Add support for Intel 7221's and 845M GMCH controllers.
[dragonfly.git] / sys / vfs / hammer / hammer_disk.h
CommitLineData
8750964d
MD
1/*
2 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
7f7c1f84 34 * $DragonFly: src/sys/vfs/hammer/hammer_disk.h,v 1.10 2007/11/27 07:48:52 dillon Exp $
8750964d
MD
35 */
36
37#ifndef _SYS_UUID_H_
38#include <sys/uuid.h>
39#endif
40
41/*
42 * The structures below represent the on-disk format for a HAMMER
43 * filesystem. Note that all fields for on-disk structures are naturally
44 * aligned. The host endian format is used - compatibility is possible
45 * if the implementation detects reversed endian and adjusts data accordingly.
46 *
47 * Most of HAMMER revolves around the concept of an object identifier. An
48 * obj_id is a 64 bit quantity which uniquely identifies a filesystem object
49 * FOR THE ENTIRE LIFE OF THE FILESYSTEM. This uniqueness allows backups
50 * and mirrors to retain varying amounts of filesystem history by removing
51 * any possibility of conflict through identifier reuse.
52 *
53 * A HAMMER filesystem may spam multiple volumes.
54 *
55 * A HAMMER filesystem uses a 16K filesystem buffer size. All filesystem
c60bb2c5
MD
56 * I/O is done in multiples of 16K. Most buffer-sized headers such as those
57 * used by volumes, super-clusters, clusters, and basic filesystem buffers
58 * use fixed-sized A-lists which are heavily dependant on HAMMER_BUFSIZE.
8750964d
MD
59 */
60#define HAMMER_BUFSIZE 16384
61#define HAMMER_BUFMASK (HAMMER_BUFSIZE - 1)
62
63/*
64 * Hammer transction ids are 64 bit unsigned integers and are usually
65 * synchronized with the time of day in nanoseconds.
66 */
67typedef u_int64_t hammer_tid_t;
68
66325755 69#define HAMMER_MAX_TID 0xFFFFFFFFFFFFFFFFULL
6b4f890b
MD
70#define HAMMER_MIN_KEY -0x8000000000000000LL
71#define HAMMER_MAX_KEY 0x7FFFFFFFFFFFFFFFLL
66325755 72
8750964d
MD
73/*
74 * Most HAMMER data structures are embedded in 16K filesystem buffers.
75 * All filesystem buffers except those designated as pure-data buffers
76 * contain this 128-byte header.
77 *
78 * This structure contains an embedded A-List used to manage space within
79 * the filesystem buffer. It is not used by volume or cluster header
80 * buffers, or by pure-data buffers. The granularity is variable and
81 * depends on the type of filesystem buffer. BLKSIZE is just a minimum.
82 */
83
84#define HAMMER_FSBUF_HEAD_SIZE 128
85#define HAMMER_FSBUF_MAXBLKS 256
9775c955 86#define HAMMER_FSBUF_BLKMASK (HAMMER_FSBUF_MAXBLKS - 1)
c60bb2c5 87#define HAMMER_FSBUF_METAELMS HAMMER_ALIST_METAELMS_256_1LYR /* 11 */
8750964d
MD
88
89struct hammer_fsbuf_head {
90 u_int64_t buf_type;
91 u_int32_t buf_crc;
92 u_int32_t buf_reserved07;
c60bb2c5 93 u_int32_t reserved[6];
8750964d
MD
94 struct hammer_almeta buf_almeta[HAMMER_FSBUF_METAELMS];
95};
96
97typedef struct hammer_fsbuf_head *hammer_fsbuf_head_t;
98
c60bb2c5
MD
99/*
100 * Note: Pure-data buffers contain pure-data and have no buf_type.
101 * Piecemeal data buffers do have a header and use HAMMER_FSBUF_DATA.
102 */
8750964d 103#define HAMMER_FSBUF_VOLUME 0xC8414D4DC5523031ULL /* HAMMER01 */
c60bb2c5 104#define HAMMER_FSBUF_SUPERCL 0xC8414D52C3555052ULL /* HAMRSUPR */
8750964d
MD
105#define HAMMER_FSBUF_CLUSTER 0xC8414D52C34C5553ULL /* HAMRCLUS */
106#define HAMMER_FSBUF_RECORDS 0xC8414D52D2454353ULL /* HAMRRECS */
107#define HAMMER_FSBUF_BTREE 0xC8414D52C2545245ULL /* HAMRBTRE */
108#define HAMMER_FSBUF_DATA 0xC8414D52C4415441ULL /* HAMRDATA */
109
110#define HAMMER_FSBUF_VOLUME_REV 0x313052C54D4D41C8ULL /* (reverse endian) */
111
112/*
113 * The B-Tree structures need hammer_fsbuf_head.
114 */
115#include "hammer_btree.h"
116
117/*
118 * HAMMER Volume header
119 *
120 * A HAMMER filesystem is built from any number of block devices, Each block
c60bb2c5
MD
121 * device contains a volume header followed by however many super-clusters
122 * and clusters fit into the volume. Clusters cannot be migrated but the
123 * data they contain can, so HAMMER can use a truncated cluster for any
124 * extra space at the end of the volume.
8750964d
MD
125 *
126 * The volume containing the root cluster is designated as the master volume.
127 * The root cluster designation can be moved to any volume.
128 *
129 * The volume header takes up an entire 16K filesystem buffer and includes
c60bb2c5
MD
130 * a one or two-layered A-list to manage the clusters making up the volume.
131 * A volume containing up to 32768 clusters (2TB) can be managed with a
132 * single-layered A-list. A two-layer A-list is capable of managing up
7f7c1f84
MD
133 * to 4096 super-clusters with each super-cluster containing 32768 clusters
134 * (8192 TB per volume total). The number of volumes is limited to 32768
c60bb2c5
MD
135 * but it only takes 512 to fill out a 64 bit address space so for all
136 * intents and purposes the filesystem has no limits.
137 *
138 * cluster addressing within a volume depends on whether a single or
139 * duel-layer A-list is used. If a duel-layer A-list is used a 16K
7f7c1f84 140 * super-cluster buffer is needed for every 32768 clusters in the volume.
c60bb2c5
MD
141 * However, because the A-list's hinting is grouped in multiples of 16
142 * we group 16 super-cluster buffers together (starting just after the
143 * volume header), followed by 16384x16 clusters, and repeat.
144 *
7f7c1f84
MD
145 * The number of super-clusters is limited to 4096 because the A-list's
146 * master radix is stored as a 32 bit signed quantity which will overflow
147 * if more then 4096*32768 elements is specified. XXX
148 *
c60bb2c5
MD
149 * NOTE: A 32768-element single-layer and 16384-element duel-layer A-list
150 * is the same size.
a89aec1b
MD
151 *
152 * Special field notes:
153 *
154 * vol_bot_beg - offset of boot area (mem_beg - bot_beg bytes)
155 * vol_mem_beg - offset of memory log (clu_beg - mem_beg bytes)
156 * vol_clo_beg - offset of cluster #0 in volume
157 *
158 * The memory log area allows a kernel to cache new records and data
159 * in memory without allocating space in the actual filesystem to hold
160 * the records and data. In the event that a filesystem becomes full,
161 * any records remaining in memory can be flushed to the memory log
162 * area. This allows the kernel to immediately return success.
8750964d 163 */
c60bb2c5 164#define HAMMER_VOL_MAXCLUSTERS 32768 /* 1-layer */
7f7c1f84 165#define HAMMER_VOL_MAXSUPERCLUSTERS 4096 /* 2-layer */
c60bb2c5
MD
166#define HAMMER_VOL_SUPERCLUSTER_GROUP 16
167#define HAMMER_VOL_METAELMS_1LYR HAMMER_ALIST_METAELMS_32K_1LYR
168#define HAMMER_VOL_METAELMS_2LYR HAMMER_ALIST_METAELMS_16K_2LYR
8750964d 169
a89aec1b
MD
170#define HAMMER_BOOT_MINBYTES (32*1024)
171#define HAMMER_BOOT_NOMBYTES (64LL*1024*1024)
172#define HAMMER_BOOT_MAXBYTES (256LL*1024*1024)
173
174#define HAMMER_MEM_MINBYTES (256*1024)
175#define HAMMER_MEM_NOMBYTES (1LL*1024*1024*1024)
176#define HAMMER_MEM_MAXBYTES (64LL*1024*1024*1024)
177
8750964d
MD
178struct hammer_volume_ondisk {
179 struct hammer_fsbuf_head head;
a89aec1b
MD
180 int64_t vol_bot_beg; /* byte offset of boot area or 0 */
181 int64_t vol_mem_beg; /* byte offset of memory log or 0 */
182 int64_t vol_clo_beg; /* byte offset of first cl/supercl in volume */
183 int64_t vol_clo_end; /* byte offset of volume EOF */
8750964d
MD
184 int64_t vol_locked; /* reserved clusters are >= this offset */
185
186 uuid_t vol_fsid; /* identify filesystem */
187 uuid_t vol_fstype; /* identify filesystem type */
188 char vol_name[64]; /* Name of volume */
189
190 int32_t vol_no; /* volume number within filesystem */
191 int32_t vol_count; /* number of volumes making up FS */
192
193 u_int32_t vol_version; /* version control information */
9775c955 194 u_int32_t vol_reserved01;
8750964d
MD
195 u_int32_t vol_flags; /* volume flags */
196 u_int32_t vol_rootvol; /* which volume is the root volume? */
197
198 int32_t vol_clsize; /* cluster size (same for all volumes) */
9775c955 199 int32_t vol_nclusters;
8750964d
MD
200 u_int32_t vol_reserved06;
201 u_int32_t vol_reserved07;
202
27ea2398
MD
203 int32_t vol_stat_blocksize; /* for statfs only */
204 int64_t vol_stat_bytes; /* for statfs only */
205 int64_t vol_stat_inodes; /* for statfs only */
206
8750964d
MD
207 /*
208 * These fields are initialized and space is reserved in every
209 * volume making up a HAMMER filesytem, but only the master volume
210 * contains valid data.
211 */
427e5fc6
MD
212 int32_t vol0_root_clu_no; /* root cluster no (index) in rootvol */
213 hammer_tid_t vol0_root_clu_id; /* root cluster id */
8750964d
MD
214 hammer_tid_t vol0_nexttid; /* next TID */
215 u_int64_t vol0_recid; /* fs-wide record id allocator */
66325755 216 u_int64_t vol0_synchronized_rec_id; /* XXX */
8750964d
MD
217
218 char reserved[1024];
219
c60bb2c5
MD
220 /*
221 * Meta elements for the volume header's A-list, which is either a
222 * 1-layer A-list capable of managing 32768 clusters, or a 2-layer
223 * A-list capable of managing 16384 super-clusters (each of which
224 * can handle 32768 clusters).
225 */
226 union {
9775c955
MD
227 struct hammer_almeta super[HAMMER_VOL_METAELMS_2LYR];
228 struct hammer_almeta normal[HAMMER_VOL_METAELMS_1LYR];
c60bb2c5 229 } vol_almeta;
8750964d
MD
230 u_int32_t vol0_bitmap[1024];
231};
232
8cd0a023
MD
233typedef struct hammer_volume_ondisk *hammer_volume_ondisk_t;
234
c60bb2c5
MD
235#define HAMMER_VOLF_VALID 0x0001 /* valid entry */
236#define HAMMER_VOLF_OPEN 0x0002 /* volume is open */
427e5fc6 237#define HAMMER_VOLF_USINGSUPERCL 0x0004 /* using superclusters */
c60bb2c5
MD
238
239/*
240 * HAMMER Super-cluster header
241 *
242 * A super-cluster is used to increase the maximum size of a volume.
243 * HAMMER's volume header can manage up to 32768 direct clusters or
244 * 16384 super-clusters. Each super-cluster (which is basically just
245 * a 16K filesystem buffer) can manage up to 32768 clusters. So adding
246 * a super-cluster layer allows a HAMMER volume to be sized upwards of
247 * around 32768TB instead of 2TB.
248 *
249 * Any volume initially formatted to be over 32G reserves space for the layer
250 * but the layer is only enabled if the volume exceeds 2TB.
251 */
252#define HAMMER_SUPERCL_METAELMS HAMMER_ALIST_METAELMS_32K_1LYR
9775c955 253#define HAMMER_SCL_MAXCLUSTERS HAMMER_VOL_MAXCLUSTERS
c60bb2c5
MD
254
255struct hammer_supercl_ondisk {
256 struct hammer_fsbuf_head head;
257 uuid_t vol_fsid; /* identify filesystem - sanity check */
258 uuid_t vol_fstype; /* identify filesystem type - sanity check */
259 int32_t reserved[1024];
260
9775c955 261 struct hammer_almeta scl_meta[HAMMER_SUPERCL_METAELMS];
c60bb2c5 262};
8750964d 263
8cd0a023
MD
264typedef struct hammer_supercl_ondisk *hammer_supercl_ondisk_t;
265
8750964d
MD
266/*
267 * HAMMER Cluster header
268 *
c60bb2c5
MD
269 * A cluster is limited to 64MB and is made up of 4096 16K filesystem
270 * buffers. The cluster header contains four A-lists to manage these
271 * buffers.
272 *
273 * master_alist - This is a non-layered A-list which manages pure-data
274 * allocations and allocations on behalf of other A-lists.
275 *
276 * btree_alist - This is a layered A-list which manages filesystem buffers
277 * containing B-Tree nodes.
8750964d 278 *
c60bb2c5
MD
279 * record_alist - This is a layered A-list which manages filesystem buffers
280 * containing records.
281 *
282 * mdata_alist - This is a layered A-list which manages filesystem buffers
283 * containing piecemeal record data.
284 *
285 * General storage management works like this: All the A-lists except the
286 * master start in an all-allocated state. Now lets say you wish to allocate
287 * a B-Tree node out the btree_alist. If the allocation fails you allocate
288 * a pure data block out of master_alist and then free that block in
289 * btree_alist, thereby assigning more space to the btree_alist, and then
290 * retry your allocation out of the btree_alist. In the reverse direction,
291 * filesystem buffers can be garbage collected back to master_alist simply
292 * by doing whole-buffer allocations in btree_alist and then freeing the
293 * space in master_alist. The whole-buffer-allocation approach to garbage
294 * collection works because A-list allocations are always power-of-2 sized
295 * and aligned.
8750964d 296 */
c60bb2c5
MD
297#define HAMMER_CLU_MAXBUFFERS 4096
298#define HAMMER_CLU_MASTER_METAELMS HAMMER_ALIST_METAELMS_4K_1LYR
299#define HAMMER_CLU_SLAVE_METAELMS HAMMER_ALIST_METAELMS_4K_2LYR
9775c955 300#define HAMMER_CLU_MAXBYTES (HAMMER_CLU_MAXBUFFERS * HAMMER_BUFSIZE)
8750964d
MD
301
302struct hammer_cluster_ondisk {
303 struct hammer_fsbuf_head head;
304 uuid_t vol_fsid; /* identify filesystem - sanity check */
305 uuid_t vol_fstype; /* identify filesystem type - sanity check */
306
8750964d 307 hammer_tid_t clu_id; /* unique cluster self identification */
8cd0a023 308 hammer_tid_t clu_gen; /* generation number */
8750964d
MD
309 int32_t vol_no; /* cluster contained in volume (sanity) */
310 u_int32_t clu_flags; /* cluster flags */
311
312 int32_t clu_start; /* start of data (byte offset) */
313 int32_t clu_limit; /* end of data (byte offset) */
314 int32_t clu_no; /* cluster index in volume (sanity) */
315 u_int32_t clu_reserved03;
316
317 u_int32_t clu_reserved04;
318 u_int32_t clu_reserved05;
319 u_int32_t clu_reserved06;
320 u_int32_t clu_reserved07;
321
9775c955
MD
322 int32_t idx_data; /* data append point (element no) */
323 int32_t idx_index; /* index append point (element no) */
324 int32_t idx_record; /* record prepend point (element no) */
c0ade690 325 int32_t idx_ldata; /* large block data append pt (buf_no) */
8750964d
MD
326
327 /*
c60bb2c5 328 * Specify the range of information stored in this cluster as two
8cd0a023
MD
329 * btree elements. These elements match the left and right
330 * boundary elements in the internal B-Tree node of the parent
331 * cluster that points to the root of our cluster. Because these
332 * are boundary elements, the right boundary is range-NONinclusive.
8750964d 333 */
c60bb2c5
MD
334 struct hammer_base_elm clu_btree_beg;
335 struct hammer_base_elm clu_btree_end;
8750964d
MD
336
337 /*
c60bb2c5
MD
338 * The cluster's B-Tree root can change as a side effect of insertion
339 * and deletion operations so store an offset instead of embedding
8cd0a023
MD
340 * the root node. The parent_offset is stale if the generation number
341 * does not match.
342 *
343 * Parent linkages are explicit.
8750964d 344 */
c60bb2c5
MD
345 int32_t clu_btree_root;
346 int32_t clu_btree_parent_vol_no;
347 int32_t clu_btree_parent_clu_no;
8cd0a023
MD
348 int32_t clu_btree_parent_offset;
349 hammer_tid_t clu_btree_parent_clu_gen;
8750964d 350
8750964d 351 u_int64_t synchronized_rec_id;
8750964d 352
9775c955
MD
353 struct hammer_almeta clu_master_meta[HAMMER_CLU_MASTER_METAELMS];
354 struct hammer_almeta clu_btree_meta[HAMMER_CLU_SLAVE_METAELMS];
355 struct hammer_almeta clu_record_meta[HAMMER_CLU_SLAVE_METAELMS];
356 struct hammer_almeta clu_mdata_meta[HAMMER_CLU_SLAVE_METAELMS];
8750964d
MD
357};
358
8cd0a023
MD
359typedef struct hammer_cluster_ondisk *hammer_cluster_ondisk_t;
360
8750964d
MD
361/*
362 * HAMMER records are 96 byte entities encoded into 16K filesystem buffers.
363 * Each record has a 64 byte header and a 32 byte extension. 170 records
364 * fit into each buffer. Storage is managed by the buffer's A-List.
365 *
366 * Each record may have an explicit data reference to a block of data up
367 * to 2^31-1 bytes in size within the current cluster. Note that multiple
368 * records may share the same or overlapping data references.
369 */
370
371/*
372 * All HAMMER records have a common 64-byte base and a 32-byte extension.
373 *
374 * Many HAMMER record types reference out-of-band data within the cluster.
375 * This data can also be stored in-band in the record itself if it is small
376 * enough. Either way, (data_offset, data_len) points to it.
377 *
378 * Key comparison order: obj_id, rec_type, key, create_tid
379 */
380struct hammer_base_record {
427e5fc6
MD
381 /*
382 * 40 byte base element info - same base as used in B-Tree internal
383 * and leaf node element arrays.
384 *
385 * Fields: obj_id, key, create_tid, delete_tid, rec_type, obj_type,
386 * reserved07.
387 */
388 struct hammer_base_elm base; /* 00 base element info */
8750964d 389
8750964d
MD
390 int32_t data_len; /* 28 size of data (remainder zero-fill) */
391 u_int32_t data_crc; /* 2C data sanity check */
392 u_int64_t rec_id; /* 30 record id (iterator for recovery) */
427e5fc6
MD
393 int32_t data_offset; /* 38 cluster-relative data reference or 0 */
394 u_int32_t reserved07; /* 3C */
8750964d
MD
395 /* 40 */
396};
397
c60bb2c5
MD
398/*
399 * Record types are fairly straightforward. The B-Tree includes the record
400 * type in its index sort.
401 *
402 * In particular please note that it is possible to create a pseudo-
403 * filesystem within a HAMMER filesystem by creating a special object
404 * type within a directory. Pseudo-filesystems are used as replication
405 * targets and even though they are built within a HAMMER filesystem they
406 * get their own obj_id space (and thus can serve as a replication target)
407 * and look like a mount point to the system.
8cd0a023
MD
408 *
409 * Inter-cluster records are special-cased in the B-Tree. These records
410 * are referenced from a B-Tree INTERNAL node, NOT A LEAF. This means
411 * that the element in the B-Tree node is actually a boundary element whos
412 * base element fields, including rec_type, reflect the boundary, NOT
413 * the inter-cluster record type.
414 *
415 * HAMMER_RECTYPE_CLUSTER - only set in the actual inter-cluster record,
416 * not set in the left or right boundary elements around the inter-cluster
417 * reference of an internal node in the B-Tree (because doing so would
418 * interfere with the boundary tests).
c60bb2c5 419 */
8750964d 420#define HAMMER_RECTYPE_UNKNOWN 0
66325755 421#define HAMMER_RECTYPE_LOWEST 1 /* lowest record type avail */
8750964d 422#define HAMMER_RECTYPE_INODE 1 /* inode in obj_id space */
c60bb2c5 423#define HAMMER_RECTYPE_PSEUDO_INODE 2 /* pseudo filesysem */
8cd0a023 424#define HAMMER_RECTYPE_CLUSTER 3 /* inter-cluster reference */
66325755
MD
425#define HAMMER_RECTYPE_DATA 0x10
426#define HAMMER_RECTYPE_DIRENTRY 0x11
427#define HAMMER_RECTYPE_DB 0x12
428#define HAMMER_RECTYPE_EXT 0x13 /* ext attributes */
8750964d 429
66325755 430#define HAMMER_OBJTYPE_UNKNOWN 0 /* (never exists on-disk) */
8750964d
MD
431#define HAMMER_OBJTYPE_DIRECTORY 1
432#define HAMMER_OBJTYPE_REGFILE 2
433#define HAMMER_OBJTYPE_DBFILE 3
434#define HAMMER_OBJTYPE_FIFO 4
c60bb2c5
MD
435#define HAMMER_OBJTYPE_CDEV 5
436#define HAMMER_OBJTYPE_BDEV 6
437#define HAMMER_OBJTYPE_SOFTLINK 7
438#define HAMMER_OBJTYPE_PSEUDOFS 8 /* pseudo filesystem obj */
439
8750964d
MD
440/*
441 * Generic full-sized record
442 */
443struct hammer_generic_record {
444 struct hammer_base_record base;
445 char filler[32];
446};
447
448/*
449 * A HAMMER inode record.
450 *
451 * This forms the basis for a filesystem object. obj_id is the inode number,
452 * key1 represents the pseudo filesystem id for security partitioning
453 * (preventing cross-links and/or restricting a NFS export and specifying the
454 * security policy), and key2 represents the data retention policy id.
455 *
456 * Inode numbers are 64 bit quantities which uniquely identify a filesystem
457 * object for the ENTIRE life of the filesystem, even after the object has
458 * been deleted. For all intents and purposes inode numbers are simply
459 * allocated by incrementing a sequence space.
460 *
461 * There is an important distinction between the data stored in the inode
462 * record and the record's data reference. The record references a
463 * hammer_inode_data structure but the filesystem object size and hard link
464 * count is stored in the inode record itself. This allows multiple inodes
465 * to share the same hammer_inode_data structure. This is possible because
466 * any modifications will lay out new data. The HAMMER implementation need
467 * not use the data-sharing ability when laying down new records.
468 *
469 * A HAMMER inode is subject to the same historical storage requirements
470 * as any other record. In particular any change in filesystem or hard link
471 * count will lay down a new inode record when the filesystem is synced to
472 * disk. This can lead to a lot of junk records which get cleaned up by
473 * the data retention policy.
474 *
475 * The ino_atime and ino_mtime fields are a special case. Modifications to
476 * these fields do NOT lay down a new record by default, though the values
477 * are effectively frozen for snapshots which access historical versions
478 * of the inode record due to other operations. This means that atime will
479 * not necessarily be accurate in snapshots, backups, or mirrors. mtime
480 * will be accurate in backups and mirrors since it can be regenerated from
481 * the mirroring stream.
482 *
483 * Because nlinks is historically retained the hardlink count will be
484 * accurate when accessing a HAMMER filesystem snapshot.
485 */
486struct hammer_inode_record {
487 struct hammer_base_record base;
488 u_int64_t ino_atime; /* last access time (not historical) */
489 u_int64_t ino_mtime; /* last modified time (not historical) */
490 u_int64_t ino_size; /* filesystem object size */
491 u_int64_t ino_nlinks; /* hard links */
492};
493
494/*
495 * Data records specify the entire contents of a regular file object,
496 * including attributes. Small amounts of data can theoretically be
497 * embedded in the record itself but the use of this ability verses using
498 * an out-of-band data reference depends on the implementation.
499 */
500struct hammer_data_record {
501 struct hammer_base_record base;
502 char filler[32];
503};
504
505/*
506 * A directory entry specifies the HAMMER filesystem object id, a copy of
507 * the file type, and file name (either embedded or as out-of-band data).
508 * If the file name is short enough to fit into den_name[] (including a
509 * terminating nul) then it will be embedded in the record, otherwise it
510 * is stored out-of-band. The base record's data reference always points
511 * to the nul-terminated filename regardless.
512 *
513 * Directory entries are indexed with a 128 bit namekey rather then an
514 * offset. A portion of the namekey is an iterator or randomizer to deal
515 * with collisions.
66325755 516 *
6b4f890b
MD
517 * NOTE: base.base.obj_type holds the filesystem object type of obj_id,
518 * e.g. a den_type equivalent.
519 *
520 * NOTE: den_name / the filename data reference is NOT terminated with \0.
66325755 521 *
8750964d
MD
522 */
523struct hammer_entry_record {
524 struct hammer_base_record base;
525 u_int64_t obj_id; /* object being referenced */
526 u_int64_t reserved01;
66325755 527 char den_name[16]; /* short file names fit in record */
8750964d
MD
528};
529
530/*
531 * Hammer rollup record
532 */
c60bb2c5 533union hammer_record_ondisk {
8750964d
MD
534 struct hammer_base_record base;
535 struct hammer_generic_record generic;
536 struct hammer_inode_record inode;
537 struct hammer_data_record data;
538 struct hammer_entry_record entry;
539};
540
c60bb2c5 541typedef union hammer_record_ondisk *hammer_record_ondisk_t;
8750964d
MD
542
543/*
544 * Filesystem buffer for records
545 */
546#define HAMMER_RECORD_NODES \
7f7c1f84 547 ((HAMMER_BUFSIZE - sizeof(struct hammer_fsbuf_head) - 32) / \
c60bb2c5 548 sizeof(union hammer_record_ondisk))
8750964d
MD
549
550struct hammer_fsbuf_recs {
551 struct hammer_fsbuf_head head;
552 char unused[32];
c60bb2c5 553 union hammer_record_ondisk recs[HAMMER_RECORD_NODES];
8750964d
MD
554};
555
556/*
557 * Filesystem buffer for piecemeal data. Note that this does not apply
558 * to dedicated pure-data buffers as such buffers do not have a header.
559 */
560
561#define HAMMER_DATA_SIZE (HAMMER_BUFSIZE - sizeof(struct hammer_fsbuf_head))
562#define HAMMER_DATA_BLKSIZE 64
9775c955 563#define HAMMER_DATA_BLKMASK (HAMMER_DATA_BLKSIZE-1)
8750964d
MD
564#define HAMMER_DATA_NODES (HAMMER_DATA_SIZE / HAMMER_DATA_BLKSIZE)
565
566struct hammer_fsbuf_data {
567 struct hammer_fsbuf_head head;
568 u_int8_t data[HAMMER_DATA_NODES][HAMMER_DATA_BLKSIZE];
569};
570
9775c955
MD
571/*
572 * Filesystem buffer rollup
573 */
574union hammer_fsbuf_ondisk {
575 struct hammer_fsbuf_head head;
576 struct hammer_fsbuf_btree btree;
577 struct hammer_fsbuf_recs record;
578 struct hammer_fsbuf_data data;
579};
580
581typedef union hammer_fsbuf_ondisk *hammer_fsbuf_ondisk_t;
8750964d
MD
582
583/*
584 * HAMMER UNIX Attribute data
585 *
586 * The data reference in a HAMMER inode record points to this structure. Any
587 * modifications to the contents of this structure will result in a record
588 * replacement operation.
589 *
590 * state_sum allows a filesystem object to be validated to a degree by
591 * generating a checksum of all of its pieces (in no particular order) and
592 * checking it against this field.
66325755
MD
593 *
594 * short_data_off allows a small amount of data to be embedded in the
595 * hammer_inode_data structure. HAMMER typically uses this to represent
596 * up to 64 bytes of data, or to hold symlinks. Remember that allocations
597 * are in powers of 2 so 64, 192, 448, or 960 bytes of embedded data is
598 * support (64+64, 64+192, 64+448 64+960).
599 *
600 * parent_obj_id is only valid for directories (which cannot be hard-linked),
601 * and specifies the parent directory obj_id. This field will also be set
602 * for non-directory inodes as a recovery aid, but can wind up specifying
603 * stale information. However, since object id's are not reused, the worse
604 * that happens is that the recovery code is unable to use it.
8750964d
MD
605 */
606struct hammer_inode_data {
607 u_int16_t version; /* inode data version */
608 u_int16_t mode; /* basic unix permissions */
609 u_int32_t uflags; /* chflags */
66325755
MD
610 u_int16_t short_data_off; /* degenerate data case */
611 u_int16_t short_data_len;
612 u_int32_t state_sum;
613 u_int64_t ctime;
614 u_int64_t parent_obj_id;/* parent directory obj_id */
8750964d
MD
615 uuid_t uid;
616 uuid_t gid;
8cd0a023 617 /* XXX device, softlink extension */
8750964d
MD
618};
619
620#define HAMMER_INODE_DATA_VERSION 1
621
c60bb2c5
MD
622/*
623 * Rollup various structures embedded as record data
624 */
427e5fc6 625union hammer_data_ondisk {
c60bb2c5
MD
626 struct hammer_inode_data inode;
627};
628