wlan: ifaltq is no longer ifqueue
[dragonfly.git] / sys / netproto / 802_11 / wlan / ieee80211_proto.c
CommitLineData
32176cfd 1/*-
f186073c 2 * Copyright (c) 2001 Atsushi Onoe
32176cfd 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
f186073c
JS
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
f186073c
JS
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
32176cfd 26 * $FreeBSD: head/sys/net80211/ieee80211_proto.c 195618 2009-07-11 15:02:45Z rpaulo $
f186073c
JS
27 */
28
29/*
30 * IEEE 802.11 protocol support.
31 */
32
33#include "opt_inet.h"
32176cfd 34#include "opt_wlan.h"
f186073c
JS
35
36#include <sys/param.h>
f186073c 37#include <sys/kernel.h>
32176cfd
RP
38#include <sys/systm.h>
39
841ab66c 40#include <sys/socket.h>
32176cfd 41#include <sys/sockio.h>
841ab66c 42
f186073c 43#include <net/if.h>
841ab66c 44#include <net/if_media.h>
9ed293e0 45#include <net/ifq_var.h>
32176cfd 46#include <net/route.h>
f186073c
JS
47
48#include <netproto/802_11/ieee80211_var.h>
32176cfd
RP
49#include <netproto/802_11/ieee80211_adhoc.h>
50#include <netproto/802_11/ieee80211_sta.h>
51#include <netproto/802_11/ieee80211_hostap.h>
52#include <netproto/802_11/ieee80211_wds.h>
53#ifdef IEEE80211_SUPPORT_MESH
54#include <netproto/802_11/ieee80211_mesh.h>
55#endif
56#include <netproto/802_11/ieee80211_monitor.h>
57#include <netproto/802_11/ieee80211_input.h>
f186073c 58
841ab66c
SZ
59/* XXX tunables */
60#define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
61#define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
f186073c 62
32176cfd
RP
63const char *ieee80211_mgt_subtype_name[] = {
64 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
65 "probe_req", "probe_resp", "reserved#6", "reserved#7",
66 "beacon", "atim", "disassoc", "auth",
67 "deauth", "action", "reserved#14", "reserved#15"
68};
69const char *ieee80211_ctl_subtype_name[] = {
70 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
71 "reserved#3", "reserved#5", "reserved#6", "reserved#7",
72 "reserved#8", "reserved#9", "ps_poll", "rts",
73 "cts", "ack", "cf_end", "cf_end_ack"
74};
75const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76 "IBSS", /* IEEE80211_M_IBSS */
77 "STA", /* IEEE80211_M_STA */
78 "WDS", /* IEEE80211_M_WDS */
79 "AHDEMO", /* IEEE80211_M_AHDEMO */
80 "HOSTAP", /* IEEE80211_M_HOSTAP */
81 "MONITOR", /* IEEE80211_M_MONITOR */
82 "MBSS" /* IEEE80211_M_MBSS */
83};
f186073c
JS
84const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85 "INIT", /* IEEE80211_S_INIT */
86 "SCAN", /* IEEE80211_S_SCAN */
87 "AUTH", /* IEEE80211_S_AUTH */
88 "ASSOC", /* IEEE80211_S_ASSOC */
32176cfd
RP
89 "CAC", /* IEEE80211_S_CAC */
90 "RUN", /* IEEE80211_S_RUN */
91 "CSA", /* IEEE80211_S_CSA */
92 "SLEEP", /* IEEE80211_S_SLEEP */
f186073c 93};
841ab66c
SZ
94const char *ieee80211_wme_acnames[] = {
95 "WME_AC_BE",
96 "WME_AC_BK",
97 "WME_AC_VI",
98 "WME_AC_VO",
99 "WME_UPSD",
100};
f186073c 101
47156d48
MD
102static void beacon_miss_task(void *, int);
103static void beacon_swmiss_task(void *, int);
104static void parent_updown_task(void *, int);
105static void update_mcast_task(void *, int);
106static void update_promisc_task(void *, int);
107static void update_channel_task(void *, int);
108static void ieee80211_newstate_task(void *, int);
32176cfd
RP
109static int ieee80211_new_state_locked(struct ieee80211vap *,
110 enum ieee80211_state, int);
111
112static int
113null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114 const struct ieee80211_bpf_params *params)
115{
116 struct ifnet *ifp = ni->ni_ic->ic_ifp;
117
118 if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
119 m_freem(m);
120 return ENETDOWN;
121}
f186073c
JS
122
123void
841ab66c 124ieee80211_proto_attach(struct ieee80211com *ic)
f186073c 125{
841ab66c 126 struct ifnet *ifp = ic->ic_ifp;
f186073c 127
32176cfd
RP
128 /* override the 802.3 setting */
129 ifp->if_hdrlen = ic->ic_headroom
130 + sizeof(struct ieee80211_qosframe_addr4)
131 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
132 + IEEE80211_WEP_EXTIVLEN;
133 /* XXX no way to recalculate on ifdetach */
134 if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
135 /* XXX sanity check... */
136 max_linkhdr = ALIGN(ifp->if_hdrlen);
137 max_hdr = max_linkhdr + max_protohdr;
138 max_datalen = MHLEN - max_hdr;
139 }
f186073c 140 ic->ic_protmode = IEEE80211_PROT_CTSONLY;
32176cfd 141
47156d48
MD
142 TASK_INIT(&ic->ic_parent_task, 0, parent_updown_task, ifp);
143 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast_task, ic);
144 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc_task, ic);
145 TASK_INIT(&ic->ic_chan_task, 0, update_channel_task, ic);
146 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss_task, ic);
841ab66c
SZ
147
148 ic->ic_wme.wme_hipri_switch_hysteresis =
149 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
f186073c 150
f186073c 151 /* initialize management frame handlers */
f186073c 152 ic->ic_send_mgmt = ieee80211_send_mgmt;
32176cfd
RP
153 ic->ic_raw_xmit = null_raw_xmit;
154
155 ieee80211_adhoc_attach(ic);
156 ieee80211_sta_attach(ic);
157 ieee80211_wds_attach(ic);
158 ieee80211_hostap_attach(ic);
159#ifdef IEEE80211_SUPPORT_MESH
160 ieee80211_mesh_attach(ic);
161#endif
162 ieee80211_monitor_attach(ic);
f186073c
JS
163}
164
165void
841ab66c 166ieee80211_proto_detach(struct ieee80211com *ic)
f186073c 167{
32176cfd
RP
168 ieee80211_monitor_detach(ic);
169#ifdef IEEE80211_SUPPORT_MESH
170 ieee80211_mesh_detach(ic);
171#endif
172 ieee80211_hostap_detach(ic);
173 ieee80211_wds_detach(ic);
174 ieee80211_adhoc_detach(ic);
175 ieee80211_sta_detach(ic);
176}
177
178static void
179null_update_beacon(struct ieee80211vap *vap, int item)
180{
181}
182
183void
184ieee80211_proto_vattach(struct ieee80211vap *vap)
185{
186 struct ieee80211com *ic = vap->iv_ic;
187 struct ifnet *ifp = vap->iv_ifp;
188 int i;
189
190 /* override the 802.3 setting */
191 ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
841ab66c 192
32176cfd
RP
193 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
194 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
195 vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
34a60cf6
RP
196 callout_init_mp(&vap->iv_swbmiss);
197 callout_init_mp(&vap->iv_mgtsend);
47156d48
MD
198 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_task, vap);
199 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss_task, vap);
32176cfd
RP
200 /*
201 * Install default tx rate handling: no fixed rate, lowest
202 * supported rate for mgmt and multicast frames. Default
203 * max retry count. These settings can be changed by the
204 * driver and/or user applications.
205 */
206 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
207 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208
209 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
210 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
211 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
212 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
213 } else {
214 vap->iv_txparms[i].mgmtrate =
215 rs->rs_rates[0] & IEEE80211_RATE_VAL;
216 vap->iv_txparms[i].mcastrate =
217 rs->rs_rates[0] & IEEE80211_RATE_VAL;
218 }
219 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
220 }
221 vap->iv_roaming = IEEE80211_ROAMING_AUTO;
222
223 vap->iv_update_beacon = null_update_beacon;
224 vap->iv_deliver_data = ieee80211_deliver_data;
225
226 /* attach support for operating mode */
227 ic->ic_vattach[vap->iv_opmode](vap);
228}
229
230void
231ieee80211_proto_vdetach(struct ieee80211vap *vap)
232{
233#define FREEAPPIE(ie) do { \
234 if (ie != NULL) \
235 kfree(ie, M_80211_NODE_IE); \
236} while (0)
237 /*
238 * Detach operating mode module.
239 */
240 if (vap->iv_opdetach != NULL)
241 vap->iv_opdetach(vap);
841ab66c
SZ
242 /*
243 * This should not be needed as we detach when reseting
244 * the state but be conservative here since the
245 * authenticator may do things like spawn kernel threads.
246 */
32176cfd
RP
247 if (vap->iv_auth->ia_detach != NULL)
248 vap->iv_auth->ia_detach(vap);
841ab66c
SZ
249 /*
250 * Detach any ACL'ator.
251 */
32176cfd
RP
252 if (vap->iv_acl != NULL)
253 vap->iv_acl->iac_detach(vap);
254
255 FREEAPPIE(vap->iv_appie_beacon);
256 FREEAPPIE(vap->iv_appie_probereq);
257 FREEAPPIE(vap->iv_appie_proberesp);
258 FREEAPPIE(vap->iv_appie_assocreq);
259 FREEAPPIE(vap->iv_appie_assocresp);
260 FREEAPPIE(vap->iv_appie_wpa);
261#undef FREEAPPIE
841ab66c
SZ
262}
263
264/*
265 * Simple-minded authenticator module support.
266 */
267
268#define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
269/* XXX well-known names */
270static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
271 "wlan_internal", /* IEEE80211_AUTH_NONE */
272 "wlan_internal", /* IEEE80211_AUTH_OPEN */
273 "wlan_internal", /* IEEE80211_AUTH_SHARED */
274 "wlan_xauth", /* IEEE80211_AUTH_8021X */
275 "wlan_internal", /* IEEE80211_AUTH_AUTO */
276 "wlan_xauth", /* IEEE80211_AUTH_WPA */
277};
278static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
279
280static const struct ieee80211_authenticator auth_internal = {
281 .ia_name = "wlan_internal",
282 .ia_attach = NULL,
283 .ia_detach = NULL,
284 .ia_node_join = NULL,
285 .ia_node_leave = NULL,
286};
287
288/*
289 * Setup internal authenticators once; they are never unregistered.
290 */
291static void
292ieee80211_auth_setup(void)
293{
294 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
295 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
296 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
297}
298SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
299
300const struct ieee80211_authenticator *
301ieee80211_authenticator_get(int auth)
302{
303 if (auth >= IEEE80211_AUTH_MAX)
304 return NULL;
305 if (authenticators[auth] == NULL)
306 ieee80211_load_module(auth_modnames[auth]);
307 return authenticators[auth];
308}
309
310void
311ieee80211_authenticator_register(int type,
312 const struct ieee80211_authenticator *auth)
313{
314 if (type >= IEEE80211_AUTH_MAX)
315 return;
316 authenticators[type] = auth;
317}
318
319void
320ieee80211_authenticator_unregister(int type)
321{
322
323 if (type >= IEEE80211_AUTH_MAX)
324 return;
325 authenticators[type] = NULL;
326}
327
328/*
329 * Very simple-minded ACL module support.
330 */
331/* XXX just one for now */
332static const struct ieee80211_aclator *acl = NULL;
333
334void
335ieee80211_aclator_register(const struct ieee80211_aclator *iac)
336{
a6ec04bc 337 kprintf("wlan: %s acl policy registered\n", iac->iac_name);
841ab66c
SZ
338 acl = iac;
339}
340
341void
342ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
343{
344 if (acl == iac)
345 acl = NULL;
a6ec04bc 346 kprintf("wlan: %s acl policy unregistered\n", iac->iac_name);
841ab66c
SZ
347}
348
349const struct ieee80211_aclator *
350ieee80211_aclator_get(const char *name)
351{
352 if (acl == NULL)
353 ieee80211_load_module("wlan_acl");
354 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
f186073c
JS
355}
356
357void
841ab66c 358ieee80211_print_essid(const uint8_t *essid, int len)
f186073c 359{
32176cfd 360 const uint8_t *p;
f186073c 361 int i;
f186073c
JS
362
363 if (len > IEEE80211_NWID_LEN)
364 len = IEEE80211_NWID_LEN;
365 /* determine printable or not */
366 for (i = 0, p = essid; i < len; i++, p++) {
367 if (*p < ' ' || *p > 0x7e)
368 break;
369 }
370 if (i == len) {
a6ec04bc 371 kprintf("\"");
f186073c 372 for (i = 0, p = essid; i < len; i++, p++)
a6ec04bc
SW
373 kprintf("%c", *p);
374 kprintf("\"");
f186073c 375 } else {
a6ec04bc 376 kprintf("0x");
f186073c 377 for (i = 0, p = essid; i < len; i++, p++)
a6ec04bc 378 kprintf("%02x", *p);
f186073c
JS
379 }
380}
381
382void
32176cfd
RP
383ieee80211_dump_pkt(struct ieee80211com *ic,
384 const uint8_t *buf, int len, int rate, int rssi)
f186073c 385{
841ab66c 386 const struct ieee80211_frame *wh;
f186073c 387 int i;
1e290df3 388 char ethstr[ETHER_ADDRSTRLEN + 1];
f186073c 389
841ab66c 390 wh = (const struct ieee80211_frame *)buf;
f186073c
JS
391 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
392 case IEEE80211_FC1_DIR_NODS:
1e290df3
AHJ
393 kprintf("NODS %s", kether_ntoa(wh->i_addr2, ethstr));
394 kprintf("->%s", kether_ntoa(wh->i_addr1, ethstr));
395 kprintf("(%s)", kether_ntoa(wh->i_addr3, ethstr));
f186073c
JS
396 break;
397 case IEEE80211_FC1_DIR_TODS:
1e290df3
AHJ
398 kprintf("TODS %s", kether_ntoa(wh->i_addr2, ethstr));
399 kprintf("->%s", kether_ntoa(wh->i_addr3, ethstr));
400 kprintf("(%s)", kether_ntoa(wh->i_addr1, ethstr));
f186073c
JS
401 break;
402 case IEEE80211_FC1_DIR_FROMDS:
1e290df3
AHJ
403 kprintf("FRDS %s", kether_ntoa(wh->i_addr3, ethstr));
404 kprintf("->%s", kether_ntoa(wh->i_addr1, ethstr));
405 kprintf("(%s)", kether_ntoa(wh->i_addr2, ethstr));
f186073c
JS
406 break;
407 case IEEE80211_FC1_DIR_DSTODS:
1e290df3
AHJ
408 kprintf("DSDS %s", kether_ntoa((const uint8_t *)&wh[1], ethstr));
409 kprintf("->%s", kether_ntoa(wh->i_addr3, ethstr));
410 kprintf("(%s", kether_ntoa(wh->i_addr2, ethstr));
411 kprintf("->%s)", kether_ntoa(wh->i_addr1, ethstr));
f186073c
JS
412 break;
413 }
414 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
415 case IEEE80211_FC0_TYPE_DATA:
a6ec04bc 416 kprintf(" data");
f186073c
JS
417 break;
418 case IEEE80211_FC0_TYPE_MGT:
a6ec04bc 419 kprintf(" %s", ieee80211_mgt_subtype_name[
f186073c
JS
420 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
421 >> IEEE80211_FC0_SUBTYPE_SHIFT]);
422 break;
423 default:
a6ec04bc 424 kprintf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
f186073c
JS
425 break;
426 }
32176cfd
RP
427 if (IEEE80211_QOS_HAS_SEQ(wh)) {
428 const struct ieee80211_qosframe *qwh =
429 (const struct ieee80211_qosframe *)buf;
430 kprintf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
431 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
432 }
841ab66c 433 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
32176cfd
RP
434 int off;
435
436 off = ieee80211_anyhdrspace(ic, wh);
437 kprintf(" WEP [IV %.02x %.02x %.02x",
438 buf[off+0], buf[off+1], buf[off+2]);
439 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
440 kprintf(" %.02x %.02x %.02x",
441 buf[off+4], buf[off+5], buf[off+6]);
442 kprintf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
841ab66c 443 }
f186073c 444 if (rate >= 0)
a6ec04bc 445 kprintf(" %dM", rate / 2);
f186073c 446 if (rssi >= 0)
a6ec04bc
SW
447 kprintf(" +%d", rssi);
448 kprintf("\n");
f186073c
JS
449 if (len > 0) {
450 for (i = 0; i < len; i++) {
451 if ((i & 1) == 0)
a6ec04bc
SW
452 kprintf(" ");
453 kprintf("%02x", buf[i]);
f186073c 454 }
a6ec04bc 455 kprintf("\n");
f186073c
JS
456 }
457}
458
32176cfd
RP
459static __inline int
460findrix(const struct ieee80211_rateset *rs, int r)
461{
462 int i;
463
464 for (i = 0; i < rs->rs_nrates; i++)
465 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
466 return i;
467 return -1;
468}
469
f186073c 470int
32176cfd
RP
471ieee80211_fix_rate(struct ieee80211_node *ni,
472 struct ieee80211_rateset *nrs, int flags)
f186073c
JS
473{
474#define RV(v) ((v) & IEEE80211_RATE_VAL)
32176cfd 475 struct ieee80211vap *vap = ni->ni_vap;
841ab66c 476 struct ieee80211com *ic = ni->ni_ic;
32176cfd
RP
477 int i, j, rix, error;
478 int okrate, badrate, fixedrate, ucastrate;
208a1285 479 const struct ieee80211_rateset *srs;
f186073c
JS
480 uint8_t r;
481
32176cfd
RP
482 error = 0;
483 okrate = badrate = 0;
484 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
485 if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
486 /*
487 * Workaround awkwardness with fixed rate. We are called
488 * to check both the legacy rate set and the HT rate set
489 * but we must apply any legacy fixed rate check only to the
490 * legacy rate set and vice versa. We cannot tell what type
491 * of rate set we've been given (legacy or HT) but we can
492 * distinguish the fixed rate type (MCS have 0x80 set).
493 * So to deal with this the caller communicates whether to
494 * check MCS or legacy rate using the flags and we use the
495 * type of any fixed rate to avoid applying an MCS to a
496 * legacy rate and vice versa.
497 */
498 if (ucastrate & 0x80) {
499 if (flags & IEEE80211_F_DOFRATE)
500 flags &= ~IEEE80211_F_DOFRATE;
501 } else if ((ucastrate & 0x80) == 0) {
502 if (flags & IEEE80211_F_DOFMCS)
503 flags &= ~IEEE80211_F_DOFMCS;
504 }
505 /* NB: required to make MCS match below work */
506 ucastrate &= IEEE80211_RATE_VAL;
507 }
508 fixedrate = IEEE80211_FIXED_RATE_NONE;
841ab66c 509 /*
32176cfd
RP
510 * XXX we are called to process both MCS and legacy rates;
511 * we must use the appropriate basic rate set or chaos will
512 * ensue; for now callers that want MCS must supply
513 * IEEE80211_F_DOBRS; at some point we'll need to split this
514 * function so there are two variants, one for MCS and one
515 * for legacy rates.
841ab66c 516 */
32176cfd
RP
517 if (flags & IEEE80211_F_DOBRS)
518 srs = (const struct ieee80211_rateset *)
519 ieee80211_get_suphtrates(ic, ni->ni_chan);
520 else
521 srs = ieee80211_get_suprates(ic, ni->ni_chan);
f186073c 522 for (i = 0; i < nrs->rs_nrates; ) {
f186073c
JS
523 if (flags & IEEE80211_F_DOSORT) {
524 /*
525 * Sort rates.
526 */
527 for (j = i + 1; j < nrs->rs_nrates; j++) {
528 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
529 r = nrs->rs_rates[i];
530 nrs->rs_rates[i] = nrs->rs_rates[j];
531 nrs->rs_rates[j] = r;
532 }
533 }
534 }
535 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
536 badrate = r;
32176cfd
RP
537 /*
538 * Check for fixed rate.
539 */
540 if (r == ucastrate)
541 fixedrate = r;
542 /*
543 * Check against supported rates.
544 */
545 rix = findrix(srs, r);
546 if (flags & IEEE80211_F_DONEGO) {
547 if (rix < 0) {
f186073c
JS
548 /*
549 * A rate in the node's rate set is not
32176cfd
RP
550 * supported. If this is a basic rate and we
551 * are operating as a STA then this is an error.
552 * Otherwise we just discard/ignore the rate.
f186073c 553 */
32176cfd 554 if ((flags & IEEE80211_F_JOIN) &&
f186073c
JS
555 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
556 error++;
32176cfd
RP
557 } else if ((flags & IEEE80211_F_JOIN) == 0) {
558 /*
559 * Overwrite with the supported rate
560 * value so any basic rate bit is set.
561 */
562 nrs->rs_rates[i] = srs->rs_rates[rix];
f186073c
JS
563 }
564 }
32176cfd 565 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
f186073c
JS
566 /*
567 * Delete unacceptable rates.
568 */
32176cfd
RP
569 nrs->rs_nrates--;
570 for (j = i; j < nrs->rs_nrates; j++)
571 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
572 nrs->rs_rates[j] = 0;
573 continue;
f186073c 574 }
32176cfd 575 if (rix >= 0)
f186073c
JS
576 okrate = nrs->rs_rates[i];
577 i++;
578 }
841ab66c 579 if (okrate == 0 || error != 0 ||
32176cfd
RP
580 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
581 fixedrate != ucastrate)) {
582 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
583 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
7bfcf376
SW
584 "ucastrate %x\n", __func__, flags, okrate, error,
585 fixedrate, ucastrate);
f186073c 586 return badrate | IEEE80211_RATE_BASIC;
32176cfd 587 } else
f186073c
JS
588 return RV(okrate);
589#undef RV
590}
591
841ab66c
SZ
592/*
593 * Reset 11g-related state.
594 */
595void
596ieee80211_reset_erp(struct ieee80211com *ic)
597{
598 ic->ic_flags &= ~IEEE80211_F_USEPROT;
599 ic->ic_nonerpsta = 0;
600 ic->ic_longslotsta = 0;
601 /*
602 * Short slot time is enabled only when operating in 11g
603 * and not in an IBSS. We must also honor whether or not
604 * the driver is capable of doing it.
605 */
606 ieee80211_set_shortslottime(ic,
32176cfd
RP
607 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
608 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
609 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
841ab66c
SZ
610 ic->ic_opmode == IEEE80211_M_HOSTAP &&
611 (ic->ic_caps & IEEE80211_C_SHSLOT)));
612 /*
613 * Set short preamble and ERP barker-preamble flags.
614 */
32176cfd
RP
615 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
616 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
617 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
618 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
619 } else {
620 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
621 ic->ic_flags |= IEEE80211_F_USEBARKER;
622 }
841ab66c
SZ
623}
624
625/*
626 * Set the short slot time state and notify the driver.
627 */
628void
629ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
630{
631 if (onoff)
632 ic->ic_flags |= IEEE80211_F_SHSLOT;
633 else
634 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
32176cfd 635 /* notify driver */
841ab66c
SZ
636 if (ic->ic_updateslot != NULL)
637 ic->ic_updateslot(ic->ic_ifp);
638}
639
640/*
641 * Check if the specified rate set supports ERP.
642 * NB: the rate set is assumed to be sorted.
643 */
644int
32176cfd 645ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
841ab66c 646{
841ab66c
SZ
647 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
648 int i, j;
649
c157ff7a 650 if (rs->rs_nrates < NELEM(rates))
841ab66c 651 return 0;
c157ff7a 652 for (i = 0; i < NELEM(rates); i++) {
841ab66c
SZ
653 for (j = 0; j < rs->rs_nrates; j++) {
654 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
655 if (rates[i] == r)
656 goto next;
657 if (r > rates[i])
658 return 0;
659 }
660 return 0;
661 next:
662 ;
663 }
664 return 1;
841ab66c
SZ
665}
666
667/*
32176cfd 668 * Mark the basic rates for the rate table based on the
841ab66c
SZ
669 * operating mode. For real 11g we mark all the 11b rates
670 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
671 * 11b rates. There's also a pseudo 11a-mode used to mark only
672 * the basic OFDM rates.
673 */
32176cfd
RP
674static void
675setbasicrates(struct ieee80211_rateset *rs,
676 enum ieee80211_phymode mode, int add)
841ab66c 677{
32176cfd 678 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
9639b71d
SZ
679 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
680 [IEEE80211_MODE_11B] = { 2, { 2, 4 } },
32176cfd 681 /* NB: mixed b/g */
9639b71d 682 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
9639b71d 683 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
32176cfd
RP
684 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
685 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
686 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
687 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
688 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
689 /* NB: mixed b/g */
690 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
841ab66c
SZ
691 };
692 int i, j;
693
694 for (i = 0; i < rs->rs_nrates; i++) {
32176cfd
RP
695 if (!add)
696 rs->rs_rates[i] &= IEEE80211_RATE_VAL;
697 for (j = 0; j < basic[mode].rs_nrates; j++)
698 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
841ab66c
SZ
699 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
700 break;
701 }
702 }
703}
704
32176cfd
RP
705/*
706 * Set the basic rates in a rate set.
707 */
708void
709ieee80211_setbasicrates(struct ieee80211_rateset *rs,
710 enum ieee80211_phymode mode)
208a1285 711{
32176cfd
RP
712 setbasicrates(rs, mode, 0);
713}
208a1285 714
32176cfd
RP
715/*
716 * Add basic rates to a rate set.
717 */
718void
719ieee80211_addbasicrates(struct ieee80211_rateset *rs,
720 enum ieee80211_phymode mode)
721{
722 setbasicrates(rs, mode, 1);
208a1285
SZ
723}
724
841ab66c 725/*
32176cfd
RP
726 * WME protocol support.
727 *
728 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
729 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
730 * Draft 2.0 Test Plan (Appendix D).
731 *
732 * Static/Dynamic Turbo mode settings come from Atheros.
841ab66c
SZ
733 */
734typedef struct phyParamType {
32176cfd
RP
735 uint8_t aifsn;
736 uint8_t logcwmin;
737 uint8_t logcwmax;
738 uint16_t txopLimit;
739 uint8_t acm;
841ab66c
SZ
740} paramType;
741
742static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
32176cfd
RP
743 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
744 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
745 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
746 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
747 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
748 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
749 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
750 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
751 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
752 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
753 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
754 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
841ab66c
SZ
755};
756static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
32176cfd
RP
757 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
758 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
759 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
760 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
761 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
762 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
763 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
764 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
765 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
766 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
767 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
768 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
841ab66c
SZ
769};
770static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
32176cfd
RP
771 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
772 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
773 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
774 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
775 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
776 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
777 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
778 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
779 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
780 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
781 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
782 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
841ab66c
SZ
783};
784static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
32176cfd
RP
785 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
786 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
787 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
788 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
789 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
790 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
791 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
792 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
793 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
794 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
795 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
796 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
841ab66c
SZ
797};
798
799static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
32176cfd
RP
800 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
801 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
802 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
803 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
804 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
805 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
806 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
807 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
808 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
809 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
810 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
811 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
841ab66c
SZ
812};
813static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
32176cfd
RP
814 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
815 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
816 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
817 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
818 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
819 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
820 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
821 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
822 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
823 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
824 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
825 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
841ab66c
SZ
826};
827static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
32176cfd
RP
828 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
829 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
830 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
831 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
832 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
833 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
834 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
835 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
836 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
837 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
838 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
839 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
841ab66c
SZ
840};
841
32176cfd
RP
842static void
843_setifsparams(struct wmeParams *wmep, const paramType *phy)
844{
845 wmep->wmep_aifsn = phy->aifsn;
846 wmep->wmep_logcwmin = phy->logcwmin;
847 wmep->wmep_logcwmax = phy->logcwmax;
848 wmep->wmep_txopLimit = phy->txopLimit;
849}
850
851static void
852setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
853 struct wmeParams *wmep, const paramType *phy)
841ab66c 854{
32176cfd
RP
855 wmep->wmep_acm = phy->acm;
856 _setifsparams(wmep, phy);
857
858 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
859 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
860 ieee80211_wme_acnames[ac], type,
861 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
862 wmep->wmep_logcwmax, wmep->wmep_txopLimit);
863}
864
865static void
866ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
867{
868 struct ieee80211com *ic = vap->iv_ic;
841ab66c
SZ
869 struct ieee80211_wme_state *wme = &ic->ic_wme;
870 const paramType *pPhyParam, *pBssPhyParam;
871 struct wmeParams *wmep;
32176cfd 872 enum ieee80211_phymode mode;
841ab66c
SZ
873 int i;
874
32176cfd 875 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
841ab66c
SZ
876 return;
877
32176cfd
RP
878 /*
879 * Select mode; we can be called early in which case we
880 * always use auto mode. We know we'll be called when
881 * entering the RUN state with bsschan setup properly
882 * so state will eventually get set correctly
883 */
884 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
885 mode = ieee80211_chan2mode(ic->ic_bsschan);
886 else
887 mode = IEEE80211_MODE_AUTO;
841ab66c
SZ
888 for (i = 0; i < WME_NUM_AC; i++) {
889 switch (i) {
890 case WME_AC_BK:
32176cfd
RP
891 pPhyParam = &phyParamForAC_BK[mode];
892 pBssPhyParam = &phyParamForAC_BK[mode];
841ab66c
SZ
893 break;
894 case WME_AC_VI:
32176cfd
RP
895 pPhyParam = &phyParamForAC_VI[mode];
896 pBssPhyParam = &bssPhyParamForAC_VI[mode];
841ab66c
SZ
897 break;
898 case WME_AC_VO:
32176cfd
RP
899 pPhyParam = &phyParamForAC_VO[mode];
900 pBssPhyParam = &bssPhyParamForAC_VO[mode];
841ab66c
SZ
901 break;
902 case WME_AC_BE:
903 default:
32176cfd
RP
904 pPhyParam = &phyParamForAC_BE[mode];
905 pBssPhyParam = &bssPhyParamForAC_BE[mode];
841ab66c
SZ
906 break;
907 }
841ab66c
SZ
908 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
909 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
32176cfd 910 setwmeparams(vap, "chan", i, wmep, pPhyParam);
841ab66c 911 } else {
32176cfd 912 setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
841ab66c 913 }
841ab66c 914 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
32176cfd 915 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
841ab66c
SZ
916 }
917 /* NB: check ic_bss to avoid NULL deref on initial attach */
32176cfd 918 if (vap->iv_bss != NULL) {
841ab66c
SZ
919 /*
920 * Calculate agressive mode switching threshold based
921 * on beacon interval. This doesn't need locking since
922 * we're only called before entering the RUN state at
923 * which point we start sending beacon frames.
924 */
925 wme->wme_hipri_switch_thresh =
32176cfd
RP
926 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
927 wme->wme_flags &= ~WME_F_AGGRMODE;
928 ieee80211_wme_updateparams(vap);
841ab66c
SZ
929 }
930}
931
32176cfd
RP
932void
933ieee80211_wme_initparams(struct ieee80211vap *vap)
934{
32176cfd 935 ieee80211_wme_initparams_locked(vap);
32176cfd
RP
936}
937
841ab66c
SZ
938/*
939 * Update WME parameters for ourself and the BSS.
940 */
941void
32176cfd 942ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
841ab66c 943{
32176cfd
RP
944 static const paramType aggrParam[IEEE80211_MODE_MAX] = {
945 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
946 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
947 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
948 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
949 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
950 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
951 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
952 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
953 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
954 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
955 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
956 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
841ab66c 957 };
32176cfd 958 struct ieee80211com *ic = vap->iv_ic;
841ab66c
SZ
959 struct ieee80211_wme_state *wme = &ic->ic_wme;
960 const struct wmeParams *wmep;
961 struct wmeParams *chanp, *bssp;
32176cfd 962 enum ieee80211_phymode mode;
841ab66c
SZ
963 int i;
964
32176cfd
RP
965 /*
966 * Set up the channel access parameters for the physical
967 * device. First populate the configured settings.
968 */
841ab66c
SZ
969 for (i = 0; i < WME_NUM_AC; i++) {
970 chanp = &wme->wme_chanParams.cap_wmeParams[i];
971 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
972 chanp->wmep_aifsn = wmep->wmep_aifsn;
973 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
974 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
975 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
976
977 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
978 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
979 chanp->wmep_aifsn = wmep->wmep_aifsn;
980 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
981 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
982 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
983 }
984
985 /*
32176cfd
RP
986 * Select mode; we can be called early in which case we
987 * always use auto mode. We know we'll be called when
988 * entering the RUN state with bsschan setup properly
989 * so state will eventually get set correctly
990 */
991 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
992 mode = ieee80211_chan2mode(ic->ic_bsschan);
993 else
994 mode = IEEE80211_MODE_AUTO;
995
996 /*
841ab66c
SZ
997 * This implements agressive mode as found in certain
998 * vendors' AP's. When there is significant high
999 * priority (VI/VO) traffic in the BSS throttle back BE
1000 * traffic by using conservative parameters. Otherwise
1001 * BE uses agressive params to optimize performance of
1002 * legacy/non-QoS traffic.
1003 */
32176cfd 1004 if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
841ab66c 1005 (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
32176cfd
RP
1006 (vap->iv_opmode == IEEE80211_M_STA &&
1007 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1008 (vap->iv_flags & IEEE80211_F_WME) == 0) {
841ab66c
SZ
1009 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1010 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1011
32176cfd 1012 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
841ab66c 1013 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
32176cfd 1014 aggrParam[mode].logcwmin;
841ab66c 1015 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
32176cfd 1016 aggrParam[mode].logcwmax;
841ab66c 1017 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
32176cfd
RP
1018 (vap->iv_flags & IEEE80211_F_BURST) ?
1019 aggrParam[mode].txopLimit : 0;
1020 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1021 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1022 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1023 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1024 chanp->wmep_logcwmax, chanp->wmep_txopLimit);
841ab66c
SZ
1025 }
1026
32176cfd 1027 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
841ab66c 1028 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
32176cfd
RP
1029 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1030 [IEEE80211_MODE_AUTO] = 3,
1031 [IEEE80211_MODE_11A] = 3,
1032 [IEEE80211_MODE_11B] = 4,
1033 [IEEE80211_MODE_11G] = 3,
1034 [IEEE80211_MODE_FH] = 4,
1035 [IEEE80211_MODE_TURBO_A] = 3,
1036 [IEEE80211_MODE_TURBO_G] = 3,
1037 [IEEE80211_MODE_STURBO_A] = 3,
1038 [IEEE80211_MODE_HALF] = 3,
1039 [IEEE80211_MODE_QUARTER] = 3,
1040 [IEEE80211_MODE_11NA] = 3,
1041 [IEEE80211_MODE_11NG] = 3,
841ab66c
SZ
1042 };
1043 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1044 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1045
32176cfd
RP
1046 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1047 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1048 "update %s (chan+bss) logcwmin %u\n",
1049 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
841ab66c 1050 }
32176cfd 1051 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* XXX ibss? */
841ab66c
SZ
1052 /*
1053 * Arrange for a beacon update and bump the parameter
1054 * set number so associated stations load the new values.
1055 */
1056 wme->wme_bssChanParams.cap_info =
1057 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
32176cfd 1058 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
841ab66c
SZ
1059 }
1060
1061 wme->wme_update(ic);
1062
32176cfd
RP
1063 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1064 "%s: WME params updated, cap_info 0x%x\n", __func__,
1065 vap->iv_opmode == IEEE80211_M_STA ?
1066 wme->wme_wmeChanParams.cap_info :
1067 wme->wme_bssChanParams.cap_info);
841ab66c
SZ
1068}
1069
1070void
32176cfd 1071ieee80211_wme_updateparams(struct ieee80211vap *vap)
841ab66c 1072{
32176cfd 1073 struct ieee80211com *ic = vap->iv_ic;
841ab66c 1074
32176cfd 1075 if (ic->ic_caps & IEEE80211_C_WME) {
32176cfd 1076 ieee80211_wme_updateparams_locked(vap);
841ab66c 1077 }
32176cfd
RP
1078}
1079
1080static void
47156d48 1081parent_updown_task(void *arg, int npending)
32176cfd
RP
1082{
1083 struct ifnet *parent = arg;
1084
47156d48 1085 wlan_serialize_enter();
34a60cf6 1086 parent->if_ioctl(parent, SIOCSIFFLAGS, NULL, curthread->td_ucred);
47156d48 1087 wlan_serialize_exit();
32176cfd
RP
1088}
1089
1090static void
47156d48 1091update_mcast_task(void *arg, int npending)
32176cfd
RP
1092{
1093 struct ieee80211com *ic = arg;
1094 struct ifnet *parent = ic->ic_ifp;
1095
47156d48 1096 wlan_serialize_enter();
32176cfd 1097 ic->ic_update_mcast(parent);
47156d48 1098 wlan_serialize_exit();
32176cfd
RP
1099}
1100
1101static void
47156d48 1102update_promisc_task(void *arg, int npending)
32176cfd
RP
1103{
1104 struct ieee80211com *ic = arg;
1105 struct ifnet *parent = ic->ic_ifp;
1106
47156d48 1107 wlan_serialize_enter();
32176cfd 1108 ic->ic_update_promisc(parent);
47156d48 1109 wlan_serialize_exit();
32176cfd
RP
1110}
1111
1112static void
47156d48 1113update_channel_task(void *arg, int npending)
32176cfd
RP
1114{
1115 struct ieee80211com *ic = arg;
1116
47156d48 1117 wlan_serialize_enter();
32176cfd
RP
1118 ic->ic_set_channel(ic);
1119 ieee80211_radiotap_chan_change(ic);
47156d48 1120 wlan_serialize_exit();
32176cfd
RP
1121}
1122
1123/*
1124 * Block until the parent is in a known state. This is
1125 * used after any operations that dispatch a task (e.g.
1126 * to auto-configure the parent device up/down).
1127 */
1128void
1129ieee80211_waitfor_parent(struct ieee80211com *ic)
1130{
51237956
MD
1131 wlan_assert_serialized();
1132 wlan_serialize_exit(); /* exit to block */
32176cfd
RP
1133 taskqueue_block(ic->ic_tq);
1134 ieee80211_draintask(ic, &ic->ic_parent_task);
1135 ieee80211_draintask(ic, &ic->ic_mcast_task);
1136 ieee80211_draintask(ic, &ic->ic_promisc_task);
1137 ieee80211_draintask(ic, &ic->ic_chan_task);
1138 ieee80211_draintask(ic, &ic->ic_bmiss_task);
1139 taskqueue_unblock(ic->ic_tq);
51237956 1140 wlan_serialize_enter(); /* then re-enter */
32176cfd
RP
1141}
1142
1143/*
1144 * Start a vap running. If this is the first vap to be
1145 * set running on the underlying device then we
1146 * automatically bring the device up.
1147 */
1148void
1149ieee80211_start_locked(struct ieee80211vap *vap)
1150{
1151 struct ifnet *ifp = vap->iv_ifp;
1152 struct ieee80211com *ic = vap->iv_ic;
1153 struct ifnet *parent = ic->ic_ifp;
1154
32176cfd 1155 IEEE80211_DPRINTF(vap,
841ab66c 1156 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
32176cfd 1157 "start running, %d vaps running\n", ic->ic_nrunning);
841ab66c 1158
34a60cf6 1159 if ((ifp->if_flags & IFF_RUNNING) == 0) {
32176cfd
RP
1160 /*
1161 * Mark us running. Note that it's ok to do this first;
1162 * if we need to bring the parent device up we defer that
1163 * to avoid dropping the com lock. We expect the device
1164 * to respond to being marked up by calling back into us
1165 * through ieee80211_start_all at which point we'll come
1166 * back in here and complete the work.
1167 */
34a60cf6 1168 ifp->if_flags |= IFF_RUNNING;
32176cfd
RP
1169 /*
1170 * We are not running; if this we are the first vap
1171 * to be brought up auto-up the parent if necessary.
1172 */
1173 if (ic->ic_nrunning++ == 0 &&
34a60cf6 1174 (parent->if_flags & IFF_RUNNING) == 0) {
32176cfd
RP
1175 IEEE80211_DPRINTF(vap,
1176 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1177 "%s: up parent %s\n", __func__, parent->if_xname);
1178 parent->if_flags |= IFF_UP;
1179 ieee80211_runtask(ic, &ic->ic_parent_task);
1180 return;
1181 }
1182 }
841ab66c 1183 /*
32176cfd
RP
1184 * If the parent is up and running, then kick the
1185 * 802.11 state machine as appropriate.
841ab66c 1186 */
34a60cf6 1187 if ((parent->if_flags & IFF_RUNNING) &&
32176cfd
RP
1188 vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1189 if (vap->iv_opmode == IEEE80211_M_STA) {
1190#if 0
1191 /* XXX bypasses scan too easily; disable for now */
1192 /*
1193 * Try to be intelligent about clocking the state
1194 * machine. If we're currently in RUN state then
1195 * we should be able to apply any new state/parameters
1196 * simply by re-associating. Otherwise we need to
1197 * re-scan to select an appropriate ap.
1198 */
1199 if (vap->iv_state >= IEEE80211_S_RUN)
1200 ieee80211_new_state_locked(vap,
1201 IEEE80211_S_ASSOC, 1);
1202 else
1203#endif
1204 ieee80211_new_state_locked(vap,
1205 IEEE80211_S_SCAN, 0);
1206 } else {
1207 /*
1208 * For monitor+wds mode there's nothing to do but
1209 * start running. Otherwise if this is the first
1210 * vap to be brought up, start a scan which may be
1211 * preempted if the station is locked to a particular
1212 * channel.
1213 */
1214 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1215 if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1216 vap->iv_opmode == IEEE80211_M_WDS)
1217 ieee80211_new_state_locked(vap,
1218 IEEE80211_S_RUN, -1);
1219 else
1220 ieee80211_new_state_locked(vap,
1221 IEEE80211_S_SCAN, 0);
1222 }
1223 }
1224}
1225
1226/*
1227 * Start a single vap.
1228 */
1229void
1230ieee80211_init(void *arg)
1231{
1232 struct ieee80211vap *vap = arg;
1233
1234 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1235 "%s\n", __func__);
1236
32176cfd 1237 ieee80211_start_locked(vap);
32176cfd
RP
1238}
1239
1240/*
1241 * Start all runnable vap's on a device.
1242 */
1243void
1244ieee80211_start_all(struct ieee80211com *ic)
1245{
1246 struct ieee80211vap *vap;
841ab66c 1247
32176cfd
RP
1248 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1249 struct ifnet *ifp = vap->iv_ifp;
1250 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1251 ieee80211_start_locked(vap);
1252 }
32176cfd
RP
1253}
1254
1255/*
1256 * Stop a vap. We force it down using the state machine
1257 * then mark it's ifnet not running. If this is the last
1258 * vap running on the underlying device then we close it
1259 * too to insure it will be properly initialized when the
1260 * next vap is brought up.
1261 */
1262void
1263ieee80211_stop_locked(struct ieee80211vap *vap)
1264{
1265 struct ieee80211com *ic = vap->iv_ic;
1266 struct ifnet *ifp = vap->iv_ifp;
1267 struct ifnet *parent = ic->ic_ifp;
1268
32176cfd
RP
1269 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1270 "stop running, %d vaps running\n", ic->ic_nrunning);
1271
1272 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
34a60cf6
RP
1273 if (ifp->if_flags & IFF_RUNNING) {
1274 ifp->if_flags &= ~IFF_RUNNING; /* mark us stopped */
32176cfd 1275 if (--ic->ic_nrunning == 0 &&
34a60cf6 1276 (parent->if_flags & IFF_RUNNING)) {
32176cfd
RP
1277 IEEE80211_DPRINTF(vap,
1278 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1279 "down parent %s\n", parent->if_xname);
1280 parent->if_flags &= ~IFF_UP;
1281 ieee80211_runtask(ic, &ic->ic_parent_task);
1282 }
1283 }
1284}
1285
1286void
1287ieee80211_stop(struct ieee80211vap *vap)
1288{
32176cfd 1289 ieee80211_stop_locked(vap);
32176cfd
RP
1290}
1291
1292/*
1293 * Stop all vap's running on a device.
1294 */
1295void
1296ieee80211_stop_all(struct ieee80211com *ic)
1297{
1298 struct ieee80211vap *vap;
1299
32176cfd
RP
1300 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1301 struct ifnet *ifp = vap->iv_ifp;
1302 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
1303 ieee80211_stop_locked(vap);
1304 }
32176cfd
RP
1305
1306 ieee80211_waitfor_parent(ic);
1307}
1308
1309/*
1310 * Stop all vap's running on a device and arrange
1311 * for those that were running to be resumed.
1312 */
1313void
1314ieee80211_suspend_all(struct ieee80211com *ic)
1315{
1316 struct ieee80211vap *vap;
1317
32176cfd
RP
1318 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1319 struct ifnet *ifp = vap->iv_ifp;
1320 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
1321 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1322 ieee80211_stop_locked(vap);
1323 }
1324 }
32176cfd
RP
1325
1326 ieee80211_waitfor_parent(ic);
1327}
1328
1329/*
1330 * Start all vap's marked for resume.
1331 */
1332void
1333ieee80211_resume_all(struct ieee80211com *ic)
1334{
1335 struct ieee80211vap *vap;
1336
32176cfd
RP
1337 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1338 struct ifnet *ifp = vap->iv_ifp;
1339 if (!IFNET_IS_UP_RUNNING(ifp) &&
1340 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1341 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1342 ieee80211_start_locked(vap);
1343 }
1344 }
32176cfd
RP
1345}
1346
1347void
1348ieee80211_beacon_miss(struct ieee80211com *ic)
1349{
32176cfd
RP
1350 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1351 /* Process in a taskq, the handler may reenter the driver */
1352 ieee80211_runtask(ic, &ic->ic_bmiss_task);
1353 }
32176cfd
RP
1354}
1355
1356static void
47156d48 1357beacon_miss_task(void *arg, int npending)
32176cfd
RP
1358{
1359 struct ieee80211com *ic = arg;
1360 struct ieee80211vap *vap;
1361
47156d48 1362 wlan_serialize_enter();
32176cfd 1363 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
841ab66c 1364 /*
32176cfd
RP
1365 * We only pass events through for sta vap's in RUN state;
1366 * may be too restrictive but for now this saves all the
1367 * handlers duplicating these checks.
841ab66c 1368 */
32176cfd
RP
1369 if (vap->iv_opmode == IEEE80211_M_STA &&
1370 vap->iv_state >= IEEE80211_S_RUN &&
1371 vap->iv_bmiss != NULL)
1372 vap->iv_bmiss(vap);
841ab66c 1373 }
47156d48 1374 wlan_serialize_exit();
32176cfd
RP
1375}
1376
1377static void
47156d48 1378beacon_swmiss_task(void *arg, int npending)
32176cfd
RP
1379{
1380 struct ieee80211vap *vap = arg;
1381
47156d48
MD
1382 wlan_serialize_enter();
1383 if (vap->iv_state == IEEE80211_S_RUN) {
1384 /* XXX Call multiple times if npending > zero? */
1385 vap->iv_bmiss(vap);
1386 }
1387 wlan_serialize_exit();
841ab66c
SZ
1388}
1389
1390/*
1391 * Software beacon miss handling. Check if any beacons
1392 * were received in the last period. If not post a
1393 * beacon miss; otherwise reset the counter.
1394 */
32176cfd 1395void
47156d48 1396ieee80211_swbmiss_callout(void *arg)
841ab66c 1397{
32176cfd
RP
1398 struct ieee80211vap *vap = arg;
1399 struct ieee80211com *ic = vap->iv_ic;
841ab66c 1400
47156d48 1401 wlan_serialize_enter();
32176cfd
RP
1402 KASSERT(vap->iv_state == IEEE80211_S_RUN,
1403 ("wrong state %d", vap->iv_state));
841ab66c 1404
32176cfd
RP
1405 if (ic->ic_flags & IEEE80211_F_SCAN) {
1406 /*
1407 * If scanning just ignore and reset state. If we get a
1408 * bmiss after coming out of scan because we haven't had
1409 * time to receive a beacon then we should probe the AP
1410 * before posting a real bmiss (unless iv_bmiss_max has
1411 * been artifiically lowered). A cleaner solution might
1412 * be to disable the timer on scan start/end but to handle
1413 * case of multiple sta vap's we'd need to disable the
1414 * timers of all affected vap's.
1415 */
1416 vap->iv_swbmiss_count = 0;
1417 } else if (vap->iv_swbmiss_count == 0) {
1418 if (vap->iv_bmiss != NULL)
1419 ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1420 if (vap->iv_bmiss_count == 0) /* don't re-arm timer */
47156d48
MD
1421 goto done;
1422 } else {
32176cfd 1423 vap->iv_swbmiss_count = 0;
47156d48 1424 }
32176cfd 1425 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
47156d48
MD
1426 ieee80211_swbmiss_callout, vap);
1427done:
1428 wlan_serialize_exit();
32176cfd 1429}
841ab66c 1430
32176cfd
RP
1431/*
1432 * Start an 802.11h channel switch. We record the parameters,
1433 * mark the operation pending, notify each vap through the
1434 * beacon update mechanism so it can update the beacon frame
1435 * contents, and then switch vap's to CSA state to block outbound
1436 * traffic. Devices that handle CSA directly can use the state
1437 * switch to do the right thing so long as they call
1438 * ieee80211_csa_completeswitch when it's time to complete the
1439 * channel change. Devices that depend on the net80211 layer can
1440 * use ieee80211_beacon_update to handle the countdown and the
1441 * channel switch.
1442 */
1443void
1444ieee80211_csa_startswitch(struct ieee80211com *ic,
1445 struct ieee80211_channel *c, int mode, int count)
1446{
1447 struct ieee80211vap *vap;
1448
32176cfd
RP
1449 ic->ic_csa_newchan = c;
1450 ic->ic_csa_mode = mode;
1451 ic->ic_csa_count = count;
1452 ic->ic_flags |= IEEE80211_F_CSAPENDING;
1453 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1454 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1455 vap->iv_opmode == IEEE80211_M_IBSS ||
1456 vap->iv_opmode == IEEE80211_M_MBSS)
1457 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1458 /* switch to CSA state to block outbound traffic */
1459 if (vap->iv_state == IEEE80211_S_RUN)
1460 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1461 }
1462 ieee80211_notify_csa(ic, c, mode, count);
841ab66c
SZ
1463}
1464
1465static void
32176cfd 1466csa_completeswitch(struct ieee80211com *ic)
841ab66c 1467{
32176cfd 1468 struct ieee80211vap *vap;
841ab66c 1469
32176cfd
RP
1470 ic->ic_csa_newchan = NULL;
1471 ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1472
1473 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1474 if (vap->iv_state == IEEE80211_S_CSA)
1475 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
841ab66c
SZ
1476}
1477
32176cfd
RP
1478/*
1479 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1480 * We clear state and move all vap's in CSA state to RUN state
1481 * so they can again transmit.
1482 */
846cf0bc 1483void
32176cfd 1484ieee80211_csa_completeswitch(struct ieee80211com *ic)
841ab66c 1485{
32176cfd 1486 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
846cf0bc 1487
32176cfd
RP
1488 ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1489 csa_completeswitch(ic);
1490}
846cf0bc 1491
32176cfd
RP
1492/*
1493 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1494 * We clear state and move all vap's in CSA state to RUN state
1495 * so they can again transmit.
1496 */
1497void
1498ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1499{
32176cfd
RP
1500 csa_completeswitch(ic);
1501}
1502
1503/*
1504 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1505 * We clear state and move all vap's in CAC state to RUN state.
1506 */
1507void
1508ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1509{
1510 struct ieee80211com *ic = vap0->iv_ic;
1511 struct ieee80211vap *vap;
1512
32176cfd
RP
1513 /*
1514 * Complete CAC state change for lead vap first; then
1515 * clock all the other vap's waiting.
1516 */
1517 KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1518 ("wrong state %d", vap0->iv_state));
1519 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1520
1521 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1522 if (vap->iv_state == IEEE80211_S_CAC)
1523 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
32176cfd
RP
1524}
1525
1526/*
1527 * Force all vap's other than the specified vap to the INIT state
1528 * and mark them as waiting for a scan to complete. These vaps
1529 * will be brought up when the scan completes and the scanning vap
1530 * reaches RUN state by wakeupwaiting.
1531 */
1532static void
1533markwaiting(struct ieee80211vap *vap0)
1534{
1535 struct ieee80211com *ic = vap0->iv_ic;
1536 struct ieee80211vap *vap;
1537
32176cfd
RP
1538 /*
1539 * A vap list entry can not disappear since we are running on the
1540 * taskqueue and a vap destroy will queue and drain another state
1541 * change task.
1542 */
1543 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1544 if (vap == vap0)
1545 continue;
1546 if (vap->iv_state != IEEE80211_S_INIT) {
1547 /* NB: iv_newstate may drop the lock */
1548 vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1549 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
846cf0bc 1550 }
32176cfd
RP
1551 }
1552}
1553
1554/*
1555 * Wakeup all vap's waiting for a scan to complete. This is the
1556 * companion to markwaiting (above) and is used to coordinate
1557 * multiple vaps scanning.
1558 * This is called from the state taskqueue.
1559 */
1560static void
1561wakeupwaiting(struct ieee80211vap *vap0)
1562{
1563 struct ieee80211com *ic = vap0->iv_ic;
1564 struct ieee80211vap *vap;
1565
32176cfd
RP
1566 /*
1567 * A vap list entry can not disappear since we are running on the
1568 * taskqueue and a vap destroy will queue and drain another state
1569 * change task.
1570 */
1571 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1572 if (vap == vap0)
1573 continue;
1574 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1575 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1576 /* NB: sta's cannot go INIT->RUN */
1577 /* NB: iv_newstate may drop the lock */
1578 vap->iv_newstate(vap,
1579 vap->iv_opmode == IEEE80211_M_STA ?
1580 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
846cf0bc 1581 }
846cf0bc 1582 }
32176cfd
RP
1583}
1584
1585/*
1586 * Handle post state change work common to all operating modes.
1587 */
1588static void
47156d48 1589ieee80211_newstate_task(void *xvap, int npending)
32176cfd
RP
1590{
1591 struct ieee80211vap *vap = xvap;
47156d48 1592 struct ieee80211com *ic;
32176cfd
RP
1593 enum ieee80211_state nstate, ostate;
1594 int arg, rc;
841ab66c 1595
47156d48
MD
1596 wlan_serialize_enter();
1597
1598 ic = vap->iv_ic;
32176cfd
RP
1599 nstate = vap->iv_nstate;
1600 arg = vap->iv_nstate_arg;
1601
1602 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1603 /*
1604 * We have been requested to drop back to the INIT before
1605 * proceeding to the new state.
1606 */
1607 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1608 "%s: %s -> %s arg %d\n", __func__,
1609 ieee80211_state_name[vap->iv_state],
1610 ieee80211_state_name[IEEE80211_S_INIT], arg);
1611 vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1612 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1613 }
1614
1615 ostate = vap->iv_state;
1616 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1617 /*
1618 * SCAN was forced; e.g. on beacon miss. Force other running
1619 * vap's to INIT state and mark them as waiting for the scan to
1620 * complete. This insures they don't interfere with our
1621 * scanning. Since we are single threaded the vaps can not
1622 * transition again while we are executing.
1623 *
1624 * XXX not always right, assumes ap follows sta
1625 */
1626 markwaiting(vap);
1627 }
1628 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1629 "%s: %s -> %s arg %d\n", __func__,
1630 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1631
1632 rc = vap->iv_newstate(vap, nstate, arg);
1633 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1634 if (rc != 0) {
1635 /* State transition failed */
1636 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1637 KASSERT(nstate != IEEE80211_S_INIT,
1638 ("INIT state change failed"));
1639 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1640 "%s: %s returned error %d\n", __func__,
1641 ieee80211_state_name[nstate], rc);
1642 goto done;
1643 }
1644
1645 /* No actual transition, skip post processing */
1646 if (ostate == nstate)
1647 goto done;
1648
1649 if (nstate == IEEE80211_S_RUN) {
f0a26983
SZ
1650 struct ifaltq_subque *ifsq =
1651 ifq_get_subq_default(&vap->iv_ifp->if_snd);
1652
32176cfd
RP
1653 /*
1654 * OACTIVE may be set on the vap if the upper layer
1655 * tried to transmit (e.g. IPv6 NDP) before we reach
1656 * RUN state. Clear it and restart xmit.
1657 *
1658 * Note this can also happen as a result of SLEEP->RUN
1659 * (i.e. coming out of power save mode).
1660 */
f0a26983
SZ
1661 ifsq_clr_oactive(ifsq);
1662 vap->iv_ifp->if_start(vap->iv_ifp, ifsq);
32176cfd
RP
1663
1664 /* bring up any vaps waiting on us */
1665 wakeupwaiting(vap);
1666 } else if (nstate == IEEE80211_S_INIT) {
1667 /*
1668 * Flush the scan cache if we did the last scan (XXX?)
1669 * and flush any frames on send queues from this vap.
1670 * Note the mgt q is used only for legacy drivers and
1671 * will go away shortly.
1672 */
1673 ieee80211_scan_flush(vap);
1674
1675 /* XXX NB: cast for altq */
c332e0e8 1676 ieee80211_flush_ifq(&ic->ic_ifp->if_snd, vap);
32176cfd
RP
1677 }
1678done:
47156d48 1679 wlan_serialize_exit();
841ab66c
SZ
1680}
1681
32176cfd
RP
1682/*
1683 * Public interface for initiating a state machine change.
1684 * This routine single-threads the request and coordinates
1685 * the scheduling of multiple vaps for the purpose of selecting
1686 * an operating channel. Specifically the following scenarios
1687 * are handled:
1688 * o only one vap can be selecting a channel so on transition to
1689 * SCAN state if another vap is already scanning then
1690 * mark the caller for later processing and return without
1691 * doing anything (XXX? expectations by caller of synchronous operation)
1692 * o only one vap can be doing CAC of a channel so on transition to
1693 * CAC state if another vap is already scanning for radar then
1694 * mark the caller for later processing and return without
1695 * doing anything (XXX? expectations by caller of synchronous operation)
1696 * o if another vap is already running when a request is made
1697 * to SCAN then an operating channel has been chosen; bypass
1698 * the scan and just join the channel
1699 *
1700 * Note that the state change call is done through the iv_newstate
1701 * method pointer so any driver routine gets invoked. The driver
1702 * will normally call back into operating mode-specific
1703 * ieee80211_newstate routines (below) unless it needs to completely
1704 * bypass the state machine (e.g. because the firmware has it's
1705 * own idea how things should work). Bypassing the net80211 layer
1706 * is usually a mistake and indicates lack of proper integration
1707 * with the net80211 layer.
1708 */
f186073c 1709static int
32176cfd
RP
1710ieee80211_new_state_locked(struct ieee80211vap *vap,
1711 enum ieee80211_state nstate, int arg)
f186073c 1712{
32176cfd
RP
1713 struct ieee80211com *ic = vap->iv_ic;
1714 struct ieee80211vap *vp;
f186073c 1715 enum ieee80211_state ostate;
32176cfd 1716 int nrunning, nscanning;
f186073c 1717
32176cfd
RP
1718 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1719 if (vap->iv_nstate == IEEE80211_S_INIT) {
841ab66c 1720 /*
32176cfd
RP
1721 * XXX The vap is being stopped, do no allow any other
1722 * state changes until this is completed.
841ab66c 1723 */
32176cfd
RP
1724 return -1;
1725 } else if (vap->iv_state != vap->iv_nstate) {
1726#if 0
1727 /* Warn if the previous state hasn't completed. */
1728 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1729 "%s: pending %s -> %s transition lost\n", __func__,
1730 ieee80211_state_name[vap->iv_state],
1731 ieee80211_state_name[vap->iv_nstate]);
1732#else
1733 /* XXX temporarily enable to identify issues */
1734 if_printf(vap->iv_ifp,
1735 "%s: pending %s -> %s transition lost\n",
1736 __func__, ieee80211_state_name[vap->iv_state],
1737 ieee80211_state_name[vap->iv_nstate]);
1738#endif
f186073c 1739 }
32176cfd
RP
1740 }
1741
1742 nrunning = nscanning = 0;
1743 /* XXX can track this state instead of calculating */
1744 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1745 if (vp != vap) {
1746 if (vp->iv_state >= IEEE80211_S_RUN)
1747 nrunning++;
1748 /* XXX doesn't handle bg scan */
1749 /* NB: CAC+AUTH+ASSOC treated like SCAN */
1750 else if (vp->iv_state > IEEE80211_S_INIT)
1751 nscanning++;
1752 }
1753 }
1754 ostate = vap->iv_state;
1755 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1756 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1757 ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1758 nrunning, nscanning);
1759 switch (nstate) {
1760 case IEEE80211_S_SCAN:
1761 if (ostate == IEEE80211_S_INIT) {
1762 /*
1763 * INIT -> SCAN happens on initial bringup.
1764 */
1765 KASSERT(!(nscanning && nrunning),
1766 ("%d scanning and %d running", nscanning, nrunning));
1767 if (nscanning) {
1768 /*
1769 * Someone is scanning, defer our state
1770 * change until the work has completed.
1771 */
1772 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1773 "%s: defer %s -> %s\n",
1774 __func__, ieee80211_state_name[ostate],
1775 ieee80211_state_name[nstate]);
1776 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1777 return 0;
f186073c 1778 }
32176cfd
RP
1779 if (nrunning) {
1780 /*
1781 * Someone is operating; just join the channel
1782 * they have chosen.
1783 */
1784 /* XXX kill arg? */
1785 /* XXX check each opmode, adhoc? */
1786 if (vap->iv_opmode == IEEE80211_M_STA)
1787 nstate = IEEE80211_S_SCAN;
1788 else
1789 nstate = IEEE80211_S_RUN;
1790#ifdef IEEE80211_DEBUG
1791 if (nstate != IEEE80211_S_SCAN) {
1792 IEEE80211_DPRINTF(vap,
1793 IEEE80211_MSG_STATE,
1794 "%s: override, now %s -> %s\n",
1795 __func__,
1796 ieee80211_state_name[ostate],
1797 ieee80211_state_name[nstate]);
841ab66c 1798 }
32176cfd 1799#endif
841ab66c 1800 }
f186073c
JS
1801 }
1802 break;
1803 case IEEE80211_S_RUN:
32176cfd
RP
1804 if (vap->iv_opmode == IEEE80211_M_WDS &&
1805 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1806 nscanning) {
1807 /*
1808 * Legacy WDS with someone else scanning; don't
1809 * go online until that completes as we should
1810 * follow the other vap to the channel they choose.
1811 */
1812 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1813 "%s: defer %s -> %s (legacy WDS)\n", __func__,
1814 ieee80211_state_name[ostate],
1815 ieee80211_state_name[nstate]);
1816 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1817 return 0;
f186073c 1818 }
32176cfd
RP
1819 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1820 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1821 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1822 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
841ab66c 1823 /*
32176cfd
RP
1824 * This is a DFS channel, transition to CAC state
1825 * instead of RUN. This allows us to initiate
1826 * Channel Availability Check (CAC) as specified
1827 * by 11h/DFS.
841ab66c 1828 */
32176cfd
RP
1829 nstate = IEEE80211_S_CAC;
1830 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1831 "%s: override %s -> %s (DFS)\n", __func__,
1832 ieee80211_state_name[ostate],
1833 ieee80211_state_name[nstate]);
841ab66c 1834 }
32176cfd
RP
1835 break;
1836 case IEEE80211_S_INIT:
1837 /* cancel any scan in progress */
1838 ieee80211_cancel_scan(vap);
1839 if (ostate == IEEE80211_S_INIT ) {
1840 /* XXX don't believe this */
1841 /* INIT -> INIT. nothing to do */
1842 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
841ab66c 1843 }
32176cfd
RP
1844 /* fall thru... */
1845 default:
f186073c
JS
1846 break;
1847 }
32176cfd
RP
1848 /* defer the state change to a thread */
1849 vap->iv_nstate = nstate;
1850 vap->iv_nstate_arg = arg;
1851 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1852 ieee80211_runtask(ic, &vap->iv_nstate_task);
1853 return EINPROGRESS;
1854}
1855
1856int
1857ieee80211_new_state(struct ieee80211vap *vap,
1858 enum ieee80211_state nstate, int arg)
1859{
32176cfd
RP
1860 int rc;
1861
32176cfd 1862 rc = ieee80211_new_state_locked(vap, nstate, arg);
32176cfd 1863 return rc;
f186073c 1864}