosure Functions */
99static int ses_softc_init(ses_softc_t *, int);
100static int ses_init_enc(ses_softc_t *);
101static int ses_get_encstat(ses_softc_t *, int);
102static int ses_set_encstat(ses_softc_t *, uint8_t, int);
103static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
104static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
105
106static int safte_softc_init(ses_softc_t *, int);
107static int safte_init_enc(ses_softc_t *);
108static int safte_get_encstat(ses_softc_t *, int);
109static int safte_set_encstat(ses_softc_t *, uint8_t, int);
110static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
111static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
112
113/*
114 * Platform implementation defines/functions for SES internal kernel stuff
115 */
116
117#define STRNCMP strncmp
85f8e2ea 118#define PRINTF kprintf
984263bc
MD
119#define SES_LOG ses_log
120#ifdef DEBUG
121#define SES_DLOG ses_log
122#else
123#define SES_DLOG if (0) ses_log
124#endif
125#define SES_VLOG if (bootverbose) ses_log
efda3bd0
MD
126#define SES_MALLOC(amt) kmalloc(amt, M_DEVBUF, M_INTWAIT)
127#define SES_FREE(ptr, amt) kfree(ptr, M_DEVBUF)
984263bc
MD
128#define MEMZERO bzero
129#define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
130
131static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
132static void ses_log(struct ses_softc *, const char *, ...);
133
134/*
135 * Gerenal FreeBSD kernel stuff.
136 */
137
138
139#define ccb_state ppriv_field0
81b5c339 140#define ccb_bio ppriv_ptr1
984263bc
MD
141
142struct ses_softc {
143 enctyp ses_type; /* type of enclosure */
144 encvec ses_vec; /* vector to handlers */
145 void * ses_private; /* per-type private data */
146 encobj * ses_objmap; /* objects */
147 u_int32_t ses_nobjects; /* number of objects */
148 ses_encstat ses_encstat; /* overall status */
149 u_int8_t ses_flags;
150 union ccb ses_saved_ccb;
984263bc
MD
151 struct cam_periph *periph;
152};
153#define SES_FLAG_INVALID 0x01
154#define SES_FLAG_OPEN 0x02
155#define SES_FLAG_INITIALIZED 0x04
156
157#define SESUNIT(x) (minor((x)))
158#define SES_CDEV_MAJOR 110
159
160static d_open_t sesopen;
161static d_close_t sesclose;
162static d_ioctl_t sesioctl;
163static periph_init_t sesinit;
164static periph_ctor_t sesregister;
165static periph_oninv_t sesoninvalidate;
166static periph_dtor_t sescleanup;
167static periph_start_t sesstart;
168
169static void sesasync(void *, u_int32_t, struct cam_path *, void *);
170static void sesdone(struct cam_periph *, union ccb *);
171static int seserror(union ccb *, u_int32_t, u_int32_t);
172
173static struct periph_driver sesdriver = {
174 sesinit, "ses",
175 TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
176};
177
2ad14cb5 178PERIPHDRIVER_DECLARE(ses, sesdriver);
984263bc 179
fef8985e
MD
180static struct dev_ops ses_ops = {
181 { "ses", SES_CDEV_MAJOR, 0 },
182 .d_open = sesopen,
183 .d_close = sesclose,
184 .d_ioctl = sesioctl,
984263bc
MD
185};
186static struct extend_array *sesperiphs;
187
188void
189sesinit(void)
190{
191 cam_status status;
192 struct cam_path *path;
193
194 /*
195 * Create our extend array for storing the devices we attach to.
196 */
197 sesperiphs = cam_extend_new();
198 if (sesperiphs == NULL) {
85f8e2ea 199 kprintf("ses: Failed to alloc extend array!\n");
984263bc
MD
200 return;
201 }
202
203 /*
204 * Install a global async callback. This callback will
205 * receive async callbacks like "new device found".
206 */
207 status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
208 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
209
210 if (status == CAM_REQ_CMP) {
211 struct ccb_setasync csa;
212
213 xpt_setup_ccb(&csa.ccb_h, path, 5);
214 csa.ccb_h.func_code = XPT_SASYNC_CB;
215 csa.event_enable = AC_FOUND_DEVICE;
216 csa.callback = sesasync;
217 csa.callback_arg = NULL;
218 xpt_action((union ccb *)&csa);
219 status = csa.ccb_h.status;
220 xpt_free_path(path);
221 }
222
223 if (status != CAM_REQ_CMP) {
85f8e2ea 224 kprintf("ses: Failed to attach master async callback "
984263bc
MD
225 "due to status 0x%x!\n", status);
226 }
227}
228
229static void
230sesoninvalidate(struct cam_periph *periph)
231{
232 struct ses_softc *softc;
233 struct ccb_setasync csa;
234
235 softc = (struct ses_softc *)periph->softc;
236
237 /*
238 * Unregister any async callbacks.
239 */
240 xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
241 csa.ccb_h.func_code = XPT_SASYNC_CB;
242 csa.event_enable = 0;
243 csa.callback = sesasync;
244 csa.callback_arg = periph;
245 xpt_action((union ccb *)&csa);
246
247 softc->ses_flags |= SES_FLAG_INVALID;
248
249 xpt_print_path(periph->path);
85f8e2ea 250 kprintf("lost device\n");
984263bc
MD
251}
252
253static void
254sescleanup(struct cam_periph *periph)
255{
256 struct ses_softc *softc;
257
258 softc = (struct ses_softc *)periph->softc;
259
984263bc
MD
260 cam_extend_release(sesperiphs, periph->unit_number);
261 xpt_print_path(periph->path);
85f8e2ea 262 kprintf("removing device entry\n");
fef8985e 263 dev_ops_remove(&ses_ops, -1, periph->unit_number);
efda3bd0 264 kfree(softc, M_DEVBUF);
984263bc
MD
265}
266
267static void
268sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
269{
270 struct cam_periph *periph;
271
272 periph = (struct cam_periph *)callback_arg;
273
274 switch(code) {
275 case AC_FOUND_DEVICE:
276 {
277 cam_status status;
278 struct ccb_getdev *cgd;
d878b746 279 int inq_len;
984263bc
MD
280
281 cgd = (struct ccb_getdev *)arg;
282
d878b746
PA
283 inq_len = cgd->inq_data.additional_length + 4;
284
984263bc
MD
285 /*
286 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
287 * PROBLEM: IS A SAF-TE DEVICE.
288 */
d878b746 289 switch (ses_type(&cgd->inq_data, inq_len)) {
984263bc
MD
290 case SES_SES:
291 case SES_SES_SCSI2:
292 case SES_SES_PASSTHROUGH:
293 case SES_SEN:
294 case SES_SAFT:
295 break;
296 default:
297 return;
298 }
299
300 status = cam_periph_alloc(sesregister, sesoninvalidate,
301 sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
302 cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
303
304 if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
85f8e2ea 305 kprintf("sesasync: Unable to probe new device due to "
984263bc
MD
306 "status 0x%x\n", status);
307 }
308 break;
309 }
310 default:
311 cam_periph_async(periph, code, path, arg);
312 break;
313 }
314}
315
316static cam_status
317sesregister(struct cam_periph *periph, void *arg)
318{
319 struct ses_softc *softc;
320 struct ccb_setasync csa;
321 struct ccb_getdev *cgd;
322 char *tname;
323
324 cgd = (struct ccb_getdev *)arg;
325 if (periph == NULL) {
85f8e2ea 326 kprintf("sesregister: periph was NULL!!\n");
984263bc
MD
327 return (CAM_REQ_CMP_ERR);
328 }
329
330 if (cgd == NULL) {
85f8e2ea 331 kprintf("sesregister: no getdev CCB, can't register device\n");
984263bc
MD
332 return (CAM_REQ_CMP_ERR);
333 }
334
efda3bd0 335 softc = kmalloc(sizeof (struct ses_softc), M_DEVBUF, M_INTWAIT | M_ZERO);
984263bc
MD
336 periph->softc = softc;
337 softc->periph = periph;
338
339 softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
340
341 switch (softc->ses_type) {
342 case SES_SES:
343 case SES_SES_SCSI2:
344 case SES_SES_PASSTHROUGH:
345 softc->ses_vec.softc_init = ses_softc_init;
346 softc->ses_vec.init_enc = ses_init_enc;
347 softc->ses_vec.get_encstat = ses_get_encstat;
348 softc->ses_vec.set_encstat = ses_set_encstat;
349 softc->ses_vec.get_objstat = ses_get_objstat;
350 softc->ses_vec.set_objstat = ses_set_objstat;
351 break;
352 case SES_SAFT:
353 softc->ses_vec.softc_init = safte_softc_init;
354 softc->ses_vec.init_enc = safte_init_enc;
355 softc->ses_vec.get_encstat = safte_get_encstat;
356 softc->ses_vec.set_encstat = safte_set_encstat;
357 softc->ses_vec.get_objstat = safte_get_objstat;
358 softc->ses_vec.set_objstat = safte_set_objstat;
359 break;
360 case SES_SEN:
361 break;
362 case SES_NONE:
363 default:
efda3bd0 364 kfree(softc, M_DEVBUF);
984263bc
MD
365 return (CAM_REQ_CMP_ERR);
366 }
367
368 cam_extend_set(sesperiphs, periph->unit_number, periph);
369
fef8985e
MD
370 dev_ops_add(&ses_ops, -1, periph->unit_number);
371 make_dev(&ses_ops, periph->unit_number,
e4c9c0c8
MD
372 UID_ROOT, GID_OPERATOR, 0600, "%s%d",
373 periph->periph_name, periph->unit_number);
984263bc
MD
374
375 /*
376 * Add an async callback so that we get
377 * notified if this device goes away.
378 */
379 xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
380 csa.ccb_h.func_code = XPT_SASYNC_CB;
381 csa.event_enable = AC_LOST_DEVICE;
382 csa.callback = sesasync;
383 csa.callback_arg = periph;
384 xpt_action((union ccb *)&csa);
385
386 switch (softc->ses_type) {
387 default:
388 case SES_NONE:
389 tname = "No SES device";
390 break;
391 case SES_SES_SCSI2:
392 tname = "SCSI-2 SES Device";
393 break;
394 case SES_SES:
395 tname = "SCSI-3 SES Device";
396 break;
397 case SES_SES_PASSTHROUGH:
398 tname = "SES Passthrough Device";
399 break;
400 case SES_SEN:
401 tname = "UNISYS SEN Device (NOT HANDLED YET)";
402 break;
403 case SES_SAFT:
404 tname = "SAF-TE Compliant Device";
405 break;
406 }
407 xpt_announce_periph(periph, tname);
408 return (CAM_REQ_CMP);
409}
410
411static int
fef8985e 412sesopen(struct dev_open_args *ap)
984263bc 413{
b13267a5 414 cdev_t dev = ap->a_head.a_dev;
984263bc
MD
415 struct cam_periph *periph;
416 struct ses_softc *softc;
4e01b467 417 int error;
984263bc 418
4e01b467 419 crit_enter();
984263bc
MD
420 periph = cam_extend_get(sesperiphs, SESUNIT(dev));
421 if (periph == NULL) {
4e01b467 422 crit_exit();
984263bc
MD
423 return (ENXIO);
424 }
377d4740 425 if ((error = cam_periph_lock(periph, PCATCH)) != 0) {
4e01b467 426 crit_exit();
984263bc
MD
427 return (error);
428 }
4e01b467 429 crit_exit();
984263bc
MD
430
431 if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
432 cam_periph_unlock(periph);
433 return (ENXIO);
434 }
435
436 softc = (struct ses_softc *)periph->softc;
437
438 if (softc->ses_flags & SES_FLAG_INVALID) {
439 error = ENXIO;
440 goto out;
441 }
442 if (softc->ses_flags & SES_FLAG_OPEN) {
443 error = EBUSY;
444 goto out;
445 }
446 if (softc->ses_vec.softc_init == NULL) {
447 error = ENXIO;
448 goto out;
449 }
450
451 softc->ses_flags |= SES_FLAG_OPEN;
452 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
453 error = (*softc->ses_vec.softc_init)(softc, 1);
454 if (error)
455 softc->ses_flags &= ~SES_FLAG_OPEN;
456 else
457 softc->ses_flags |= SES_FLAG_INITIALIZED;
458 }
459
460out:
461 if (error) {
462 cam_periph_release(periph);
463 }
464 cam_periph_unlock(periph);
465 return (error);
466}
467
468static int
fef8985e 469sesclose(struct dev_close_args *ap)
984263bc 470{
b13267a5 471 cdev_t dev = ap->a_head.a_dev;
984263bc
MD
472 struct cam_periph *periph;
473 struct ses_softc *softc;
474 int unit, error;
475
476 error = 0;
477
478 unit = SESUNIT(dev);
479 periph = cam_extend_get(sesperiphs, unit);
480 if (periph == NULL)
481 return (ENXIO);
482
483 softc = (struct ses_softc *)periph->softc;
484
377d4740 485 if ((error = cam_periph_lock(periph, 0)) != 0)
984263bc
MD
486 return (error);
487
488 softc->ses_flags &= ~SES_FLAG_OPEN;
489
490 cam_periph_unlock(periph);
491 cam_periph_release(periph);
492
493 return (0);
494}
495
496static void
497sesstart(struct cam_periph *p, union ccb *sccb)
498{
4e01b467 499 crit_enter();
984263bc
MD
500 if (p->immediate_priority <= p->pinfo.priority) {
501 SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
502 p->immediate_priority = CAM_PRIORITY_NONE;
503 wakeup(&p->ccb_list);
504 }
4e01b467 505 crit_exit();
984263bc
MD
506}
507
508static void
509sesdone(struct cam_periph *periph, union ccb *dccb)
510{
511 wakeup(&dccb->ccb_h.cbfcnp);
512}
513
514static int
515seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
516{
517 struct ses_softc *softc;
518 struct cam_periph *periph;
519
520 periph = xpt_path_periph(ccb->ccb_h.path);
521 softc = (struct ses_softc *)periph->softc;
522
523 return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
524}
525
526static int
fef8985e 527sesioctl(struct dev_ioctl_args *ap)
984263bc 528{
b13267a5 529 cdev_t dev = ap->a_head.a_dev;
984263bc
MD
530 struct cam_periph *periph;
531 ses_encstat tmp;
532 ses_objstat objs;
533 ses_object obj, *uobj;
534 struct ses_softc *ssc;
535 void *addr;
536 int error, i;
537
538
fef8985e
MD
539 if (ap->a_data)
540 addr = *((caddr_t *)ap->a_data);
984263bc
MD
541 else
542 addr = NULL;
543
544 periph = cam_extend_get(sesperiphs, SESUNIT(dev));
545 if (periph == NULL)
546 return (ENXIO);
547
548 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
549
550 ssc = (struct ses_softc *)periph->softc;
551
552 /*
553 * Now check to see whether we're initialized or not.
554 */
555 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
556 return (ENXIO);
557 }
558
559 error = 0;
560
561 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
fef8985e 562 ("trying to do ioctl %#lx\n", ap->a_cmd));
984263bc
MD
563
564 /*
565 * If this command can change the device's state,
566 * we must have the device open for writing.
567 */
fef8985e 568 switch (ap->a_cmd) {
984263bc
MD
569 case SESIOC_GETNOBJ:
570 case SESIOC_GETOBJMAP:
571 case SESIOC_GETENCSTAT:
572 case SESIOC_GETOBJSTAT:
573 break;
574 default:
fef8985e 575 if ((ap->a_fflag & FWRITE) == 0) {
984263bc
MD
576 return (EBADF);
577 }
578 }
579
fef8985e 580 switch (ap->a_cmd) {
984263bc
MD
581 case SESIOC_GETNOBJ:
582 error = copyout(&ssc->ses_nobjects, addr,
583 sizeof (ssc->ses_nobjects));
584 break;
585
586 case SESIOC_GETOBJMAP:
587 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
588 obj.obj_id = i;
589 obj.subencid = ssc->ses_objmap[i].subenclosure;
590 obj.object_type = ssc->ses_objmap[i].enctype;
591 error = copyout(&obj, uobj, sizeof (ses_object));
592 if (error) {
593 break;
594 }
595 }
596 break;
597
598 case SESIOC_GETENCSTAT:
599 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
600 if (error)
601 break;
602 tmp = ssc->ses_encstat & ~ENCI_SVALID;
603 error = copyout(&tmp, addr, sizeof (ses_encstat));
604 ssc->ses_encstat = tmp;
605 break;
606
607 case SESIOC_SETENCSTAT:
608 error = copyin(addr, &tmp, sizeof (ses_encstat));
609 if (error)
610 break;
611 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
612 break;
613
614 case SESIOC_GETOBJSTAT:
615 error = copyin(addr, &objs, sizeof (ses_objstat));
616 if (error)
617 break;
618 if (objs.obj_id >= ssc->ses_nobjects) {
619 error = EINVAL;
620 break;
621 }
622 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
623 if (error)
624 break;
625 error = copyout(&objs, addr, sizeof (ses_objstat));
626 /*
627 * Always (for now) invalidate entry.
628 */
629 ssc->ses_objmap[objs.obj_id].svalid = 0;
630 break;
631
632 case SESIOC_SETOBJSTAT:
633 error = copyin(addr, &objs, sizeof (ses_objstat));
634 if (error)
635 break;
636
637 if (objs.obj_id >= ssc->ses_nobjects) {
638 error = EINVAL;
639 break;
640 }
641 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
642
643 /*
644 * Always (for now) invalidate entry.
645 */
646 ssc->ses_objmap[objs.obj_id].svalid = 0;
647 break;
648
649 case SESIOC_INIT:
650
651 error = (*ssc->ses_vec.init_enc)(ssc);
652 break;
653
654 default:
fef8985e 655 error = cam_periph_ioctl(periph, ap->a_cmd, ap->a_data, seserror);
984263bc
MD
656 break;
657 }
658 return (error);
659}
660
b05e84c9
PA
661#define SES_CFLAGS CAM_RETRY_SELTO
662#define SES_FLAGS SF_NO_PRINT | SF_RETRY_UA
984263bc
MD
663static int
664ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
665{
666 int error, dlen;
667 ccb_flags ddf;
668 union ccb *ccb;
669
670 if (dptr) {
671 if ((dlen = *dlenp) < 0) {
672 dlen = -dlen;
673 ddf = CAM_DIR_OUT;
674 } else {
675 ddf = CAM_DIR_IN;
676 }
677 } else {
678 dlen = 0;
679 ddf = CAM_DIR_NONE;
680 }
681
682 if (cdbl > IOCDBLEN) {
683 cdbl = IOCDBLEN;
684 }
685
686 ccb = cam_periph_getccb(ssc->periph, 1);
687 cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
688 dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
689 bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
690
b05e84c9 691 error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
984263bc
MD
692 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
693 cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
694 if (error) {
695 if (dptr) {
696 *dlenp = dlen;
697 }
698 } else {
699 if (dptr) {
700 *dlenp = ccb->csio.resid;
701 }
702 }
703 xpt_release_ccb(ccb);
704 return (error);
705}
706
707static void
708ses_log(struct ses_softc *ssc, const char *fmt, ...)
709{
e2565a42 710 __va_list ap;
984263bc 711
85f8e2ea 712 kprintf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
e2565a42 713 __va_start(ap, fmt);
379210cb 714 kvprintf(fmt, ap);
e2565a42 715 __va_end(ap);
984263bc
MD
716}
717
718/*
719 * The code after this point runs on many platforms,
720 * so forgive the slightly awkward and nonconforming
721 * appearance.
722 */
723
724/*
725 * Is this a device that supports enclosure services?
726 *
727 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
728 * an SES device. If it happens to be an old UNISYS SEN device, we can
729 * handle that too.
730 */
731
732#define SAFTE_START 44
733#define SAFTE_END 50
734#define SAFTE_LEN SAFTE_END-SAFTE_START
735
736static enctyp
737ses_type(void *buf, int buflen)
738{
739 unsigned char *iqd = buf;
740
984263bc
MD
741 if (buflen < 8+SEN_ID_LEN)
742 return (SES_NONE);
743
744 if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
745 if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
746 return (SES_SEN);
747 } else if ((iqd[2] & 0x7) > 2) {
748 return (SES_SES);
749 } else {
750 return (SES_SES_SCSI2);
751 }
752 return (SES_NONE);
753 }
754
755#ifdef SES_ENABLE_PASSTHROUGH
756 if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
757 /*
758 * PassThrough Device.
759 */
760 return (SES_SES_PASSTHROUGH);
761 }
762#endif
763
764 /*
765 * The comparison is short for a reason-
766 * some vendors were chopping it short.
767 */
768
769 if (buflen < SAFTE_END - 2) {
770 return (SES_NONE);
771 }
772
773 if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
774 return (SES_SAFT);
775 }
776 return (SES_NONE);
777}
778
779/*
780 * SES Native Type Device Support
781 */
782
783/*
784 * SES Diagnostic Page Codes
785 */
786
787typedef enum {
788 SesConfigPage = 0x1,
789 SesControlPage,
790#define SesStatusPage SesControlPage
791 SesHelpTxt,
792 SesStringOut,
793#define SesStringIn SesStringOut
794 SesThresholdOut,
795#define SesThresholdIn SesThresholdOut
796 SesArrayControl,
797#define SesArrayStatus SesArrayControl
798 SesElementDescriptor,
799 SesShortStatus
800} SesDiagPageCodes;
801
802/*
803 * minimal amounts
804 */
805
806/*
807 * Minimum amount of data, starting from byte 0, to have
808 * the config header.
809 */
810#define SES_CFGHDR_MINLEN 12
811
812/*
813 * Minimum amount of data, starting from byte 0, to have
814 * the config header and one enclosure header.
815 */
816#define SES_ENCHDR_MINLEN 48
817
818/*
819 * Take this value, subtract it from VEnclen and you know
820 * the length of the vendor unique bytes.
821 */
822#define SES_ENCHDR_VMIN 36
823
824/*
825 * SES Data Structures
826 */
827
828typedef struct {
829 uint32_t GenCode; /* Generation Code */
830 uint8_t Nsubenc; /* Number of Subenclosures */
831} SesCfgHdr;
832
833typedef struct {
834 uint8_t Subencid; /* SubEnclosure Identifier */
835 uint8_t Ntypes; /* # of supported types */
836 uint8_t VEnclen; /* Enclosure Descriptor Length */
837} SesEncHdr;
838
839typedef struct {
840 uint8_t encWWN[8]; /* XXX- Not Right Yet */
841 uint8_t encVid[8];
842 uint8_t encPid[16];
843 uint8_t encRev[4];
844 uint8_t encVen[1];
845} SesEncDesc;
846
847typedef struct {
848 uint8_t enc_type; /* type of element */
849 uint8_t enc_maxelt; /* maximum supported */
850 uint8_t enc_subenc; /* in SubEnc # N */
851 uint8_t enc_tlen; /* Type Descriptor Text Length */
852} SesThdr;
853
854typedef struct {
855 uint8_t comstatus;
856 uint8_t comstat[3];
857} SesComStat;
858
859struct typidx {
860 int ses_tidx;
861 int ses_oidx;
862};
863
864struct sscfg {
865 uint8_t ses_ntypes; /* total number of types supported */
866
867 /*
868 * We need to keep a type index as well as an
869 * object index for each object in an enclosure.
870 */
871 struct typidx *ses_typidx;
872
873 /*
874 * We also need to keep track of the number of elements
875 * per type of element. This is needed later so that we
876 * can find precisely in the returned status data the
877 * status for the Nth element of the Kth type.
878 */
879 uint8_t * ses_eltmap;
880};
881
882
883/*
884 * (de)canonicalization defines
885 */
886#define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
887#define sbit(x, bit) (((uint32_t)(x)) << bit)
888#define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
889
890#define sset16(outp, idx, sval) \
891 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
892 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
893
894
895#define sset24(outp, idx, sval) \
896 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
897 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
898 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
899
900
901#define sset32(outp, idx, sval) \
902 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
903 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
904 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
905 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
906
907#define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
908#define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
909#define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
910#define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
911
912#define sget16(inp, idx, lval) \
913 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
914 (((uint8_t *)(inp))[idx+1]), idx += 2
915
916#define gget16(inp, idx, lval) \
917 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
918 (((uint8_t *)(inp))[idx+1])
919
920#define sget24(inp, idx, lval) \
921 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
922 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
923 (((uint8_t *)(inp))[idx+2]), idx += 3
924
925#define gget24(inp, idx, lval) \
926 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
927 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
928 (((uint8_t *)(inp))[idx+2])
929
930#define sget32(inp, idx, lval) \
931 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
932 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
933 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
934 (((uint8_t *)(inp))[idx+3]), idx += 4
935
936#define gget32(inp, idx, lval) \
937 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
938 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
939 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
940 (((uint8_t *)(inp))[idx+3])
941
942#define SCSZ 0x2000
943#define CFLEN (256 + SES_ENCHDR_MINLEN)
944
945/*
946 * Routines specific && private to SES only
947 */
948
949static int ses_getconfig(ses_softc_t *);
950static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
951static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
952static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
953static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
954static int ses_getthdr(uint8_t *, int, int, SesThdr *);
955static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
956static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
957
958static int
959ses_softc_init(ses_softc_t *ssc, int doinit)
960{
961 if (doinit == 0) {
962 struct sscfg *cc;
963 if (ssc->ses_nobjects) {
964 SES_FREE(ssc->ses_objmap,
965 ssc->ses_nobjects * sizeof (encobj));
966 ssc->ses_objmap = NULL;
967 }
968 if ((cc = ssc->ses_private) != NULL) {
969 if (cc->ses_eltmap && cc->ses_ntypes) {
970 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
971 cc->ses_eltmap = NULL;
972 cc->ses_ntypes = 0;
973 }
974 if (cc->ses_typidx && ssc->ses_nobjects) {
975 SES_FREE(cc->ses_typidx,
976 ssc->ses_nobjects * sizeof (struct typidx));
977 cc->ses_typidx = NULL;
978 }
979 SES_FREE(cc, sizeof (struct sscfg));
980 ssc->ses_private = NULL;
981 }
982 ssc->ses_nobjects = 0;
983 return (0);
984 }
985 if (ssc->ses_private == NULL) {
986 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
987 }
988 if (ssc->ses_private == NULL) {
989 return (ENOMEM);
990 }
991 ssc->ses_nobjects = 0;
992 ssc->ses_encstat = 0;
993 return (ses_getconfig(ssc));
994}
995
996static int
997ses_init_enc(ses_softc_t *ssc)
998{
999 return (0);
1000}
1001
1002static int
1003ses_get_encstat(ses_softc_t *ssc, int slpflag)
1004{
1005 SesComStat ComStat;
1006 int status;
1007
1008 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
1009 return (status);
1010 }
1011 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1012 return (0);
1013}
1014
1015static int
1016ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1017{
1018 SesComStat ComStat;
1019 int status;
1020
1021 ComStat.comstatus = encstat & 0xf;
1022 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1023 return (status);
1024 }
1025 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
1026 return (0);
1027}
1028
1029static int
1030ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1031{
1032 int i = (int)obp->obj_id;
1033
1034 if (ssc->ses_objmap[i].svalid == 0) {
1035 SesComStat ComStat;
1036 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1037 if (err)
1038 return (err);
1039 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1040 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1041 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1042 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1043 ssc->ses_objmap[i].svalid = 1;
1044 }
1045 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1046 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1047 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1048 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1049 return (0);
1050}
1051
1052static int
1053ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1054{
1055 SesComStat ComStat;
1056 int err;
1057 /*
1058 * If this is clear, we don't do diddly.
1059 */
1060 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1061 return (0);
1062 }
1063 ComStat.comstatus = obp->cstat[0];
1064 ComStat.comstat[0] = obp->cstat[1];
1065 ComStat.comstat[1] = obp->cstat[2];
1066 ComStat.comstat[2] = obp->cstat[3];
1067 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1068 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1069 return (err);
1070}
1071
1072static int
1073ses_getconfig(ses_softc_t *ssc)
1074{
1075 struct sscfg *cc;
1076 SesCfgHdr cf;
1077 SesEncHdr hd;
1078 SesEncDesc *cdp;
1079 SesThdr thdr;
1080 int err, amt, i, nobj, ntype, maxima;
1081 char storage[CFLEN], *sdata;
1082 static char cdb[6] = {
1083 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1084 };
1085
1086 cc = ssc->ses_private;
1087 if (cc == NULL) {
1088 return (ENXIO);
1089 }
1090
1091 sdata = SES_MALLOC(SCSZ);
1092 if (sdata == NULL)
1093 return (ENOMEM);
1094
1095 amt = SCSZ;
1096 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1097 if (err) {
1098 SES_FREE(sdata, SCSZ);
1099 return (err);
1100 }
1101 amt = SCSZ - amt;
1102
1103 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1104 SES_LOG(ssc, "Unable to parse SES Config Header\n");
1105 SES_FREE(sdata, SCSZ);
1106 return (EIO);
1107 }
1108 if (amt < SES_ENCHDR_MINLEN) {
1109 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1110 SES_FREE(sdata, SCSZ);
1111 return (EIO);
1112 }
1113
1114 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1115
1116 /*
1117 * Now waltz through all the subenclosures toting up the
1118 * number of types available in each. For this, we only
1119 * really need the enclosure header. However, we get the
1120 * enclosure descriptor for debug purposes, as well
1121 * as self-consistency checking purposes.
1122 */
1123
1124 maxima = cf.Nsubenc + 1;
1125 cdp = (SesEncDesc *) storage;
1126 for (ntype = i = 0; i < maxima; i++) {
1127 MEMZERO((caddr_t)cdp, sizeof (*cdp));
1128 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1129 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1130 SES_FREE(sdata, SCSZ);
1131 return (EIO);
1132 }
1133 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1134 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1135
1136 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1137 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1138 SES_FREE(sdata, SCSZ);
1139 return (EIO);
1140 }
1141 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1142 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1143 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1144 cdp->encWWN[6], cdp->encWWN[7]);
1145 ntype += hd.Ntypes;
1146 }
1147
1148 /*
1149 * Now waltz through all the types that are available, getting
1150 * the type header so we can start adding up the number of
1151 * objects available.
1152 */
1153 for (nobj = i = 0; i < ntype; i++) {
1154 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1155 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1156 SES_FREE(sdata, SCSZ);
1157 return (EIO);
1158 }
1159 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1160 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1161 thdr.enc_subenc, thdr.enc_tlen);
1162 nobj += thdr.enc_maxelt;
1163 }
1164
1165
1166 /*
1167 * Now allocate the object array and type map.
1168 */
1169
1170 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1171 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1172 cc->ses_eltmap = SES_MALLOC(ntype);
1173
1174 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1175 cc->ses_eltmap == NULL) {
1176 if (ssc->ses_objmap) {
1177 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1178 ssc->ses_objmap = NULL;
1179 }
1180 if (cc->ses_typidx) {
1181 SES_FREE(cc->ses_typidx,
1182 (nobj * sizeof (struct typidx)));
1183 cc->ses_typidx = NULL;
1184 }
1185 if (cc->ses_eltmap) {
1186 SES_FREE(cc->ses_eltmap, ntype);
1187 cc->ses_eltmap = NULL;
1188 }
1189 SES_FREE(sdata, SCSZ);
1190 return (ENOMEM);
1191 }
1192 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1193 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1194 MEMZERO(cc->ses_eltmap, ntype);
1195 cc->ses_ntypes = (uint8_t) ntype;
1196 ssc->ses_nobjects = nobj;
1197
1198 /*
1199 * Now waltz through the # of types again to fill in the types
1200 * (and subenclosure ids) of the allocated objects.
1201 */
1202 nobj = 0;
1203 for (i = 0; i < ntype; i++) {
1204 int j;
1205 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1206 continue;
1207 }
1208 cc->ses_eltmap[i] = thdr.enc_maxelt;
1209 for (j = 0; j < thdr.enc_maxelt; j++) {
1210 cc->ses_typidx[nobj].ses_tidx = i;
1211 cc->ses_typidx[nobj].ses_oidx = j;
1212 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1213 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1214 }
1215 }
1216 SES_FREE(sdata, SCSZ);
1217 return (0);
1218}
1219
1220static int
1221ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1222{
1223 struct sscfg *cc;
1224 int err, amt, bufsiz, tidx, oidx;
1225 char cdb[6], *sdata;
1226
1227 cc = ssc->ses_private;
1228 if (cc == NULL) {
1229 return (ENXIO);
1230 }
1231
1232 /*
1233 * If we're just getting overall enclosure status,
1234 * we only need 2 bytes of data storage.
1235 *
1236 * If we're getting anything else, we know how much
1237 * storage we need by noting that starting at offset
1238 * 8 in returned data, all object status bytes are 4
1239 * bytes long, and are stored in chunks of types(M)
1240 * and nth+1 instances of type M.
1241 */
1242 if (objid == -1) {
1243 bufsiz = 2;
1244 } else {
1245 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1246 }
1247 sdata = SES_MALLOC(bufsiz);
1248 if (sdata == NULL)
1249 return (ENOMEM);
1250
1251 cdb[0] = RECEIVE_DIAGNOSTIC;
1252 cdb[1] = 1;
1253 cdb[2] = SesStatusPage;
1254 cdb[3] = bufsiz >> 8;
1255 cdb[4] = bufsiz & 0xff;
1256 cdb[5] = 0;
1257 amt = bufsiz;
1258 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1259 if (err) {
1260 SES_FREE(sdata, bufsiz);
1261 return (err);
1262 }
1263 amt = bufsiz - amt;
1264
1265 if (objid == -1) {
1266 tidx = -1;
1267 oidx = -1;
1268 } else {
1269 tidx = cc->ses_typidx[objid].ses_tidx;
1270 oidx = cc->ses_typidx[objid].ses_oidx;
1271 }
1272 if (in) {
1273 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1274 err = ENODEV;
1275 }
1276 } else {
1277 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1278 err = ENODEV;
1279 } else {
1280 cdb[0] = SEND_DIAGNOSTIC;
1281 cdb[1] = 0x10;
1282 cdb[2] = 0;
1283 cdb[3] = bufsiz >> 8;
1284 cdb[4] = bufsiz & 0xff;
1285 cdb[5] = 0;
1286 amt = -bufsiz;
1287 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1288 }
1289 }
1290 SES_FREE(sdata, bufsiz);
1291 return (0);
1292}
1293
1294
1295/*
1296 * Routines to parse returned SES data structures.
1297 * Architecture and compiler independent.
1298 */
1299
1300static int
1301ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1302{
1303 if (buflen < SES_CFGHDR_MINLEN) {
1304 return (-1);
1305 }
1306 gget8(buffer, 1, cfp->Nsubenc);
1307 gget32(buffer, 4, cfp->GenCode);
1308 return (0);
1309}
1310
1311static int
1312ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1313{
1314 int s, off = 8;
1315 for (s = 0; s < SubEncId; s++) {
1316 if (off + 3 > amt)
1317 return (-1);
1318 off += buffer[off+3] + 4;
1319 }
1320 if (off + 3 > amt) {
1321 return (-1);
1322 }
1323 gget8(buffer, off+1, chp->Subencid);
1324 gget8(buffer, off+2, chp->Ntypes);
1325 gget8(buffer, off+3, chp->VEnclen);
1326 return (0);
1327}
1328
1329static int
1330ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1331{
1332 int s, e, enclen, off = 8;
1333 for (s = 0; s < SubEncId; s++) {
1334 if (off + 3 > amt)
1335 return (-1);
1336 off += buffer[off+3] + 4;
1337 }
1338 if (off + 3 > amt) {
1339 return (-1);
1340 }
1341 gget8(buffer, off+3, enclen);
1342 off += 4;
1343 if (off >= amt)
1344 return (-1);
1345
1346 e = off + enclen;
1347 if (e > amt) {
1348 e = amt;
1349 }
1350 MEMCPY(cdp, &buffer[off], e - off);
1351 return (0);
1352}
1353
1354static int
1355ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1356{
1357 int s, off = 8;
1358
1359 if (amt < SES_CFGHDR_MINLEN) {
1360 return (-1);
1361 }
1362 for (s = 0; s < buffer[1]; s++) {
1363 if (off + 3 > amt)
1364 return (-1);
1365 off += buffer[off+3] + 4;
1366 }
1367 if (off + 3 > amt) {
1368 return (-1);
1369 }
1370 off += buffer[off+3] + 4 + (nth * 4);
1371 if (amt < (off + 4))
1372 return (-1);
1373
1374 gget8(buffer, off++, thp->enc_type);
1375 gget8(buffer, off++, thp->enc_maxelt);
1376 gget8(buffer, off++, thp->enc_subenc);
1377 gget8(buffer, off, thp->enc_tlen);
1378 return (0);
1379}
1380
1381/*
1382 * This function needs a little explanation.
1383 *
1384 * The arguments are:
1385 *
1386 *
1387 * char *b, int amt
1388 *
1389 * These describes the raw input SES status data and length.
1390 *
1391 * uint8_t *ep
1392 *
1393 * This is a map of the number of types for each element type
1394 * in the enclosure.
1395 *
1396 * int elt
1397 *
1398 * This is the element type being sought. If elt is -1,
1399 * then overall enclosure status is being sought.
1400 *
1401 * int elm
1402 *
1403 * This is the ordinal Mth element of type elt being sought.
1404 *
1405 * SesComStat *sp
1406 *
1407 * This is the output area to store the status for
1408 * the Mth element of type Elt.
1409 */
1410
1411static int
1412ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1413{
1414 int idx, i;
1415
1416 /*
1417 * If it's overall enclosure status being sought, get that.
1418 * We need at least 2 bytes of status data to get that.
1419 */
1420 if (elt == -1) {
1421 if (amt < 2)
1422 return (-1);
1423 gget8(b, 1, sp->comstatus);
1424 sp->comstat[0] = 0;
1425 sp->comstat[1] = 0;
1426 sp->comstat[2] = 0;
1427 return (0);
1428 }
1429
1430 /*
1431 * Check to make sure that the Mth element is legal for type Elt.
1432 */
1433
1434 if (elm >= ep[elt])
1435 return (-1);
1436
1437 /*
1438 * Starting at offset 8, start skipping over the storage
1439 * for the element types we're not interested in.
1440 */
1441 for (idx = 8, i = 0; i < elt; i++) {
1442 idx += ((ep[i] + 1) * 4);
1443 }
1444
1445 /*
1446 * Skip over Overall status for this element type.
1447 */
1448 idx += 4;
1449
1450 /*
1451 * And skip to the index for the Mth element that we're going for.
1452 */
1453 idx += (4 * elm);
1454
1455 /*
1456 * Make sure we haven't overflowed the buffer.
1457 */
1458 if (idx+4 > amt)
1459 return (-1);
1460
1461 /*
1462 * Retrieve the status.
1463 */
1464 gget8(b, idx++, sp->comstatus);
1465 gget8(b, idx++, sp->comstat[0]);
1466 gget8(b, idx++, sp->comstat[1]);
1467 gget8(b, idx++, sp->comstat[2]);
1468#if 0
1469 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1470#endif
1471 return (0);
1472}
1473
1474/*
1475 * This is the mirror function to ses_decode, but we set the 'select'
1476 * bit for the object which we're interested in. All other objects,
1477 * after a status fetch, should have that bit off. Hmm. It'd be easy
1478 * enough to ensure this, so we will.
1479 */
1480
1481static int
1482ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1483{
1484 int idx, i;
1485
1486 /*
1487 * If it's overall enclosure status being sought, get that.
1488 * We need at least 2 bytes of status data to get that.
1489 */
1490 if (elt == -1) {
1491 if (amt < 2)
1492 return (-1);
1493 i = 0;
1494 sset8(b, i, 0);
1495 sset8(b, i, sp->comstatus & 0xf);
1496#if 0
1497 PRINTF("set EncStat %x\n", sp->comstatus);
1498#endif
1499 return (0);
1500 }
1501
1502 /*
1503 * Check to make sure that the Mth element is legal for type Elt.
1504 */
1505
1506 if (elm >= ep[elt])
1507 return (-1);
1508
1509 /*
1510 * Starting at offset 8, start skipping over the storage
1511 * for the element types we're not interested in.
1512 */
1513 for (idx = 8, i = 0; i < elt; i++) {
1514 idx += ((ep[i] + 1) * 4);
1515 }
1516
1517 /*
1518 * Skip over Overall status for this element type.
1519 */
1520 idx += 4;
1521
1522 /*
1523 * And skip to the index for the Mth element that we're going for.
1524 */
1525 idx += (4 * elm);
1526
1527 /*
1528 * Make sure we haven't overflowed the buffer.
1529 */
1530 if (idx+4 > amt)
1531 return (-1);
1532
1533 /*
1534 * Set the status.
1535 */
1536 sset8(b, idx, sp->comstatus);
1537 sset8(b, idx, sp->comstat[0]);
1538 sset8(b, idx, sp->comstat[1]);
1539 sset8(b, idx, sp->comstat[2]);
1540 idx -= 4;
1541
1542#if 0
1543 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1544 elt, elm, idx, sp->comstatus, sp->comstat[0],
1545 sp->comstat[1], sp->comstat[2]);
1546#endif
1547
1548 /*
1549 * Now make sure all other 'Select' bits are off.
1550 */
1551 for (i = 8; i < amt; i += 4) {
1552 if (i != idx)
1553 b[i] &= ~0x80;
1554 }
1555 /*
1556 * And make sure the INVOP bit is clear.
1557 */
1558 b[2] &= ~0x10;
1559
1560 return (0);
1561}
1562
1563/*
1564 * SAF-TE Type Device Emulation
1565 */
1566
1567static int safte_getconfig(ses_softc_t *);
fc6d0222 1568static int safte_rdstat(ses_softc_t *, int);
984263bc
MD
1569static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1570static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1571static void wrslot_stat(ses_softc_t *, int);
1572static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1573
1574#define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1575 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1576/*
1577 * SAF-TE specific defines- Mandatory ones only...
1578 */
1579
1580/*
1581 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1582 */
1583#define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1584#define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1585#define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1586
1587/*
1588 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1589 */
1590#define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1591#define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1592#define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1593#define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1594#define SAFTE_WT_GLOBAL 0x15 /* send global command */
1595
1596
1597#define SAFT_SCRATCH 64
1598#define NPSEUDO_THERM 16
1599#define NPSEUDO_ALARM 1
1600struct scfg {
1601 /*
1602 * Cached Configuration
1603 */
1604 uint8_t Nfans; /* Number of Fans */
1605 uint8_t Npwr; /* Number of Power Supplies */
1606 uint8_t Nslots; /* Number of Device Slots */
1607 uint8_t DoorLock; /* Door Lock Installed */
1608 uint8_t Ntherm; /* Number of Temperature Sensors */
1609 uint8_t Nspkrs; /* Number of Speakers */
1610 uint8_t Nalarm; /* Number of Alarms (at least one) */
1611 /*
1612 * Cached Flag Bytes for Global Status
1613 */
1614 uint8_t flag1;
1615 uint8_t flag2;
1616 /*
1617 * What object index ID is where various slots start.
1618 */
1619 uint8_t pwroff;
1620 uint8_t slotoff;
1621#define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1622};
1623
1624#define SAFT_FLG1_ALARM 0x1
1625#define SAFT_FLG1_GLOBFAIL 0x2
1626#define SAFT_FLG1_GLOBWARN 0x4
1627#define SAFT_FLG1_ENCPWROFF 0x8
1628#define SAFT_FLG1_ENCFANFAIL 0x10
1629#define SAFT_FLG1_ENCPWRFAIL 0x20
1630#define SAFT_FLG1_ENCDRVFAIL 0x40
1631#define SAFT_FLG1_ENCDRVWARN 0x80
1632
1633#define SAFT_FLG2_LOCKDOOR 0x4
1634#define SAFT_PRIVATE sizeof (struct scfg)
1635
1636static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1637#define SAFT_BAIL(r, x, k, l) \
1638 if (r >= x) { \
1639 SES_LOG(ssc, safte_2little, x, __LINE__);\
1640 SES_FREE(k, l); \
1641 return (EIO); \
1642 }
1643
1644
1645int
1646safte_softc_init(ses_softc_t *ssc, int doinit)
1647{
1648 int err, i, r;
1649 struct scfg *cc;
1650
1651 if (doinit == 0) {
1652 if (ssc->ses_nobjects) {
1653 if (ssc->ses_objmap) {
1654 SES_FREE(ssc->ses_objmap,
1655 ssc->ses_nobjects * sizeof (encobj));
1656 ssc->ses_objmap = NULL;
1657 }
1658 ssc->ses_nobjects = 0;
1659 }
1660 if (ssc->ses_private) {
1661 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1662 ssc->ses_private = NULL;
1663 }
1664 return (0);
1665 }
1666
1667 if (ssc->ses_private == NULL) {
1668 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1669 if (ssc->ses_private == NULL) {
1670 return (ENOMEM);
1671 }
1672 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1673 }
1674
1675 ssc->ses_nobjects = 0;
1676 ssc->ses_encstat = 0;
1677
1678 if ((err = safte_getconfig(ssc)) != 0) {
1679 return (err);
1680 }
1681
1682 /*
1683 * The number of objects here, as well as that reported by the
1684 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1685 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1686 */
1687 cc = ssc->ses_private;
1688 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1689 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1690 ssc->ses_objmap = (encobj *)
1691 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1692 if (ssc->ses_objmap == NULL) {
1693 return (ENOMEM);
1694 }
1695 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1696
1697 r = 0;
1698 /*
1699 * Note that this is all arranged for the convenience
1700 * in later fetches of status.
1701 */
1702 for (i = 0; i < cc->Nfans; i++)
1703 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1704 cc->pwroff = (uint8_t) r;
1705 for (i = 0; i < cc->Npwr; i++)
1706 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1707 for (i = 0; i < cc->DoorLock; i++)
1708 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1709 for (i = 0; i < cc->Nspkrs; i++)
1710 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1711 for (i = 0; i < cc->Ntherm; i++)
1712 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1713 for (i = 0; i < NPSEUDO_THERM; i++)
1714 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1715 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1716 cc->slotoff = (uint8_t) r;
1717 for (i = 0; i < cc->Nslots; i++)
1718 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1719 return (0);
1720}
1721
1722int
1723safte_init_enc(ses_softc_t *ssc)
1724{
1725 int err;
1726 static char cdb0[6] = { SEND_DIAGNOSTIC };
1727
1728 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1729 if (err) {
1730 return (err);
1731 }
1732 DELAY(5000);
1733 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1734 return (err);
1735}
1736
1737int
1738safte_get_encstat(ses_softc_t *ssc, int slpflg)
1739{
1740 return (safte_rdstat(ssc, slpflg));
1741}
1742
1743int
1744safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1745{
1746 struct scfg *cc = ssc->ses_private;
1747 if (cc == NULL)
1748 return (0);
1749 /*
1750 * Since SAF-TE devices aren't necessarily sticky in terms
1751 * of state, make our soft copy of enclosure status 'sticky'-
1752 * that is, things set in enclosure status stay set (as implied
1753 * by conditions set in reading object status) until cleared.
1754 */
1755 ssc->ses_encstat &= ~ALL_ENC_STAT;
1756 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1757 ssc->ses_encstat |= ENCI_SVALID;
1758 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1759 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1760 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1761 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1762 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1763 }
1764 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1765}
1766
1767int
1768safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1769{
1770 int i = (int)obp->obj_id;
1771
1772 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1773 (ssc->ses_objmap[i].svalid) == 0) {
1774 int err = safte_rdstat(ssc, slpflg);
1775 if (err)
1776 return (err);
1777 }
1778 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1779 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1780 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1781 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1782 return (0);
1783}
1784
1785
1786int
1787safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1788{
1789 int idx, err;
1790 encobj *ep;
1791 struct scfg *cc;
1792
1793
1794 SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1795 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1796 obp->cstat[3]);
1797
1798 /*
1799 * If this is clear, we don't do diddly.
1800 */
1801 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1802 return (0);
1803 }
1804
1805 err = 0;
1806 /*
1807 * Check to see if the common bits are set and do them first.
1808 */
1809 if (obp->cstat[0] & ~SESCTL_CSEL) {
1810 err = set_objstat_sel(ssc, obp, slp);
1811 if (err)
1812 return (err);
1813 }
1814
1815 cc = ssc->ses_private;
1816 if (cc == NULL)
1817 return (0);
1818
1819 idx = (int)obp->obj_id;
1820 ep = &ssc->ses_objmap[idx];
1821
1822 switch (ep->enctype) {
1823 case SESTYP_DEVICE:
1824 {
1825 uint8_t slotop = 0;
1826 /*
1827 * XXX: I should probably cache the previous state
1828 * XXX: of SESCTL_DEVOFF so that when it goes from
1829 * XXX: true to false I can then set PREPARE FOR OPERATION
1830 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1831 */
1832 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1833 slotop |= 0x2;
1834 }
1835 if (obp->cstat[2] & SESCTL_RQSID) {
1836 slotop |= 0x4;
1837 }
1838 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1839 slotop, slp);
1840 if (err)
1841 return (err);
1842 if (obp->cstat[3] & SESCTL_RQSFLT) {
1843 ep->priv |= 0x2;
1844 } else {
1845 ep->priv &= ~0x2;
1846 }
1847 if (ep->priv & 0xc6) {
1848 ep->priv &= ~0x1;
1849 } else {
1850 ep->priv |= 0x1; /* no errors */
1851 }
1852 wrslot_stat(ssc, slp);
1853 break;
1854 }
1855 case SESTYP_POWER:
1856 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1857 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1858 } else {
1859 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1860 }
1861 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1862 cc->flag2, 0, slp);
1863 if (err)
1864 return (err);
1865 if (obp->cstat[3] & SESCTL_RQSTON) {
0e224b5d 1866 wrbuf16(ssc, SAFTE_WT_ACTPWS,
984263bc
MD
1867 idx - cc->pwroff, 0, 0, slp);
1868 } else {
0e224b5d 1869 wrbuf16(ssc, SAFTE_WT_ACTPWS,
984263bc
MD
1870 idx - cc->pwroff, 0, 1, slp);
1871 }
1872 break;
1873 case SESTYP_FAN:
1874 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1875 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1876 } else {
1877 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1878 }
1879 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1880 cc->flag2, 0, slp);
1881 if (err)
1882 return (err);
1883 if (obp->cstat[3] & SESCTL_RQSTON) {
1884 uint8_t fsp;
1885 if ((obp->cstat[3] & 0x7) == 7) {
1886 fsp = 4;
1887 } else if ((obp->cstat[3] & 0x7) == 6) {
1888 fsp = 3;
1889 } else if ((obp->cstat[3] & 0x7) == 4) {
1890 fsp = 2;
1891 } else {
1892 fsp = 1;
1893 }
0e224b5d 1894 wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
984263bc 1895 } else {
0e224b5d 1896 wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
984263bc
MD
1897 }
1898 break;
1899 case SESTYP_DOORLOCK:
1900 if (obp->cstat[3] & 0x1) {
1901 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1902 } else {
1903 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1904 }
0e224b5d 1905 wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
984263bc
MD
1906 break;
1907 case SESTYP_ALARM:
1908 /*
1909 * On all nonzero but the 'muted' bit, we turn on the alarm,
1910 */
1911 obp->cstat[3] &= ~0xa;
1912 if (obp->cstat[3] & 0x40) {
1913 cc->flag2 &= ~SAFT_FLG1_ALARM;
1914 } else if (obp->cstat[3] != 0) {
1915 cc->flag2 |= SAFT_FLG1_ALARM;
1916 } else {
1917 cc->flag2 &= ~SAFT_FLG1_ALARM;
1918 }
1919 ep->priv = obp->cstat[3];
0e224b5d 1920 wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
984263bc
MD
1921 break;
1922 default:
1923 break;
1924 }
1925 ep->svalid = 0;
1926 return (0);
1927}
1928
1929static int
1930safte_getconfig(ses_softc_t *ssc)
1931{
1932 struct scfg *cfg;
1933 int err, amt;
1934 char *sdata;
1935 static char cdb[10] =
1936 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1937
1938 cfg = ssc->ses_private;
1939 if (cfg == NULL)
1940 return (ENXIO);
1941
1942 sdata = SES_MALLOC(SAFT_SCRATCH);
1943 if (sdata == NULL)
1944 return (ENOMEM);
1945
1946 amt = SAFT_SCRATCH;
1947 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1948 if (err) {
1949 SES_FREE(sdata, SAFT_SCRATCH);
1950 return (err);
1951 }
1952 amt = SAFT_SCRATCH - amt;
1953 if (amt < 6) {
1954 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1955 SES_FREE(sdata, SAFT_SCRATCH);
1956 return (EIO);
1957 }
1958 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1959 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1960 cfg->Nfans = sdata[0];
1961 cfg->Npwr = sdata[1];
1962 cfg->Nslots = sdata[2];
1963 cfg->DoorLock = sdata[3];
1964 cfg->Ntherm = sdata[4];
1965 cfg->Nspkrs = sdata[5];
1966 cfg->Nalarm = NPSEUDO_ALARM;
1967 SES_FREE(sdata, SAFT_SCRATCH);
1968 return (0);
1969}
1970
1971static int
1972safte_rdstat(ses_softc_t *ssc, int slpflg)
1973{
1974 int err, oid, r, i, hiwater, nitems, amt;
1975 uint16_t tempflags;
1976 size_t buflen;
1977 uint8_t status, oencstat;
1978 char *sdata, cdb[10];
1979 struct scfg *cc = ssc->ses_private;
1980
1981
1982 /*
1983 * The number of objects overstates things a bit,
1984 * both for the bogus 'thermometer' entries and
1985 * the drive status (which isn't read at the same
1986 * time as the enclosure status), but that's okay.
1987 */
1988 buflen = 4 * cc->Nslots;
1989 if (ssc->ses_nobjects > buflen)
1990 buflen = ssc->ses_nobjects;
1991 sdata = SES_MALLOC(buflen);
1992 if (sdata == NULL)
1993 return (ENOMEM);
1994
1995 cdb[0] = READ_BUFFER;
1996 cdb[1] = 1;
1997 cdb[2] = SAFTE_RD_RDESTS;
1998 cdb[3] = 0;
1999 cdb[4] = 0;
2000 cdb[5] = 0;
2001 cdb[6] = 0;
2002 cdb[7] = (buflen >> 8) & 0xff;
2003 cdb[8] = buflen & 0xff;
2004 cdb[9] = 0;
2005 amt = buflen;
2006 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2007 if (err) {
2008 SES_FREE(sdata, buflen);
2009 return (err);
2010 }
2011 hiwater = buflen - amt;
2012
2013
2014 /*
2015 * invalidate all status bits.
2016 */
2017 for (i = 0; i < ssc->ses_nobjects; i++)
2018 ssc->ses_objmap[i].svalid = 0;
2019 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2020 ssc->ses_encstat = 0;
2021
2022
2023 /*
2024 * Now parse returned buffer.
2025 * If we didn't get enough data back,
2026 * that's considered a fatal error.
2027 */
2028 oid = r = 0;
2029
2030 for (nitems = i = 0; i < cc->Nfans; i++) {
2031 SAFT_BAIL(r, hiwater, sdata, buflen);
2032 /*
2033 * 0 = Fan Operational
2034 * 1 = Fan is malfunctioning
2035 * 2 = Fan is not present
2036 * 0x80 = Unknown or Not Reportable Status
2037 */
2038 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
2039 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
2040 switch ((int)(uint8_t)sdata[r]) {
2041 case 0:
2042 nitems++;
2043 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2044 /*
2045 * We could get fancier and cache
2046 * fan speeds that we have set, but
2047 * that isn't done now.
2048 */
2049 ssc->ses_objmap[oid].encstat[3] = 7;
2050 break;
2051
2052 case 1:
2053 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2054 /*
2055 * FAIL and FAN STOPPED synthesized
2056 */
2057 ssc->ses_objmap[oid].encstat[3] = 0x40;
2058 /*
2059 * Enclosure marked with CRITICAL error
2060 * if only one fan or no thermometers,
2061 * else the NONCRITICAL error is set.
2062 */
2063 if (cc->Nfans == 1 || cc->Ntherm == 0)
2064 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2065 else
2066 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2067 break;
2068 case 2:
2069 ssc->ses_objmap[oid].encstat[0] =
2070 SES_OBJSTAT_NOTINSTALLED;
2071 ssc->ses_objmap[oid].encstat[3] = 0;
2072 /*
2073 * Enclosure marked with CRITICAL error
2074 * if only one fan or no thermometers,
2075 * else the NONCRITICAL error is set.
2076 */
2077 if (cc->Nfans == 1)
2078 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2079 else
2080 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2081 break;
2082 case 0x80:
2083 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2084 ssc->ses_objmap[oid].encstat[3] = 0;
2085 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2086 break;
2087 default:
2088 ssc->ses_objmap[oid].encstat[0] =
2089 SES_OBJSTAT_UNSUPPORTED;
2090 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2091 sdata[r] & 0xff);
2092 break;
2093 }
2094 ssc->ses_objmap[oid++].svalid = 1;
2095 r++;
2096 }
2097
2098 /*
2099 * No matter how you cut it, no cooling elements when there
2100 * should be some there is critical.
2101 */
2102 if (cc->Nfans && nitems == 0) {
2103 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2104 }
2105
2106
2107 for (i = 0; i < cc->Npwr; i++) {
2108 SAFT_BAIL(r, hiwater, sdata, buflen);
2109 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2110 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
2111 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
2112 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
2113 switch ((uint8_t)sdata[r]) {
2114 case 0x00: /* pws operational and on */
2115 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2116 break;
2117 case 0x01: /* pws operational and off */
2118 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2119 ssc->ses_objmap[oid].encstat[3] = 0x10;
2120 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2121 break;
2122 case 0x10: /* pws is malfunctioning and commanded on */
2123 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2124 ssc->ses_objmap[oid].encstat[3] = 0x61;
2125 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2126 break;
2127
2128 case 0x11: /* pws is malfunctioning and commanded off */
2129 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2130 ssc->ses_objmap[oid].encstat[3] = 0x51;
2131 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2132 break;
2133 case 0x20: /* pws is not present */
2134 ssc->ses_objmap[oid].encstat[0] =
2135 SES_OBJSTAT_NOTINSTALLED;
2136 ssc->ses_objmap[oid].encstat[3] = 0;
2137 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2138 break;
2139 case 0x21: /* pws is present */
2140 /*
2141 * This is for enclosures that cannot tell whether the
2142 * device is on or malfunctioning, but know that it is
2143 * present. Just fall through.
2144 */
2145 /* FALLTHROUGH */
2146 case 0x80: /* Unknown or Not Reportable Status */
2147 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2148 ssc->ses_objmap[oid].encstat[3] = 0;
2149 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2150 break;
2151 default:
2152 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2153 i, sdata[r] & 0xff);
2154 break;
2155 }
2156 ssc->ses_objmap[oid++].svalid = 1;
2157 r++;
2158 }
2159
2160 /*
2161 * Skip over Slot SCSI IDs
2162 */
2163 r += cc->Nslots;
2164
2165 /*
2166 * We always have doorlock status, no matter what,
2167 * but we only save the status if we have one.
2168 */
2169 SAFT_BAIL(r, hiwater, sdata, buflen);
2170 if (cc->DoorLock) {
2171 /*
2172 * 0 = Door Locked
2173 * 1 = Door Unlocked, or no Lock Installed
2174 * 0x80 = Unknown or Not Reportable Status
2175 */
2176 ssc->ses_objmap[oid].encstat[1] = 0;
2177 ssc->ses_objmap[oid].encstat[2] = 0;
2178 switch ((uint8_t)sdata[r]) {
2179 case 0:
2180 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2181 ssc->ses_objmap[oid].encstat[3] = 0;
2182 break;
2183 case 1:
2184 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2185 ssc->ses_objmap[oid].encstat[3] = 1;
2186 break;
2187 case 0x80:
2188 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2189 ssc->ses_objmap[oid].encstat[3] = 0;
2190 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2191 break;
2192 default:
2193 ssc->ses_objmap[oid].encstat[0] =
2194 SES_OBJSTAT_UNSUPPORTED;
2195 SES_LOG(ssc, "unknown lock status 0x%x\n",
2196 sdata[r] & 0xff);
2197 break;
2198 }
2199 ssc->ses_objmap[oid++].svalid = 1;
2200 }
2201 r++;
2202
2203 /*
2204 * We always have speaker status, no matter what,
2205 * but we only save the status if we have one.
2206 */
2207 SAFT_BAIL(r, hiwater, sdata, buflen);
2208 if (cc->Nspkrs) {
2209 ssc->ses_objmap[oid].encstat[1] = 0;
2210 ssc->ses_objmap[oid].encstat[2] = 0;
2211 if (sdata[r] == 1) {
2212 /*
2213 * We need to cache tone urgency indicators.
2214 * Someday.
2215 */
2216 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2217 ssc->ses_objmap[oid].encstat[3] = 0x8;
2218 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2219 } else if (sdata[r] == 0) {
2220 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2221 ssc->ses_objmap[oid].encstat[3] = 0;
2222 } else {
2223 ssc->ses_objmap[oid].encstat[0] =
2224 SES_OBJSTAT_UNSUPPORTED;
2225 ssc->ses_objmap[oid].encstat[3] = 0;
2226 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2227 sdata[r] & 0xff);
2228 }
2229 ssc->ses_objmap[oid++].svalid = 1;
2230 }
2231 r++;
2232
2233 for (i = 0; i < cc->Ntherm; i++) {
2234 SAFT_BAIL(r, hiwater, sdata, buflen);
2235 /*
2236 * Status is a range from -10 to 245 deg Celsius,
2237 * which we need to normalize to -20 to -245 according
2238 * to the latest SCSI spec, which makes little
2239 * sense since this would overflow an 8bit value.
2240 * Well, still, the base normalization is -20,
2241 * not -10, so we have to adjust.
2242 *
2243 * So what's over and under temperature?
2244 * Hmm- we'll state that 'normal' operating
2245 * is 10 to 40 deg Celsius.
2246 */
2247
2248 /*
2249 * Actually.... All of the units that people out in the world
2250 * seem to have do not come even close to setting a value that
2251 * complies with this spec.
2252 *
2253 * The closest explanation I could find was in an
2254 * LSI-Logic manual, which seemed to indicate that
2255 * this value would be set by whatever the I2C code
2256 * would interpolate from the output of an LM75
2257 * temperature sensor.
2258 *
2259 * This means that it is impossible to use the actual
2260 * numeric value to predict anything. But we don't want
2261 * to lose the value. So, we'll propagate the *uncorrected*
2262 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2263 * temperature flags for warnings.
2264 */
2265 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2266 ssc->ses_objmap[oid].encstat[1] = 0;
2267 ssc->ses_objmap[oid].encstat[2] = sdata[r];
fc6d0222 2268 ssc->ses_objmap[oid].encstat[3] = 0;
984263bc
MD
2269 ssc->ses_objmap[oid++].svalid = 1;
2270 r++;
2271 }
2272
2273 /*
2274 * Now, for "pseudo" thermometers, we have two bytes
2275 * of information in enclosure status- 16 bits. Actually,
2276 * the MSB is a single TEMP ALERT flag indicating whether
2277 * any other bits are set, but, thanks to fuzzy thinking,
2278 * in the SAF-TE spec, this can also be set even if no
2279 * other bits are set, thus making this really another
2280 * binary temperature sensor.
2281 */
2282
2283 SAFT_BAIL(r, hiwater, sdata, buflen);
2284 tempflags = sdata[r++];
2285 SAFT_BAIL(r, hiwater, sdata, buflen);
2286 tempflags |= (tempflags << 8) | sdata[r++];
2287
2288 for (i = 0; i < NPSEUDO_THERM; i++) {
2289 ssc->ses_objmap[oid].encstat[1] = 0;
2290 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2291 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2292 ssc->ses_objmap[4].encstat[2] = 0xff;
2293 /*
2294 * Set 'over temperature' failure.
2295 */
2296 ssc->ses_objmap[oid].encstat[3] = 8;
2297 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2298 } else {
2299 /*
2300 * We used to say 'not available' and synthesize a
2301 * nominal 30 deg (C)- that was wrong. Actually,
2302 * Just say 'OK', and use the reserved value of
2303 * zero.
2304 */
2305 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2306 ssc->ses_objmap[oid].encstat[2] = 0;
2307 ssc->ses_objmap[oid].encstat[3] = 0;
2308 }
2309 ssc->ses_objmap[oid++].svalid = 1;
2310 }
2311
2312 /*
2313 * Get alarm status.
2314 */
2315 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2316 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2317 ssc->ses_objmap[oid++].svalid = 1;
2318
2319 /*
2320 * Now get drive slot status
2321 */
2322 cdb[2] = SAFTE_RD_RDDSTS;
2323 amt = buflen;
2324 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2325 if (err) {
2326 SES_FREE(sdata, buflen);
2327 return (err);
2328 }
2329 hiwater = buflen - amt;
2330 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2331 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2332 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2333 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2334 ssc->ses_objmap[oid].encstat[2] = 0;
2335 ssc->ses_objmap[oid].encstat[3] = 0;
2336 status = sdata[r+3];
2337 if ((status & 0x1) == 0) { /* no device */
2338 ssc->ses_objmap[oid].encstat[0] =
2339 SES_OBJSTAT_NOTINSTALLED;
2340 } else {
2341 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2342 }
2343 if (status & 0x2) {
2344 ssc->ses_objmap[oid].encstat[2] = 0x8;
2345 }
2346 if ((status & 0x4) == 0) {
2347 ssc->ses_objmap[oid].encstat[3] = 0x10;
2348 }
2349 ssc->ses_objmap[oid++].svalid = 1;
2350 }
2351 /* see comment below about sticky enclosure status */
2352 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2353 SES_FREE(sdata, buflen);
2354 return (0);
2355}
2356
2357static int
2358set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2359{
2360 int idx;
2361 encobj *ep;
2362 struct scfg *cc = ssc->ses_private;
2363
2364 if (cc == NULL)
2365 return (0);
2366
2367 idx = (int)obp->obj_id;
2368 ep = &ssc->ses_objmap[idx];
2369
2370 switch (ep->enctype) {
2371 case SESTYP_DEVICE:
2372 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2373 ep->priv |= 0x40;
2374 }
2375 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2376 if (obp->cstat[0] & SESCTL_DISABLE) {
2377 ep->priv |= 0x80;
2378 /*
2379 * Hmm. Try to set the 'No Drive' flag.
2380 * Maybe that will count as a 'disable'.
2381 */
2382 }
2383 if (ep->priv & 0xc6) {
2384 ep->priv &= ~0x1;
2385 } else {
2386 ep->priv |= 0x1; /* no errors */
2387 }
2388 wrslot_stat(ssc, slp);
2389 break;
2390 case SESTYP_POWER:
2391 /*
2392 * Okay- the only one that makes sense here is to
2393 * do the 'disable' for a power supply.
2394 */
2395 if (obp->cstat[0] & SESCTL_DISABLE) {
0e224b5d 2396 wrbuf16(ssc, SAFTE_WT_ACTPWS,
984263bc
MD
2397 idx - cc->pwroff, 0, 0, slp);
2398 }
2399 break;
2400 case SESTYP_FAN:
2401 /*
2402 * Okay- the only one that makes sense here is to
2403 * set fan speed to zero on disable.
2404 */
2405 if (obp->cstat[0] & SESCTL_DISABLE) {
2406 /* remember- fans are the first items, so idx works */
0e224b5d 2407 wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
984263bc
MD
2408 }
2409 break;
2410 case SESTYP_DOORLOCK:
2411 /*
2412 * Well, we can 'disable' the lock.
2413 */
2414 if (obp->cstat[0] & SESCTL_DISABLE) {
2415 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
0e224b5d 2416 wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
984263bc
MD
2417 cc->flag2, 0, slp);
2418 }
2419 break;
2420 case SESTYP_ALARM:
2421 /*
2422 * Well, we can 'disable' the alarm.
2423 */
2424 if (obp->cstat[0] & SESCTL_DISABLE) {
2425 cc->flag2 &= ~SAFT_FLG1_ALARM;
2426 ep->priv |= 0x40; /* Muted */
0e224b5d 2427 wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
984263bc
MD
2428 cc->flag2, 0, slp);
2429 }
2430 break;
2431 default:
2432 break;
2433 }
2434 ep->svalid = 0;
2435 return (0);
2436}
2437
2438/*
2439 * This function handles all of the 16 byte WRITE BUFFER commands.
2440 */
2441static int
2442wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2443 uint8_t b3, int slp)
2444{
2445 int err, amt;
2446 char *sdata;
2447 struct scfg *cc = ssc->ses_private;
2448 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2449
2450 if (cc == NULL)
2451 return (0);
2452
2453 sdata = SES_MALLOC(16);
2454 if (sdata == NULL)
2455 return (ENOMEM);
2456
2457 SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2458
2459 sdata[0] = op;
2460 sdata[1] = b1;
2461 sdata[2] = b2;
2462 sdata[3] = b3;
2463 MEMZERO(&sdata[4], 12);
2464 amt = -16;
2465 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2466 SES_FREE(sdata, 16);
2467 return (err);
2468}
2469
2470/*
2471 * This function updates the status byte for the device slot described.
2472 *
2473 * Since this is an optional SAF-TE command, there's no point in
2474 * returning an error.
2475 */
2476static void
2477wrslot_stat(ses_softc_t *ssc, int slp)
2478{
2479 int i, amt;
2480 encobj *ep;
2481 char cdb[10], *sdata;
2482 struct scfg *cc = ssc->ses_private;
2483
2484 if (cc == NULL)
2485 return;
2486
2487 SES_DLOG(ssc, "saf_wrslot\n");
2488 cdb[0] = WRITE_BUFFER;
2489 cdb[1] = 1;
2490 cdb[2] = 0;
2491 cdb[3] = 0;
2492 cdb[4] = 0;
2493 cdb[5] = 0;
2494 cdb[6] = 0;
2495 cdb[7] = 0;
2496 cdb[8] = cc->Nslots * 3 + 1;
2497 cdb[9] = 0;
2498
2499 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2500 if (sdata == NULL)
2501 return;
2502 MEMZERO(sdata, cc->Nslots * 3 + 1);
2503
2504 sdata[0] = SAFTE_WT_DSTAT;
2505 for (i = 0; i < cc->Nslots; i++) {
2506 ep = &ssc->ses_objmap[cc->slotoff + i];
2507 SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2508 sdata[1 + (3 * i)] = ep->priv & 0xff;
2509 }
2510 amt = -(cc->Nslots * 3 + 1);
0e224b5d 2511 ses_runcmd(ssc, cdb, 10, sdata, &amt);
984263bc
MD
2512 SES_FREE(sdata, cc->Nslots * 3 + 1);
2513}
2514
2515/*
2516 * This function issues the "PERFORM SLOT OPERATION" command.
2517 */
2518static int
2519perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2520{
2521 int err, amt;
2522 char *sdata;
2523 struct scfg *cc = ssc->ses_private;
2524 static char cdb[10] =
2525 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2526
2527 if (cc == NULL)
2528 return (0);
2529
2530 sdata = SES_MALLOC(SAFT_SCRATCH);
2531 if (sdata == NULL)
2532 return (ENOMEM);
2533 MEMZERO(sdata, SAFT_SCRATCH);
2534
2535 sdata[0] = SAFTE_WT_SLTOP;
2536 sdata[1] = slot;
2537 sdata[2] = opflag;
2538 SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2539 amt = -SAFT_SCRATCH;
2540 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2541 SES_FREE(sdata, SAFT_SCRATCH);
2542 return (err);
2543}