kernel/altq: Move a dereference below the NULL check.
[dragonfly.git] / sys / net / altq / altq_hfsc.c
CommitLineData
4d723e5a 1/* $KAME: altq_hfsc.c,v 1.25 2004/04/17 10:54:48 kjc Exp $ */
4d723e5a
JS
2
3/*
4 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
5 *
6 * Permission to use, copy, modify, and distribute this software and
7 * its documentation is hereby granted (including for commercial or
8 * for-profit use), provided that both the copyright notice and this
9 * permission notice appear in all copies of the software, derivative
10 * works, or modified versions, and any portions thereof.
11 *
12 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
13 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
14 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
17 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
20 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
21 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
24 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
25 * DAMAGE.
26 *
27 * Carnegie Mellon encourages (but does not require) users of this
28 * software to return any improvements or extensions that they make,
29 * and to grant Carnegie Mellon the rights to redistribute these
30 * changes without encumbrance.
31 */
32/*
33 * H-FSC is described in Proceedings of SIGCOMM'97,
34 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
35 * Real-Time and Priority Service"
36 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
37 *
38 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
39 * when a class has an upperlimit, the fit-time is computed from the
40 * upperlimit service curve. the link-sharing scheduler does not schedule
41 * a class whose fit-time exceeds the current time.
42 */
43
44#include "opt_altq.h"
45#include "opt_inet.h"
46#include "opt_inet6.h"
47
48#ifdef ALTQ_HFSC /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
49
50#include <sys/param.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/socket.h>
54#include <sys/systm.h>
55#include <sys/errno.h>
56#include <sys/queue.h>
e9cb6d99 57#include <sys/thread.h>
4d723e5a
JS
58
59#include <net/if.h>
60#include <net/ifq_var.h>
61#include <netinet/in.h>
62
63#include <net/pf/pfvar.h>
64#include <net/altq/altq.h>
65#include <net/altq/altq_hfsc.h>
66
e9cb6d99
MD
67#include <sys/thread2.h>
68
4d723e5a
JS
69/*
70 * function prototypes
71 */
72static int hfsc_clear_interface(struct hfsc_if *);
73static int hfsc_request(struct ifaltq *, int, void *);
74static void hfsc_purge(struct hfsc_if *);
75static struct hfsc_class *hfsc_class_create(struct hfsc_if *,
76 struct service_curve *,
77 struct service_curve *,
78 struct service_curve *,
79 struct hfsc_class *, int, int, int);
80static int hfsc_class_destroy(struct hfsc_class *);
81static struct hfsc_class *hfsc_nextclass(struct hfsc_class *);
82static int hfsc_enqueue(struct ifaltq *, struct mbuf *,
83 struct altq_pktattr *);
d2c71fa0 84static struct mbuf *hfsc_dequeue(struct ifaltq *, struct mbuf *, int);
4d723e5a
JS
85
86static int hfsc_addq(struct hfsc_class *, struct mbuf *);
87static struct mbuf *hfsc_getq(struct hfsc_class *);
88static struct mbuf *hfsc_pollq(struct hfsc_class *);
89static void hfsc_purgeq(struct hfsc_class *);
90
91static void update_cfmin(struct hfsc_class *);
92static void set_active(struct hfsc_class *, int);
93static void set_passive(struct hfsc_class *);
94
95static void init_ed(struct hfsc_class *, int);
96static void update_ed(struct hfsc_class *, int);
97static void update_d(struct hfsc_class *, int);
98static void init_vf(struct hfsc_class *, int);
99static void update_vf(struct hfsc_class *, int, uint64_t);
100static ellist_t *ellist_alloc(void);
101static void ellist_destroy(ellist_t *);
102static void ellist_insert(struct hfsc_class *);
103static void ellist_remove(struct hfsc_class *);
104static void ellist_update(struct hfsc_class *);
105struct hfsc_class *ellist_get_mindl(ellist_t *, uint64_t);
106static actlist_t *actlist_alloc(void);
107static void actlist_destroy(actlist_t *);
108static void actlist_insert(struct hfsc_class *);
109static void actlist_remove(struct hfsc_class *);
110static void actlist_update(struct hfsc_class *);
111
112static struct hfsc_class *actlist_firstfit(struct hfsc_class *, uint64_t);
113
114static __inline uint64_t seg_x2y(uint64_t, uint64_t);
115static __inline uint64_t seg_y2x(uint64_t, uint64_t);
116static __inline uint64_t m2sm(u_int);
117static __inline uint64_t m2ism(u_int);
118static __inline uint64_t d2dx(u_int);
119static u_int sm2m(uint64_t);
120static u_int dx2d(uint64_t);
121
122static void sc2isc(struct service_curve *, struct internal_sc *);
123static void rtsc_init(struct runtime_sc *, struct internal_sc *,
124 uint64_t, uint64_t);
125static uint64_t rtsc_y2x(struct runtime_sc *, uint64_t);
126static uint64_t rtsc_x2y(struct runtime_sc *, uint64_t);
127static void rtsc_min(struct runtime_sc *, struct internal_sc *,
128 uint64_t, uint64_t);
129
130static void get_class_stats(struct hfsc_classstats *, struct hfsc_class *);
131static struct hfsc_class *clh_to_clp(struct hfsc_if *, uint32_t);
132
133/*
134 * macros
135 */
136#define is_a_parent_class(cl) ((cl)->cl_children != NULL)
137
138#define HT_INFINITY 0xffffffffffffffffLL /* infinite time value */
139
140int
9db4b353 141hfsc_pfattach(struct pf_altq *a, struct ifaltq *ifq)
4d723e5a 142{
9db4b353 143 return altq_attach(ifq, ALTQT_HFSC, a->altq_disc,
4d723e5a 144 hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
4d723e5a
JS
145}
146
147int
148hfsc_add_altq(struct pf_altq *a)
149{
150 struct hfsc_if *hif;
151 struct ifnet *ifp;
152
153 if ((ifp = ifunit(a->ifname)) == NULL)
154 return (EINVAL);
155 if (!ifq_is_ready(&ifp->if_snd))
156 return (ENODEV);
157
efda3bd0 158 hif = kmalloc(sizeof(struct hfsc_if), M_ALTQ, M_WAITOK | M_ZERO);
4d723e5a
JS
159
160 hif->hif_eligible = ellist_alloc();
161 hif->hif_ifq = &ifp->if_snd;
e23995c2 162 ifq_purge(&ifp->if_snd);
4d723e5a
JS
163
164 /* keep the state in pf_altq */
165 a->altq_disc = hif;
166
167 return (0);
168}
169
170int
171hfsc_remove_altq(struct pf_altq *a)
172{
173 struct hfsc_if *hif;
174
175 if ((hif = a->altq_disc) == NULL)
176 return (EINVAL);
177 a->altq_disc = NULL;
178
179 hfsc_clear_interface(hif);
180 hfsc_class_destroy(hif->hif_rootclass);
181
182 ellist_destroy(hif->hif_eligible);
183
efda3bd0 184 kfree(hif, M_ALTQ);
4d723e5a
JS
185
186 return (0);
187}
188
9db4b353
SZ
189static int
190hfsc_add_queue_locked(struct pf_altq *a, struct hfsc_if *hif)
4d723e5a 191{
4d723e5a
JS
192 struct hfsc_class *cl, *parent;
193 struct hfsc_opts *opts;
194 struct service_curve rtsc, lssc, ulsc;
195
9db4b353 196 KKASSERT(a->qid != 0);
4d723e5a
JS
197
198 opts = &a->pq_u.hfsc_opts;
199
200 if (a->parent_qid == HFSC_NULLCLASS_HANDLE && hif->hif_rootclass == NULL)
201 parent = NULL;
202 else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
203 return (EINVAL);
204
4d723e5a
JS
205 if (clh_to_clp(hif, a->qid) != NULL)
206 return (EBUSY);
207
208 rtsc.m1 = opts->rtsc_m1;
209 rtsc.d = opts->rtsc_d;
210 rtsc.m2 = opts->rtsc_m2;
211 lssc.m1 = opts->lssc_m1;
212 lssc.d = opts->lssc_d;
213 lssc.m2 = opts->lssc_m2;
214 ulsc.m1 = opts->ulsc_m1;
215 ulsc.d = opts->ulsc_d;
216 ulsc.m2 = opts->ulsc_m2;
217
218 cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc, parent, a->qlimit,
219 opts->flags, a->qid);
220 if (cl == NULL)
221 return (ENOMEM);
222
223 return (0);
224}
225
226int
9db4b353 227hfsc_add_queue(struct pf_altq *a)
4d723e5a
JS
228{
229 struct hfsc_if *hif;
9db4b353
SZ
230 struct ifaltq *ifq;
231 int error;
4d723e5a 232
9db4b353
SZ
233 if (a->qid == 0)
234 return (EINVAL);
235
236 /* XXX not MP safe */
4d723e5a
JS
237 if ((hif = a->altq_disc) == NULL)
238 return (EINVAL);
9db4b353
SZ
239 ifq = hif->hif_ifq;
240
241 ALTQ_LOCK(ifq);
242 error = hfsc_add_queue_locked(a, hif);
243 ALTQ_UNLOCK(ifq);
244
245 return error;
246}
247
248static int
249hfsc_remove_queue_locked(struct pf_altq *a, struct hfsc_if *hif)
250{
251 struct hfsc_class *cl;
4d723e5a
JS
252
253 if ((cl = clh_to_clp(hif, a->qid)) == NULL)
254 return (EINVAL);
255
256 return (hfsc_class_destroy(cl));
257}
258
259int
9db4b353
SZ
260hfsc_remove_queue(struct pf_altq *a)
261{
262 struct hfsc_if *hif;
263 struct ifaltq *ifq;
264 int error;
265
266 /* XXX not MP safe */
267 if ((hif = a->altq_disc) == NULL)
268 return (EINVAL);
269 ifq = hif->hif_ifq;
270
271 ALTQ_LOCK(ifq);
272 error = hfsc_remove_queue_locked(a, hif);
273 ALTQ_UNLOCK(ifq);
274
275 return error;
276}
277
278int
4d723e5a
JS
279hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
280{
281 struct hfsc_if *hif;
282 struct hfsc_class *cl;
283 struct hfsc_classstats stats;
9db4b353 284 struct ifaltq *ifq;
4d723e5a
JS
285 int error = 0;
286
9db4b353
SZ
287 if (*nbytes < sizeof(stats))
288 return (EINVAL);
289
290 /* XXX not MP safe */
4d723e5a
JS
291 if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
292 return (EBADF);
9db4b353 293 ifq = hif->hif_ifq;
4d723e5a 294
9db4b353 295 ALTQ_LOCK(ifq);
4d723e5a 296
9db4b353
SZ
297 if ((cl = clh_to_clp(hif, a->qid)) == NULL) {
298 ALTQ_UNLOCK(ifq);
4d723e5a 299 return (EINVAL);
9db4b353 300 }
4d723e5a
JS
301
302 get_class_stats(&stats, cl);
303
9db4b353
SZ
304 ALTQ_UNLOCK(ifq);
305
4d723e5a
JS
306 if ((error = copyout((caddr_t)&stats, ubuf, sizeof(stats))) != 0)
307 return (error);
308 *nbytes = sizeof(stats);
309 return (0);
310}
311
312/*
313 * bring the interface back to the initial state by discarding
314 * all the filters and classes except the root class.
315 */
316static int
317hfsc_clear_interface(struct hfsc_if *hif)
318{
319 struct hfsc_class *cl;
320
321 if (hif->hif_rootclass == NULL)
322 return (0);
323
324
325 /* clear out the classes */
326 while ((cl = hif->hif_rootclass->cl_children) != NULL) {
327 /*
328 * remove the first leaf class found in the hierarchy
329 * then start over
330 */
331 for (; cl != NULL; cl = hfsc_nextclass(cl)) {
332 if (!is_a_parent_class(cl)) {
333 hfsc_class_destroy(cl);
334 break;
335 }
336 }
337 }
338
339 return (0);
340}
341
342static int
343hfsc_request(struct ifaltq *ifq, int req, void *arg)
344{
345 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
346
e9cb6d99 347 crit_enter();
4d723e5a
JS
348 switch (req) {
349 case ALTRQ_PURGE:
350 hfsc_purge(hif);
351 break;
352 }
e9cb6d99 353 crit_exit();
4d723e5a
JS
354 return (0);
355}
356
357/* discard all the queued packets on the interface */
358static void
359hfsc_purge(struct hfsc_if *hif)
360{
361 struct hfsc_class *cl;
362
363 for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl)) {
364 if (!qempty(cl->cl_q))
365 hfsc_purgeq(cl);
366 }
367 if (ifq_is_enabled(hif->hif_ifq))
368 hif->hif_ifq->ifq_len = 0;
369}
370
371struct hfsc_class *
372hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
373 struct service_curve *fsc, struct service_curve *usc,
374 struct hfsc_class *parent, int qlimit, int flags, int qid)
375{
376 struct hfsc_class *cl, *p;
0b31d406 377 int i;
4d723e5a
JS
378
379 if (hif->hif_classes >= HFSC_MAX_CLASSES)
380 return (NULL);
381
382#ifndef ALTQ_RED
383 if (flags & HFCF_RED) {
384#ifdef ALTQ_DEBUG
4b1cf444 385 kprintf("hfsc_class_create: RED not configured for HFSC!\n");
4d723e5a
JS
386#endif
387 return (NULL);
388 }
389#endif
390
efda3bd0
MD
391 cl = kmalloc(sizeof(*cl), M_ALTQ, M_WAITOK | M_ZERO);
392 cl->cl_q = kmalloc(sizeof(*cl->cl_q), M_ALTQ, M_WAITOK | M_ZERO);
4d723e5a
JS
393 cl->cl_actc = actlist_alloc();
394
395 if (qlimit == 0)
396 qlimit = 50; /* use default */
397 qlimit(cl->cl_q) = qlimit;
398 qtype(cl->cl_q) = Q_DROPTAIL;
399 qlen(cl->cl_q) = 0;
400 cl->cl_flags = flags;
401#ifdef ALTQ_RED
402 if (flags & (HFCF_RED|HFCF_RIO)) {
403 int red_flags, red_pkttime;
404 u_int m2;
405
406 m2 = 0;
407 if (rsc != NULL && rsc->m2 > m2)
408 m2 = rsc->m2;
409 if (fsc != NULL && fsc->m2 > m2)
410 m2 = fsc->m2;
411 if (usc != NULL && usc->m2 > m2)
412 m2 = usc->m2;
413
414 red_flags = 0;
415 if (flags & HFCF_ECN)
416 red_flags |= REDF_ECN;
417#ifdef ALTQ_RIO
418 if (flags & HFCF_CLEARDSCP)
419 red_flags |= RIOF_CLEARDSCP;
420#endif
421 if (m2 < 8)
422 red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
423 else
424 red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
425 * 1000 * 1000 * 1000 / (m2 / 8);
426 if (flags & HFCF_RED) {
427 cl->cl_red = red_alloc(0, 0,
428 qlimit(cl->cl_q) * 10/100,
429 qlimit(cl->cl_q) * 30/100,
430 red_flags, red_pkttime);
431 if (cl->cl_red != NULL)
432 qtype(cl->cl_q) = Q_RED;
433 }
434#ifdef ALTQ_RIO
435 else {
436 cl->cl_red = (red_t *)rio_alloc(0, NULL,
437 red_flags, red_pkttime);
438 if (cl->cl_red != NULL)
439 qtype(cl->cl_q) = Q_RIO;
440 }
441#endif
442 }
443#endif /* ALTQ_RED */
444
445 if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
efda3bd0 446 cl->cl_rsc = kmalloc(sizeof(*cl->cl_rsc), M_ALTQ, M_WAITOK);
4d723e5a
JS
447 sc2isc(rsc, cl->cl_rsc);
448 rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
449 rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
450 }
451 if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
efda3bd0 452 cl->cl_fsc = kmalloc(sizeof(*cl->cl_fsc), M_ALTQ, M_WAITOK);
4d723e5a
JS
453 if (cl->cl_fsc == NULL)
454 goto err_ret;
455 sc2isc(fsc, cl->cl_fsc);
456 rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
457 }
458 if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
efda3bd0 459 cl->cl_usc = kmalloc(sizeof(*cl->cl_usc), M_ALTQ, M_WAITOK);
4d723e5a
JS
460 if (cl->cl_usc == NULL)
461 goto err_ret;
462 sc2isc(usc, cl->cl_usc);
463 rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
464 }
465
466 cl->cl_id = hif->hif_classid++;
467 cl->cl_handle = qid;
468 cl->cl_hif = hif;
469 cl->cl_parent = parent;
470
0b31d406 471 crit_enter();
4d723e5a
JS
472 hif->hif_classes++;
473
474 /*
475 * find a free slot in the class table. if the slot matching
476 * the lower bits of qid is free, use this slot. otherwise,
477 * use the first free slot.
478 */
479 i = qid % HFSC_MAX_CLASSES;
480 if (hif->hif_class_tbl[i] == NULL)
481 hif->hif_class_tbl[i] = cl;
482 else {
483 for (i = 0; i < HFSC_MAX_CLASSES; i++) {
484 if (hif->hif_class_tbl[i] == NULL) {
485 hif->hif_class_tbl[i] = cl;
486 break;
487 }
488 }
489 if (i == HFSC_MAX_CLASSES) {
0b31d406 490 crit_exit();
4d723e5a
JS
491 goto err_ret;
492 }
493 }
494
495 if (flags & HFCF_DEFAULTCLASS)
496 hif->hif_defaultclass = cl;
497
498 if (parent == NULL) {
499 /* this is root class */
500 hif->hif_rootclass = cl;
501 } else if (parent->cl_children == NULL) {
502 /* add this class to the children list of the parent */
503 parent->cl_children = cl;
504 } else {
505 p = parent->cl_children;
506 while (p->cl_siblings != NULL)
507 p = p->cl_siblings;
508 p->cl_siblings = cl;
509 }
0b31d406 510 crit_exit();
4d723e5a
JS
511
512 return (cl);
513
514 err_ret:
515 if (cl->cl_actc != NULL)
516 actlist_destroy(cl->cl_actc);
517 if (cl->cl_red != NULL) {
518#ifdef ALTQ_RIO
519 if (q_is_rio(cl->cl_q))
520 rio_destroy((rio_t *)cl->cl_red);
521#endif
522#ifdef ALTQ_RED
523 if (q_is_red(cl->cl_q))
524 red_destroy(cl->cl_red);
525#endif
526 }
527 if (cl->cl_fsc != NULL)
efda3bd0 528 kfree(cl->cl_fsc, M_ALTQ);
4d723e5a 529 if (cl->cl_rsc != NULL)
efda3bd0 530 kfree(cl->cl_rsc, M_ALTQ);
4d723e5a 531 if (cl->cl_usc != NULL)
efda3bd0 532 kfree(cl->cl_usc, M_ALTQ);
4d723e5a 533 if (cl->cl_q != NULL)
efda3bd0
MD
534 kfree(cl->cl_q, M_ALTQ);
535 kfree(cl, M_ALTQ);
4d723e5a
JS
536 return (NULL);
537}
538
539static int
540hfsc_class_destroy(struct hfsc_class *cl)
541{
b621ed1c 542 struct hfsc_if *hif;
0b31d406 543 int i;
4d723e5a
JS
544
545 if (cl == NULL)
546 return (0);
b621ed1c 547 hif = cl->cl_hif;
4d723e5a
JS
548
549 if (is_a_parent_class(cl))
550 return (EBUSY);
551
0b31d406 552 crit_enter();
4d723e5a
JS
553
554 if (!qempty(cl->cl_q))
555 hfsc_purgeq(cl);
556
557 if (cl->cl_parent == NULL) {
558 /* this is root class */
559 } else {
560 struct hfsc_class *p = cl->cl_parent->cl_children;
561
562 if (p == cl) {
563 cl->cl_parent->cl_children = cl->cl_siblings;
564 } else {
565 do {
566 if (p->cl_siblings == cl) {
567 p->cl_siblings = cl->cl_siblings;
568 break;
569 }
570 } while ((p = p->cl_siblings) != NULL);
571 }
572 KKASSERT(p != NULL);
573 }
574
575 for (i = 0; i < HFSC_MAX_CLASSES; i++) {
0f117493
SZ
576 if (hif->hif_class_tbl[i] == cl) {
577 hif->hif_class_tbl[i] = NULL;
4d723e5a
JS
578 break;
579 }
580 }
581
0f117493 582 hif->hif_classes--;
0b31d406 583 crit_exit();
4d723e5a
JS
584
585 actlist_destroy(cl->cl_actc);
586
587 if (cl->cl_red != NULL) {
588#ifdef ALTQ_RIO
589 if (q_is_rio(cl->cl_q))
590 rio_destroy((rio_t *)cl->cl_red);
591#endif
592#ifdef ALTQ_RED
593 if (q_is_red(cl->cl_q))
594 red_destroy(cl->cl_red);
595#endif
596 }
597
0f117493
SZ
598 if (cl == hif->hif_rootclass)
599 hif->hif_rootclass = NULL;
600 if (cl == hif->hif_defaultclass)
601 hif->hif_defaultclass = NULL;
602 if (cl == hif->hif_pollcache)
603 hif->hif_pollcache = NULL;
4d723e5a
JS
604
605 if (cl->cl_usc != NULL)
efda3bd0 606 kfree(cl->cl_usc, M_ALTQ);
4d723e5a 607 if (cl->cl_fsc != NULL)
efda3bd0 608 kfree(cl->cl_fsc, M_ALTQ);
4d723e5a 609 if (cl->cl_rsc != NULL)
efda3bd0
MD
610 kfree(cl->cl_rsc, M_ALTQ);
611 kfree(cl->cl_q, M_ALTQ);
612 kfree(cl, M_ALTQ);
4d723e5a
JS
613
614 return (0);
615}
616
617/*
618 * hfsc_nextclass returns the next class in the tree.
619 * usage:
620 * for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
621 * do_something;
622 */
623static struct hfsc_class *
624hfsc_nextclass(struct hfsc_class *cl)
625{
626 if (cl->cl_children != NULL) {
627 cl = cl->cl_children;
628 } else if (cl->cl_siblings != NULL) {
629 cl = cl->cl_siblings;
630 } else {
631 while ((cl = cl->cl_parent) != NULL) {
632 if (cl->cl_siblings != NULL) {
633 cl = cl->cl_siblings;
634 break;
635 }
636 }
637 }
638
639 return (cl);
640}
641
642/*
643 * hfsc_enqueue is an enqueue function to be registered to
644 * (*altq_enqueue) in struct ifaltq.
645 */
646static int
647hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m, struct altq_pktattr *pktattr)
648{
649 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
650 struct hfsc_class *cl;
651 int len;
652
653 /* grab class set by classifier */
654 if ((m->m_flags & M_PKTHDR) == 0) {
655 /* should not happen */
656 if_printf(ifq->altq_ifp, "altq: packet does not have pkthdr\n");
657 m_freem(m);
658 return (ENOBUFS);
659 }
e9cb6d99 660 crit_enter();
315a7da3
JL
661 if (m->m_pkthdr.fw_flags & PF_MBUF_STRUCTURE)
662 cl = clh_to_clp(hif, m->m_pkthdr.pf.qid);
4d723e5a
JS
663 else
664 cl = NULL;
665 if (cl == NULL || is_a_parent_class(cl)) {
666 cl = hif->hif_defaultclass;
667 if (cl == NULL) {
668 m_freem(m);
e9cb6d99 669 crit_exit();
4d723e5a
JS
670 return (ENOBUFS);
671 }
672 }
673 cl->cl_pktattr = NULL;
674 len = m_pktlen(m);
675 if (hfsc_addq(cl, m) != 0) {
676 /* drop occurred. mbuf was freed in hfsc_addq. */
677 PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
e9cb6d99 678 crit_exit();
4d723e5a
JS
679 return (ENOBUFS);
680 }
681 ifq->ifq_len++;
682 cl->cl_hif->hif_packets++;
683
684 /* successfully queued. */
685 if (qlen(cl->cl_q) == 1)
686 set_active(cl, m_pktlen(m));
e9cb6d99 687 crit_exit();
4d723e5a
JS
688 return (0);
689}
690
691/*
692 * hfsc_dequeue is a dequeue function to be registered to
693 * (*altq_dequeue) in struct ifaltq.
694 *
695 * note: ALTDQ_POLL returns the next packet without removing the packet
696 * from the queue. ALTDQ_REMOVE is a normal dequeue operation.
697 * ALTDQ_REMOVE must return the same packet if called immediately
698 * after ALTDQ_POLL.
699 */
700static struct mbuf *
d2c71fa0 701hfsc_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
4d723e5a
JS
702{
703 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
704 struct hfsc_class *cl;
705 struct mbuf *m;
706 int len, next_len;
707 int realtime = 0;
708 uint64_t cur_time;
709
710 if (hif->hif_packets == 0) {
711 /* no packet in the tree */
712 return (NULL);
713 }
714
e9cb6d99 715 crit_enter();
4d723e5a
JS
716 cur_time = read_machclk();
717
718 if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
719 cl = hif->hif_pollcache;
720 hif->hif_pollcache = NULL;
721 /* check if the class was scheduled by real-time criteria */
722 if (cl->cl_rsc != NULL)
723 realtime = (cl->cl_e <= cur_time);
724 } else {
725 /*
726 * if there are eligible classes, use real-time criteria.
727 * find the class with the minimum deadline among
728 * the eligible classes.
729 */
730 if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time)) != NULL) {
731 realtime = 1;
732 } else {
733#ifdef ALTQ_DEBUG
734 int fits = 0;
735#endif
736 /*
737 * use link-sharing criteria
738 * get the class with the minimum vt in the hierarchy
739 */
740 cl = hif->hif_rootclass;
741 while (is_a_parent_class(cl)) {
742
743 cl = actlist_firstfit(cl, cur_time);
744 if (cl == NULL) {
745#ifdef ALTQ_DEBUG
746 if (fits > 0)
4b1cf444 747 kprintf("%d fit but none found\n",fits);
4d723e5a 748#endif
e9cb6d99
MD
749 m = NULL;
750 goto done;
4d723e5a
JS
751 }
752 /*
753 * update parent's cl_cvtmin.
754 * don't update if the new vt is smaller.
755 */
756 if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
757 cl->cl_parent->cl_cvtmin = cl->cl_vt;
758#ifdef ALTQ_DEBUG
759 fits++;
760#endif
761 }
762 }
763
764 if (op == ALTDQ_POLL) {
765 hif->hif_pollcache = cl;
766 m = hfsc_pollq(cl);
e9cb6d99 767 goto done;
4d723e5a
JS
768 }
769 }
770
771 m = hfsc_getq(cl);
772 if (m == NULL)
773 panic("hfsc_dequeue:");
774 len = m_pktlen(m);
775 cl->cl_hif->hif_packets--;
776 ifq->ifq_len--;
777 PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
778
779 update_vf(cl, len, cur_time);
780 if (realtime)
781 cl->cl_cumul += len;
782
783 if (!qempty(cl->cl_q)) {
784 if (cl->cl_rsc != NULL) {
785 /* update ed */
786 next_len = m_pktlen(qhead(cl->cl_q));
787
788 if (realtime)
789 update_ed(cl, next_len);
790 else
791 update_d(cl, next_len);
792 }
793 } else {
794 /* the class becomes passive */
795 set_passive(cl);
796 }
e9cb6d99
MD
797done:
798 crit_exit();
d2c71fa0 799 KKASSERT(mpolled == NULL || m == mpolled);
4d723e5a
JS
800 return (m);
801}
802
803static int
804hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
805{
806
807#ifdef ALTQ_RIO
808 if (q_is_rio(cl->cl_q))
809 return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
810 m, cl->cl_pktattr);
811#endif
812#ifdef ALTQ_RED
813 if (q_is_red(cl->cl_q))
814 return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
815#endif
816 if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
817 m_freem(m);
818 return (-1);
819 }
820
821 if (cl->cl_flags & HFCF_CLEARDSCP)
822 write_dsfield(m, cl->cl_pktattr, 0);
823
824 _addq(cl->cl_q, m);
825
826 return (0);
827}
828
829static struct mbuf *
830hfsc_getq(struct hfsc_class *cl)
831{
832#ifdef ALTQ_RIO
833 if (q_is_rio(cl->cl_q))
834 return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
835#endif
836#ifdef ALTQ_RED
837 if (q_is_red(cl->cl_q))
838 return red_getq(cl->cl_red, cl->cl_q);
839#endif
840 return _getq(cl->cl_q);
841}
842
843static struct mbuf *
844hfsc_pollq(struct hfsc_class *cl)
845{
846 return qhead(cl->cl_q);
847}
848
849static void
850hfsc_purgeq(struct hfsc_class *cl)
851{
852 struct mbuf *m;
853
854 if (qempty(cl->cl_q))
855 return;
856
857 while ((m = _getq(cl->cl_q)) != NULL) {
858 PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
859 m_freem(m);
860 cl->cl_hif->hif_packets--;
861 cl->cl_hif->hif_ifq->ifq_len--;
862 }
863 KKASSERT(qlen(cl->cl_q) == 0);
864
865 update_vf(cl, 0, 0); /* remove cl from the actlist */
866 set_passive(cl);
867}
868
869static void
870set_active(struct hfsc_class *cl, int len)
871{
872 if (cl->cl_rsc != NULL)
873 init_ed(cl, len);
874 if (cl->cl_fsc != NULL)
875 init_vf(cl, len);
876
877 cl->cl_stats.period++;
878}
879
880static void
881set_passive(struct hfsc_class *cl)
882{
883 if (cl->cl_rsc != NULL)
884 ellist_remove(cl);
885
886 /*
887 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
888 * needs to be called explicitly to remove a class from actlist
889 */
890}
891
892static void
893init_ed(struct hfsc_class *cl, int next_len)
894{
895 uint64_t cur_time;
896
897 cur_time = read_machclk();
898
899 /* update the deadline curve */
900 rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
901
902 /*
903 * update the eligible curve.
904 * for concave, it is equal to the deadline curve.
905 * for convex, it is a linear curve with slope m2.
906 */
907 cl->cl_eligible = cl->cl_deadline;
908 if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
909 cl->cl_eligible.dx = 0;
910 cl->cl_eligible.dy = 0;
911 }
912
913 /* compute e and d */
914 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
915 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
916
917 ellist_insert(cl);
918}
919
920static void
921update_ed(struct hfsc_class *cl, int next_len)
922{
923 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
924 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
925
926 ellist_update(cl);
927}
928
929static void
930update_d(struct hfsc_class *cl, int next_len)
931{
932 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
933}
934
935static void
936init_vf(struct hfsc_class *cl, int len)
937{
938 struct hfsc_class *max_cl, *p;
939 uint64_t vt, f, cur_time;
940 int go_active;
941
942 cur_time = 0;
943 go_active = 1;
944 for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
945 if (go_active && cl->cl_nactive++ == 0)
946 go_active = 1;
947 else
948 go_active = 0;
949
950 if (go_active) {
951 max_cl = actlist_last(cl->cl_parent->cl_actc);
952 if (max_cl != NULL) {
953 /*
954 * set vt to the average of the min and max
955 * classes. if the parent's period didn't
956 * change, don't decrease vt of the class.
957 */
958 vt = max_cl->cl_vt;
959 if (cl->cl_parent->cl_cvtmin != 0)
960 vt = (cl->cl_parent->cl_cvtmin + vt)/2;
961
962 if (cl->cl_parent->cl_vtperiod !=
963 cl->cl_parentperiod || vt > cl->cl_vt)
964 cl->cl_vt = vt;
965 } else {
966 /*
967 * first child for a new parent backlog period.
968 * add parent's cvtmax to vtoff of children
969 * to make a new vt (vtoff + vt) larger than
970 * the vt in the last period for all children.
971 */
972 vt = cl->cl_parent->cl_cvtmax;
973 for (p = cl->cl_parent->cl_children; p != NULL;
974 p = p->cl_siblings)
975 p->cl_vtoff += vt;
976 cl->cl_vt = 0;
977 cl->cl_parent->cl_cvtmax = 0;
978 cl->cl_parent->cl_cvtmin = 0;
979 }
980 cl->cl_initvt = cl->cl_vt;
981
982 /* update the virtual curve */
983 vt = cl->cl_vt + cl->cl_vtoff;
984 rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
985 if (cl->cl_virtual.x == vt) {
986 cl->cl_virtual.x -= cl->cl_vtoff;
987 cl->cl_vtoff = 0;
988 }
989 cl->cl_vtadj = 0;
990
991 cl->cl_vtperiod++; /* increment vt period */
992 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
993 if (cl->cl_parent->cl_nactive == 0)
994 cl->cl_parentperiod++;
995 cl->cl_f = 0;
996
997 actlist_insert(cl);
998
999 if (cl->cl_usc != NULL) {
1000 /* class has upper limit curve */
1001 if (cur_time == 0)
1002 cur_time = read_machclk();
1003
1004 /* update the ulimit curve */
1005 rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
1006 cl->cl_total);
1007 /* compute myf */
1008 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
1009 cl->cl_total);
1010 cl->cl_myfadj = 0;
1011 }
1012 }
1013
1014 if (cl->cl_myf > cl->cl_cfmin)
1015 f = cl->cl_myf;
1016 else
1017 f = cl->cl_cfmin;
1018 if (f != cl->cl_f) {
1019 cl->cl_f = f;
1020 update_cfmin(cl->cl_parent);
1021 }
1022 }
1023}
1024
1025static void
1026update_vf(struct hfsc_class *cl, int len, uint64_t cur_time)
1027{
1028 uint64_t f, myf_bound, delta;
1029 int go_passive;
1030
1031 go_passive = qempty(cl->cl_q);
1032
1033 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
1034 cl->cl_total += len;
1035
1036 if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
1037 continue;
1038
1039 if (go_passive && --cl->cl_nactive == 0)
1040 go_passive = 1;
1041 else
1042 go_passive = 0;
1043
1044 if (go_passive) {
1045 /* no more active child, going passive */
1046
1047 /* update cvtmax of the parent class */
1048 if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1049 cl->cl_parent->cl_cvtmax = cl->cl_vt;
1050
1051 /* remove this class from the vt list */
1052 actlist_remove(cl);
1053
1054 update_cfmin(cl->cl_parent);
1055
1056 continue;
1057 }
1058
1059 /*
1060 * update vt and f
1061 */
1062 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1063 - cl->cl_vtoff + cl->cl_vtadj;
1064
1065 /*
1066 * if vt of the class is smaller than cvtmin,
1067 * the class was skipped in the past due to non-fit.
1068 * if so, we need to adjust vtadj.
1069 */
1070 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1071 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1072 cl->cl_vt = cl->cl_parent->cl_cvtmin;
1073 }
1074
1075 /* update the vt list */
1076 actlist_update(cl);
1077
1078 if (cl->cl_usc != NULL) {
1079 cl->cl_myf = cl->cl_myfadj
1080 + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1081
1082 /*
1083 * if myf lags behind by more than one clock tick
1084 * from the current time, adjust myfadj to prevent
1085 * a rate-limited class from going greedy.
1086 * in a steady state under rate-limiting, myf
1087 * fluctuates within one clock tick.
1088 */
1089 myf_bound = cur_time - machclk_per_tick;
1090 if (cl->cl_myf < myf_bound) {
1091 delta = cur_time - cl->cl_myf;
1092 cl->cl_myfadj += delta;
1093 cl->cl_myf += delta;
1094 }
1095 }
1096
1097 /* cl_f is max(cl_myf, cl_cfmin) */
1098 if (cl->cl_myf > cl->cl_cfmin)
1099 f = cl->cl_myf;
1100 else
1101 f = cl->cl_cfmin;
1102 if (f != cl->cl_f) {
1103 cl->cl_f = f;
1104 update_cfmin(cl->cl_parent);
1105 }
1106 }
1107}
1108
1109static void
1110update_cfmin(struct hfsc_class *cl)
1111{
1112 struct hfsc_class *p;
1113 uint64_t cfmin;
1114
1115 if (TAILQ_EMPTY(cl->cl_actc)) {
1116 cl->cl_cfmin = 0;
1117 return;
1118 }
1119 cfmin = HT_INFINITY;
1120 TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1121 if (p->cl_f == 0) {
1122 cl->cl_cfmin = 0;
1123 return;
1124 }
1125 if (p->cl_f < cfmin)
1126 cfmin = p->cl_f;
1127 }
1128 cl->cl_cfmin = cfmin;
1129}
1130
1131/*
1132 * TAILQ based ellist and actlist implementation
1133 * (ion wanted to make a calendar queue based implementation)
1134 */
1135/*
1136 * eligible list holds backlogged classes being sorted by their eligible times.
1137 * there is one eligible list per interface.
1138 */
1139
1140static ellist_t *
1141ellist_alloc(void)
1142{
1143 ellist_t *head;
1144
efda3bd0 1145 head = kmalloc(sizeof(ellist_t *), M_ALTQ, M_WAITOK);
4d723e5a
JS
1146 TAILQ_INIT(head);
1147 return (head);
1148}
1149
1150static void
1151ellist_destroy(ellist_t *head)
1152{
efda3bd0 1153 kfree(head, M_ALTQ);
4d723e5a
JS
1154}
1155
1156static void
1157ellist_insert(struct hfsc_class *cl)
1158{
1159 struct hfsc_if *hif = cl->cl_hif;
1160 struct hfsc_class *p;
1161
1162 /* check the last entry first */
1163 if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
1164 p->cl_e <= cl->cl_e) {
1165 TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1166 return;
1167 }
1168
1169 TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
1170 if (cl->cl_e < p->cl_e) {
1171 TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1172 return;
1173 }
1174 }
1175 KKASSERT(0); /* should not reach here */
1176}
1177
1178static void
1179ellist_remove(struct hfsc_class *cl)
1180{
1181 struct hfsc_if *hif = cl->cl_hif;
1182
1183 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1184}
1185
1186static void
1187ellist_update(struct hfsc_class *cl)
1188{
1189 struct hfsc_if *hif = cl->cl_hif;
1190 struct hfsc_class *p, *last;
1191
1192 /*
1193 * the eligible time of a class increases monotonically.
1194 * if the next entry has a larger eligible time, nothing to do.
1195 */
1196 p = TAILQ_NEXT(cl, cl_ellist);
1197 if (p == NULL || cl->cl_e <= p->cl_e)
1198 return;
1199
1200 /* check the last entry */
1201 last = TAILQ_LAST(hif->hif_eligible, _eligible);
1202 KKASSERT(last != NULL);
1203 if (last->cl_e <= cl->cl_e) {
1204 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1205 TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1206 return;
1207 }
1208
1209 /*
1210 * the new position must be between the next entry
1211 * and the last entry
1212 */
1213 while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1214 if (cl->cl_e < p->cl_e) {
1215 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1216 TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1217 return;
1218 }
1219 }
1220 KKASSERT(0); /* should not reach here */
1221}
1222
1223/* find the class with the minimum deadline among the eligible classes */
1224struct hfsc_class *
1225ellist_get_mindl(ellist_t *head, uint64_t cur_time)
1226{
1227 struct hfsc_class *p, *cl = NULL;
1228
1229 TAILQ_FOREACH(p, head, cl_ellist) {
1230 if (p->cl_e > cur_time)
1231 break;
1232 if (cl == NULL || p->cl_d < cl->cl_d)
1233 cl = p;
1234 }
1235 return (cl);
1236}
1237
1238/*
1239 * active children list holds backlogged child classes being sorted
1240 * by their virtual time.
1241 * each intermediate class has one active children list.
1242 */
1243static actlist_t *
1244actlist_alloc(void)
1245{
1246 actlist_t *head;
1247
efda3bd0 1248 head = kmalloc(sizeof(*head), M_ALTQ, M_WAITOK);
4d723e5a
JS
1249 TAILQ_INIT(head);
1250 return (head);
1251}
1252
1253static void
1254actlist_destroy(actlist_t *head)
1255{
efda3bd0 1256 kfree(head, M_ALTQ);
4d723e5a
JS
1257}
1258static void
1259actlist_insert(struct hfsc_class *cl)
1260{
1261 struct hfsc_class *p;
1262
1263 /* check the last entry first */
1264 if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1265 || p->cl_vt <= cl->cl_vt) {
1266 TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1267 return;
1268 }
1269
1270 TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1271 if (cl->cl_vt < p->cl_vt) {
1272 TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1273 return;
1274 }
1275 }
1276 KKASSERT(0); /* should not reach here */
1277}
1278
1279static void
1280actlist_remove(struct hfsc_class *cl)
1281{
1282 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1283}
1284
1285static void
1286actlist_update(struct hfsc_class *cl)
1287{
1288 struct hfsc_class *p, *last;
1289
1290 /*
1291 * the virtual time of a class increases monotonically during its
1292 * backlogged period.
1293 * if the next entry has a larger virtual time, nothing to do.
1294 */
1295 p = TAILQ_NEXT(cl, cl_actlist);
1296 if (p == NULL || cl->cl_vt < p->cl_vt)
1297 return;
1298
1299 /* check the last entry */
1300 last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1301 KKASSERT(last != NULL);
1302 if (last->cl_vt <= cl->cl_vt) {
1303 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1304 TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1305 return;
1306 }
1307
1308 /*
1309 * the new position must be between the next entry
1310 * and the last entry
1311 */
1312 while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1313 if (cl->cl_vt < p->cl_vt) {
1314 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1315 TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1316 return;
1317 }
1318 }
1319 KKASSERT(0); /* should not reach here */
1320}
1321
1322static struct hfsc_class *
1323actlist_firstfit(struct hfsc_class *cl, uint64_t cur_time)
1324{
1325 struct hfsc_class *p;
1326
1327 TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1328 if (p->cl_f <= cur_time)
1329 return (p);
1330 }
1331 return (NULL);
1332}
1333
1334/*
1335 * service curve support functions
1336 *
1337 * external service curve parameters
1338 * m: bits/sec
1339 * d: msec
1340 * internal service curve parameters
1341 * sm: (bytes/tsc_interval) << SM_SHIFT
1342 * ism: (tsc_count/byte) << ISM_SHIFT
1343 * dx: tsc_count
1344 *
1345 * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1346 * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1347 * speed. SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1348 * digits in decimal using the following table.
1349 *
1350 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
1351 * ----------+-------------------------------------------------------
1352 * bytes/nsec 12.5e-6 125e-6 1250e-6 12500e-6 125000e-6
1353 * sm(500MHz) 25.0e-6 250e-6 2500e-6 25000e-6 250000e-6
1354 * sm(200MHz) 62.5e-6 625e-6 6250e-6 62500e-6 625000e-6
1355 *
1356 * nsec/byte 80000 8000 800 80 8
1357 * ism(500MHz) 40000 4000 400 40 4
1358 * ism(200MHz) 16000 1600 160 16 1.6
1359 */
1360#define SM_SHIFT 24
1361#define ISM_SHIFT 10
1362
1363#define SM_MASK ((1LL << SM_SHIFT) - 1)
1364#define ISM_MASK ((1LL << ISM_SHIFT) - 1)
1365
1366static __inline uint64_t
1367seg_x2y(uint64_t x, uint64_t sm)
1368{
1369 uint64_t y;
1370
1371 /*
1372 * compute
1373 * y = x * sm >> SM_SHIFT
1374 * but divide it for the upper and lower bits to avoid overflow
1375 */
1376 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1377 return (y);
1378}
1379
1380static __inline uint64_t
1381seg_y2x(uint64_t y, uint64_t ism)
1382{
1383 uint64_t x;
1384
1385 if (y == 0)
1386 x = 0;
1387 else if (ism == HT_INFINITY)
1388 x = HT_INFINITY;
1389 else
1390 x = (y >> ISM_SHIFT) * ism + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1391
1392 return (x);
1393}
1394
1395static __inline uint64_t
1396m2sm(u_int m)
1397{
1398 uint64_t sm;
1399
1400 sm = ((uint64_t)m << SM_SHIFT) / 8 / machclk_freq;
1401 return (sm);
1402}
1403
1404static __inline uint64_t
1405m2ism(u_int m)
1406{
1407 uint64_t ism;
1408
1409 if (m == 0)
1410 ism = HT_INFINITY;
1411 else
1412 ism = ((uint64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1413 return (ism);
1414}
1415
1416static __inline uint64_t
1417d2dx(u_int d)
1418{
1419 uint64_t dx;
1420
1421 dx = ((uint64_t)d * machclk_freq) / 1000;
1422 return (dx);
1423}
1424
1425static u_int
1426sm2m(uint64_t sm)
1427{
1428 uint64_t m;
1429
1430 m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1431 return ((u_int)m);
1432}
1433
1434static u_int
1435dx2d(uint64_t dx)
1436{
1437 uint64_t d;
1438
1439 d = dx * 1000 / machclk_freq;
1440 return ((u_int)d);
1441}
1442
1443static void
1444sc2isc(struct service_curve *sc, struct internal_sc *isc)
1445{
1446 isc->sm1 = m2sm(sc->m1);
1447 isc->ism1 = m2ism(sc->m1);
1448 isc->dx = d2dx(sc->d);
1449 isc->dy = seg_x2y(isc->dx, isc->sm1);
1450 isc->sm2 = m2sm(sc->m2);
1451 isc->ism2 = m2ism(sc->m2);
1452}
1453
1454/*
1455 * initialize the runtime service curve with the given internal
1456 * service curve starting at (x, y).
1457 */
1458static void
1459rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, uint64_t x, uint64_t y)
1460{
1461 rtsc->x = x;
1462 rtsc->y = y;
1463 rtsc->sm1 = isc->sm1;
1464 rtsc->ism1 = isc->ism1;
1465 rtsc->dx = isc->dx;
1466 rtsc->dy = isc->dy;
1467 rtsc->sm2 = isc->sm2;
1468 rtsc->ism2 = isc->ism2;
1469}
1470
1471/*
1472 * calculate the y-projection of the runtime service curve by the
1473 * given x-projection value
1474 */
1475static uint64_t
1476rtsc_y2x(struct runtime_sc *rtsc, uint64_t y)
1477{
1478 uint64_t x;
1479
1480 if (y < rtsc->y) {
1481 x = rtsc->x;
1482 } else if (y <= rtsc->y + rtsc->dy) {
1483 /* x belongs to the 1st segment */
1484 if (rtsc->dy == 0)
1485 x = rtsc->x + rtsc->dx;
1486 else
1487 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1488 } else {
1489 /* x belongs to the 2nd segment */
1490 x = rtsc->x + rtsc->dx
1491 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1492 }
1493 return (x);
1494}
1495
1496static uint64_t
1497rtsc_x2y(struct runtime_sc *rtsc, uint64_t x)
1498{
1499 uint64_t y;
1500
1501 if (x <= rtsc->x) {
1502 y = rtsc->y;
1503 } else if (x <= rtsc->x + rtsc->dx) {
1504 /* y belongs to the 1st segment */
1505 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1506 } else
1507 /* y belongs to the 2nd segment */
1508 y = rtsc->y + rtsc->dy
1509 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1510 return (y);
1511}
1512
1513/*
1514 * update the runtime service curve by taking the minimum of the current
1515 * runtime service curve and the service curve starting at (x, y).
1516 */
1517static void
1518rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, uint64_t x, uint64_t y)
1519{
1520 uint64_t y1, y2, dx, dy;
1521
1522 if (isc->sm1 <= isc->sm2) {
1523 /* service curve is convex */
1524 y1 = rtsc_x2y(rtsc, x);
1525 if (y1 < y)
1526 /* the current rtsc is smaller */
1527 return;
1528 rtsc->x = x;
1529 rtsc->y = y;
1530 return;
1531 }
1532
1533 /*
1534 * service curve is concave
1535 * compute the two y values of the current rtsc
1536 * y1: at x
1537 * y2: at (x + dx)
1538 */
1539 y1 = rtsc_x2y(rtsc, x);
1540 if (y1 <= y) {
1541 /* rtsc is below isc, no change to rtsc */
1542 return;
1543 }
1544
1545 y2 = rtsc_x2y(rtsc, x + isc->dx);
1546 if (y2 >= y + isc->dy) {
1547 /* rtsc is above isc, replace rtsc by isc */
1548 rtsc->x = x;
1549 rtsc->y = y;
1550 rtsc->dx = isc->dx;
1551 rtsc->dy = isc->dy;
1552 return;
1553 }
1554
1555 /*
1556 * the two curves intersect
1557 * compute the offsets (dx, dy) using the reverse
1558 * function of seg_x2y()
1559 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1560 */
1561 dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1562 /*
1563 * check if (x, y1) belongs to the 1st segment of rtsc.
1564 * if so, add the offset.
1565 */
1566 if (rtsc->x + rtsc->dx > x)
1567 dx += rtsc->x + rtsc->dx - x;
1568 dy = seg_x2y(dx, isc->sm1);
1569
1570 rtsc->x = x;
1571 rtsc->y = y;
1572 rtsc->dx = dx;
1573 rtsc->dy = dy;
1574}
1575
1576static void
1577get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
1578{
1579 sp->class_id = cl->cl_id;
1580 sp->class_handle = cl->cl_handle;
1581
1582 if (cl->cl_rsc != NULL) {
1583 sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1584 sp->rsc.d = dx2d(cl->cl_rsc->dx);
1585 sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1586 } else {
1587 sp->rsc.m1 = 0;
1588 sp->rsc.d = 0;
1589 sp->rsc.m2 = 0;
1590 }
1591 if (cl->cl_fsc != NULL) {
1592 sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1593 sp->fsc.d = dx2d(cl->cl_fsc->dx);
1594 sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1595 } else {
1596 sp->fsc.m1 = 0;
1597 sp->fsc.d = 0;
1598 sp->fsc.m2 = 0;
1599 }
1600 if (cl->cl_usc != NULL) {
1601 sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1602 sp->usc.d = dx2d(cl->cl_usc->dx);
1603 sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1604 } else {
1605 sp->usc.m1 = 0;
1606 sp->usc.d = 0;
1607 sp->usc.m2 = 0;
1608 }
1609
1610 sp->total = cl->cl_total;
1611 sp->cumul = cl->cl_cumul;
1612
1613 sp->d = cl->cl_d;
1614 sp->e = cl->cl_e;
1615 sp->vt = cl->cl_vt;
1616 sp->f = cl->cl_f;
1617
1618 sp->initvt = cl->cl_initvt;
1619 sp->vtperiod = cl->cl_vtperiod;
1620 sp->parentperiod = cl->cl_parentperiod;
1621 sp->nactive = cl->cl_nactive;
1622 sp->vtoff = cl->cl_vtoff;
1623 sp->cvtmax = cl->cl_cvtmax;
1624 sp->myf = cl->cl_myf;
1625 sp->cfmin = cl->cl_cfmin;
1626 sp->cvtmin = cl->cl_cvtmin;
1627 sp->myfadj = cl->cl_myfadj;
1628 sp->vtadj = cl->cl_vtadj;
1629
1630 sp->cur_time = read_machclk();
1631 sp->machclk_freq = machclk_freq;
1632
1633 sp->qlength = qlen(cl->cl_q);
1634 sp->qlimit = qlimit(cl->cl_q);
1635 sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1636 sp->drop_cnt = cl->cl_stats.drop_cnt;
1637 sp->period = cl->cl_stats.period;
1638
1639 sp->qtype = qtype(cl->cl_q);
1640#ifdef ALTQ_RED
1641 if (q_is_red(cl->cl_q))
1642 red_getstats(cl->cl_red, &sp->red[0]);
1643#endif
1644#ifdef ALTQ_RIO
1645 if (q_is_rio(cl->cl_q))
1646 rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1647#endif
1648}
1649
1650/* convert a class handle to the corresponding class pointer */
1651static struct hfsc_class *
1652clh_to_clp(struct hfsc_if *hif, uint32_t chandle)
1653{
1654 int i;
1655 struct hfsc_class *cl;
1656
1657 if (chandle == 0)
1658 return (NULL);
1659 /*
1660 * first, try optimistically the slot matching the lower bits of
1661 * the handle. if it fails, do the linear table search.
1662 */
1663 i = chandle % HFSC_MAX_CLASSES;
1664 if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1665 return (cl);
1666 for (i = 0; i < HFSC_MAX_CLASSES; i++)
1667 if ((cl = hif->hif_class_tbl[i]) != NULL &&
1668 cl->cl_handle == chandle)
1669 return (cl);
1670 return (NULL);
1671}
1672
1673#endif /* ALTQ_HFSC */