Add ifpoll, which support hardware TX/RX queues based polling.
[dragonfly.git] / sys / kern / kern_clock.c
CommitLineData
8c10bfcf
MD
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
984263bc
MD
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
c730be20 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
984263bc
MD
74 */
75
76#include "opt_ntp.h"
2b71c8f1 77#include "opt_polling.h"
b3a7093f 78#include "opt_ifpoll.h"
07522099 79#include "opt_pctrack.h"
984263bc
MD
80
81#include <sys/param.h>
82#include <sys/systm.h>
984263bc
MD
83#include <sys/callout.h>
84#include <sys/kernel.h>
f5d21610 85#include <sys/kinfo.h>
984263bc
MD
86#include <sys/proc.h>
87#include <sys/malloc.h>
88#include <sys/resourcevar.h>
89#include <sys/signalvar.h>
90#include <sys/timex.h>
91#include <sys/timepps.h>
92#include <vm/vm.h>
93#include <sys/lock.h>
94#include <vm/pmap.h>
95#include <vm/vm_map.h>
5ffd1608 96#include <vm/vm_extern.h>
984263bc 97#include <sys/sysctl.h>
2689779e 98#include <sys/thread2.h>
984263bc
MD
99
100#include <machine/cpu.h>
101#include <machine/limits.h>
102#include <machine/smp.h>
103
104#ifdef GPROF
105#include <sys/gmon.h>
106#endif
107
108#ifdef DEVICE_POLLING
94ebffcd 109extern void init_device_poll_pcpu(int);
3e61f60e 110#endif
984263bc 111
b3a7093f
SZ
112#ifdef IFPOLL_ENABLE
113extern void ifpoll_init_pcpu(int);
114#endif
115
07522099
MD
116#ifdef DEBUG_PCTRACK
117static void do_pctrack(struct intrframe *frame, int which);
118#endif
119
402ed7e1 120static void initclocks (void *dummy);
ba39e2e0 121SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
984263bc 122
6ad39cae
MD
123/*
124 * Some of these don't belong here, but it's easiest to concentrate them.
9eea7f0c 125 * Note that cpu_time counts in microseconds, but most userland programs
6ad39cae
MD
126 * just compare relative times against the total by delta.
127 */
9eea7f0c 128struct kinfo_cputime cputime_percpu[MAXCPU];
07522099
MD
129#ifdef DEBUG_PCTRACK
130struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
131struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
132#endif
133
9eea7f0c
HP
134#ifdef SMP
135static int
136sysctl_cputime(SYSCTL_HANDLER_ARGS)
137{
138 int cpu, error = 0;
139 size_t size = sizeof(struct kinfo_cputime);
140
141 for (cpu = 0; cpu < ncpus; ++cpu) {
142 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
143 break;
144 }
984263bc 145
9eea7f0c
HP
146 return (error);
147}
148SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
149 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
150#else
151SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
152 "CPU time statistics");
153#endif
984263bc 154
88c4d2f6
MD
155/*
156 * boottime is used to calculate the 'real' uptime. Do not confuse this with
157 * microuptime(). microtime() is not drift compensated. The real uptime
60b2809b
MD
158 * with compensation is nanotime() - bootime. boottime is recalculated
159 * whenever the real time is set based on the compensated elapsed time
160 * in seconds (gd->gd_time_seconds).
88c4d2f6 161 *
88c4d2f6
MD
162 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
163 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
164 * the real time.
165 */
166struct timespec boottime; /* boot time (realtime) for reference only */
88c4d2f6 167time_t time_second; /* read-only 'passive' uptime in seconds */
984263bc 168
5eb5a6bc
MD
169/*
170 * basetime is used to calculate the compensated real time of day. The
171 * basetime can be modified on a per-tick basis by the adjtime(),
172 * ntp_adjtime(), and sysctl-based time correction APIs.
173 *
174 * Note that frequency corrections can also be made by adjusting
175 * gd_cpuclock_base.
176 *
177 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
178 * used on both SMP and UP systems to avoid MP races between cpu's and
179 * interrupt races on UP systems.
180 */
181#define BASETIME_ARYSIZE 16
182#define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
183static struct timespec basetime[BASETIME_ARYSIZE];
184static volatile int basetime_index;
185
186static int
187sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
188{
189 struct timespec *bt;
190 int error;
35238fa5 191 int index;
5eb5a6bc 192
35238fa5
MD
193 /*
194 * Because basetime data and index may be updated by another cpu,
195 * a load fence is required to ensure that the data we read has
196 * not been speculatively read relative to a possibly updated index.
197 */
198 index = basetime_index;
199 cpu_lfence();
200 bt = &basetime[index];
08f95c49 201 error = SYSCTL_OUT(req, bt, sizeof(*bt));
5eb5a6bc
MD
202 return (error);
203}
204
984263bc 205SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
08f95c49 206 &boottime, timespec, "System boottime");
5eb5a6bc 207SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
08f95c49 208 sysctl_get_basetime, "S,timespec", "System basetime");
984263bc 209
88c4d2f6
MD
210static void hardclock(systimer_t info, struct intrframe *frame);
211static void statclock(systimer_t info, struct intrframe *frame);
212static void schedclock(systimer_t info, struct intrframe *frame);
5eb5a6bc 213static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
88c4d2f6
MD
214
215int ticks; /* system master ticks at hz */
da3639ef 216int clocks_running; /* tsleep/timeout clocks operational */
88c4d2f6
MD
217int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
218int64_t nsec_acc; /* accumulator */
984263bc 219
4026c000
JS
220/* NTPD time correction fields */
221int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
222int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
223int64_t ntp_delta; /* one-time correction in nsec */
224int64_t ntp_big_delta = 1000000000;
225int32_t ntp_tick_delta; /* current adjustment rate */
226int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
48590578
JS
227time_t ntp_leap_second; /* time of next leap second */
228int ntp_leap_insert; /* whether to insert or remove a second */
4026c000 229
984263bc 230/*
88c4d2f6 231 * Finish initializing clock frequencies and start all clocks running.
984263bc 232 */
88c4d2f6
MD
233/* ARGSUSED*/
234static void
235initclocks(void *dummy)
984263bc 236{
88c4d2f6
MD
237 /*psratio = profhz / stathz;*/
238 initclocks_pcpu();
da3639ef 239 clocks_running = 1;
984263bc
MD
240}
241
88c4d2f6
MD
242/*
243 * Called on a per-cpu basis
244 */
245void
246initclocks_pcpu(void)
247{
248 struct globaldata *gd = mycpu;
984263bc 249
88c4d2f6
MD
250 crit_enter();
251 if (gd->gd_cpuid == 0) {
252 gd->gd_time_seconds = 1;
044ee7c4 253 gd->gd_cpuclock_base = sys_cputimer->count();
88c4d2f6
MD
254 } else {
255 /* XXX */
256 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
257 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
258 }
0d1dffdf 259
94ebffcd
SZ
260#ifdef DEVICE_POLLING
261 init_device_poll_pcpu(gd->gd_cpuid);
262#endif
263
b3a7093f
SZ
264#ifdef IFPOLL_ENABLE
265 ifpoll_init_pcpu(gd->gd_cpuid);
266#endif
267
0d1dffdf
MD
268 /*
269 * Use a non-queued periodic systimer to prevent multiple ticks from
270 * building up if the sysclock jumps forward (8254 gets reset). The
271 * sysclock will never jump backwards. Our time sync is based on
272 * the actual sysclock, not the ticks count.
273 */
274 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
275 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
88c4d2f6 276 /* XXX correct the frequency for scheduler / estcpu tests */
0d1dffdf 277 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
8478264a 278 NULL, ESTCPUFREQ);
88c4d2f6
MD
279 crit_exit();
280}
984263bc
MD
281
282/*
88c4d2f6
MD
283 * This sets the current real time of day. Timespecs are in seconds and
284 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
285 * instead we adjust basetime so basetime + gd_* results in the current
286 * time of day. This way the gd_* fields are guarenteed to represent
287 * a monotonically increasing 'uptime' value.
5eb5a6bc
MD
288 *
289 * When set_timeofday() is called from userland, the system call forces it
290 * onto cpu #0 since only cpu #0 can update basetime_index.
984263bc 291 */
88c4d2f6
MD
292void
293set_timeofday(struct timespec *ts)
294{
5eb5a6bc
MD
295 struct timespec *nbt;
296 int ni;
984263bc 297
88c4d2f6
MD
298 /*
299 * XXX SMP / non-atomic basetime updates
300 */
301 crit_enter();
5eb5a6bc
MD
302 ni = (basetime_index + 1) & BASETIME_ARYMASK;
303 nbt = &basetime[ni];
304 nanouptime(nbt);
305 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
306 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
307 if (nbt->tv_nsec < 0) {
308 nbt->tv_nsec += 1000000000;
309 --nbt->tv_sec;
88c4d2f6 310 }
a81931cc
MD
311
312 /*
313 * Note that basetime diverges from boottime as the clock drift is
314 * compensated for, so we cannot do away with boottime. When setting
315 * the absolute time of day the drift is 0 (for an instant) and we
316 * can simply assign boottime to basetime.
317 *
318 * Note that nanouptime() is based on gd_time_seconds which is drift
319 * compensated up to a point (it is guarenteed to remain monotonically
320 * increasing). gd_time_seconds is thus our best uptime guess and
321 * suitable for use in the boottime calculation. It is already taken
322 * into account in the basetime calculation above.
323 */
5eb5a6bc 324 boottime.tv_sec = nbt->tv_sec;
4026c000 325 ntp_delta = 0;
5eb5a6bc
MD
326
327 /*
35238fa5
MD
328 * We now have a new basetime, make sure all other cpus have it,
329 * then update the index.
5eb5a6bc 330 */
35238fa5 331 cpu_sfence();
5eb5a6bc
MD
332 basetime_index = ni;
333
88c4d2f6
MD
334 crit_exit();
335}
336
984263bc 337/*
88c4d2f6
MD
338 * Each cpu has its own hardclock, but we only increments ticks and softticks
339 * on cpu #0.
340 *
341 * NOTE! systimer! the MP lock might not be held here. We can only safely
342 * manipulate objects owned by the current cpu.
984263bc 343 */
984263bc 344static void
88c4d2f6 345hardclock(systimer_t info, struct intrframe *frame)
984263bc 346{
88c4d2f6
MD
347 sysclock_t cputicks;
348 struct proc *p;
88c4d2f6 349 struct globaldata *gd = mycpu;
984263bc
MD
350
351 /*
88c4d2f6
MD
352 * Realtime updates are per-cpu. Note that timer corrections as
353 * returned by microtime() and friends make an additional adjustment
354 * using a system-wise 'basetime', but the running time is always
355 * taken from the per-cpu globaldata area. Since the same clock
356 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
357 * stay in synch.
358 *
359 * Note that we never allow info->time (aka gd->gd_hardclock.time)
fad57d0e
MD
360 * to reverse index gd_cpuclock_base, but that it is possible for
361 * it to temporarily get behind in the seconds if something in the
362 * system locks interrupts for a long period of time. Since periodic
363 * timers count events, though everything should resynch again
364 * immediately.
984263bc 365 */
88c4d2f6 366 cputicks = info->time - gd->gd_cpuclock_base;
044ee7c4 367 if (cputicks >= sys_cputimer->freq) {
88c4d2f6 368 ++gd->gd_time_seconds;
044ee7c4 369 gd->gd_cpuclock_base += sys_cputimer->freq;
88c4d2f6 370 }
984263bc
MD
371
372 /*
92b561b7
MD
373 * The system-wide ticks counter and NTP related timedelta/tickdelta
374 * adjustments only occur on cpu #0. NTP adjustments are accomplished
375 * by updating basetime.
984263bc 376 */
88c4d2f6 377 if (gd->gd_cpuid == 0) {
5eb5a6bc 378 struct timespec *nbt;
88c4d2f6
MD
379 struct timespec nts;
380 int leap;
5eb5a6bc 381 int ni;
984263bc 382
88c4d2f6 383 ++ticks;
984263bc 384
88c4d2f6
MD
385#if 0
386 if (tco->tc_poll_pps)
387 tco->tc_poll_pps(tco);
388#endif
5eb5a6bc 389
88c4d2f6 390 /*
5eb5a6bc
MD
391 * Calculate the new basetime index. We are in a critical section
392 * on cpu #0 and can safely play with basetime_index. Start
393 * with the current basetime and then make adjustments.
394 */
395 ni = (basetime_index + 1) & BASETIME_ARYMASK;
396 nbt = &basetime[ni];
397 *nbt = basetime[basetime_index];
398
399 /*
400 * Apply adjtime corrections. (adjtime() API)
401 *
402 * adjtime() only runs on cpu #0 so our critical section is
403 * sufficient to access these variables.
88c4d2f6 404 */
4026c000 405 if (ntp_delta != 0) {
5eb5a6bc 406 nbt->tv_nsec += ntp_tick_delta;
4026c000
JS
407 ntp_delta -= ntp_tick_delta;
408 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
409 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
5eb5a6bc 410 ntp_tick_delta = ntp_delta;
4026c000
JS
411 }
412 }
413
5eb5a6bc
MD
414 /*
415 * Apply permanent frequency corrections. (sysctl API)
416 */
4026c000
JS
417 if (ntp_tick_permanent != 0) {
418 ntp_tick_acc += ntp_tick_permanent;
419 if (ntp_tick_acc >= (1LL << 32)) {
5eb5a6bc 420 nbt->tv_nsec += ntp_tick_acc >> 32;
331bc6f8 421 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
4026c000 422 } else if (ntp_tick_acc <= -(1LL << 32)) {
331bc6f8 423 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
5eb5a6bc 424 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
331bc6f8 425 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
4026c000
JS
426 }
427 }
428
5eb5a6bc
MD
429 if (nbt->tv_nsec >= 1000000000) {
430 nbt->tv_sec++;
431 nbt->tv_nsec -= 1000000000;
432 } else if (nbt->tv_nsec < 0) {
433 nbt->tv_sec--;
434 nbt->tv_nsec += 1000000000;
88c4d2f6
MD
435 }
436
437 /*
5eb5a6bc 438 * Another per-tick compensation. (for ntp_adjtime() API)
88c4d2f6 439 */
5eb5a6bc 440 if (nsec_adj != 0) {
88c4d2f6
MD
441 nsec_acc += nsec_adj;
442 if (nsec_acc >= 0x100000000LL) {
5eb5a6bc 443 nbt->tv_nsec += nsec_acc >> 32;
88c4d2f6
MD
444 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
445 } else if (nsec_acc <= -0x100000000LL) {
5eb5a6bc 446 nbt->tv_nsec -= -nsec_acc >> 32;
88c4d2f6
MD
447 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
448 }
5eb5a6bc
MD
449 if (nbt->tv_nsec >= 1000000000) {
450 nbt->tv_nsec -= 1000000000;
451 ++nbt->tv_sec;
452 } else if (nbt->tv_nsec < 0) {
453 nbt->tv_nsec += 1000000000;
454 --nbt->tv_sec;
455 }
456 }
457
458 /************************************************************
459 * LEAP SECOND CORRECTION *
460 ************************************************************
461 *
462 * Taking into account all the corrections made above, figure
463 * out the new real time. If the seconds field has changed
464 * then apply any pending leap-second corrections.
465 */
466 getnanotime_nbt(nbt, &nts);
467
32040d57
MD
468 if (time_second != nts.tv_sec) {
469 /*
470 * Apply leap second (sysctl API). Adjust nts for changes
471 * so we do not have to call getnanotime_nbt again.
472 */
473 if (ntp_leap_second) {
474 if (ntp_leap_second == nts.tv_sec) {
475 if (ntp_leap_insert) {
476 nbt->tv_sec++;
477 nts.tv_sec++;
478 } else {
479 nbt->tv_sec--;
480 nts.tv_sec--;
481 }
5eb5a6bc 482 ntp_leap_second--;
32040d57 483 }
88c4d2f6 484 }
88c4d2f6 485
32040d57
MD
486 /*
487 * Apply leap second (ntp_adjtime() API), calculate a new
488 * nsec_adj field. ntp_update_second() returns nsec_adj
489 * as a per-second value but we need it as a per-tick value.
490 */
88c4d2f6 491 leap = ntp_update_second(time_second, &nsec_adj);
88c4d2f6 492 nsec_adj /= hz;
32040d57
MD
493 nbt->tv_sec += leap;
494 nts.tv_sec += leap;
495
496 /*
497 * Update the time_second 'approximate time' global.
498 */
499 time_second = nts.tv_sec;
88c4d2f6 500 }
5eb5a6bc
MD
501
502 /*
503 * Finally, our new basetime is ready to go live!
504 */
35238fa5 505 cpu_sfence();
5eb5a6bc 506 basetime_index = ni;
5ffd1608
MD
507
508 /*
509 * Figure out how badly the system is starved for memory
510 */
511 vm_fault_ratecheck();
88c4d2f6
MD
512 }
513
514 /*
92b561b7
MD
515 * softticks are handled for all cpus
516 */
517 hardclock_softtick(gd);
518
519 /*
c730be20
MD
520 * The LWKT scheduler will generally allow the current process to
521 * return to user mode even if there are other runnable LWKT threads
522 * running in kernel mode on behalf of a user process. This will
523 * ensure that those other threads have an opportunity to run in
524 * fairly short order (but not instantly).
525 */
526 need_lwkt_resched();
527
528 /*
84204577 529 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
88c4d2f6
MD
530 * is mpsafe on curproc, so XXX get the mplock.
531 */
532 if ((p = curproc) != NULL && try_mplock()) {
88c4d2f6 533 if (frame && CLKF_USERMODE(frame) &&
93328593
SS
534 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
535 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
84204577 536 ksignal(p, SIGVTALRM);
93328593
SS
537 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
538 itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
84204577 539 ksignal(p, SIGPROF);
88c4d2f6 540 rel_mplock();
984263bc 541 }
604e1e09 542 setdelayed();
88c4d2f6 543}
984263bc 544
88c4d2f6
MD
545/*
546 * The statistics clock typically runs at a 125Hz rate, and is intended
547 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
548 *
549 * NOTE! systimer! the MP lock might not be held here. We can only safely
550 * manipulate objects owned by the current cpu.
551 *
552 * The stats clock is responsible for grabbing a profiling sample.
553 * Most of the statistics are only used by user-level statistics programs.
554 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
555 * p->p_estcpu.
556 *
557 * Like the other clocks, the stat clock is called from what is effectively
558 * a fast interrupt, so the context should be the thread/process that got
559 * interrupted.
560 */
561static void
562statclock(systimer_t info, struct intrframe *frame)
563{
564#ifdef GPROF
565 struct gmonparam *g;
566 int i;
984263bc 567#endif
88c4d2f6
MD
568 thread_t td;
569 struct proc *p;
570 int bump;
571 struct timeval tv;
572 struct timeval *stv;
984263bc
MD
573
574 /*
88c4d2f6 575 * How big was our timeslice relative to the last time?
984263bc 576 */
88c4d2f6
MD
577 microuptime(&tv); /* mpsafe */
578 stv = &mycpu->gd_stattv;
579 if (stv->tv_sec == 0) {
580 bump = 1;
581 } else {
582 bump = tv.tv_usec - stv->tv_usec +
583 (tv.tv_sec - stv->tv_sec) * 1000000;
584 if (bump < 0)
585 bump = 0;
586 if (bump > 1000000)
587 bump = 1000000;
588 }
589 *stv = tv;
984263bc 590
88c4d2f6
MD
591 td = curthread;
592 p = td->td_proc;
984263bc 593
88c4d2f6
MD
594 if (frame && CLKF_USERMODE(frame)) {
595 /*
596 * Came from userland, handle user time and deal with
597 * possible process.
598 */
599 if (p && (p->p_flag & P_PROFIL))
600 addupc_intr(p, CLKF_PC(frame), 1);
601 td->td_uticks += bump;
984263bc 602
88c4d2f6
MD
603 /*
604 * Charge the time as appropriate
605 */
606 if (p && p->p_nice > NZERO)
9eea7f0c 607 cpu_time.cp_nice += bump;
88c4d2f6 608 else
9eea7f0c 609 cpu_time.cp_user += bump;
88c4d2f6
MD
610 } else {
611#ifdef GPROF
612 /*
613 * Kernel statistics are just like addupc_intr, only easier.
614 */
615 g = &_gmonparam;
616 if (g->state == GMON_PROF_ON && frame) {
617 i = CLKF_PC(frame) - g->lowpc;
618 if (i < g->textsize) {
619 i /= HISTFRACTION * sizeof(*g->kcount);
620 g->kcount[i]++;
621 }
622 }
623#endif
624 /*
625 * Came from kernel mode, so we were:
626 * - handling an interrupt,
627 * - doing syscall or trap work on behalf of the current
628 * user process, or
629 * - spinning in the idle loop.
630 * Whichever it is, charge the time as appropriate.
631 * Note that we charge interrupts to the current process,
632 * regardless of whether they are ``for'' that process,
633 * so that we know how much of its real time was spent
634 * in ``non-process'' (i.e., interrupt) work.
635 *
636 * XXX assume system if frame is NULL. A NULL frame
e43a034f 637 * can occur if ipi processing is done from a crit_exit().
88c4d2f6
MD
638 */
639 if (frame && CLKF_INTR(frame))
640 td->td_iticks += bump;
641 else
642 td->td_sticks += bump;
643
644 if (frame && CLKF_INTR(frame)) {
07522099
MD
645#ifdef DEBUG_PCTRACK
646 do_pctrack(frame, PCTRACK_INT);
647#endif
9eea7f0c 648 cpu_time.cp_intr += bump;
88c4d2f6 649 } else {
07522099 650 if (td == &mycpu->gd_idlethread) {
9eea7f0c 651 cpu_time.cp_idle += bump;
07522099
MD
652 } else {
653#ifdef DEBUG_PCTRACK
654 if (frame)
655 do_pctrack(frame, PCTRACK_SYS);
656#endif
9eea7f0c 657 cpu_time.cp_sys += bump;
07522099 658 }
88c4d2f6
MD
659 }
660 }
661}
662
07522099
MD
663#ifdef DEBUG_PCTRACK
664/*
665 * Sample the PC when in the kernel or in an interrupt. User code can
666 * retrieve the information and generate a histogram or other output.
667 */
668
669static void
670do_pctrack(struct intrframe *frame, int which)
671{
672 struct kinfo_pctrack *pctrack;
673
674 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
675 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
676 (void *)CLKF_PC(frame);
677 ++pctrack->pc_index;
678}
679
680static int
681sysctl_pctrack(SYSCTL_HANDLER_ARGS)
682{
683 struct kinfo_pcheader head;
684 int error;
685 int cpu;
686 int ntrack;
687
688 head.pc_ntrack = PCTRACK_SIZE;
689 head.pc_arysize = PCTRACK_ARYSIZE;
690
691 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
692 return (error);
693
694 for (cpu = 0; cpu < ncpus; ++cpu) {
695 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
696 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
697 sizeof(struct kinfo_pctrack));
698 if (error)
699 break;
700 }
701 if (error)
702 break;
703 }
704 return (error);
705}
706SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
707 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
708
709#endif
710
88c4d2f6 711/*
dcc99b62 712 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
88c4d2f6
MD
713 * the MP lock might not be held. We can safely manipulate parts of curproc
714 * but that's about it.
dcc99b62
MD
715 *
716 * Each cpu has its own scheduler clock.
88c4d2f6
MD
717 */
718static void
719schedclock(systimer_t info, struct intrframe *frame)
720{
553ea3c8 721 struct lwp *lp;
88c4d2f6
MD
722 struct rusage *ru;
723 struct vmspace *vm;
724 long rss;
725
553ea3c8 726 if ((lp = lwkt_preempted_proc()) != NULL) {
dcc99b62
MD
727 /*
728 * Account for cpu time used and hit the scheduler. Note
729 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
730 * HERE.
731 */
553ea3c8 732 ++lp->lwp_cpticks;
5681a38a
MD
733 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
734 info->time);
dcc99b62 735 }
553ea3c8 736 if ((lp = curthread->td_lwp) != NULL) {
dcc99b62
MD
737 /*
738 * Update resource usage integrals and maximums.
739 */
fde7ac71 740 if ((ru = &lp->lwp_proc->p_ru) &&
553ea3c8 741 (vm = lp->lwp_proc->p_vmspace) != NULL) {
88c4d2f6
MD
742 ru->ru_ixrss += pgtok(vm->vm_tsize);
743 ru->ru_idrss += pgtok(vm->vm_dsize);
744 ru->ru_isrss += pgtok(vm->vm_ssize);
745 rss = pgtok(vmspace_resident_count(vm));
746 if (ru->ru_maxrss < rss)
747 ru->ru_maxrss = rss;
748 }
b68b7282 749 }
984263bc
MD
750}
751
752/*
a94976ad
MD
753 * Compute number of ticks for the specified amount of time. The
754 * return value is intended to be used in a clock interrupt timed
755 * operation and guarenteed to meet or exceed the requested time.
756 * If the representation overflows, return INT_MAX. The minimum return
757 * value is 1 ticks and the function will average the calculation up.
758 * If any value greater then 0 microseconds is supplied, a value
759 * of at least 2 will be returned to ensure that a near-term clock
760 * interrupt does not cause the timeout to occur (degenerately) early.
761 *
762 * Note that limit checks must take into account microseconds, which is
763 * done simply by using the smaller signed long maximum instead of
764 * the unsigned long maximum.
765 *
766 * If ints have 32 bits, then the maximum value for any timeout in
767 * 10ms ticks is 248 days.
984263bc
MD
768 */
769int
a94976ad 770tvtohz_high(struct timeval *tv)
984263bc 771{
a94976ad 772 int ticks;
1fd87d54 773 long sec, usec;
984263bc 774
984263bc
MD
775 sec = tv->tv_sec;
776 usec = tv->tv_usec;
777 if (usec < 0) {
778 sec--;
779 usec += 1000000;
780 }
781 if (sec < 0) {
782#ifdef DIAGNOSTIC
783 if (usec > 0) {
784 sec++;
785 usec -= 1000000;
786 }
05c3b7cb 787 kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
984263bc
MD
788 sec, usec);
789#endif
790 ticks = 1;
a94976ad
MD
791 } else if (sec <= INT_MAX / hz) {
792 ticks = (int)(sec * hz +
793 ((u_long)usec + (tick - 1)) / tick) + 1;
794 } else {
795 ticks = INT_MAX;
796 }
797 return (ticks);
798}
799
800/*
801 * Compute number of ticks for the specified amount of time, erroring on
802 * the side of it being too low to ensure that sleeping the returned number
803 * of ticks will not result in a late return.
804 *
805 * The supplied timeval may not be negative and should be normalized. A
806 * return value of 0 is possible if the timeval converts to less then
807 * 1 tick.
808 *
809 * If ints have 32 bits, then the maximum value for any timeout in
810 * 10ms ticks is 248 days.
811 */
812int
813tvtohz_low(struct timeval *tv)
814{
815 int ticks;
816 long sec;
817
818 sec = tv->tv_sec;
819 if (sec <= INT_MAX / hz)
820 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
984263bc 821 else
984263bc 822 ticks = INT_MAX;
a94976ad 823 return (ticks);
984263bc
MD
824}
825
a94976ad 826
984263bc
MD
827/*
828 * Start profiling on a process.
829 *
830 * Kernel profiling passes proc0 which never exits and hence
831 * keeps the profile clock running constantly.
832 */
833void
88c4d2f6 834startprofclock(struct proc *p)
984263bc 835{
984263bc
MD
836 if ((p->p_flag & P_PROFIL) == 0) {
837 p->p_flag |= P_PROFIL;
88c4d2f6 838#if 0 /* XXX */
984263bc 839 if (++profprocs == 1 && stathz != 0) {
e43a034f 840 crit_enter();
6ad39cae 841 psdiv = psratio;
984263bc 842 setstatclockrate(profhz);
e43a034f 843 crit_exit();
984263bc 844 }
88c4d2f6 845#endif
984263bc
MD
846 }
847}
848
849/*
850 * Stop profiling on a process.
851 */
852void
88c4d2f6 853stopprofclock(struct proc *p)
984263bc 854{
984263bc
MD
855 if (p->p_flag & P_PROFIL) {
856 p->p_flag &= ~P_PROFIL;
88c4d2f6 857#if 0 /* XXX */
984263bc 858 if (--profprocs == 0 && stathz != 0) {
e43a034f 859 crit_enter();
6ad39cae 860 psdiv = 1;
984263bc 861 setstatclockrate(stathz);
e43a034f 862 crit_exit();
984263bc 863 }
984263bc 864#endif
984263bc
MD
865 }
866}
867
868/*
869 * Return information about system clocks.
870 */
871static int
872sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
873{
f5d21610 874 struct kinfo_clockinfo clkinfo;
984263bc
MD
875 /*
876 * Construct clockinfo structure.
877 */
f5d21610
JS
878 clkinfo.ci_hz = hz;
879 clkinfo.ci_tick = tick;
4026c000 880 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
f5d21610
JS
881 clkinfo.ci_profhz = profhz;
882 clkinfo.ci_stathz = stathz ? stathz : hz;
984263bc
MD
883 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
884}
885
886SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
887 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
888
984263bc
MD
889/*
890 * We have eight functions for looking at the clock, four for
891 * microseconds and four for nanoseconds. For each there is fast
892 * but less precise version "get{nano|micro}[up]time" which will
893 * return a time which is up to 1/HZ previous to the call, whereas
894 * the raw version "{nano|micro}[up]time" will return a timestamp
895 * which is as precise as possible. The "up" variants return the
896 * time relative to system boot, these are well suited for time
897 * interval measurements.
88c4d2f6
MD
898 *
899 * Each cpu independantly maintains the current time of day, so all
900 * we need to do to protect ourselves from changes is to do a loop
901 * check on the seconds field changing out from under us.
fad57d0e
MD
902 *
903 * The system timer maintains a 32 bit count and due to various issues
904 * it is possible for the calculated delta to occassionally exceed
044ee7c4
MD
905 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
906 * multiplication can easily overflow, so we deal with the case. For
907 * uniformity we deal with the case in the usec case too.
984263bc 908 */
984263bc
MD
909void
910getmicrouptime(struct timeval *tvp)
911{
88c4d2f6
MD
912 struct globaldata *gd = mycpu;
913 sysclock_t delta;
914
915 do {
916 tvp->tv_sec = gd->gd_time_seconds;
917 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
918 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 919
044ee7c4
MD
920 if (delta >= sys_cputimer->freq) {
921 tvp->tv_sec += delta / sys_cputimer->freq;
922 delta %= sys_cputimer->freq;
fad57d0e 923 }
044ee7c4 924 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
88c4d2f6
MD
925 if (tvp->tv_usec >= 1000000) {
926 tvp->tv_usec -= 1000000;
927 ++tvp->tv_sec;
984263bc
MD
928 }
929}
930
931void
932getnanouptime(struct timespec *tsp)
933{
88c4d2f6
MD
934 struct globaldata *gd = mycpu;
935 sysclock_t delta;
936
937 do {
938 tsp->tv_sec = gd->gd_time_seconds;
939 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
940 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 941
044ee7c4
MD
942 if (delta >= sys_cputimer->freq) {
943 tsp->tv_sec += delta / sys_cputimer->freq;
944 delta %= sys_cputimer->freq;
984263bc 945 }
044ee7c4 946 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc
MD
947}
948
949void
88c4d2f6 950microuptime(struct timeval *tvp)
984263bc 951{
88c4d2f6
MD
952 struct globaldata *gd = mycpu;
953 sysclock_t delta;
954
955 do {
956 tvp->tv_sec = gd->gd_time_seconds;
044ee7c4 957 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 958 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 959
044ee7c4
MD
960 if (delta >= sys_cputimer->freq) {
961 tvp->tv_sec += delta / sys_cputimer->freq;
962 delta %= sys_cputimer->freq;
984263bc 963 }
044ee7c4 964 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc
MD
965}
966
967void
88c4d2f6 968nanouptime(struct timespec *tsp)
984263bc 969{
88c4d2f6
MD
970 struct globaldata *gd = mycpu;
971 sysclock_t delta;
972
973 do {
974 tsp->tv_sec = gd->gd_time_seconds;
044ee7c4 975 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 976 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 977
044ee7c4
MD
978 if (delta >= sys_cputimer->freq) {
979 tsp->tv_sec += delta / sys_cputimer->freq;
980 delta %= sys_cputimer->freq;
984263bc 981 }
044ee7c4 982 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc
MD
983}
984
88c4d2f6
MD
985/*
986 * realtime routines
987 */
984263bc
MD
988
989void
88c4d2f6 990getmicrotime(struct timeval *tvp)
984263bc 991{
88c4d2f6 992 struct globaldata *gd = mycpu;
5eb5a6bc 993 struct timespec *bt;
88c4d2f6 994 sysclock_t delta;
984263bc 995
88c4d2f6
MD
996 do {
997 tvp->tv_sec = gd->gd_time_seconds;
998 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
999 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1000
044ee7c4
MD
1001 if (delta >= sys_cputimer->freq) {
1002 tvp->tv_sec += delta / sys_cputimer->freq;
1003 delta %= sys_cputimer->freq;
fad57d0e 1004 }
044ee7c4 1005 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc 1006
5eb5a6bc
MD
1007 bt = &basetime[basetime_index];
1008 tvp->tv_sec += bt->tv_sec;
1009 tvp->tv_usec += bt->tv_nsec / 1000;
88c4d2f6
MD
1010 while (tvp->tv_usec >= 1000000) {
1011 tvp->tv_usec -= 1000000;
1012 ++tvp->tv_sec;
984263bc 1013 }
984263bc
MD
1014}
1015
1016void
88c4d2f6 1017getnanotime(struct timespec *tsp)
984263bc 1018{
88c4d2f6 1019 struct globaldata *gd = mycpu;
5eb5a6bc 1020 struct timespec *bt;
88c4d2f6 1021 sysclock_t delta;
984263bc 1022
88c4d2f6
MD
1023 do {
1024 tsp->tv_sec = gd->gd_time_seconds;
1025 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1026 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1027
044ee7c4
MD
1028 if (delta >= sys_cputimer->freq) {
1029 tsp->tv_sec += delta / sys_cputimer->freq;
1030 delta %= sys_cputimer->freq;
fad57d0e 1031 }
044ee7c4 1032 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc 1033
5eb5a6bc
MD
1034 bt = &basetime[basetime_index];
1035 tsp->tv_sec += bt->tv_sec;
1036 tsp->tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1037 while (tsp->tv_nsec >= 1000000000) {
1038 tsp->tv_nsec -= 1000000000;
1039 ++tsp->tv_sec;
984263bc 1040 }
984263bc
MD
1041}
1042
5eb5a6bc
MD
1043static void
1044getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1045{
1046 struct globaldata *gd = mycpu;
1047 sysclock_t delta;
1048
1049 do {
1050 tsp->tv_sec = gd->gd_time_seconds;
1051 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1052 } while (tsp->tv_sec != gd->gd_time_seconds);
1053
044ee7c4
MD
1054 if (delta >= sys_cputimer->freq) {
1055 tsp->tv_sec += delta / sys_cputimer->freq;
1056 delta %= sys_cputimer->freq;
5eb5a6bc 1057 }
044ee7c4 1058 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
5eb5a6bc
MD
1059
1060 tsp->tv_sec += nbt->tv_sec;
1061 tsp->tv_nsec += nbt->tv_nsec;
1062 while (tsp->tv_nsec >= 1000000000) {
1063 tsp->tv_nsec -= 1000000000;
1064 ++tsp->tv_sec;
1065 }
1066}
1067
1068
88c4d2f6
MD
1069void
1070microtime(struct timeval *tvp)
984263bc 1071{
88c4d2f6 1072 struct globaldata *gd = mycpu;
5eb5a6bc 1073 struct timespec *bt;
88c4d2f6 1074 sysclock_t delta;
984263bc 1075
88c4d2f6
MD
1076 do {
1077 tvp->tv_sec = gd->gd_time_seconds;
044ee7c4 1078 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1079 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e 1080
044ee7c4
MD
1081 if (delta >= sys_cputimer->freq) {
1082 tvp->tv_sec += delta / sys_cputimer->freq;
1083 delta %= sys_cputimer->freq;
fad57d0e 1084 }
044ee7c4 1085 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
984263bc 1086
5eb5a6bc
MD
1087 bt = &basetime[basetime_index];
1088 tvp->tv_sec += bt->tv_sec;
1089 tvp->tv_usec += bt->tv_nsec / 1000;
88c4d2f6
MD
1090 while (tvp->tv_usec >= 1000000) {
1091 tvp->tv_usec -= 1000000;
1092 ++tvp->tv_sec;
984263bc 1093 }
984263bc
MD
1094}
1095
88c4d2f6
MD
1096void
1097nanotime(struct timespec *tsp)
1098{
1099 struct globaldata *gd = mycpu;
5eb5a6bc 1100 struct timespec *bt;
88c4d2f6 1101 sysclock_t delta;
984263bc 1102
88c4d2f6
MD
1103 do {
1104 tsp->tv_sec = gd->gd_time_seconds;
044ee7c4 1105 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
88c4d2f6 1106 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e 1107
044ee7c4
MD
1108 if (delta >= sys_cputimer->freq) {
1109 tsp->tv_sec += delta / sys_cputimer->freq;
1110 delta %= sys_cputimer->freq;
fad57d0e 1111 }
044ee7c4 1112 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
984263bc 1113
5eb5a6bc
MD
1114 bt = &basetime[basetime_index];
1115 tsp->tv_sec += bt->tv_sec;
1116 tsp->tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1117 while (tsp->tv_nsec >= 1000000000) {
1118 tsp->tv_nsec -= 1000000000;
1119 ++tsp->tv_sec;
984263bc 1120 }
984263bc
MD
1121}
1122
25b804e7
MD
1123/*
1124 * note: this is not exactly synchronized with real time. To do that we
1125 * would have to do what microtime does and check for a nanoseconds overflow.
1126 */
1127time_t
1128get_approximate_time_t(void)
1129{
1130 struct globaldata *gd = mycpu;
5eb5a6bc
MD
1131 struct timespec *bt;
1132
1133 bt = &basetime[basetime_index];
1134 return(gd->gd_time_seconds + bt->tv_sec);
25b804e7
MD
1135}
1136
984263bc
MD
1137int
1138pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1139{
1140 pps_params_t *app;
1141 struct pps_fetch_args *fapi;
1142#ifdef PPS_SYNC
1143 struct pps_kcbind_args *kapi;
1144#endif
1145
1146 switch (cmd) {
1147 case PPS_IOC_CREATE:
1148 return (0);
1149 case PPS_IOC_DESTROY:
1150 return (0);
1151 case PPS_IOC_SETPARAMS:
1152 app = (pps_params_t *)data;
1153 if (app->mode & ~pps->ppscap)
1154 return (EINVAL);
1155 pps->ppsparam = *app;
1156 return (0);
1157 case PPS_IOC_GETPARAMS:
1158 app = (pps_params_t *)data;
1159 *app = pps->ppsparam;
1160 app->api_version = PPS_API_VERS_1;
1161 return (0);
1162 case PPS_IOC_GETCAP:
1163 *(int*)data = pps->ppscap;
1164 return (0);
1165 case PPS_IOC_FETCH:
1166 fapi = (struct pps_fetch_args *)data;
1167 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1168 return (EINVAL);
1169 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1170 return (EOPNOTSUPP);
1171 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1172 fapi->pps_info_buf = pps->ppsinfo;
1173 return (0);
1174 case PPS_IOC_KCBIND:
1175#ifdef PPS_SYNC
1176 kapi = (struct pps_kcbind_args *)data;
1177 /* XXX Only root should be able to do this */
1178 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1179 return (EINVAL);
1180 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1181 return (EINVAL);
1182 if (kapi->edge & ~pps->ppscap)
1183 return (EINVAL);
1184 pps->kcmode = kapi->edge;
1185 return (0);
1186#else
1187 return (EOPNOTSUPP);
1188#endif
1189 default:
1190 return (ENOTTY);
1191 }
1192}
1193
1194void
1195pps_init(struct pps_state *pps)
1196{
1197 pps->ppscap |= PPS_TSFMT_TSPEC;
1198 if (pps->ppscap & PPS_CAPTUREASSERT)
1199 pps->ppscap |= PPS_OFFSETASSERT;
1200 if (pps->ppscap & PPS_CAPTURECLEAR)
1201 pps->ppscap |= PPS_OFFSETCLEAR;
1202}
1203
1204void
88c4d2f6 1205pps_event(struct pps_state *pps, sysclock_t count, int event)
984263bc 1206{
88c4d2f6
MD
1207 struct globaldata *gd;
1208 struct timespec *tsp;
1209 struct timespec *osp;
5eb5a6bc 1210 struct timespec *bt;
88c4d2f6
MD
1211 struct timespec ts;
1212 sysclock_t *pcount;
1213#ifdef PPS_SYNC
1214 sysclock_t tcount;
1215#endif
1216 sysclock_t delta;
1217 pps_seq_t *pseq;
1218 int foff;
1219 int fhard;
1220
1221 gd = mycpu;
984263bc
MD
1222
1223 /* Things would be easier with arrays... */
1224 if (event == PPS_CAPTUREASSERT) {
1225 tsp = &pps->ppsinfo.assert_timestamp;
1226 osp = &pps->ppsparam.assert_offset;
1227 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1228 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1229 pcount = &pps->ppscount[0];
1230 pseq = &pps->ppsinfo.assert_sequence;
1231 } else {
1232 tsp = &pps->ppsinfo.clear_timestamp;
1233 osp = &pps->ppsparam.clear_offset;
1234 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1235 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1236 pcount = &pps->ppscount[1];
1237 pseq = &pps->ppsinfo.clear_sequence;
1238 }
1239
984263bc
MD
1240 /* Nothing really happened */
1241 if (*pcount == count)
1242 return;
1243
1244 *pcount = count;
1245
88c4d2f6
MD
1246 do {
1247 ts.tv_sec = gd->gd_time_seconds;
1248 delta = count - gd->gd_cpuclock_base;
1249 } while (ts.tv_sec != gd->gd_time_seconds);
fad57d0e 1250
044ee7c4
MD
1251 if (delta >= sys_cputimer->freq) {
1252 ts.tv_sec += delta / sys_cputimer->freq;
1253 delta %= sys_cputimer->freq;
88c4d2f6 1254 }
044ee7c4 1255 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
5eb5a6bc
MD
1256 bt = &basetime[basetime_index];
1257 ts.tv_sec += bt->tv_sec;
1258 ts.tv_nsec += bt->tv_nsec;
88c4d2f6
MD
1259 while (ts.tv_nsec >= 1000000000) {
1260 ts.tv_nsec -= 1000000000;
1261 ++ts.tv_sec;
984263bc 1262 }
984263bc
MD
1263
1264 (*pseq)++;
1265 *tsp = ts;
1266
1267 if (foff) {
1268 timespecadd(tsp, osp);
1269 if (tsp->tv_nsec < 0) {
1270 tsp->tv_nsec += 1000000000;
1271 tsp->tv_sec -= 1;
1272 }
1273 }
1274#ifdef PPS_SYNC
1275 if (fhard) {
1276 /* magic, at its best... */
1277 tcount = count - pps->ppscount[2];
1278 pps->ppscount[2] = count;
044ee7c4
MD
1279 if (tcount >= sys_cputimer->freq) {
1280 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1281 sys_cputimer->freq64_nsec *
1282 (tcount % sys_cputimer->freq)) >> 32;
fad57d0e 1283 } else {
044ee7c4 1284 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
fad57d0e 1285 }
984263bc
MD
1286 hardpps(tsp, delta);
1287 }
1288#endif
1289}
88c4d2f6 1290