The grouplist variable made local in the last commit was not being NULLed
[dragonfly.git] / sys / kern / kern_clock.c
CommitLineData
8c10bfcf
MD
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
984263bc
MD
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
a81931cc 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.28 2004/12/04 20:38:45 dillon Exp $
984263bc
MD
74 */
75
76#include "opt_ntp.h"
77
78#include <sys/param.h>
79#include <sys/systm.h>
80#include <sys/dkstat.h>
81#include <sys/callout.h>
82#include <sys/kernel.h>
83#include <sys/proc.h>
84#include <sys/malloc.h>
85#include <sys/resourcevar.h>
86#include <sys/signalvar.h>
87#include <sys/timex.h>
88#include <sys/timepps.h>
89#include <vm/vm.h>
90#include <sys/lock.h>
91#include <vm/pmap.h>
92#include <vm/vm_map.h>
93#include <sys/sysctl.h>
2689779e 94#include <sys/thread2.h>
984263bc
MD
95
96#include <machine/cpu.h>
97#include <machine/limits.h>
98#include <machine/smp.h>
99
100#ifdef GPROF
101#include <sys/gmon.h>
102#endif
103
104#ifdef DEVICE_POLLING
105extern void init_device_poll(void);
106extern void hardclock_device_poll(void);
107#endif /* DEVICE_POLLING */
108
402ed7e1 109static void initclocks (void *dummy);
984263bc
MD
110SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
111
6ad39cae
MD
112/*
113 * Some of these don't belong here, but it's easiest to concentrate them.
114 * Note that cp_time[] counts in microseconds, but most userland programs
115 * just compare relative times against the total by delta.
116 */
984263bc
MD
117long cp_time[CPUSTATES];
118
119SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
120 "LU", "CPU time statistics");
121
122long tk_cancc;
123long tk_nin;
124long tk_nout;
125long tk_rawcc;
126
88c4d2f6
MD
127/*
128 * boottime is used to calculate the 'real' uptime. Do not confuse this with
129 * microuptime(). microtime() is not drift compensated. The real uptime
60b2809b
MD
130 * with compensation is nanotime() - bootime. boottime is recalculated
131 * whenever the real time is set based on the compensated elapsed time
132 * in seconds (gd->gd_time_seconds).
88c4d2f6
MD
133 *
134 * basetime is used to calculate the compensated real time of day. Chunky
135 * changes to the time, aka settimeofday(), are made by modifying basetime.
136 *
137 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
138 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
139 * the real time.
140 */
141struct timespec boottime; /* boot time (realtime) for reference only */
142struct timespec basetime; /* base time adjusts uptime -> realtime */
143time_t time_second; /* read-only 'passive' uptime in seconds */
984263bc 144
984263bc
MD
145SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
146 &boottime, timeval, "System boottime");
88c4d2f6
MD
147SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD,
148 &basetime, timeval, "System basetime");
984263bc 149
88c4d2f6
MD
150static void hardclock(systimer_t info, struct intrframe *frame);
151static void statclock(systimer_t info, struct intrframe *frame);
152static void schedclock(systimer_t info, struct intrframe *frame);
153
154int ticks; /* system master ticks at hz */
da3639ef 155int clocks_running; /* tsleep/timeout clocks operational */
88c4d2f6
MD
156int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
157int64_t nsec_acc; /* accumulator */
984263bc
MD
158
159/*
88c4d2f6 160 * Finish initializing clock frequencies and start all clocks running.
984263bc 161 */
88c4d2f6
MD
162/* ARGSUSED*/
163static void
164initclocks(void *dummy)
984263bc 165{
88c4d2f6
MD
166 cpu_initclocks();
167#ifdef DEVICE_POLLING
168 init_device_poll();
169#endif
170 /*psratio = profhz / stathz;*/
171 initclocks_pcpu();
da3639ef 172 clocks_running = 1;
984263bc
MD
173}
174
88c4d2f6
MD
175/*
176 * Called on a per-cpu basis
177 */
178void
179initclocks_pcpu(void)
180{
181 struct globaldata *gd = mycpu;
984263bc 182
88c4d2f6
MD
183 crit_enter();
184 if (gd->gd_cpuid == 0) {
185 gd->gd_time_seconds = 1;
186 gd->gd_cpuclock_base = cputimer_count();
187 } else {
188 /* XXX */
189 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
190 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
191 }
0d1dffdf
MD
192
193 /*
194 * Use a non-queued periodic systimer to prevent multiple ticks from
195 * building up if the sysclock jumps forward (8254 gets reset). The
196 * sysclock will never jump backwards. Our time sync is based on
197 * the actual sysclock, not the ticks count.
198 */
199 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
200 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
88c4d2f6 201 /* XXX correct the frequency for scheduler / estcpu tests */
0d1dffdf 202 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
8478264a 203 NULL, ESTCPUFREQ);
88c4d2f6
MD
204 crit_exit();
205}
984263bc
MD
206
207/*
88c4d2f6
MD
208 * This sets the current real time of day. Timespecs are in seconds and
209 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
210 * instead we adjust basetime so basetime + gd_* results in the current
211 * time of day. This way the gd_* fields are guarenteed to represent
212 * a monotonically increasing 'uptime' value.
984263bc 213 */
88c4d2f6
MD
214void
215set_timeofday(struct timespec *ts)
216{
217 struct timespec ts2;
984263bc 218
88c4d2f6
MD
219 /*
220 * XXX SMP / non-atomic basetime updates
221 */
222 crit_enter();
223 nanouptime(&ts2);
224 basetime.tv_sec = ts->tv_sec - ts2.tv_sec;
225 basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec;
226 if (basetime.tv_nsec < 0) {
227 basetime.tv_nsec += 1000000000;
228 --basetime.tv_sec;
229 }
a81931cc
MD
230
231 /*
232 * Note that basetime diverges from boottime as the clock drift is
233 * compensated for, so we cannot do away with boottime. When setting
234 * the absolute time of day the drift is 0 (for an instant) and we
235 * can simply assign boottime to basetime.
236 *
237 * Note that nanouptime() is based on gd_time_seconds which is drift
238 * compensated up to a point (it is guarenteed to remain monotonically
239 * increasing). gd_time_seconds is thus our best uptime guess and
240 * suitable for use in the boottime calculation. It is already taken
241 * into account in the basetime calculation above.
242 */
243 boottime.tv_sec = basetime.tv_sec;
88c4d2f6
MD
244 timedelta = 0;
245 crit_exit();
246}
247
984263bc 248/*
88c4d2f6
MD
249 * Each cpu has its own hardclock, but we only increments ticks and softticks
250 * on cpu #0.
251 *
252 * NOTE! systimer! the MP lock might not be held here. We can only safely
253 * manipulate objects owned by the current cpu.
984263bc 254 */
984263bc 255static void
88c4d2f6 256hardclock(systimer_t info, struct intrframe *frame)
984263bc 257{
88c4d2f6
MD
258 sysclock_t cputicks;
259 struct proc *p;
260 struct pstats *pstats;
261 struct globaldata *gd = mycpu;
984263bc
MD
262
263 /*
88c4d2f6
MD
264 * Realtime updates are per-cpu. Note that timer corrections as
265 * returned by microtime() and friends make an additional adjustment
266 * using a system-wise 'basetime', but the running time is always
267 * taken from the per-cpu globaldata area. Since the same clock
268 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
269 * stay in synch.
270 *
271 * Note that we never allow info->time (aka gd->gd_hardclock.time)
fad57d0e
MD
272 * to reverse index gd_cpuclock_base, but that it is possible for
273 * it to temporarily get behind in the seconds if something in the
274 * system locks interrupts for a long period of time. Since periodic
275 * timers count events, though everything should resynch again
276 * immediately.
984263bc 277 */
88c4d2f6 278 cputicks = info->time - gd->gd_cpuclock_base;
fad57d0e 279 if (cputicks >= cputimer_freq) {
88c4d2f6
MD
280 ++gd->gd_time_seconds;
281 gd->gd_cpuclock_base += cputimer_freq;
282 }
984263bc
MD
283
284 /*
92b561b7
MD
285 * The system-wide ticks counter and NTP related timedelta/tickdelta
286 * adjustments only occur on cpu #0. NTP adjustments are accomplished
287 * by updating basetime.
984263bc 288 */
88c4d2f6
MD
289 if (gd->gd_cpuid == 0) {
290 struct timespec nts;
291 int leap;
984263bc 292
88c4d2f6 293 ++ticks;
984263bc 294
88c4d2f6
MD
295#ifdef DEVICE_POLLING
296 hardclock_device_poll(); /* mpsafe, short and quick */
297#endif /* DEVICE_POLLING */
984263bc 298
88c4d2f6
MD
299#if 0
300 if (tco->tc_poll_pps)
301 tco->tc_poll_pps(tco);
302#endif
303 /*
304 * Apply adjtime corrections. At the moment only do this if
305 * we can get the MP lock to interlock with adjtime's modification
306 * of these variables. Note that basetime adjustments are not
307 * MP safe either XXX.
308 */
309 if (timedelta != 0 && try_mplock()) {
310 basetime.tv_nsec += tickdelta * 1000;
311 if (basetime.tv_nsec >= 1000000000) {
312 basetime.tv_nsec -= 1000000000;
313 ++basetime.tv_sec;
314 } else if (basetime.tv_nsec < 0) {
315 basetime.tv_nsec += 1000000000;
316 --basetime.tv_sec;
317 }
318 timedelta -= tickdelta;
319 rel_mplock();
320 }
321
322 /*
323 * Apply per-tick compensation. ticks_adj adjusts for both
324 * offset and frequency, and could be negative.
325 */
326 if (nsec_adj != 0 && try_mplock()) {
327 nsec_acc += nsec_adj;
328 if (nsec_acc >= 0x100000000LL) {
329 basetime.tv_nsec += nsec_acc >> 32;
330 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
331 } else if (nsec_acc <= -0x100000000LL) {
332 basetime.tv_nsec -= -nsec_acc >> 32;
333 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
334 }
335 if (basetime.tv_nsec >= 1000000000) {
336 basetime.tv_nsec -= 1000000000;
337 ++basetime.tv_sec;
338 } else if (basetime.tv_nsec < 0) {
339 basetime.tv_nsec += 1000000000;
340 --basetime.tv_sec;
341 }
342 rel_mplock();
343 }
344
345 /*
346 * If the realtime-adjusted seconds hand rolls over then tell
347 * ntp_update_second() what we did in the last second so it can
348 * calculate what to do in the next second. It may also add
349 * or subtract a leap second.
350 */
351 getnanotime(&nts);
352 if (time_second != nts.tv_sec) {
353 leap = ntp_update_second(time_second, &nsec_adj);
354 basetime.tv_sec += leap;
355 time_second = nts.tv_sec + leap;
356 nsec_adj /= hz;
357 }
358 }
359
92b561b7
MD
360 /*
361 * softticks are handled for all cpus
362 */
363 hardclock_softtick(gd);
364
88c4d2f6
MD
365 /*
366 * ITimer handling is per-tick, per-cpu. I don't think psignal()
367 * is mpsafe on curproc, so XXX get the mplock.
368 */
369 if ((p = curproc) != NULL && try_mplock()) {
984263bc 370 pstats = p->p_stats;
88c4d2f6 371 if (frame && CLKF_USERMODE(frame) &&
984263bc
MD
372 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
373 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
374 psignal(p, SIGVTALRM);
375 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
376 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
377 psignal(p, SIGPROF);
88c4d2f6 378 rel_mplock();
984263bc 379 }
604e1e09 380 setdelayed();
88c4d2f6 381}
984263bc 382
88c4d2f6
MD
383/*
384 * The statistics clock typically runs at a 125Hz rate, and is intended
385 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
386 *
387 * NOTE! systimer! the MP lock might not be held here. We can only safely
388 * manipulate objects owned by the current cpu.
389 *
390 * The stats clock is responsible for grabbing a profiling sample.
391 * Most of the statistics are only used by user-level statistics programs.
392 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
393 * p->p_estcpu.
394 *
395 * Like the other clocks, the stat clock is called from what is effectively
396 * a fast interrupt, so the context should be the thread/process that got
397 * interrupted.
398 */
399static void
400statclock(systimer_t info, struct intrframe *frame)
401{
402#ifdef GPROF
403 struct gmonparam *g;
404 int i;
984263bc 405#endif
88c4d2f6
MD
406 thread_t td;
407 struct proc *p;
408 int bump;
409 struct timeval tv;
410 struct timeval *stv;
984263bc
MD
411
412 /*
88c4d2f6 413 * How big was our timeslice relative to the last time?
984263bc 414 */
88c4d2f6
MD
415 microuptime(&tv); /* mpsafe */
416 stv = &mycpu->gd_stattv;
417 if (stv->tv_sec == 0) {
418 bump = 1;
419 } else {
420 bump = tv.tv_usec - stv->tv_usec +
421 (tv.tv_sec - stv->tv_sec) * 1000000;
422 if (bump < 0)
423 bump = 0;
424 if (bump > 1000000)
425 bump = 1000000;
426 }
427 *stv = tv;
984263bc 428
88c4d2f6
MD
429 td = curthread;
430 p = td->td_proc;
984263bc 431
88c4d2f6
MD
432 if (frame && CLKF_USERMODE(frame)) {
433 /*
434 * Came from userland, handle user time and deal with
435 * possible process.
436 */
437 if (p && (p->p_flag & P_PROFIL))
438 addupc_intr(p, CLKF_PC(frame), 1);
439 td->td_uticks += bump;
984263bc 440
88c4d2f6
MD
441 /*
442 * Charge the time as appropriate
443 */
444 if (p && p->p_nice > NZERO)
445 cp_time[CP_NICE] += bump;
446 else
447 cp_time[CP_USER] += bump;
448 } else {
449#ifdef GPROF
450 /*
451 * Kernel statistics are just like addupc_intr, only easier.
452 */
453 g = &_gmonparam;
454 if (g->state == GMON_PROF_ON && frame) {
455 i = CLKF_PC(frame) - g->lowpc;
456 if (i < g->textsize) {
457 i /= HISTFRACTION * sizeof(*g->kcount);
458 g->kcount[i]++;
459 }
460 }
461#endif
462 /*
463 * Came from kernel mode, so we were:
464 * - handling an interrupt,
465 * - doing syscall or trap work on behalf of the current
466 * user process, or
467 * - spinning in the idle loop.
468 * Whichever it is, charge the time as appropriate.
469 * Note that we charge interrupts to the current process,
470 * regardless of whether they are ``for'' that process,
471 * so that we know how much of its real time was spent
472 * in ``non-process'' (i.e., interrupt) work.
473 *
474 * XXX assume system if frame is NULL. A NULL frame
475 * can occur if ipi processing is done from an splx().
476 */
477 if (frame && CLKF_INTR(frame))
478 td->td_iticks += bump;
479 else
480 td->td_sticks += bump;
481
482 if (frame && CLKF_INTR(frame)) {
483 cp_time[CP_INTR] += bump;
484 } else {
485 if (td == &mycpu->gd_idlethread)
486 cp_time[CP_IDLE] += bump;
487 else
488 cp_time[CP_SYS] += bump;
489 }
490 }
491}
492
493/*
0a3f9b47 494 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer,
88c4d2f6
MD
495 * the MP lock might not be held. We can safely manipulate parts of curproc
496 * but that's about it.
497 */
498static void
499schedclock(systimer_t info, struct intrframe *frame)
500{
501 struct proc *p;
502 struct pstats *pstats;
503 struct rusage *ru;
504 struct vmspace *vm;
505 long rss;
506
507 schedulerclock(NULL); /* mpsafe */
508 if ((p = curproc) != NULL) {
509 /* Update resource usage integrals and maximums. */
510 if ((pstats = p->p_stats) != NULL &&
511 (ru = &pstats->p_ru) != NULL &&
512 (vm = p->p_vmspace) != NULL) {
513 ru->ru_ixrss += pgtok(vm->vm_tsize);
514 ru->ru_idrss += pgtok(vm->vm_dsize);
515 ru->ru_isrss += pgtok(vm->vm_ssize);
516 rss = pgtok(vmspace_resident_count(vm));
517 if (ru->ru_maxrss < rss)
518 ru->ru_maxrss = rss;
519 }
b68b7282 520 }
984263bc
MD
521}
522
523/*
a94976ad
MD
524 * Compute number of ticks for the specified amount of time. The
525 * return value is intended to be used in a clock interrupt timed
526 * operation and guarenteed to meet or exceed the requested time.
527 * If the representation overflows, return INT_MAX. The minimum return
528 * value is 1 ticks and the function will average the calculation up.
529 * If any value greater then 0 microseconds is supplied, a value
530 * of at least 2 will be returned to ensure that a near-term clock
531 * interrupt does not cause the timeout to occur (degenerately) early.
532 *
533 * Note that limit checks must take into account microseconds, which is
534 * done simply by using the smaller signed long maximum instead of
535 * the unsigned long maximum.
536 *
537 * If ints have 32 bits, then the maximum value for any timeout in
538 * 10ms ticks is 248 days.
984263bc
MD
539 */
540int
a94976ad 541tvtohz_high(struct timeval *tv)
984263bc 542{
a94976ad 543 int ticks;
1fd87d54 544 long sec, usec;
984263bc 545
984263bc
MD
546 sec = tv->tv_sec;
547 usec = tv->tv_usec;
548 if (usec < 0) {
549 sec--;
550 usec += 1000000;
551 }
552 if (sec < 0) {
553#ifdef DIAGNOSTIC
554 if (usec > 0) {
555 sec++;
556 usec -= 1000000;
557 }
558 printf("tvotohz: negative time difference %ld sec %ld usec\n",
559 sec, usec);
560#endif
561 ticks = 1;
a94976ad
MD
562 } else if (sec <= INT_MAX / hz) {
563 ticks = (int)(sec * hz +
564 ((u_long)usec + (tick - 1)) / tick) + 1;
565 } else {
566 ticks = INT_MAX;
567 }
568 return (ticks);
569}
570
571/*
572 * Compute number of ticks for the specified amount of time, erroring on
573 * the side of it being too low to ensure that sleeping the returned number
574 * of ticks will not result in a late return.
575 *
576 * The supplied timeval may not be negative and should be normalized. A
577 * return value of 0 is possible if the timeval converts to less then
578 * 1 tick.
579 *
580 * If ints have 32 bits, then the maximum value for any timeout in
581 * 10ms ticks is 248 days.
582 */
583int
584tvtohz_low(struct timeval *tv)
585{
586 int ticks;
587 long sec;
588
589 sec = tv->tv_sec;
590 if (sec <= INT_MAX / hz)
591 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
984263bc 592 else
984263bc 593 ticks = INT_MAX;
a94976ad 594 return (ticks);
984263bc
MD
595}
596
a94976ad 597
984263bc
MD
598/*
599 * Start profiling on a process.
600 *
601 * Kernel profiling passes proc0 which never exits and hence
602 * keeps the profile clock running constantly.
603 */
604void
88c4d2f6 605startprofclock(struct proc *p)
984263bc 606{
984263bc
MD
607 if ((p->p_flag & P_PROFIL) == 0) {
608 p->p_flag |= P_PROFIL;
88c4d2f6 609#if 0 /* XXX */
984263bc
MD
610 if (++profprocs == 1 && stathz != 0) {
611 s = splstatclock();
6ad39cae 612 psdiv = psratio;
984263bc
MD
613 setstatclockrate(profhz);
614 splx(s);
615 }
88c4d2f6 616#endif
984263bc
MD
617 }
618}
619
620/*
621 * Stop profiling on a process.
622 */
623void
88c4d2f6 624stopprofclock(struct proc *p)
984263bc 625{
984263bc
MD
626 if (p->p_flag & P_PROFIL) {
627 p->p_flag &= ~P_PROFIL;
88c4d2f6 628#if 0 /* XXX */
984263bc
MD
629 if (--profprocs == 0 && stathz != 0) {
630 s = splstatclock();
6ad39cae 631 psdiv = 1;
984263bc
MD
632 setstatclockrate(stathz);
633 splx(s);
634 }
984263bc 635#endif
984263bc
MD
636 }
637}
638
639/*
640 * Return information about system clocks.
641 */
642static int
643sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
644{
645 struct clockinfo clkinfo;
646 /*
647 * Construct clockinfo structure.
648 */
649 clkinfo.hz = hz;
650 clkinfo.tick = tick;
651 clkinfo.tickadj = tickadj;
652 clkinfo.profhz = profhz;
653 clkinfo.stathz = stathz ? stathz : hz;
654 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
655}
656
657SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
658 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
659
984263bc
MD
660/*
661 * We have eight functions for looking at the clock, four for
662 * microseconds and four for nanoseconds. For each there is fast
663 * but less precise version "get{nano|micro}[up]time" which will
664 * return a time which is up to 1/HZ previous to the call, whereas
665 * the raw version "{nano|micro}[up]time" will return a timestamp
666 * which is as precise as possible. The "up" variants return the
667 * time relative to system boot, these are well suited for time
668 * interval measurements.
88c4d2f6
MD
669 *
670 * Each cpu independantly maintains the current time of day, so all
671 * we need to do to protect ourselves from changes is to do a loop
672 * check on the seconds field changing out from under us.
fad57d0e
MD
673 *
674 * The system timer maintains a 32 bit count and due to various issues
675 * it is possible for the calculated delta to occassionally exceed
676 * cputimer_freq. If this occurs the cputimer_freq64_nsec multiplication
677 * can easily overflow, so we deal with the case. For uniformity we deal
678 * with the case in the usec case too.
984263bc 679 */
984263bc
MD
680void
681getmicrouptime(struct timeval *tvp)
682{
88c4d2f6
MD
683 struct globaldata *gd = mycpu;
684 sysclock_t delta;
685
686 do {
687 tvp->tv_sec = gd->gd_time_seconds;
688 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
689 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e
MD
690
691 if (delta >= cputimer_freq) {
692 tvp->tv_sec += delta / cputimer_freq;
693 delta %= cputimer_freq;
694 }
88c4d2f6
MD
695 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
696 if (tvp->tv_usec >= 1000000) {
697 tvp->tv_usec -= 1000000;
698 ++tvp->tv_sec;
984263bc
MD
699 }
700}
701
702void
703getnanouptime(struct timespec *tsp)
704{
88c4d2f6
MD
705 struct globaldata *gd = mycpu;
706 sysclock_t delta;
707
708 do {
709 tsp->tv_sec = gd->gd_time_seconds;
710 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
711 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e
MD
712
713 if (delta >= cputimer_freq) {
714 tsp->tv_sec += delta / cputimer_freq;
715 delta %= cputimer_freq;
984263bc 716 }
fad57d0e 717 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
984263bc
MD
718}
719
720void
88c4d2f6 721microuptime(struct timeval *tvp)
984263bc 722{
88c4d2f6
MD
723 struct globaldata *gd = mycpu;
724 sysclock_t delta;
725
726 do {
727 tvp->tv_sec = gd->gd_time_seconds;
728 delta = cputimer_count() - gd->gd_cpuclock_base;
729 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e
MD
730
731 if (delta >= cputimer_freq) {
732 tvp->tv_sec += delta / cputimer_freq;
733 delta %= cputimer_freq;
984263bc 734 }
fad57d0e 735 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
984263bc
MD
736}
737
738void
88c4d2f6 739nanouptime(struct timespec *tsp)
984263bc 740{
88c4d2f6
MD
741 struct globaldata *gd = mycpu;
742 sysclock_t delta;
743
744 do {
745 tsp->tv_sec = gd->gd_time_seconds;
746 delta = cputimer_count() - gd->gd_cpuclock_base;
747 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e
MD
748
749 if (delta >= cputimer_freq) {
750 tsp->tv_sec += delta / cputimer_freq;
751 delta %= cputimer_freq;
984263bc 752 }
fad57d0e 753 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
984263bc
MD
754}
755
88c4d2f6
MD
756/*
757 * realtime routines
758 */
984263bc
MD
759
760void
88c4d2f6 761getmicrotime(struct timeval *tvp)
984263bc 762{
88c4d2f6
MD
763 struct globaldata *gd = mycpu;
764 sysclock_t delta;
984263bc 765
88c4d2f6
MD
766 do {
767 tvp->tv_sec = gd->gd_time_seconds;
768 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
769 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e
MD
770
771 if (delta >= cputimer_freq) {
772 tvp->tv_sec += delta / cputimer_freq;
773 delta %= cputimer_freq;
774 }
88c4d2f6 775 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
984263bc 776
88c4d2f6
MD
777 tvp->tv_sec += basetime.tv_sec;
778 tvp->tv_usec += basetime.tv_nsec / 1000;
779 while (tvp->tv_usec >= 1000000) {
780 tvp->tv_usec -= 1000000;
781 ++tvp->tv_sec;
984263bc 782 }
984263bc
MD
783}
784
785void
88c4d2f6 786getnanotime(struct timespec *tsp)
984263bc 787{
88c4d2f6
MD
788 struct globaldata *gd = mycpu;
789 sysclock_t delta;
984263bc 790
88c4d2f6
MD
791 do {
792 tsp->tv_sec = gd->gd_time_seconds;
793 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
794 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e
MD
795
796 if (delta >= cputimer_freq) {
797 tsp->tv_sec += delta / cputimer_freq;
798 delta %= cputimer_freq;
799 }
88c4d2f6 800 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
984263bc 801
88c4d2f6
MD
802 tsp->tv_sec += basetime.tv_sec;
803 tsp->tv_nsec += basetime.tv_nsec;
804 while (tsp->tv_nsec >= 1000000000) {
805 tsp->tv_nsec -= 1000000000;
806 ++tsp->tv_sec;
984263bc 807 }
984263bc
MD
808}
809
88c4d2f6
MD
810void
811microtime(struct timeval *tvp)
984263bc 812{
88c4d2f6
MD
813 struct globaldata *gd = mycpu;
814 sysclock_t delta;
984263bc 815
88c4d2f6
MD
816 do {
817 tvp->tv_sec = gd->gd_time_seconds;
818 delta = cputimer_count() - gd->gd_cpuclock_base;
819 } while (tvp->tv_sec != gd->gd_time_seconds);
fad57d0e
MD
820
821 if (delta >= cputimer_freq) {
822 tvp->tv_sec += delta / cputimer_freq;
823 delta %= cputimer_freq;
824 }
88c4d2f6 825 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
984263bc 826
88c4d2f6
MD
827 tvp->tv_sec += basetime.tv_sec;
828 tvp->tv_usec += basetime.tv_nsec / 1000;
829 while (tvp->tv_usec >= 1000000) {
830 tvp->tv_usec -= 1000000;
831 ++tvp->tv_sec;
984263bc 832 }
984263bc
MD
833}
834
88c4d2f6
MD
835void
836nanotime(struct timespec *tsp)
837{
838 struct globaldata *gd = mycpu;
839 sysclock_t delta;
984263bc 840
88c4d2f6
MD
841 do {
842 tsp->tv_sec = gd->gd_time_seconds;
843 delta = cputimer_count() - gd->gd_cpuclock_base;
844 } while (tsp->tv_sec != gd->gd_time_seconds);
fad57d0e
MD
845
846 if (delta >= cputimer_freq) {
847 tsp->tv_sec += delta / cputimer_freq;
848 delta %= cputimer_freq;
849 }
88c4d2f6 850 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
984263bc 851
88c4d2f6
MD
852 tsp->tv_sec += basetime.tv_sec;
853 tsp->tv_nsec += basetime.tv_nsec;
854 while (tsp->tv_nsec >= 1000000000) {
855 tsp->tv_nsec -= 1000000000;
856 ++tsp->tv_sec;
984263bc 857 }
984263bc
MD
858}
859
984263bc
MD
860int
861pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
862{
863 pps_params_t *app;
864 struct pps_fetch_args *fapi;
865#ifdef PPS_SYNC
866 struct pps_kcbind_args *kapi;
867#endif
868
869 switch (cmd) {
870 case PPS_IOC_CREATE:
871 return (0);
872 case PPS_IOC_DESTROY:
873 return (0);
874 case PPS_IOC_SETPARAMS:
875 app = (pps_params_t *)data;
876 if (app->mode & ~pps->ppscap)
877 return (EINVAL);
878 pps->ppsparam = *app;
879 return (0);
880 case PPS_IOC_GETPARAMS:
881 app = (pps_params_t *)data;
882 *app = pps->ppsparam;
883 app->api_version = PPS_API_VERS_1;
884 return (0);
885 case PPS_IOC_GETCAP:
886 *(int*)data = pps->ppscap;
887 return (0);
888 case PPS_IOC_FETCH:
889 fapi = (struct pps_fetch_args *)data;
890 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
891 return (EINVAL);
892 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
893 return (EOPNOTSUPP);
894 pps->ppsinfo.current_mode = pps->ppsparam.mode;
895 fapi->pps_info_buf = pps->ppsinfo;
896 return (0);
897 case PPS_IOC_KCBIND:
898#ifdef PPS_SYNC
899 kapi = (struct pps_kcbind_args *)data;
900 /* XXX Only root should be able to do this */
901 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
902 return (EINVAL);
903 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
904 return (EINVAL);
905 if (kapi->edge & ~pps->ppscap)
906 return (EINVAL);
907 pps->kcmode = kapi->edge;
908 return (0);
909#else
910 return (EOPNOTSUPP);
911#endif
912 default:
913 return (ENOTTY);
914 }
915}
916
917void
918pps_init(struct pps_state *pps)
919{
920 pps->ppscap |= PPS_TSFMT_TSPEC;
921 if (pps->ppscap & PPS_CAPTUREASSERT)
922 pps->ppscap |= PPS_OFFSETASSERT;
923 if (pps->ppscap & PPS_CAPTURECLEAR)
924 pps->ppscap |= PPS_OFFSETCLEAR;
925}
926
927void
88c4d2f6 928pps_event(struct pps_state *pps, sysclock_t count, int event)
984263bc 929{
88c4d2f6
MD
930 struct globaldata *gd;
931 struct timespec *tsp;
932 struct timespec *osp;
933 struct timespec ts;
934 sysclock_t *pcount;
935#ifdef PPS_SYNC
936 sysclock_t tcount;
937#endif
938 sysclock_t delta;
939 pps_seq_t *pseq;
940 int foff;
941 int fhard;
942
943 gd = mycpu;
984263bc
MD
944
945 /* Things would be easier with arrays... */
946 if (event == PPS_CAPTUREASSERT) {
947 tsp = &pps->ppsinfo.assert_timestamp;
948 osp = &pps->ppsparam.assert_offset;
949 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
950 fhard = pps->kcmode & PPS_CAPTUREASSERT;
951 pcount = &pps->ppscount[0];
952 pseq = &pps->ppsinfo.assert_sequence;
953 } else {
954 tsp = &pps->ppsinfo.clear_timestamp;
955 osp = &pps->ppsparam.clear_offset;
956 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
957 fhard = pps->kcmode & PPS_CAPTURECLEAR;
958 pcount = &pps->ppscount[1];
959 pseq = &pps->ppsinfo.clear_sequence;
960 }
961
984263bc
MD
962 /* Nothing really happened */
963 if (*pcount == count)
964 return;
965
966 *pcount = count;
967
88c4d2f6
MD
968 do {
969 ts.tv_sec = gd->gd_time_seconds;
970 delta = count - gd->gd_cpuclock_base;
971 } while (ts.tv_sec != gd->gd_time_seconds);
fad57d0e
MD
972
973 if (delta >= cputimer_freq) {
88c4d2f6
MD
974 ts.tv_sec += delta / cputimer_freq;
975 delta %= cputimer_freq;
976 }
977 ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
978 ts.tv_sec += basetime.tv_sec;
979 ts.tv_nsec += basetime.tv_nsec;
980 while (ts.tv_nsec >= 1000000000) {
981 ts.tv_nsec -= 1000000000;
982 ++ts.tv_sec;
984263bc 983 }
984263bc
MD
984
985 (*pseq)++;
986 *tsp = ts;
987
988 if (foff) {
989 timespecadd(tsp, osp);
990 if (tsp->tv_nsec < 0) {
991 tsp->tv_nsec += 1000000000;
992 tsp->tv_sec -= 1;
993 }
994 }
995#ifdef PPS_SYNC
996 if (fhard) {
997 /* magic, at its best... */
998 tcount = count - pps->ppscount[2];
999 pps->ppscount[2] = count;
fad57d0e
MD
1000 if (tcount >= cputimer_freq) {
1001 delta = 1000000000 * (tcount / cputimer_freq) +
1002 (cputimer_freq64_nsec *
1003 (tcount % cputimer_freq)) >> 32;
1004 } else {
1005 delta = (cputimer_freq64_nsec * tcount) >> 32;
1006 }
984263bc
MD
1007 hardpps(tsp, delta);
1008 }
1009#endif
1010}
88c4d2f6 1011