Merge branch 'vendor/BZIP'
[dragonfly.git] / contrib / binutils-2.20 / gold / output.cc
CommitLineData
8e158dd0
SS
1// output.cc -- manage the output file for gold
2
3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstdlib>
26#include <cstring>
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
31#include <sys/stat.h>
32#include <algorithm>
33#include "libiberty.h"
34
35#include "parameters.h"
36#include "object.h"
37#include "symtab.h"
38#include "reloc.h"
39#include "merge.h"
40#include "descriptors.h"
41#include "output.h"
42
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
60namespace gold
61{
62
63// Output_data variables.
64
65bool Output_data::allocated_sizes_are_fixed;
66
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80}
81
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
85Output_data::default_alignment_for_size(int size)
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93}
94
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
118{
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151}
152
153// Write out the section headers.
154
155void
156Output_section_headers::do_write(Output_file* of)
157{
158 switch (parameters->size_and_endianness())
159 {
160#ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164#endif
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169#endif
170#ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174#endif
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
182 }
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 oshdr.put_sh_info(0);
217 oshdr.put_sh_addralign(0);
218 oshdr.put_sh_entsize(0);
219 }
220
221 v += shdr_size;
222
223 unsigned int shndx = 1;
224 if (!parameters->options().relocatable())
225 {
226 for (Layout::Segment_list::const_iterator p =
227 this->segment_list_->begin();
228 p != this->segment_list_->end();
229 ++p)
230 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
231 this->secnamepool_,
232 v,
233 &shndx);
234 }
235 else
236 {
237 for (Layout::Section_list::const_iterator p =
238 this->section_list_->begin();
239 p != this->section_list_->end();
240 ++p)
241 {
242 // We do unallocated sections below, except that group
243 // sections have to come first.
244 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
245 && (*p)->type() != elfcpp::SHT_GROUP)
246 continue;
247 gold_assert(shndx == (*p)->out_shndx());
248 elfcpp::Shdr_write<size, big_endian> oshdr(v);
249 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
250 v += shdr_size;
251 ++shndx;
252 }
253 }
254
255 for (Layout::Section_list::const_iterator p =
256 this->unattached_section_list_->begin();
257 p != this->unattached_section_list_->end();
258 ++p)
259 {
260 // For a relocatable link, we did unallocated group sections
261 // above, since they have to come first.
262 if ((*p)->type() == elfcpp::SHT_GROUP
263 && parameters->options().relocatable())
264 continue;
265 gold_assert(shndx == (*p)->out_shndx());
266 elfcpp::Shdr_write<size, big_endian> oshdr(v);
267 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
268 v += shdr_size;
269 ++shndx;
270 }
271
272 of->write_output_view(this->offset(), all_shdrs_size, view);
273}
274
275// Output_segment_header methods.
276
277Output_segment_headers::Output_segment_headers(
278 const Layout::Segment_list& segment_list)
279 : segment_list_(segment_list)
280{
281}
282
283void
284Output_segment_headers::do_write(Output_file* of)
285{
286 switch (parameters->size_and_endianness())
287 {
288#ifdef HAVE_TARGET_32_LITTLE
289 case Parameters::TARGET_32_LITTLE:
290 this->do_sized_write<32, false>(of);
291 break;
292#endif
293#ifdef HAVE_TARGET_32_BIG
294 case Parameters::TARGET_32_BIG:
295 this->do_sized_write<32, true>(of);
296 break;
297#endif
298#ifdef HAVE_TARGET_64_LITTLE
299 case Parameters::TARGET_64_LITTLE:
300 this->do_sized_write<64, false>(of);
301 break;
302#endif
303#ifdef HAVE_TARGET_64_BIG
304 case Parameters::TARGET_64_BIG:
305 this->do_sized_write<64, true>(of);
306 break;
307#endif
308 default:
309 gold_unreachable();
310 }
311}
312
313template<int size, bool big_endian>
314void
315Output_segment_headers::do_sized_write(Output_file* of)
316{
317 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
318 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
319 gold_assert(all_phdrs_size == this->data_size());
320 unsigned char* view = of->get_output_view(this->offset(),
321 all_phdrs_size);
322 unsigned char* v = view;
323 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
324 p != this->segment_list_.end();
325 ++p)
326 {
327 elfcpp::Phdr_write<size, big_endian> ophdr(v);
328 (*p)->write_header(&ophdr);
329 v += phdr_size;
330 }
331
332 gold_assert(v - view == all_phdrs_size);
333
334 of->write_output_view(this->offset(), all_phdrs_size, view);
335}
336
337off_t
338Output_segment_headers::do_size() const
339{
340 const int size = parameters->target().get_size();
341 int phdr_size;
342 if (size == 32)
343 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
344 else if (size == 64)
345 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
346 else
347 gold_unreachable();
348
349 return this->segment_list_.size() * phdr_size;
350}
351
352// Output_file_header methods.
353
354Output_file_header::Output_file_header(const Target* target,
355 const Symbol_table* symtab,
356 const Output_segment_headers* osh,
357 const char* entry)
358 : target_(target),
359 symtab_(symtab),
360 segment_header_(osh),
361 section_header_(NULL),
362 shstrtab_(NULL),
363 entry_(entry)
364{
365 this->set_data_size(this->do_size());
366}
367
368// Set the section table information for a file header.
369
370void
371Output_file_header::set_section_info(const Output_section_headers* shdrs,
372 const Output_section* shstrtab)
373{
374 this->section_header_ = shdrs;
375 this->shstrtab_ = shstrtab;
376}
377
378// Write out the file header.
379
380void
381Output_file_header::do_write(Output_file* of)
382{
383 gold_assert(this->offset() == 0);
384
385 switch (parameters->size_and_endianness())
386 {
387#ifdef HAVE_TARGET_32_LITTLE
388 case Parameters::TARGET_32_LITTLE:
389 this->do_sized_write<32, false>(of);
390 break;
391#endif
392#ifdef HAVE_TARGET_32_BIG
393 case Parameters::TARGET_32_BIG:
394 this->do_sized_write<32, true>(of);
395 break;
396#endif
397#ifdef HAVE_TARGET_64_LITTLE
398 case Parameters::TARGET_64_LITTLE:
399 this->do_sized_write<64, false>(of);
400 break;
401#endif
402#ifdef HAVE_TARGET_64_BIG
403 case Parameters::TARGET_64_BIG:
404 this->do_sized_write<64, true>(of);
405 break;
406#endif
407 default:
408 gold_unreachable();
409 }
410}
411
412// Write out the file header with appropriate size and endianess.
413
414template<int size, bool big_endian>
415void
416Output_file_header::do_sized_write(Output_file* of)
417{
418 gold_assert(this->offset() == 0);
419
420 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
421 unsigned char* view = of->get_output_view(0, ehdr_size);
422 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
423
424 unsigned char e_ident[elfcpp::EI_NIDENT];
425 memset(e_ident, 0, elfcpp::EI_NIDENT);
426 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
427 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
428 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
429 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
430 if (size == 32)
431 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
432 else if (size == 64)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
434 else
435 gold_unreachable();
436 e_ident[elfcpp::EI_DATA] = (big_endian
437 ? elfcpp::ELFDATA2MSB
438 : elfcpp::ELFDATA2LSB);
439 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
440 oehdr.put_e_ident(e_ident);
441
442 elfcpp::ET e_type;
443 if (parameters->options().relocatable())
444 e_type = elfcpp::ET_REL;
445 else if (parameters->options().output_is_position_independent())
446 e_type = elfcpp::ET_DYN;
447 else
448 e_type = elfcpp::ET_EXEC;
449 oehdr.put_e_type(e_type);
450
451 oehdr.put_e_machine(this->target_->machine_code());
452 oehdr.put_e_version(elfcpp::EV_CURRENT);
453
454 oehdr.put_e_entry(this->entry<size>());
455
456 if (this->segment_header_ == NULL)
457 oehdr.put_e_phoff(0);
458 else
459 oehdr.put_e_phoff(this->segment_header_->offset());
460
461 oehdr.put_e_shoff(this->section_header_->offset());
462
463 // FIXME: The target needs to set the flags.
464 oehdr.put_e_flags(0);
465
466 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
467
468 if (this->segment_header_ == NULL)
469 {
470 oehdr.put_e_phentsize(0);
471 oehdr.put_e_phnum(0);
472 }
473 else
474 {
475 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
476 oehdr.put_e_phnum(this->segment_header_->data_size()
477 / elfcpp::Elf_sizes<size>::phdr_size);
478 }
479
480 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
481 size_t section_count = (this->section_header_->data_size()
482 / elfcpp::Elf_sizes<size>::shdr_size);
483
484 if (section_count < elfcpp::SHN_LORESERVE)
485 oehdr.put_e_shnum(this->section_header_->data_size()
486 / elfcpp::Elf_sizes<size>::shdr_size);
487 else
488 oehdr.put_e_shnum(0);
489
490 unsigned int shstrndx = this->shstrtab_->out_shndx();
491 if (shstrndx < elfcpp::SHN_LORESERVE)
492 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
493 else
494 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
495
496 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
497 // the e_ident field.
498 parameters->target().adjust_elf_header(view, ehdr_size);
499
500 of->write_output_view(0, ehdr_size, view);
501}
502
503// Return the value to use for the entry address. THIS->ENTRY_ is the
504// symbol specified on the command line, if any.
505
506template<int size>
507typename elfcpp::Elf_types<size>::Elf_Addr
508Output_file_header::entry()
509{
510 const bool should_issue_warning = (this->entry_ != NULL
511 && !parameters->options().relocatable()
512 && !parameters->options().shared());
513
514 // FIXME: Need to support target specific entry symbol.
515 const char* entry = this->entry_;
516 if (entry == NULL)
517 entry = "_start";
518
519 Symbol* sym = this->symtab_->lookup(entry);
520
521 typename Sized_symbol<size>::Value_type v;
522 if (sym != NULL)
523 {
524 Sized_symbol<size>* ssym;
525 ssym = this->symtab_->get_sized_symbol<size>(sym);
526 if (!ssym->is_defined() && should_issue_warning)
527 gold_warning("entry symbol '%s' exists but is not defined", entry);
528 v = ssym->value();
529 }
530 else
531 {
532 // We couldn't find the entry symbol. See if we can parse it as
533 // a number. This supports, e.g., -e 0x1000.
534 char* endptr;
535 v = strtoull(entry, &endptr, 0);
536 if (*endptr != '\0')
537 {
538 if (should_issue_warning)
539 gold_warning("cannot find entry symbol '%s'", entry);
540 v = 0;
541 }
542 }
543
544 return v;
545}
546
547// Compute the current data size.
548
549off_t
550Output_file_header::do_size() const
551{
552 const int size = parameters->target().get_size();
553 if (size == 32)
554 return elfcpp::Elf_sizes<32>::ehdr_size;
555 else if (size == 64)
556 return elfcpp::Elf_sizes<64>::ehdr_size;
557 else
558 gold_unreachable();
559}
560
561// Output_data_const methods.
562
563void
564Output_data_const::do_write(Output_file* of)
565{
566 of->write(this->offset(), this->data_.data(), this->data_.size());
567}
568
569// Output_data_const_buffer methods.
570
571void
572Output_data_const_buffer::do_write(Output_file* of)
573{
574 of->write(this->offset(), this->p_, this->data_size());
575}
576
577// Output_section_data methods.
578
579// Record the output section, and set the entry size and such.
580
581void
582Output_section_data::set_output_section(Output_section* os)
583{
584 gold_assert(this->output_section_ == NULL);
585 this->output_section_ = os;
586 this->do_adjust_output_section(os);
587}
588
589// Return the section index of the output section.
590
591unsigned int
592Output_section_data::do_out_shndx() const
593{
594 gold_assert(this->output_section_ != NULL);
595 return this->output_section_->out_shndx();
596}
597
598// Set the alignment, which means we may need to update the alignment
599// of the output section.
600
601void
602Output_section_data::set_addralign(uint64_t addralign)
603{
604 this->addralign_ = addralign;
605 if (this->output_section_ != NULL
606 && this->output_section_->addralign() < addralign)
607 this->output_section_->set_addralign(addralign);
608}
609
610// Output_data_strtab methods.
611
612// Set the final data size.
613
614void
615Output_data_strtab::set_final_data_size()
616{
617 this->strtab_->set_string_offsets();
618 this->set_data_size(this->strtab_->get_strtab_size());
619}
620
621// Write out a string table.
622
623void
624Output_data_strtab::do_write(Output_file* of)
625{
626 this->strtab_->write(of, this->offset());
627}
628
629// Output_reloc methods.
630
631// A reloc against a global symbol.
632
633template<bool dynamic, int size, bool big_endian>
634Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
635 Symbol* gsym,
636 unsigned int type,
637 Output_data* od,
638 Address address,
639 bool is_relative)
640 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
641 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
642{
643 // this->type_ is a bitfield; make sure TYPE fits.
644 gold_assert(this->type_ == type);
645 this->u1_.gsym = gsym;
646 this->u2_.od = od;
647 if (dynamic)
648 this->set_needs_dynsym_index();
649}
650
651template<bool dynamic, int size, bool big_endian>
652Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
653 Symbol* gsym,
654 unsigned int type,
655 Sized_relobj<size, big_endian>* relobj,
656 unsigned int shndx,
657 Address address,
658 bool is_relative)
659 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
660 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
661{
662 gold_assert(shndx != INVALID_CODE);
663 // this->type_ is a bitfield; make sure TYPE fits.
664 gold_assert(this->type_ == type);
665 this->u1_.gsym = gsym;
666 this->u2_.relobj = relobj;
667 if (dynamic)
668 this->set_needs_dynsym_index();
669}
670
671// A reloc against a local symbol.
672
673template<bool dynamic, int size, bool big_endian>
674Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
675 Sized_relobj<size, big_endian>* relobj,
676 unsigned int local_sym_index,
677 unsigned int type,
678 Output_data* od,
679 Address address,
680 bool is_relative,
681 bool is_section_symbol)
682 : address_(address), local_sym_index_(local_sym_index), type_(type),
683 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
684 shndx_(INVALID_CODE)
685{
686 gold_assert(local_sym_index != GSYM_CODE
687 && local_sym_index != INVALID_CODE);
688 // this->type_ is a bitfield; make sure TYPE fits.
689 gold_assert(this->type_ == type);
690 this->u1_.relobj = relobj;
691 this->u2_.od = od;
692 if (dynamic)
693 this->set_needs_dynsym_index();
694}
695
696template<bool dynamic, int size, bool big_endian>
697Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
698 Sized_relobj<size, big_endian>* relobj,
699 unsigned int local_sym_index,
700 unsigned int type,
701 unsigned int shndx,
702 Address address,
703 bool is_relative,
704 bool is_section_symbol)
705 : address_(address), local_sym_index_(local_sym_index), type_(type),
706 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
707 shndx_(shndx)
708{
709 gold_assert(local_sym_index != GSYM_CODE
710 && local_sym_index != INVALID_CODE);
711 gold_assert(shndx != INVALID_CODE);
712 // this->type_ is a bitfield; make sure TYPE fits.
713 gold_assert(this->type_ == type);
714 this->u1_.relobj = relobj;
715 this->u2_.relobj = relobj;
716 if (dynamic)
717 this->set_needs_dynsym_index();
718}
719
720// A reloc against the STT_SECTION symbol of an output section.
721
722template<bool dynamic, int size, bool big_endian>
723Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724 Output_section* os,
725 unsigned int type,
726 Output_data* od,
727 Address address)
728 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
729 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
730{
731 // this->type_ is a bitfield; make sure TYPE fits.
732 gold_assert(this->type_ == type);
733 this->u1_.os = os;
734 this->u2_.od = od;
735 if (dynamic)
736 this->set_needs_dynsym_index();
737 else
738 os->set_needs_symtab_index();
739}
740
741template<bool dynamic, int size, bool big_endian>
742Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743 Output_section* os,
744 unsigned int type,
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int shndx,
747 Address address)
748 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
749 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
750{
751 gold_assert(shndx != INVALID_CODE);
752 // this->type_ is a bitfield; make sure TYPE fits.
753 gold_assert(this->type_ == type);
754 this->u1_.os = os;
755 this->u2_.relobj = relobj;
756 if (dynamic)
757 this->set_needs_dynsym_index();
758 else
759 os->set_needs_symtab_index();
760}
761
762// Record that we need a dynamic symbol index for this relocation.
763
764template<bool dynamic, int size, bool big_endian>
765void
766Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
767set_needs_dynsym_index()
768{
769 if (this->is_relative_)
770 return;
771 switch (this->local_sym_index_)
772 {
773 case INVALID_CODE:
774 gold_unreachable();
775
776 case GSYM_CODE:
777 this->u1_.gsym->set_needs_dynsym_entry();
778 break;
779
780 case SECTION_CODE:
781 this->u1_.os->set_needs_dynsym_index();
782 break;
783
784 case 0:
785 break;
786
787 default:
788 {
789 const unsigned int lsi = this->local_sym_index_;
790 if (!this->is_section_symbol_)
791 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
792 else
793 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
794 }
795 break;
796 }
797}
798
799// Get the symbol index of a relocation.
800
801template<bool dynamic, int size, bool big_endian>
802unsigned int
803Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
804 const
805{
806 unsigned int index;
807 switch (this->local_sym_index_)
808 {
809 case INVALID_CODE:
810 gold_unreachable();
811
812 case GSYM_CODE:
813 if (this->u1_.gsym == NULL)
814 index = 0;
815 else if (dynamic)
816 index = this->u1_.gsym->dynsym_index();
817 else
818 index = this->u1_.gsym->symtab_index();
819 break;
820
821 case SECTION_CODE:
822 if (dynamic)
823 index = this->u1_.os->dynsym_index();
824 else
825 index = this->u1_.os->symtab_index();
826 break;
827
828 case 0:
829 // Relocations without symbols use a symbol index of 0.
830 index = 0;
831 break;
832
833 default:
834 {
835 const unsigned int lsi = this->local_sym_index_;
836 if (!this->is_section_symbol_)
837 {
838 if (dynamic)
839 index = this->u1_.relobj->dynsym_index(lsi);
840 else
841 index = this->u1_.relobj->symtab_index(lsi);
842 }
843 else
844 {
845 Output_section* os = this->u1_.relobj->output_section(lsi);
846 gold_assert(os != NULL);
847 if (dynamic)
848 index = os->dynsym_index();
849 else
850 index = os->symtab_index();
851 }
852 }
853 break;
854 }
855 gold_assert(index != -1U);
856 return index;
857}
858
859// For a local section symbol, get the address of the offset ADDEND
860// within the input section.
861
862template<bool dynamic, int size, bool big_endian>
863typename elfcpp::Elf_types<size>::Elf_Addr
864Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
865 local_section_offset(Addend addend) const
866{
867 gold_assert(this->local_sym_index_ != GSYM_CODE
868 && this->local_sym_index_ != SECTION_CODE
869 && this->local_sym_index_ != INVALID_CODE
870 && this->is_section_symbol_);
871 const unsigned int lsi = this->local_sym_index_;
872 Output_section* os = this->u1_.relobj->output_section(lsi);
873 gold_assert(os != NULL);
874 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
875 if (offset != invalid_address)
876 return offset + addend;
877 // This is a merge section.
878 offset = os->output_address(this->u1_.relobj, lsi, addend);
879 gold_assert(offset != invalid_address);
880 return offset;
881}
882
883// Get the output address of a relocation.
884
885template<bool dynamic, int size, bool big_endian>
886typename elfcpp::Elf_types<size>::Elf_Addr
887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
888{
889 Address address = this->address_;
890 if (this->shndx_ != INVALID_CODE)
891 {
892 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
893 gold_assert(os != NULL);
894 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
895 if (off != invalid_address)
896 address += os->address() + off;
897 else
898 {
899 address = os->output_address(this->u2_.relobj, this->shndx_,
900 address);
901 gold_assert(address != invalid_address);
902 }
903 }
904 else if (this->u2_.od != NULL)
905 address += this->u2_.od->address();
906 return address;
907}
908
909// Write out the offset and info fields of a Rel or Rela relocation
910// entry.
911
912template<bool dynamic, int size, bool big_endian>
913template<typename Write_rel>
914void
915Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
916 Write_rel* wr) const
917{
918 wr->put_r_offset(this->get_address());
919 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
920 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
921}
922
923// Write out a Rel relocation.
924
925template<bool dynamic, int size, bool big_endian>
926void
927Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
928 unsigned char* pov) const
929{
930 elfcpp::Rel_write<size, big_endian> orel(pov);
931 this->write_rel(&orel);
932}
933
934// Get the value of the symbol referred to by a Rel relocation.
935
936template<bool dynamic, int size, bool big_endian>
937typename elfcpp::Elf_types<size>::Elf_Addr
938Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
939 Addend addend) const
940{
941 if (this->local_sym_index_ == GSYM_CODE)
942 {
943 const Sized_symbol<size>* sym;
944 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
945 return sym->value() + addend;
946 }
947 gold_assert(this->local_sym_index_ != SECTION_CODE
948 && this->local_sym_index_ != INVALID_CODE
949 && !this->is_section_symbol_);
950 const unsigned int lsi = this->local_sym_index_;
951 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
952 return symval->value(this->u1_.relobj, addend);
953}
954
955// Reloc comparison. This function sorts the dynamic relocs for the
956// benefit of the dynamic linker. First we sort all relative relocs
957// to the front. Among relative relocs, we sort by output address.
958// Among non-relative relocs, we sort by symbol index, then by output
959// address.
960
961template<bool dynamic, int size, bool big_endian>
962int
963Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
964 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
965 const
966{
967 if (this->is_relative_)
968 {
969 if (!r2.is_relative_)
970 return -1;
971 // Otherwise sort by reloc address below.
972 }
973 else if (r2.is_relative_)
974 return 1;
975 else
976 {
977 unsigned int sym1 = this->get_symbol_index();
978 unsigned int sym2 = r2.get_symbol_index();
979 if (sym1 < sym2)
980 return -1;
981 else if (sym1 > sym2)
982 return 1;
983 // Otherwise sort by reloc address.
984 }
985
986 section_offset_type addr1 = this->get_address();
987 section_offset_type addr2 = r2.get_address();
988 if (addr1 < addr2)
989 return -1;
990 else if (addr1 > addr2)
991 return 1;
992
993 // Final tie breaker, in order to generate the same output on any
994 // host: reloc type.
995 unsigned int type1 = this->type_;
996 unsigned int type2 = r2.type_;
997 if (type1 < type2)
998 return -1;
999 else if (type1 > type2)
1000 return 1;
1001
1002 // These relocs appear to be exactly the same.
1003 return 0;
1004}
1005
1006// Write out a Rela relocation.
1007
1008template<bool dynamic, int size, bool big_endian>
1009void
1010Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1011 unsigned char* pov) const
1012{
1013 elfcpp::Rela_write<size, big_endian> orel(pov);
1014 this->rel_.write_rel(&orel);
1015 Addend addend = this->addend_;
1016 if (this->rel_.is_relative())
1017 addend = this->rel_.symbol_value(addend);
1018 else if (this->rel_.is_local_section_symbol())
1019 addend = this->rel_.local_section_offset(addend);
1020 orel.put_r_addend(addend);
1021}
1022
1023// Output_data_reloc_base methods.
1024
1025// Adjust the output section.
1026
1027template<int sh_type, bool dynamic, int size, bool big_endian>
1028void
1029Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1030 ::do_adjust_output_section(Output_section* os)
1031{
1032 if (sh_type == elfcpp::SHT_REL)
1033 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1034 else if (sh_type == elfcpp::SHT_RELA)
1035 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1036 else
1037 gold_unreachable();
1038 if (dynamic)
1039 os->set_should_link_to_dynsym();
1040 else
1041 os->set_should_link_to_symtab();
1042}
1043
1044// Write out relocation data.
1045
1046template<int sh_type, bool dynamic, int size, bool big_endian>
1047void
1048Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1049 Output_file* of)
1050{
1051 const off_t off = this->offset();
1052 const off_t oview_size = this->data_size();
1053 unsigned char* const oview = of->get_output_view(off, oview_size);
1054
1055 if (this->sort_relocs_)
1056 {
1057 gold_assert(dynamic);
1058 std::sort(this->relocs_.begin(), this->relocs_.end(),
1059 Sort_relocs_comparison());
1060 }
1061
1062 unsigned char* pov = oview;
1063 for (typename Relocs::const_iterator p = this->relocs_.begin();
1064 p != this->relocs_.end();
1065 ++p)
1066 {
1067 p->write(pov);
1068 pov += reloc_size;
1069 }
1070
1071 gold_assert(pov - oview == oview_size);
1072
1073 of->write_output_view(off, oview_size, oview);
1074
1075 // We no longer need the relocation entries.
1076 this->relocs_.clear();
1077}
1078
1079// Class Output_relocatable_relocs.
1080
1081template<int sh_type, int size, bool big_endian>
1082void
1083Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1084{
1085 this->set_data_size(this->rr_->output_reloc_count()
1086 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1087}
1088
1089// class Output_data_group.
1090
1091template<int size, bool big_endian>
1092Output_data_group<size, big_endian>::Output_data_group(
1093 Sized_relobj<size, big_endian>* relobj,
1094 section_size_type entry_count,
1095 elfcpp::Elf_Word flags,
1096 std::vector<unsigned int>* input_shndxes)
1097 : Output_section_data(entry_count * 4, 4, false),
1098 relobj_(relobj),
1099 flags_(flags)
1100{
1101 this->input_shndxes_.swap(*input_shndxes);
1102}
1103
1104// Write out the section group, which means translating the section
1105// indexes to apply to the output file.
1106
1107template<int size, bool big_endian>
1108void
1109Output_data_group<size, big_endian>::do_write(Output_file* of)
1110{
1111 const off_t off = this->offset();
1112 const section_size_type oview_size =
1113 convert_to_section_size_type(this->data_size());
1114 unsigned char* const oview = of->get_output_view(off, oview_size);
1115
1116 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1117 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1118 ++contents;
1119
1120 for (std::vector<unsigned int>::const_iterator p =
1121 this->input_shndxes_.begin();
1122 p != this->input_shndxes_.end();
1123 ++p, ++contents)
1124 {
1125 Output_section* os = this->relobj_->output_section(*p);
1126
1127 unsigned int output_shndx;
1128 if (os != NULL)
1129 output_shndx = os->out_shndx();
1130 else
1131 {
1132 this->relobj_->error(_("section group retained but "
1133 "group element discarded"));
1134 output_shndx = 0;
1135 }
1136
1137 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1138 }
1139
1140 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1141 gold_assert(wrote == oview_size);
1142
1143 of->write_output_view(off, oview_size, oview);
1144
1145 // We no longer need this information.
1146 this->input_shndxes_.clear();
1147}
1148
1149// Output_data_got::Got_entry methods.
1150
1151// Write out the entry.
1152
1153template<int size, bool big_endian>
1154void
1155Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1156{
1157 Valtype val = 0;
1158
1159 switch (this->local_sym_index_)
1160 {
1161 case GSYM_CODE:
1162 {
1163 // If the symbol is resolved locally, we need to write out the
1164 // link-time value, which will be relocated dynamically by a
1165 // RELATIVE relocation.
1166 Symbol* gsym = this->u_.gsym;
1167 Sized_symbol<size>* sgsym;
1168 // This cast is a bit ugly. We don't want to put a
1169 // virtual method in Symbol, because we want Symbol to be
1170 // as small as possible.
1171 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1172 val = sgsym->value();
1173 }
1174 break;
1175
1176 case CONSTANT_CODE:
1177 val = this->u_.constant;
1178 break;
1179
1180 default:
1181 {
1182 const unsigned int lsi = this->local_sym_index_;
1183 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1184 val = symval->value(this->u_.object, 0);
1185 }
1186 break;
1187 }
1188
1189 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1190}
1191
1192// Output_data_got methods.
1193
1194// Add an entry for a global symbol to the GOT. This returns true if
1195// this is a new GOT entry, false if the symbol already had a GOT
1196// entry.
1197
1198template<int size, bool big_endian>
1199bool
1200Output_data_got<size, big_endian>::add_global(
1201 Symbol* gsym,
1202 unsigned int got_type)
1203{
1204 if (gsym->has_got_offset(got_type))
1205 return false;
1206
1207 this->entries_.push_back(Got_entry(gsym));
1208 this->set_got_size();
1209 gsym->set_got_offset(got_type, this->last_got_offset());
1210 return true;
1211}
1212
1213// Add an entry for a global symbol to the GOT, and add a dynamic
1214// relocation of type R_TYPE for the GOT entry.
1215template<int size, bool big_endian>
1216void
1217Output_data_got<size, big_endian>::add_global_with_rel(
1218 Symbol* gsym,
1219 unsigned int got_type,
1220 Rel_dyn* rel_dyn,
1221 unsigned int r_type)
1222{
1223 if (gsym->has_got_offset(got_type))
1224 return;
1225
1226 this->entries_.push_back(Got_entry());
1227 this->set_got_size();
1228 unsigned int got_offset = this->last_got_offset();
1229 gsym->set_got_offset(got_type, got_offset);
1230 rel_dyn->add_global(gsym, r_type, this, got_offset);
1231}
1232
1233template<int size, bool big_endian>
1234void
1235Output_data_got<size, big_endian>::add_global_with_rela(
1236 Symbol* gsym,
1237 unsigned int got_type,
1238 Rela_dyn* rela_dyn,
1239 unsigned int r_type)
1240{
1241 if (gsym->has_got_offset(got_type))
1242 return;
1243
1244 this->entries_.push_back(Got_entry());
1245 this->set_got_size();
1246 unsigned int got_offset = this->last_got_offset();
1247 gsym->set_got_offset(got_type, got_offset);
1248 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1249}
1250
1251// Add a pair of entries for a global symbol to the GOT, and add
1252// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1253// If R_TYPE_2 == 0, add the second entry with no relocation.
1254template<int size, bool big_endian>
1255void
1256Output_data_got<size, big_endian>::add_global_pair_with_rel(
1257 Symbol* gsym,
1258 unsigned int got_type,
1259 Rel_dyn* rel_dyn,
1260 unsigned int r_type_1,
1261 unsigned int r_type_2)
1262{
1263 if (gsym->has_got_offset(got_type))
1264 return;
1265
1266 this->entries_.push_back(Got_entry());
1267 unsigned int got_offset = this->last_got_offset();
1268 gsym->set_got_offset(got_type, got_offset);
1269 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1270
1271 this->entries_.push_back(Got_entry());
1272 if (r_type_2 != 0)
1273 {
1274 got_offset = this->last_got_offset();
1275 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1276 }
1277
1278 this->set_got_size();
1279}
1280
1281template<int size, bool big_endian>
1282void
1283Output_data_got<size, big_endian>::add_global_pair_with_rela(
1284 Symbol* gsym,
1285 unsigned int got_type,
1286 Rela_dyn* rela_dyn,
1287 unsigned int r_type_1,
1288 unsigned int r_type_2)
1289{
1290 if (gsym->has_got_offset(got_type))
1291 return;
1292
1293 this->entries_.push_back(Got_entry());
1294 unsigned int got_offset = this->last_got_offset();
1295 gsym->set_got_offset(got_type, got_offset);
1296 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1297
1298 this->entries_.push_back(Got_entry());
1299 if (r_type_2 != 0)
1300 {
1301 got_offset = this->last_got_offset();
1302 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1303 }
1304
1305 this->set_got_size();
1306}
1307
1308// Add an entry for a local symbol to the GOT. This returns true if
1309// this is a new GOT entry, false if the symbol already has a GOT
1310// entry.
1311
1312template<int size, bool big_endian>
1313bool
1314Output_data_got<size, big_endian>::add_local(
1315 Sized_relobj<size, big_endian>* object,
1316 unsigned int symndx,
1317 unsigned int got_type)
1318{
1319 if (object->local_has_got_offset(symndx, got_type))
1320 return false;
1321
1322 this->entries_.push_back(Got_entry(object, symndx));
1323 this->set_got_size();
1324 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1325 return true;
1326}
1327
1328// Add an entry for a local symbol to the GOT, and add a dynamic
1329// relocation of type R_TYPE for the GOT entry.
1330template<int size, bool big_endian>
1331void
1332Output_data_got<size, big_endian>::add_local_with_rel(
1333 Sized_relobj<size, big_endian>* object,
1334 unsigned int symndx,
1335 unsigned int got_type,
1336 Rel_dyn* rel_dyn,
1337 unsigned int r_type)
1338{
1339 if (object->local_has_got_offset(symndx, got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 object->set_local_got_offset(symndx, got_type, got_offset);
1346 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1347}
1348
1349template<int size, bool big_endian>
1350void
1351Output_data_got<size, big_endian>::add_local_with_rela(
1352 Sized_relobj<size, big_endian>* object,
1353 unsigned int symndx,
1354 unsigned int got_type,
1355 Rela_dyn* rela_dyn,
1356 unsigned int r_type)
1357{
1358 if (object->local_has_got_offset(symndx, got_type))
1359 return;
1360
1361 this->entries_.push_back(Got_entry());
1362 this->set_got_size();
1363 unsigned int got_offset = this->last_got_offset();
1364 object->set_local_got_offset(symndx, got_type, got_offset);
1365 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1366}
1367
1368// Add a pair of entries for a local symbol to the GOT, and add
1369// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1370// If R_TYPE_2 == 0, add the second entry with no relocation.
1371template<int size, bool big_endian>
1372void
1373Output_data_got<size, big_endian>::add_local_pair_with_rel(
1374 Sized_relobj<size, big_endian>* object,
1375 unsigned int symndx,
1376 unsigned int shndx,
1377 unsigned int got_type,
1378 Rel_dyn* rel_dyn,
1379 unsigned int r_type_1,
1380 unsigned int r_type_2)
1381{
1382 if (object->local_has_got_offset(symndx, got_type))
1383 return;
1384
1385 this->entries_.push_back(Got_entry());
1386 unsigned int got_offset = this->last_got_offset();
1387 object->set_local_got_offset(symndx, got_type, got_offset);
1388 Output_section* os = object->output_section(shndx);
1389 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1390
1391 this->entries_.push_back(Got_entry(object, symndx));
1392 if (r_type_2 != 0)
1393 {
1394 got_offset = this->last_got_offset();
1395 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1396 }
1397
1398 this->set_got_size();
1399}
1400
1401template<int size, bool big_endian>
1402void
1403Output_data_got<size, big_endian>::add_local_pair_with_rela(
1404 Sized_relobj<size, big_endian>* object,
1405 unsigned int symndx,
1406 unsigned int shndx,
1407 unsigned int got_type,
1408 Rela_dyn* rela_dyn,
1409 unsigned int r_type_1,
1410 unsigned int r_type_2)
1411{
1412 if (object->local_has_got_offset(symndx, got_type))
1413 return;
1414
1415 this->entries_.push_back(Got_entry());
1416 unsigned int got_offset = this->last_got_offset();
1417 object->set_local_got_offset(symndx, got_type, got_offset);
1418 Output_section* os = object->output_section(shndx);
1419 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1420
1421 this->entries_.push_back(Got_entry(object, symndx));
1422 if (r_type_2 != 0)
1423 {
1424 got_offset = this->last_got_offset();
1425 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1426 }
1427
1428 this->set_got_size();
1429}
1430
1431// Write out the GOT.
1432
1433template<int size, bool big_endian>
1434void
1435Output_data_got<size, big_endian>::do_write(Output_file* of)
1436{
1437 const int add = size / 8;
1438
1439 const off_t off = this->offset();
1440 const off_t oview_size = this->data_size();
1441 unsigned char* const oview = of->get_output_view(off, oview_size);
1442
1443 unsigned char* pov = oview;
1444 for (typename Got_entries::const_iterator p = this->entries_.begin();
1445 p != this->entries_.end();
1446 ++p)
1447 {
1448 p->write(pov);
1449 pov += add;
1450 }
1451
1452 gold_assert(pov - oview == oview_size);
1453
1454 of->write_output_view(off, oview_size, oview);
1455
1456 // We no longer need the GOT entries.
1457 this->entries_.clear();
1458}
1459
1460// Output_data_dynamic::Dynamic_entry methods.
1461
1462// Write out the entry.
1463
1464template<int size, bool big_endian>
1465void
1466Output_data_dynamic::Dynamic_entry::write(
1467 unsigned char* pov,
1468 const Stringpool* pool) const
1469{
1470 typename elfcpp::Elf_types<size>::Elf_WXword val;
1471 switch (this->offset_)
1472 {
1473 case DYNAMIC_NUMBER:
1474 val = this->u_.val;
1475 break;
1476
1477 case DYNAMIC_SECTION_SIZE:
1478 val = this->u_.od->data_size();
1479 break;
1480
1481 case DYNAMIC_SYMBOL:
1482 {
1483 const Sized_symbol<size>* s =
1484 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1485 val = s->value();
1486 }
1487 break;
1488
1489 case DYNAMIC_STRING:
1490 val = pool->get_offset(this->u_.str);
1491 break;
1492
1493 default:
1494 val = this->u_.od->address() + this->offset_;
1495 break;
1496 }
1497
1498 elfcpp::Dyn_write<size, big_endian> dw(pov);
1499 dw.put_d_tag(this->tag_);
1500 dw.put_d_val(val);
1501}
1502
1503// Output_data_dynamic methods.
1504
1505// Adjust the output section to set the entry size.
1506
1507void
1508Output_data_dynamic::do_adjust_output_section(Output_section* os)
1509{
1510 if (parameters->target().get_size() == 32)
1511 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1512 else if (parameters->target().get_size() == 64)
1513 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1514 else
1515 gold_unreachable();
1516}
1517
1518// Set the final data size.
1519
1520void
1521Output_data_dynamic::set_final_data_size()
1522{
1523 // Add the terminating entry if it hasn't been added.
1524 // Because of relaxation, we can run this multiple times.
1525 if (this->entries_.empty()
1526 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1527 this->add_constant(elfcpp::DT_NULL, 0);
1528
1529 int dyn_size;
1530 if (parameters->target().get_size() == 32)
1531 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1532 else if (parameters->target().get_size() == 64)
1533 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1534 else
1535 gold_unreachable();
1536 this->set_data_size(this->entries_.size() * dyn_size);
1537}
1538
1539// Write out the dynamic entries.
1540
1541void
1542Output_data_dynamic::do_write(Output_file* of)
1543{
1544 switch (parameters->size_and_endianness())
1545 {
1546#ifdef HAVE_TARGET_32_LITTLE
1547 case Parameters::TARGET_32_LITTLE:
1548 this->sized_write<32, false>(of);
1549 break;
1550#endif
1551#ifdef HAVE_TARGET_32_BIG
1552 case Parameters::TARGET_32_BIG:
1553 this->sized_write<32, true>(of);
1554 break;
1555#endif
1556#ifdef HAVE_TARGET_64_LITTLE
1557 case Parameters::TARGET_64_LITTLE:
1558 this->sized_write<64, false>(of);
1559 break;
1560#endif
1561#ifdef HAVE_TARGET_64_BIG
1562 case Parameters::TARGET_64_BIG:
1563 this->sized_write<64, true>(of);
1564 break;
1565#endif
1566 default:
1567 gold_unreachable();
1568 }
1569}
1570
1571template<int size, bool big_endian>
1572void
1573Output_data_dynamic::sized_write(Output_file* of)
1574{
1575 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1576
1577 const off_t offset = this->offset();
1578 const off_t oview_size = this->data_size();
1579 unsigned char* const oview = of->get_output_view(offset, oview_size);
1580
1581 unsigned char* pov = oview;
1582 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1583 p != this->entries_.end();
1584 ++p)
1585 {
1586 p->write<size, big_endian>(pov, this->pool_);
1587 pov += dyn_size;
1588 }
1589
1590 gold_assert(pov - oview == oview_size);
1591
1592 of->write_output_view(offset, oview_size, oview);
1593
1594 // We no longer need the dynamic entries.
1595 this->entries_.clear();
1596}
1597
1598// Class Output_symtab_xindex.
1599
1600void
1601Output_symtab_xindex::do_write(Output_file* of)
1602{
1603 const off_t offset = this->offset();
1604 const off_t oview_size = this->data_size();
1605 unsigned char* const oview = of->get_output_view(offset, oview_size);
1606
1607 memset(oview, 0, oview_size);
1608
1609 if (parameters->target().is_big_endian())
1610 this->endian_do_write<true>(oview);
1611 else
1612 this->endian_do_write<false>(oview);
1613
1614 of->write_output_view(offset, oview_size, oview);
1615
1616 // We no longer need the data.
1617 this->entries_.clear();
1618}
1619
1620template<bool big_endian>
1621void
1622Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1623{
1624 for (Xindex_entries::const_iterator p = this->entries_.begin();
1625 p != this->entries_.end();
1626 ++p)
1627 {
1628 unsigned int symndx = p->first;
1629 gold_assert(symndx * 4 < this->data_size());
1630 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1631 }
1632}
1633
1634// Output_section::Input_section methods.
1635
1636// Return the data size. For an input section we store the size here.
1637// For an Output_section_data, we have to ask it for the size.
1638
1639off_t
1640Output_section::Input_section::data_size() const
1641{
1642 if (this->is_input_section())
1643 return this->u1_.data_size;
1644 else
1645 return this->u2_.posd->data_size();
1646}
1647
1648// Set the address and file offset.
1649
1650void
1651Output_section::Input_section::set_address_and_file_offset(
1652 uint64_t address,
1653 off_t file_offset,
1654 off_t section_file_offset)
1655{
1656 if (this->is_input_section())
1657 this->u2_.object->set_section_offset(this->shndx_,
1658 file_offset - section_file_offset);
1659 else
1660 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1661}
1662
1663// Reset the address and file offset.
1664
1665void
1666Output_section::Input_section::reset_address_and_file_offset()
1667{
1668 if (!this->is_input_section())
1669 this->u2_.posd->reset_address_and_file_offset();
1670}
1671
1672// Finalize the data size.
1673
1674void
1675Output_section::Input_section::finalize_data_size()
1676{
1677 if (!this->is_input_section())
1678 this->u2_.posd->finalize_data_size();
1679}
1680
1681// Try to turn an input offset into an output offset. We want to
1682// return the output offset relative to the start of this
1683// Input_section in the output section.
1684
1685inline bool
1686Output_section::Input_section::output_offset(
1687 const Relobj* object,
1688 unsigned int shndx,
1689 section_offset_type offset,
1690 section_offset_type *poutput) const
1691{
1692 if (!this->is_input_section())
1693 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1694 else
1695 {
1696 if (this->shndx_ != shndx || this->u2_.object != object)
1697 return false;
1698 *poutput = offset;
1699 return true;
1700 }
1701}
1702
1703// Return whether this is the merge section for the input section
1704// SHNDX in OBJECT.
1705
1706inline bool
1707Output_section::Input_section::is_merge_section_for(const Relobj* object,
1708 unsigned int shndx) const
1709{
1710 if (this->is_input_section())
1711 return false;
1712 return this->u2_.posd->is_merge_section_for(object, shndx);
1713}
1714
1715// Write out the data. We don't have to do anything for an input
1716// section--they are handled via Object::relocate--but this is where
1717// we write out the data for an Output_section_data.
1718
1719void
1720Output_section::Input_section::write(Output_file* of)
1721{
1722 if (!this->is_input_section())
1723 this->u2_.posd->write(of);
1724}
1725
1726// Write the data to a buffer. As for write(), we don't have to do
1727// anything for an input section.
1728
1729void
1730Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1731{
1732 if (!this->is_input_section())
1733 this->u2_.posd->write_to_buffer(buffer);
1734}
1735
1736// Print to a map file.
1737
1738void
1739Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1740{
1741 switch (this->shndx_)
1742 {
1743 case OUTPUT_SECTION_CODE:
1744 case MERGE_DATA_SECTION_CODE:
1745 case MERGE_STRING_SECTION_CODE:
1746 this->u2_.posd->print_to_mapfile(mapfile);
1747 break;
1748
1749 case RELAXED_INPUT_SECTION_CODE:
1750 {
1751 Output_relaxed_input_section* relaxed_section =
1752 this->relaxed_input_section();
1753 mapfile->print_input_section(relaxed_section->relobj(),
1754 relaxed_section->shndx());
1755 }
1756 break;
1757 default:
1758 mapfile->print_input_section(this->u2_.object, this->shndx_);
1759 break;
1760 }
1761}
1762
1763// Output_section methods.
1764
1765// Construct an Output_section. NAME will point into a Stringpool.
1766
1767Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1768 elfcpp::Elf_Xword flags)
1769 : name_(name),
1770 addralign_(0),
1771 entsize_(0),
1772 load_address_(0),
1773 link_section_(NULL),
1774 link_(0),
1775 info_section_(NULL),
1776 info_symndx_(NULL),
1777 info_(0),
1778 type_(type),
1779 flags_(flags),
1780 out_shndx_(-1U),
1781 symtab_index_(0),
1782 dynsym_index_(0),
1783 input_sections_(),
1784 first_input_offset_(0),
1785 fills_(),
1786 postprocessing_buffer_(NULL),
1787 needs_symtab_index_(false),
1788 needs_dynsym_index_(false),
1789 should_link_to_symtab_(false),
1790 should_link_to_dynsym_(false),
1791 after_input_sections_(false),
1792 requires_postprocessing_(false),
1793 found_in_sections_clause_(false),
1794 has_load_address_(false),
1795 info_uses_section_index_(false),
1796 may_sort_attached_input_sections_(false),
1797 must_sort_attached_input_sections_(false),
1798 attached_input_sections_are_sorted_(false),
1799 is_relro_(false),
1800 is_relro_local_(false),
1801 is_small_section_(false),
1802 is_large_section_(false),
1803 tls_offset_(0),
1804 checkpoint_(NULL),
1805 merge_section_map_(),
1806 merge_section_by_properties_map_(),
1807 relaxed_input_section_map_(),
1808 is_relaxed_input_section_map_valid_(true),
1809 generate_code_fills_at_write_(false)
1810{
1811 // An unallocated section has no address. Forcing this means that
1812 // we don't need special treatment for symbols defined in debug
1813 // sections.
1814 if ((flags & elfcpp::SHF_ALLOC) == 0)
1815 this->set_address(0);
1816}
1817
1818Output_section::~Output_section()
1819{
1820 delete this->checkpoint_;
1821}
1822
1823// Set the entry size.
1824
1825void
1826Output_section::set_entsize(uint64_t v)
1827{
1828 if (this->entsize_ == 0)
1829 this->entsize_ = v;
1830 else
1831 gold_assert(this->entsize_ == v);
1832}
1833
1834// Add the input section SHNDX, with header SHDR, named SECNAME, in
1835// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1836// relocation section which applies to this section, or 0 if none, or
1837// -1U if more than one. Return the offset of the input section
1838// within the output section. Return -1 if the input section will
1839// receive special handling. In the normal case we don't always keep
1840// track of input sections for an Output_section. Instead, each
1841// Object keeps track of the Output_section for each of its input
1842// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1843// track of input sections here; this is used when SECTIONS appears in
1844// a linker script.
1845
1846template<int size, bool big_endian>
1847off_t
1848Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1849 unsigned int shndx,
1850 const char* secname,
1851 const elfcpp::Shdr<size, big_endian>& shdr,
1852 unsigned int reloc_shndx,
1853 bool have_sections_script)
1854{
1855 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1856 if ((addralign & (addralign - 1)) != 0)
1857 {
1858 object->error(_("invalid alignment %lu for section \"%s\""),
1859 static_cast<unsigned long>(addralign), secname);
1860 addralign = 1;
1861 }
1862
1863 if (addralign > this->addralign_)
1864 this->addralign_ = addralign;
1865
1866 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1867 this->update_flags_for_input_section(sh_flags);
1868
1869 uint64_t entsize = shdr.get_sh_entsize();
1870
1871 // .debug_str is a mergeable string section, but is not always so
1872 // marked by compilers. Mark manually here so we can optimize.
1873 if (strcmp(secname, ".debug_str") == 0)
1874 {
1875 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1876 entsize = 1;
1877 }
1878
1879 // If this is a SHF_MERGE section, we pass all the input sections to
1880 // a Output_data_merge. We don't try to handle relocations for such
1881 // a section. We don't try to handle empty merge sections--they
1882 // mess up the mappings, and are useless anyhow.
1883 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1884 && reloc_shndx == 0
1885 && shdr.get_sh_size() > 0)
1886 {
1887 if (this->add_merge_input_section(object, shndx, sh_flags,
1888 entsize, addralign))
1889 {
1890 // Tell the relocation routines that they need to call the
1891 // output_offset method to determine the final address.
1892 return -1;
1893 }
1894 }
1895
1896 off_t offset_in_section = this->current_data_size_for_child();
1897 off_t aligned_offset_in_section = align_address(offset_in_section,
1898 addralign);
1899
1900 // Determine if we want to delay code-fill generation until the output
1901 // section is written. When the target is relaxing, we want to delay fill
1902 // generating to avoid adjusting them during relaxation.
1903 if (!this->generate_code_fills_at_write_
1904 && !have_sections_script
1905 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1906 && parameters->target().has_code_fill()
1907 && parameters->target().may_relax())
1908 {
1909 gold_assert(this->fills_.empty());
1910 this->generate_code_fills_at_write_ = true;
1911 }
1912
1913 if (aligned_offset_in_section > offset_in_section
1914 && !this->generate_code_fills_at_write_
1915 && !have_sections_script
1916 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1917 && parameters->target().has_code_fill())
1918 {
1919 // We need to add some fill data. Using fill_list_ when
1920 // possible is an optimization, since we will often have fill
1921 // sections without input sections.
1922 off_t fill_len = aligned_offset_in_section - offset_in_section;
1923 if (this->input_sections_.empty())
1924 this->fills_.push_back(Fill(offset_in_section, fill_len));
1925 else
1926 {
1927 std::string fill_data(parameters->target().code_fill(fill_len));
1928 Output_data_const* odc = new Output_data_const(fill_data, 1);
1929 this->input_sections_.push_back(Input_section(odc));
1930 }
1931 }
1932
1933 this->set_current_data_size_for_child(aligned_offset_in_section
1934 + shdr.get_sh_size());
1935
1936 // We need to keep track of this section if we are already keeping
1937 // track of sections, or if we are relaxing. Also, if this is a
1938 // section which requires sorting, or which may require sorting in
1939 // the future, we keep track of the sections.
1940 if (have_sections_script
1941 || !this->input_sections_.empty()
1942 || this->may_sort_attached_input_sections()
1943 || this->must_sort_attached_input_sections()
1944 || parameters->options().user_set_Map()
1945 || parameters->target().may_relax())
1946 this->input_sections_.push_back(Input_section(object, shndx,
1947 shdr.get_sh_size(),
1948 addralign));
1949
1950 return aligned_offset_in_section;
1951}
1952
1953// Add arbitrary data to an output section.
1954
1955void
1956Output_section::add_output_section_data(Output_section_data* posd)
1957{
1958 Input_section inp(posd);
1959 this->add_output_section_data(&inp);
1960
1961 if (posd->is_data_size_valid())
1962 {
1963 off_t offset_in_section = this->current_data_size_for_child();
1964 off_t aligned_offset_in_section = align_address(offset_in_section,
1965 posd->addralign());
1966 this->set_current_data_size_for_child(aligned_offset_in_section
1967 + posd->data_size());
1968 }
1969}
1970
1971// Add a relaxed input section.
1972
1973void
1974Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
1975{
1976 Input_section inp(poris);
1977 this->add_output_section_data(&inp);
1978 if (this->is_relaxed_input_section_map_valid_)
1979 {
1980 Input_section_specifier iss(poris->relobj(), poris->shndx());
1981 this->relaxed_input_section_map_[iss] = poris;
1982 }
1983
1984 // For a relaxed section, we use the current data size. Linker scripts
1985 // get all the input sections, including relaxed one from an output
1986 // section and add them back to them same output section to compute the
1987 // output section size. If we do not account for sizes of relaxed input
1988 // sections, an output section would be incorrectly sized.
1989 off_t offset_in_section = this->current_data_size_for_child();
1990 off_t aligned_offset_in_section = align_address(offset_in_section,
1991 poris->addralign());
1992 this->set_current_data_size_for_child(aligned_offset_in_section
1993 + poris->current_data_size());
1994}
1995
1996// Add arbitrary data to an output section by Input_section.
1997
1998void
1999Output_section::add_output_section_data(Input_section* inp)
2000{
2001 if (this->input_sections_.empty())
2002 this->first_input_offset_ = this->current_data_size_for_child();
2003
2004 this->input_sections_.push_back(*inp);
2005
2006 uint64_t addralign = inp->addralign();
2007 if (addralign > this->addralign_)
2008 this->addralign_ = addralign;
2009
2010 inp->set_output_section(this);
2011}
2012
2013// Add a merge section to an output section.
2014
2015void
2016Output_section::add_output_merge_section(Output_section_data* posd,
2017 bool is_string, uint64_t entsize)
2018{
2019 Input_section inp(posd, is_string, entsize);
2020 this->add_output_section_data(&inp);
2021}
2022
2023// Add an input section to a SHF_MERGE section.
2024
2025bool
2026Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2027 uint64_t flags, uint64_t entsize,
2028 uint64_t addralign)
2029{
2030 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2031
2032 // We only merge strings if the alignment is not more than the
2033 // character size. This could be handled, but it's unusual.
2034 if (is_string && addralign > entsize)
2035 return false;
2036
2037 // We cannot restore merged input section states.
2038 gold_assert(this->checkpoint_ == NULL);
2039
2040 // Look up merge sections by required properties.
2041 Merge_section_properties msp(is_string, entsize, addralign);
2042 Merge_section_by_properties_map::const_iterator p =
2043 this->merge_section_by_properties_map_.find(msp);
2044 if (p != this->merge_section_by_properties_map_.end())
2045 {
2046 Output_merge_base* merge_section = p->second;
2047 merge_section->add_input_section(object, shndx);
2048 gold_assert(merge_section->is_string() == is_string
2049 && merge_section->entsize() == entsize
2050 && merge_section->addralign() == addralign);
2051
2052 // Link input section to found merge section.
2053 Input_section_specifier iss(object, shndx);
2054 this->merge_section_map_[iss] = merge_section;
2055 return true;
2056 }
2057
2058 // We handle the actual constant merging in Output_merge_data or
2059 // Output_merge_string_data.
2060 Output_merge_base* pomb;
2061 if (!is_string)
2062 pomb = new Output_merge_data(entsize, addralign);
2063 else
2064 {
2065 switch (entsize)
2066 {
2067 case 1:
2068 pomb = new Output_merge_string<char>(addralign);
2069 break;
2070 case 2:
2071 pomb = new Output_merge_string<uint16_t>(addralign);
2072 break;
2073 case 4:
2074 pomb = new Output_merge_string<uint32_t>(addralign);
2075 break;
2076 default:
2077 return false;
2078 }
2079 }
2080
2081 // Add new merge section to this output section and link merge section
2082 // properties to new merge section in map.
2083 this->add_output_merge_section(pomb, is_string, entsize);
2084 this->merge_section_by_properties_map_[msp] = pomb;
2085
2086 // Add input section to new merge section and link input section to new
2087 // merge section in map.
2088 pomb->add_input_section(object, shndx);
2089 Input_section_specifier iss(object, shndx);
2090 this->merge_section_map_[iss] = pomb;
2091
2092 return true;
2093}
2094
2095// Build a relaxation map to speed up relaxation of existing input sections.
2096// Look up to the first LIMIT elements in INPUT_SECTIONS.
2097
2098void
2099Output_section::build_relaxation_map(
2100 const Input_section_list& input_sections,
2101 size_t limit,
2102 Relaxation_map* relaxation_map) const
2103{
2104 for (size_t i = 0; i < limit; ++i)
2105 {
2106 const Input_section& is(input_sections[i]);
2107 if (is.is_input_section() || is.is_relaxed_input_section())
2108 {
2109 Input_section_specifier iss(is.relobj(), is.shndx());
2110 (*relaxation_map)[iss] = i;
2111 }
2112 }
2113}
2114
2115// Convert regular input sections in INPUT_SECTIONS into relaxed input
2116// sections in RELAXED_SECTIONS. MAP is a prebuilt map from input section
2117// specifier to indices of INPUT_SECTIONS.
2118
2119void
2120Output_section::convert_input_sections_in_list_to_relaxed_sections(
2121 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2122 const Relaxation_map& map,
2123 Input_section_list* input_sections)
2124{
2125 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2126 {
2127 Output_relaxed_input_section* poris = relaxed_sections[i];
2128 Input_section_specifier iss(poris->relobj(), poris->shndx());
2129 Relaxation_map::const_iterator p = map.find(iss);
2130 gold_assert(p != map.end());
2131 gold_assert((*input_sections)[p->second].is_input_section());
2132 (*input_sections)[p->second] = Input_section(poris);
2133 }
2134}
2135
2136// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2137// is a vector of pointers to Output_relaxed_input_section or its derived
2138// classes. The relaxed sections must correspond to existing input sections.
2139
2140void
2141Output_section::convert_input_sections_to_relaxed_sections(
2142 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2143{
2144 gold_assert(parameters->target().may_relax());
2145
2146 // We want to make sure that restore_states does not undo the effect of
2147 // this. If there is no checkpoint active, just search the current
2148 // input section list and replace the sections there. If there is
2149 // a checkpoint, also replace the sections there.
2150
2151 // By default, we look at the whole list.
2152 size_t limit = this->input_sections_.size();
2153
2154 if (this->checkpoint_ != NULL)
2155 {
2156 // Replace input sections with relaxed input section in the saved
2157 // copy of the input section list.
2158 if (this->checkpoint_->input_sections_saved())
2159 {
2160 Relaxation_map map;
2161 this->build_relaxation_map(
2162 *(this->checkpoint_->input_sections()),
2163 this->checkpoint_->input_sections()->size(),
2164 &map);
2165 this->convert_input_sections_in_list_to_relaxed_sections(
2166 relaxed_sections,
2167 map,
2168 this->checkpoint_->input_sections());
2169 }
2170 else
2171 {
2172 // We have not copied the input section list yet. Instead, just
2173 // look at the portion that would be saved.
2174 limit = this->checkpoint_->input_sections_size();
2175 }
2176 }
2177
2178 // Convert input sections in input_section_list.
2179 Relaxation_map map;
2180 this->build_relaxation_map(this->input_sections_, limit, &map);
2181 this->convert_input_sections_in_list_to_relaxed_sections(
2182 relaxed_sections,
2183 map,
2184 &this->input_sections_);
2185}
2186
2187// Update the output section flags based on input section flags.
2188
2189void
2190Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2191{
2192 // If we created the section with SHF_ALLOC clear, we set the
2193 // address. If we are now setting the SHF_ALLOC flag, we need to
2194 // undo that.
2195 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2196 && (flags & elfcpp::SHF_ALLOC) != 0)
2197 this->mark_address_invalid();
2198
2199 this->flags_ |= (flags
2200 & (elfcpp::SHF_WRITE
2201 | elfcpp::SHF_ALLOC
2202 | elfcpp::SHF_EXECINSTR));
2203}
2204
2205// Find the merge section into which an input section with index SHNDX in
2206// OBJECT has been added. Return NULL if none found.
2207
2208Output_section_data*
2209Output_section::find_merge_section(const Relobj* object,
2210 unsigned int shndx) const
2211{
2212 Input_section_specifier iss(object, shndx);
2213 Output_section_data_by_input_section_map::const_iterator p =
2214 this->merge_section_map_.find(iss);
2215 if (p != this->merge_section_map_.end())
2216 {
2217 Output_section_data* posd = p->second;
2218 gold_assert(posd->is_merge_section_for(object, shndx));
2219 return posd;
2220 }
2221 else
2222 return NULL;
2223}
2224
2225// Find an relaxed input section corresponding to an input section
2226// in OBJECT with index SHNDX.
2227
2228const Output_section_data*
2229Output_section::find_relaxed_input_section(const Relobj* object,
2230 unsigned int shndx) const
2231{
2232 // Be careful that the map may not be valid due to input section export
2233 // to scripts or a check-point restore.
2234 if (!this->is_relaxed_input_section_map_valid_)
2235 {
2236 // Rebuild the map as needed.
2237 this->relaxed_input_section_map_.clear();
2238 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2239 p != this->input_sections_.end();
2240 ++p)
2241 if (p->is_relaxed_input_section())
2242 {
2243 Input_section_specifier iss(p->relobj(), p->shndx());
2244 this->relaxed_input_section_map_[iss] =
2245 p->relaxed_input_section();
2246 }
2247 this->is_relaxed_input_section_map_valid_ = true;
2248 }
2249
2250 Input_section_specifier iss(object, shndx);
2251 Output_section_data_by_input_section_map::const_iterator p =
2252 this->relaxed_input_section_map_.find(iss);
2253 if (p != this->relaxed_input_section_map_.end())
2254 return p->second;
2255 else
2256 return NULL;
2257}
2258
2259// Given an address OFFSET relative to the start of input section
2260// SHNDX in OBJECT, return whether this address is being included in
2261// the final link. This should only be called if SHNDX in OBJECT has
2262// a special mapping.
2263
2264bool
2265Output_section::is_input_address_mapped(const Relobj* object,
2266 unsigned int shndx,
2267 off_t offset) const
2268{
2269 // Look at the Output_section_data_maps first.
2270 const Output_section_data* posd = this->find_merge_section(object, shndx);
2271 if (posd == NULL)
2272 posd = this->find_relaxed_input_section(object, shndx);
2273
2274 if (posd != NULL)
2275 {
2276 section_offset_type output_offset;
2277 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2278 gold_assert(found);
2279 return output_offset != -1;
2280 }
2281
2282 // Fall back to the slow look-up.
2283 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2284 p != this->input_sections_.end();
2285 ++p)
2286 {
2287 section_offset_type output_offset;
2288 if (p->output_offset(object, shndx, offset, &output_offset))
2289 return output_offset != -1;
2290 }
2291
2292 // By default we assume that the address is mapped. This should
2293 // only be called after we have passed all sections to Layout. At
2294 // that point we should know what we are discarding.
2295 return true;
2296}
2297
2298// Given an address OFFSET relative to the start of input section
2299// SHNDX in object OBJECT, return the output offset relative to the
2300// start of the input section in the output section. This should only
2301// be called if SHNDX in OBJECT has a special mapping.
2302
2303section_offset_type
2304Output_section::output_offset(const Relobj* object, unsigned int shndx,
2305 section_offset_type offset) const
2306{
2307 // This can only be called meaningfully when we know the data size
2308 // of this.
2309 gold_assert(this->is_data_size_valid());
2310
2311 // Look at the Output_section_data_maps first.
2312 const Output_section_data* posd = this->find_merge_section(object, shndx);
2313 if (posd == NULL)
2314 posd = this->find_relaxed_input_section(object, shndx);
2315 if (posd != NULL)
2316 {
2317 section_offset_type output_offset;
2318 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2319 gold_assert(found);
2320 return output_offset;
2321 }
2322
2323 // Fall back to the slow look-up.
2324 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2325 p != this->input_sections_.end();
2326 ++p)
2327 {
2328 section_offset_type output_offset;
2329 if (p->output_offset(object, shndx, offset, &output_offset))
2330 return output_offset;
2331 }
2332 gold_unreachable();
2333}
2334
2335// Return the output virtual address of OFFSET relative to the start
2336// of input section SHNDX in object OBJECT.
2337
2338uint64_t
2339Output_section::output_address(const Relobj* object, unsigned int shndx,
2340 off_t offset) const
2341{
2342 uint64_t addr = this->address() + this->first_input_offset_;
2343
2344 // Look at the Output_section_data_maps first.
2345 const Output_section_data* posd = this->find_merge_section(object, shndx);
2346 if (posd == NULL)
2347 posd = this->find_relaxed_input_section(object, shndx);
2348 if (posd != NULL && posd->is_address_valid())
2349 {
2350 section_offset_type output_offset;
2351 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2352 gold_assert(found);
2353 return posd->address() + output_offset;
2354 }
2355
2356 // Fall back to the slow look-up.
2357 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2358 p != this->input_sections_.end();
2359 ++p)
2360 {
2361 addr = align_address(addr, p->addralign());
2362 section_offset_type output_offset;
2363 if (p->output_offset(object, shndx, offset, &output_offset))
2364 {
2365 if (output_offset == -1)
2366 return -1ULL;
2367 return addr + output_offset;
2368 }
2369 addr += p->data_size();
2370 }
2371
2372 // If we get here, it means that we don't know the mapping for this
2373 // input section. This might happen in principle if
2374 // add_input_section were called before add_output_section_data.
2375 // But it should never actually happen.
2376
2377 gold_unreachable();
2378}
2379
2380// Find the output address of the start of the merged section for
2381// input section SHNDX in object OBJECT.
2382
2383bool
2384Output_section::find_starting_output_address(const Relobj* object,
2385 unsigned int shndx,
2386 uint64_t* paddr) const
2387{
2388 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2389 // Looking up the merge section map does not always work as we sometimes
2390 // find a merge section without its address set.
2391 uint64_t addr = this->address() + this->first_input_offset_;
2392 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2393 p != this->input_sections_.end();
2394 ++p)
2395 {
2396 addr = align_address(addr, p->addralign());
2397
2398 // It would be nice if we could use the existing output_offset
2399 // method to get the output offset of input offset 0.
2400 // Unfortunately we don't know for sure that input offset 0 is
2401 // mapped at all.
2402 if (p->is_merge_section_for(object, shndx))
2403 {
2404 *paddr = addr;
2405 return true;
2406 }
2407
2408 addr += p->data_size();
2409 }
2410
2411 // We couldn't find a merge output section for this input section.
2412 return false;
2413}
2414
2415// Set the data size of an Output_section. This is where we handle
2416// setting the addresses of any Output_section_data objects.
2417
2418void
2419Output_section::set_final_data_size()
2420{
2421 if (this->input_sections_.empty())
2422 {
2423 this->set_data_size(this->current_data_size_for_child());
2424 return;
2425 }
2426
2427 if (this->must_sort_attached_input_sections())
2428 this->sort_attached_input_sections();
2429
2430 uint64_t address = this->address();
2431 off_t startoff = this->offset();
2432 off_t off = startoff + this->first_input_offset_;
2433 for (Input_section_list::iterator p = this->input_sections_.begin();
2434 p != this->input_sections_.end();
2435 ++p)
2436 {
2437 off = align_address(off, p->addralign());
2438 p->set_address_and_file_offset(address + (off - startoff), off,
2439 startoff);
2440 off += p->data_size();
2441 }
2442
2443 this->set_data_size(off - startoff);
2444}
2445
2446// Reset the address and file offset.
2447
2448void
2449Output_section::do_reset_address_and_file_offset()
2450{
2451 // An unallocated section has no address. Forcing this means that
2452 // we don't need special treatment for symbols defined in debug
2453 // sections. We do the same in the constructor.
2454 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2455 this->set_address(0);
2456
2457 for (Input_section_list::iterator p = this->input_sections_.begin();
2458 p != this->input_sections_.end();
2459 ++p)
2460 p->reset_address_and_file_offset();
2461}
2462
2463// Return true if address and file offset have the values after reset.
2464
2465bool
2466Output_section::do_address_and_file_offset_have_reset_values() const
2467{
2468 if (this->is_offset_valid())
2469 return false;
2470
2471 // An unallocated section has address 0 after its construction or a reset.
2472 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2473 return this->is_address_valid() && this->address() == 0;
2474 else
2475 return !this->is_address_valid();
2476}
2477
2478// Set the TLS offset. Called only for SHT_TLS sections.
2479
2480void
2481Output_section::do_set_tls_offset(uint64_t tls_base)
2482{
2483 this->tls_offset_ = this->address() - tls_base;
2484}
2485
2486// In a few cases we need to sort the input sections attached to an
2487// output section. This is used to implement the type of constructor
2488// priority ordering implemented by the GNU linker, in which the
2489// priority becomes part of the section name and the sections are
2490// sorted by name. We only do this for an output section if we see an
2491// attached input section matching ".ctor.*", ".dtor.*",
2492// ".init_array.*" or ".fini_array.*".
2493
2494class Output_section::Input_section_sort_entry
2495{
2496 public:
2497 Input_section_sort_entry()
2498 : input_section_(), index_(-1U), section_has_name_(false),
2499 section_name_()
2500 { }
2501
2502 Input_section_sort_entry(const Input_section& input_section,
2503 unsigned int index)
2504 : input_section_(input_section), index_(index),
2505 section_has_name_(input_section.is_input_section()
2506 || input_section.is_relaxed_input_section())
2507 {
2508 if (this->section_has_name_)
2509 {
2510 // This is only called single-threaded from Layout::finalize,
2511 // so it is OK to lock. Unfortunately we have no way to pass
2512 // in a Task token.
2513 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2514 Object* obj = (input_section.is_input_section()
2515 ? input_section.relobj()
2516 : input_section.relaxed_input_section()->relobj());
2517 Task_lock_obj<Object> tl(dummy_task, obj);
2518
2519 // This is a slow operation, which should be cached in
2520 // Layout::layout if this becomes a speed problem.
2521 this->section_name_ = obj->section_name(input_section.shndx());
2522 }
2523 }
2524
2525 // Return the Input_section.
2526 const Input_section&
2527 input_section() const
2528 {
2529 gold_assert(this->index_ != -1U);
2530 return this->input_section_;
2531 }
2532
2533 // The index of this entry in the original list. This is used to
2534 // make the sort stable.
2535 unsigned int
2536 index() const
2537 {
2538 gold_assert(this->index_ != -1U);
2539 return this->index_;
2540 }
2541
2542 // Whether there is a section name.
2543 bool
2544 section_has_name() const
2545 { return this->section_has_name_; }
2546
2547 // The section name.
2548 const std::string&
2549 section_name() const
2550 {
2551 gold_assert(this->section_has_name_);
2552 return this->section_name_;
2553 }
2554
2555 // Return true if the section name has a priority. This is assumed
2556 // to be true if it has a dot after the initial dot.
2557 bool
2558 has_priority() const
2559 {
2560 gold_assert(this->section_has_name_);
2561 return this->section_name_.find('.', 1);
2562 }
2563
2564 // Return true if this an input file whose base name matches
2565 // FILE_NAME. The base name must have an extension of ".o", and
2566 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2567 // This is to match crtbegin.o as well as crtbeginS.o without
2568 // getting confused by other possibilities. Overall matching the
2569 // file name this way is a dreadful hack, but the GNU linker does it
2570 // in order to better support gcc, and we need to be compatible.
2571 bool
2572 match_file_name(const char* match_file_name) const
2573 {
2574 const std::string& file_name(this->input_section_.relobj()->name());
2575 const char* base_name = lbasename(file_name.c_str());
2576 size_t match_len = strlen(match_file_name);
2577 if (strncmp(base_name, match_file_name, match_len) != 0)
2578 return false;
2579 size_t base_len = strlen(base_name);
2580 if (base_len != match_len + 2 && base_len != match_len + 3)
2581 return false;
2582 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2583 }
2584
2585 private:
2586 // The Input_section we are sorting.
2587 Input_section input_section_;
2588 // The index of this Input_section in the original list.
2589 unsigned int index_;
2590 // Whether this Input_section has a section name--it won't if this
2591 // is some random Output_section_data.
2592 bool section_has_name_;
2593 // The section name if there is one.
2594 std::string section_name_;
2595};
2596
2597// Return true if S1 should come before S2 in the output section.
2598
2599bool
2600Output_section::Input_section_sort_compare::operator()(
2601 const Output_section::Input_section_sort_entry& s1,
2602 const Output_section::Input_section_sort_entry& s2) const
2603{
2604 // crtbegin.o must come first.
2605 bool s1_begin = s1.match_file_name("crtbegin");
2606 bool s2_begin = s2.match_file_name("crtbegin");
2607 if (s1_begin || s2_begin)
2608 {
2609 if (!s1_begin)
2610 return false;
2611 if (!s2_begin)
2612 return true;
2613 return s1.index() < s2.index();
2614 }
2615
2616 // crtend.o must come last.
2617 bool s1_end = s1.match_file_name("crtend");
2618 bool s2_end = s2.match_file_name("crtend");
2619 if (s1_end || s2_end)
2620 {
2621 if (!s1_end)
2622 return true;
2623 if (!s2_end)
2624 return false;
2625 return s1.index() < s2.index();
2626 }
2627
2628 // We sort all the sections with no names to the end.
2629 if (!s1.section_has_name() || !s2.section_has_name())
2630 {
2631 if (s1.section_has_name())
2632 return true;
2633 if (s2.section_has_name())
2634 return false;
2635 return s1.index() < s2.index();
2636 }
2637
2638 // A section with a priority follows a section without a priority.
2639 // The GNU linker does this for all but .init_array sections; until
2640 // further notice we'll assume that that is an mistake.
2641 bool s1_has_priority = s1.has_priority();
2642 bool s2_has_priority = s2.has_priority();
2643 if (s1_has_priority && !s2_has_priority)
2644 return false;
2645 if (!s1_has_priority && s2_has_priority)
2646 return true;
2647
2648 // Otherwise we sort by name.
2649 int compare = s1.section_name().compare(s2.section_name());
2650 if (compare != 0)
2651 return compare < 0;
2652
2653 // Otherwise we keep the input order.
2654 return s1.index() < s2.index();
2655}
2656
2657// Sort the input sections attached to an output section.
2658
2659void
2660Output_section::sort_attached_input_sections()
2661{
2662 if (this->attached_input_sections_are_sorted_)
2663 return;
2664
2665 if (this->checkpoint_ != NULL
2666 && !this->checkpoint_->input_sections_saved())
2667 this->checkpoint_->save_input_sections();
2668
2669 // The only thing we know about an input section is the object and
2670 // the section index. We need the section name. Recomputing this
2671 // is slow but this is an unusual case. If this becomes a speed
2672 // problem we can cache the names as required in Layout::layout.
2673
2674 // We start by building a larger vector holding a copy of each
2675 // Input_section, plus its current index in the list and its name.
2676 std::vector<Input_section_sort_entry> sort_list;
2677
2678 unsigned int i = 0;
2679 for (Input_section_list::iterator p = this->input_sections_.begin();
2680 p != this->input_sections_.end();
2681 ++p, ++i)
2682 sort_list.push_back(Input_section_sort_entry(*p, i));
2683
2684 // Sort the input sections.
2685 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2686
2687 // Copy the sorted input sections back to our list.
2688 this->input_sections_.clear();
2689 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2690 p != sort_list.end();
2691 ++p)
2692 this->input_sections_.push_back(p->input_section());
2693
2694 // Remember that we sorted the input sections, since we might get
2695 // called again.
2696 this->attached_input_sections_are_sorted_ = true;
2697}
2698
2699// Write the section header to *OSHDR.
2700
2701template<int size, bool big_endian>
2702void
2703Output_section::write_header(const Layout* layout,
2704 const Stringpool* secnamepool,
2705 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2706{
2707 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2708 oshdr->put_sh_type(this->type_);
2709
2710 elfcpp::Elf_Xword flags = this->flags_;
2711 if (this->info_section_ != NULL && this->info_uses_section_index_)
2712 flags |= elfcpp::SHF_INFO_LINK;
2713 oshdr->put_sh_flags(flags);
2714
2715 oshdr->put_sh_addr(this->address());
2716 oshdr->put_sh_offset(this->offset());
2717 oshdr->put_sh_size(this->data_size());
2718 if (this->link_section_ != NULL)
2719 oshdr->put_sh_link(this->link_section_->out_shndx());
2720 else if (this->should_link_to_symtab_)
2721 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2722 else if (this->should_link_to_dynsym_)
2723 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2724 else
2725 oshdr->put_sh_link(this->link_);
2726
2727 elfcpp::Elf_Word info;
2728 if (this->info_section_ != NULL)
2729 {
2730 if (this->info_uses_section_index_)
2731 info = this->info_section_->out_shndx();
2732 else
2733 info = this->info_section_->symtab_index();
2734 }
2735 else if (this->info_symndx_ != NULL)
2736 info = this->info_symndx_->symtab_index();
2737 else
2738 info = this->info_;
2739 oshdr->put_sh_info(info);
2740
2741 oshdr->put_sh_addralign(this->addralign_);
2742 oshdr->put_sh_entsize(this->entsize_);
2743}
2744
2745// Write out the data. For input sections the data is written out by
2746// Object::relocate, but we have to handle Output_section_data objects
2747// here.
2748
2749void
2750Output_section::do_write(Output_file* of)
2751{
2752 gold_assert(!this->requires_postprocessing());
2753
2754 // If the target performs relaxation, we delay filler generation until now.
2755 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2756
2757 off_t output_section_file_offset = this->offset();
2758 for (Fill_list::iterator p = this->fills_.begin();
2759 p != this->fills_.end();
2760 ++p)
2761 {
2762 std::string fill_data(parameters->target().code_fill(p->length()));
2763 of->write(output_section_file_offset + p->section_offset(),
2764 fill_data.data(), fill_data.size());
2765 }
2766
2767 off_t off = this->offset() + this->first_input_offset_;
2768 for (Input_section_list::iterator p = this->input_sections_.begin();
2769 p != this->input_sections_.end();
2770 ++p)
2771 {
2772 off_t aligned_off = align_address(off, p->addralign());
2773 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2774 {
2775 size_t fill_len = aligned_off - off;
2776 std::string fill_data(parameters->target().code_fill(fill_len));
2777 of->write(off, fill_data.data(), fill_data.size());
2778 }
2779
2780 p->write(of);
2781 off = aligned_off + p->data_size();
2782 }
2783}
2784
2785// If a section requires postprocessing, create the buffer to use.
2786
2787void
2788Output_section::create_postprocessing_buffer()
2789{
2790 gold_assert(this->requires_postprocessing());
2791
2792 if (this->postprocessing_buffer_ != NULL)
2793 return;
2794
2795 if (!this->input_sections_.empty())
2796 {
2797 off_t off = this->first_input_offset_;
2798 for (Input_section_list::iterator p = this->input_sections_.begin();
2799 p != this->input_sections_.end();
2800 ++p)
2801 {
2802 off = align_address(off, p->addralign());
2803 p->finalize_data_size();
2804 off += p->data_size();
2805 }
2806 this->set_current_data_size_for_child(off);
2807 }
2808
2809 off_t buffer_size = this->current_data_size_for_child();
2810 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2811}
2812
2813// Write all the data of an Output_section into the postprocessing
2814// buffer. This is used for sections which require postprocessing,
2815// such as compression. Input sections are handled by
2816// Object::Relocate.
2817
2818void
2819Output_section::write_to_postprocessing_buffer()
2820{
2821 gold_assert(this->requires_postprocessing());
2822
2823 // If the target performs relaxation, we delay filler generation until now.
2824 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2825
2826 unsigned char* buffer = this->postprocessing_buffer();
2827 for (Fill_list::iterator p = this->fills_.begin();
2828 p != this->fills_.end();
2829 ++p)
2830 {
2831 std::string fill_data(parameters->target().code_fill(p->length()));
2832 memcpy(buffer + p->section_offset(), fill_data.data(),
2833 fill_data.size());
2834 }
2835
2836 off_t off = this->first_input_offset_;
2837 for (Input_section_list::iterator p = this->input_sections_.begin();
2838 p != this->input_sections_.end();
2839 ++p)
2840 {
2841 off_t aligned_off = align_address(off, p->addralign());
2842 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2843 {
2844 size_t fill_len = aligned_off - off;
2845 std::string fill_data(parameters->target().code_fill(fill_len));
2846 memcpy(buffer + off, fill_data.data(), fill_data.size());
2847 }
2848
2849 p->write_to_buffer(buffer + aligned_off);
2850 off = aligned_off + p->data_size();
2851 }
2852}
2853
2854// Get the input sections for linker script processing. We leave
2855// behind the Output_section_data entries. Note that this may be
2856// slightly incorrect for merge sections. We will leave them behind,
2857// but it is possible that the script says that they should follow
2858// some other input sections, as in:
2859// .rodata { *(.rodata) *(.rodata.cst*) }
2860// For that matter, we don't handle this correctly:
2861// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2862// With luck this will never matter.
2863
2864uint64_t
2865Output_section::get_input_sections(
2866 uint64_t address,
2867 const std::string& fill,
2868 std::list<Simple_input_section>* input_sections)
2869{
2870 if (this->checkpoint_ != NULL
2871 && !this->checkpoint_->input_sections_saved())
2872 this->checkpoint_->save_input_sections();
2873
2874 // Invalidate the relaxed input section map.
2875 this->is_relaxed_input_section_map_valid_ = false;
2876
2877 uint64_t orig_address = address;
2878
2879 address = align_address(address, this->addralign());
2880
2881 Input_section_list remaining;
2882 for (Input_section_list::iterator p = this->input_sections_.begin();
2883 p != this->input_sections_.end();
2884 ++p)
2885 {
2886 if (p->is_input_section())
2887 input_sections->push_back(Simple_input_section(p->relobj(),
2888 p->shndx()));
2889 else if (p->is_relaxed_input_section())
2890 input_sections->push_back(
2891 Simple_input_section(p->relaxed_input_section()));
2892 else
2893 {
2894 uint64_t aligned_address = align_address(address, p->addralign());
2895 if (aligned_address != address && !fill.empty())
2896 {
2897 section_size_type length =
2898 convert_to_section_size_type(aligned_address - address);
2899 std::string this_fill;
2900 this_fill.reserve(length);
2901 while (this_fill.length() + fill.length() <= length)
2902 this_fill += fill;
2903 if (this_fill.length() < length)
2904 this_fill.append(fill, 0, length - this_fill.length());
2905
2906 Output_section_data* posd = new Output_data_const(this_fill, 0);
2907 remaining.push_back(Input_section(posd));
2908 }
2909 address = aligned_address;
2910
2911 remaining.push_back(*p);
2912
2913 p->finalize_data_size();
2914 address += p->data_size();
2915 }
2916 }
2917
2918 this->input_sections_.swap(remaining);
2919 this->first_input_offset_ = 0;
2920
2921 uint64_t data_size = address - orig_address;
2922 this->set_current_data_size_for_child(data_size);
2923 return data_size;
2924}
2925
2926// Add an input section from a script.
2927
2928void
2929Output_section::add_input_section_for_script(const Simple_input_section& sis,
2930 off_t data_size,
2931 uint64_t addralign)
2932{
2933 if (addralign > this->addralign_)
2934 this->addralign_ = addralign;
2935
2936 off_t offset_in_section = this->current_data_size_for_child();
2937 off_t aligned_offset_in_section = align_address(offset_in_section,
2938 addralign);
2939
2940 this->set_current_data_size_for_child(aligned_offset_in_section
2941 + data_size);
2942
2943 Input_section is =
2944 (sis.is_relaxed_input_section()
2945 ? Input_section(sis.relaxed_input_section())
2946 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
2947 this->input_sections_.push_back(is);
2948}
2949
2950//
2951
2952void
2953Output_section::save_states()
2954{
2955 gold_assert(this->checkpoint_ == NULL);
2956 Checkpoint_output_section* checkpoint =
2957 new Checkpoint_output_section(this->addralign_, this->flags_,
2958 this->input_sections_,
2959 this->first_input_offset_,
2960 this->attached_input_sections_are_sorted_);
2961 this->checkpoint_ = checkpoint;
2962 gold_assert(this->fills_.empty());
2963}
2964
2965void
2966Output_section::restore_states()
2967{
2968 gold_assert(this->checkpoint_ != NULL);
2969 Checkpoint_output_section* checkpoint = this->checkpoint_;
2970
2971 this->addralign_ = checkpoint->addralign();
2972 this->flags_ = checkpoint->flags();
2973 this->first_input_offset_ = checkpoint->first_input_offset();
2974
2975 if (!checkpoint->input_sections_saved())
2976 {
2977 // If we have not copied the input sections, just resize it.
2978 size_t old_size = checkpoint->input_sections_size();
2979 gold_assert(this->input_sections_.size() >= old_size);
2980 this->input_sections_.resize(old_size);
2981 }
2982 else
2983 {
2984 // We need to copy the whole list. This is not efficient for
2985 // extremely large output with hundreads of thousands of input
2986 // objects. We may need to re-think how we should pass sections
2987 // to scripts.
2988 this->input_sections_ = *checkpoint->input_sections();
2989 }
2990
2991 this->attached_input_sections_are_sorted_ =
2992 checkpoint->attached_input_sections_are_sorted();
2993
2994 // Simply invalidate the relaxed input section map since we do not keep
2995 // track of it.
2996 this->is_relaxed_input_section_map_valid_ = false;
2997}
2998
2999// Print to the map file.
3000
3001void
3002Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3003{
3004 mapfile->print_output_section(this);
3005
3006 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3007 p != this->input_sections_.end();
3008 ++p)
3009 p->print_to_mapfile(mapfile);
3010}
3011
3012// Print stats for merge sections to stderr.
3013
3014void
3015Output_section::print_merge_stats()
3016{
3017 Input_section_list::iterator p;
3018 for (p = this->input_sections_.begin();
3019 p != this->input_sections_.end();
3020 ++p)
3021 p->print_merge_stats(this->name_);
3022}
3023
3024// Output segment methods.
3025
3026Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3027 : output_data_(),
3028 output_bss_(),
3029 vaddr_(0),
3030 paddr_(0),
3031 memsz_(0),
3032 max_align_(0),
3033 min_p_align_(0),
3034 offset_(0),
3035 filesz_(0),
3036 type_(type),
3037 flags_(flags),
3038 is_max_align_known_(false),
3039 are_addresses_set_(false),
3040 is_large_data_segment_(false)
3041{
3042}
3043
3044// Add an Output_section to an Output_segment.
3045
3046void
3047Output_segment::add_output_section(Output_section* os,
3048 elfcpp::Elf_Word seg_flags)
3049{
3050 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3051 gold_assert(!this->is_max_align_known_);
3052 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3053
3054 // Update the segment flags.
3055 this->flags_ |= seg_flags;
3056
3057 Output_segment::Output_data_list* pdl;
3058 if (os->type() == elfcpp::SHT_NOBITS)
3059 pdl = &this->output_bss_;
3060 else
3061 pdl = &this->output_data_;
3062
3063 // So that PT_NOTE segments will work correctly, we need to ensure
3064 // that all SHT_NOTE sections are adjacent. This will normally
3065 // happen automatically, because all the SHT_NOTE input sections
3066 // will wind up in the same output section. However, it is possible
3067 // for multiple SHT_NOTE input sections to have different section
3068 // flags, and thus be in different output sections, but for the
3069 // different section flags to map into the same segment flags and
3070 // thus the same output segment.
3071
3072 // Note that while there may be many input sections in an output
3073 // section, there are normally only a few output sections in an
3074 // output segment. This loop is expected to be fast.
3075
3076 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3077 {
3078 Output_segment::Output_data_list::iterator p = pdl->end();
3079 do
3080 {
3081 --p;
3082 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3083 {
3084 ++p;
3085 pdl->insert(p, os);
3086 return;
3087 }
3088 }
3089 while (p != pdl->begin());
3090 }
3091
3092 // Similarly, so that PT_TLS segments will work, we need to group
3093 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3094 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3095 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3096 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3097 // and the PT_TLS segment -- we do this grouping only for the
3098 // PT_LOAD segment.
3099 if (this->type_ != elfcpp::PT_TLS
3100 && (os->flags() & elfcpp::SHF_TLS) != 0)
3101 {
3102 pdl = &this->output_data_;
3103 if (!pdl->empty())
3104 {
3105 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3106 bool sawtls = false;
3107 Output_segment::Output_data_list::iterator p = pdl->end();
3108 gold_assert(p != pdl->begin());
3109 do
3110 {
3111 --p;
3112 bool insert;
3113 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3114 {
3115 sawtls = true;
3116 // Put a NOBITS section after the first TLS section.
3117 // Put a PROGBITS section after the first
3118 // TLS/PROGBITS section.
3119 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3120 }
3121 else
3122 {
3123 // If we've gone past the TLS sections, but we've
3124 // seen a TLS section, then we need to insert this
3125 // section now.
3126 insert = sawtls;
3127 }
3128
3129 if (insert)
3130 {
3131 ++p;
3132 pdl->insert(p, os);
3133 return;
3134 }
3135 }
3136 while (p != pdl->begin());
3137 }
3138
3139 // There are no TLS sections yet; put this one at the requested
3140 // location in the section list.
3141 }
3142
3143 // For the PT_GNU_RELRO segment, we need to group relro sections,
3144 // and we need to put them before any non-relro sections. Also,
3145 // relro local sections go before relro non-local sections.
3146 if (parameters->options().relro() && os->is_relro())
3147 {
3148 gold_assert(pdl == &this->output_data_);
3149 Output_segment::Output_data_list::iterator p;
3150 for (p = pdl->begin(); p != pdl->end(); ++p)
3151 {
3152 if (!(*p)->is_section())
3153 break;
3154
3155 Output_section* pos = (*p)->output_section();
3156 if (!pos->is_relro()
3157 || (os->is_relro_local() && !pos->is_relro_local()))
3158 break;
3159 }
3160
3161 pdl->insert(p, os);
3162 return;
3163 }
3164
3165 // Small data sections go at the end of the list of data sections.
3166 // If OS is not small, and there are small sections, we have to
3167 // insert it before the first small section.
3168 if (os->type() != elfcpp::SHT_NOBITS
3169 && !os->is_small_section()
3170 && !pdl->empty()
3171 && pdl->back()->is_section()
3172 && pdl->back()->output_section()->is_small_section())
3173 {
3174 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3175 p != pdl->end();
3176 ++p)
3177 {
3178 if ((*p)->is_section()
3179 && (*p)->output_section()->is_small_section())
3180 {
3181 pdl->insert(p, os);
3182 return;
3183 }
3184 }
3185 gold_unreachable();
3186 }
3187
3188 // A small BSS section goes at the start of the BSS sections, after
3189 // other small BSS sections.
3190 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3191 {
3192 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3193 p != pdl->end();
3194 ++p)
3195 {
3196 if (!(*p)->is_section()
3197 || !(*p)->output_section()->is_small_section())
3198 {
3199 pdl->insert(p, os);
3200 return;
3201 }
3202 }
3203 }
3204
3205 // A large BSS section goes at the end of the BSS sections, which
3206 // means that one that is not large must come before the first large
3207 // one.
3208 if (os->type() == elfcpp::SHT_NOBITS
3209 && !os->is_large_section()
3210 && !pdl->empty()
3211 && pdl->back()->is_section()
3212 && pdl->back()->output_section()->is_large_section())
3213 {
3214 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3215 p != pdl->end();
3216 ++p)
3217 {
3218 if ((*p)->is_section()
3219 && (*p)->output_section()->is_large_section())
3220 {
3221 pdl->insert(p, os);
3222 return;
3223 }
3224 }
3225 gold_unreachable();
3226 }
3227
3228 pdl->push_back(os);
3229}
3230
3231// Remove an Output_section from this segment. It is an error if it
3232// is not present.
3233
3234void
3235Output_segment::remove_output_section(Output_section* os)
3236{
3237 // We only need this for SHT_PROGBITS.
3238 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3239 for (Output_data_list::iterator p = this->output_data_.begin();
3240 p != this->output_data_.end();
3241 ++p)
3242 {
3243 if (*p == os)
3244 {
3245 this->output_data_.erase(p);
3246 return;
3247 }
3248 }
3249 gold_unreachable();
3250}
3251
3252// Add an Output_data (which is not an Output_section) to the start of
3253// a segment.
3254
3255void
3256Output_segment::add_initial_output_data(Output_data* od)
3257{
3258 gold_assert(!this->is_max_align_known_);
3259 this->output_data_.push_front(od);
3260}
3261
3262// Return whether the first data section is a relro section.
3263
3264bool
3265Output_segment::is_first_section_relro() const
3266{
3267 return (!this->output_data_.empty()
3268 && this->output_data_.front()->is_section()
3269 && this->output_data_.front()->output_section()->is_relro());
3270}
3271
3272// Return the maximum alignment of the Output_data in Output_segment.
3273
3274uint64_t
3275Output_segment::maximum_alignment()
3276{
3277 if (!this->is_max_align_known_)
3278 {
3279 uint64_t addralign;
3280
3281 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3282 if (addralign > this->max_align_)
3283 this->max_align_ = addralign;
3284
3285 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3286 if (addralign > this->max_align_)
3287 this->max_align_ = addralign;
3288
3289 // If -z relro is in effect, and the first section in this
3290 // segment is a relro section, then the segment must be aligned
3291 // to at least the common page size. This ensures that the
3292 // PT_GNU_RELRO segment will start at a page boundary.
3293 if (this->type_ == elfcpp::PT_LOAD
3294 && parameters->options().relro()
3295 && this->is_first_section_relro())
3296 {
3297 addralign = parameters->target().common_pagesize();
3298 if (addralign > this->max_align_)
3299 this->max_align_ = addralign;
3300 }
3301
3302 this->is_max_align_known_ = true;
3303 }
3304
3305 return this->max_align_;
3306}
3307
3308// Return the maximum alignment of a list of Output_data.
3309
3310uint64_t
3311Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3312{
3313 uint64_t ret = 0;
3314 for (Output_data_list::const_iterator p = pdl->begin();
3315 p != pdl->end();
3316 ++p)
3317 {
3318 uint64_t addralign = (*p)->addralign();
3319 if (addralign > ret)
3320 ret = addralign;
3321 }
3322 return ret;
3323}
3324
3325// Return the number of dynamic relocs applied to this segment.
3326
3327unsigned int
3328Output_segment::dynamic_reloc_count() const
3329{
3330 return (this->dynamic_reloc_count_list(&this->output_data_)
3331 + this->dynamic_reloc_count_list(&this->output_bss_));
3332}
3333
3334// Return the number of dynamic relocs applied to an Output_data_list.
3335
3336unsigned int
3337Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3338{
3339 unsigned int count = 0;
3340 for (Output_data_list::const_iterator p = pdl->begin();
3341 p != pdl->end();
3342 ++p)
3343 count += (*p)->dynamic_reloc_count();
3344 return count;
3345}
3346
3347// Set the section addresses for an Output_segment. If RESET is true,
3348// reset the addresses first. ADDR is the address and *POFF is the
3349// file offset. Set the section indexes starting with *PSHNDX.
3350// Return the address of the immediately following segment. Update
3351// *POFF and *PSHNDX.
3352
3353uint64_t
3354Output_segment::set_section_addresses(const Layout* layout, bool reset,
3355 uint64_t addr, off_t* poff,
3356 unsigned int* pshndx)
3357{
3358 gold_assert(this->type_ == elfcpp::PT_LOAD);
3359
3360 if (!reset && this->are_addresses_set_)
3361 {
3362 gold_assert(this->paddr_ == addr);
3363 addr = this->vaddr_;
3364 }
3365 else
3366 {
3367 this->vaddr_ = addr;
3368 this->paddr_ = addr;
3369 this->are_addresses_set_ = true;
3370 }
3371
3372 bool in_tls = false;
3373
3374 bool in_relro = (parameters->options().relro()
3375 && this->is_first_section_relro());
3376
3377 off_t orig_off = *poff;
3378 this->offset_ = orig_off;
3379
3380 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3381 addr, poff, pshndx, &in_tls,
3382 &in_relro);
3383 this->filesz_ = *poff - orig_off;
3384
3385 off_t off = *poff;
3386
3387 uint64_t ret = this->set_section_list_addresses(layout, reset,
3388 &this->output_bss_,
3389 addr, poff, pshndx,
3390 &in_tls, &in_relro);
3391
3392 // If the last section was a TLS section, align upward to the
3393 // alignment of the TLS segment, so that the overall size of the TLS
3394 // segment is aligned.
3395 if (in_tls)
3396 {
3397 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3398 *poff = align_address(*poff, segment_align);
3399 }
3400
3401 // If all the sections were relro sections, align upward to the
3402 // common page size.
3403 if (in_relro)
3404 {
3405 uint64_t page_align = parameters->target().common_pagesize();
3406 *poff = align_address(*poff, page_align);
3407 }
3408
3409 this->memsz_ = *poff - orig_off;
3410
3411 // Ignore the file offset adjustments made by the BSS Output_data
3412 // objects.
3413 *poff = off;
3414
3415 return ret;
3416}
3417
3418// Set the addresses and file offsets in a list of Output_data
3419// structures.
3420
3421uint64_t
3422Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3423 Output_data_list* pdl,
3424 uint64_t addr, off_t* poff,
3425 unsigned int* pshndx,
3426 bool* in_tls, bool* in_relro)
3427{
3428 off_t startoff = *poff;
3429
3430 off_t off = startoff;
3431 for (Output_data_list::iterator p = pdl->begin();
3432 p != pdl->end();
3433 ++p)
3434 {
3435 if (reset)
3436 (*p)->reset_address_and_file_offset();
3437
3438 // When using a linker script the section will most likely
3439 // already have an address.
3440 if (!(*p)->is_address_valid())
3441 {
3442 uint64_t align = (*p)->addralign();
3443
3444 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3445 {
3446 // Give the first TLS section the alignment of the
3447 // entire TLS segment. Otherwise the TLS segment as a
3448 // whole may be misaligned.
3449 if (!*in_tls)
3450 {
3451 Output_segment* tls_segment = layout->tls_segment();
3452 gold_assert(tls_segment != NULL);
3453 uint64_t segment_align = tls_segment->maximum_alignment();
3454 gold_assert(segment_align >= align);
3455 align = segment_align;
3456
3457 *in_tls = true;
3458 }
3459 }
3460 else
3461 {
3462 // If this is the first section after the TLS segment,
3463 // align it to at least the alignment of the TLS
3464 // segment, so that the size of the overall TLS segment
3465 // is aligned.
3466 if (*in_tls)
3467 {
3468 uint64_t segment_align =
3469 layout->tls_segment()->maximum_alignment();
3470 if (segment_align > align)
3471 align = segment_align;
3472
3473 *in_tls = false;
3474 }
3475 }
3476
3477 // If this is a non-relro section after a relro section,
3478 // align it to a common page boundary so that the dynamic
3479 // linker has a page to mark as read-only.
3480 if (*in_relro
3481 && (!(*p)->is_section()
3482 || !(*p)->output_section()->is_relro()))
3483 {
3484 uint64_t page_align = parameters->target().common_pagesize();
3485 if (page_align > align)
3486 align = page_align;
3487 *in_relro = false;
3488 }
3489
3490 off = align_address(off, align);
3491 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3492 }
3493 else
3494 {
3495 // The script may have inserted a skip forward, but it
3496 // better not have moved backward.
3497 if ((*p)->address() >= addr + (off - startoff))
3498 off += (*p)->address() - (addr + (off - startoff));
3499 else
3500 {
3501 if (!layout->script_options()->saw_sections_clause())
3502 gold_unreachable();
3503 else
3504 {
3505 Output_section* os = (*p)->output_section();
3506 if (os == NULL)
3507 gold_error(_("dot moves backward in linker script "
3508 "from 0x%llx to 0x%llx"),
3509 addr + (off - startoff), (*p)->address());
3510 else
3511 gold_error(_("address of section '%s' moves backward "
3512 "from 0x%llx to 0x%llx"),
3513 os->name(), addr + (off - startoff),
3514 (*p)->address());
3515 }
3516 }
3517 (*p)->set_file_offset(off);
3518 (*p)->finalize_data_size();
3519 }
3520
3521 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3522 // section. Such a section does not affect the size of a
3523 // PT_LOAD segment.
3524 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3525 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3526 off += (*p)->data_size();
3527
3528 if ((*p)->is_section())
3529 {
3530 (*p)->set_out_shndx(*pshndx);
3531 ++*pshndx;
3532 }
3533 }
3534
3535 *poff = off;
3536 return addr + (off - startoff);
3537}
3538
3539// For a non-PT_LOAD segment, set the offset from the sections, if
3540// any.
3541
3542void
3543Output_segment::set_offset()
3544{
3545 gold_assert(this->type_ != elfcpp::PT_LOAD);
3546
3547 gold_assert(!this->are_addresses_set_);
3548
3549 if (this->output_data_.empty() && this->output_bss_.empty())
3550 {
3551 this->vaddr_ = 0;
3552 this->paddr_ = 0;
3553 this->are_addresses_set_ = true;
3554 this->memsz_ = 0;
3555 this->min_p_align_ = 0;
3556 this->offset_ = 0;
3557 this->filesz_ = 0;
3558 return;
3559 }
3560
3561 const Output_data* first;
3562 if (this->output_data_.empty())
3563 first = this->output_bss_.front();
3564 else
3565 first = this->output_data_.front();
3566 this->vaddr_ = first->address();
3567 this->paddr_ = (first->has_load_address()
3568 ? first->load_address()
3569 : this->vaddr_);
3570 this->are_addresses_set_ = true;
3571 this->offset_ = first->offset();
3572
3573 if (this->output_data_.empty())
3574 this->filesz_ = 0;
3575 else
3576 {
3577 const Output_data* last_data = this->output_data_.back();
3578 this->filesz_ = (last_data->address()
3579 + last_data->data_size()
3580 - this->vaddr_);
3581 }
3582
3583 const Output_data* last;
3584 if (this->output_bss_.empty())
3585 last = this->output_data_.back();
3586 else
3587 last = this->output_bss_.back();
3588 this->memsz_ = (last->address()
3589 + last->data_size()
3590 - this->vaddr_);
3591
3592 // If this is a TLS segment, align the memory size. The code in
3593 // set_section_list ensures that the section after the TLS segment
3594 // is aligned to give us room.
3595 if (this->type_ == elfcpp::PT_TLS)
3596 {
3597 uint64_t segment_align = this->maximum_alignment();
3598 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3599 this->memsz_ = align_address(this->memsz_, segment_align);
3600 }
3601
3602 // If this is a RELRO segment, align the memory size. The code in
3603 // set_section_list ensures that the section after the RELRO segment
3604 // is aligned to give us room.
3605 if (this->type_ == elfcpp::PT_GNU_RELRO)
3606 {
3607 uint64_t page_align = parameters->target().common_pagesize();
3608 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3609 this->memsz_ = align_address(this->memsz_, page_align);
3610 }
3611}
3612
3613// Set the TLS offsets of the sections in the PT_TLS segment.
3614
3615void
3616Output_segment::set_tls_offsets()
3617{
3618 gold_assert(this->type_ == elfcpp::PT_TLS);
3619
3620 for (Output_data_list::iterator p = this->output_data_.begin();
3621 p != this->output_data_.end();
3622 ++p)
3623 (*p)->set_tls_offset(this->vaddr_);
3624
3625 for (Output_data_list::iterator p = this->output_bss_.begin();
3626 p != this->output_bss_.end();
3627 ++p)
3628 (*p)->set_tls_offset(this->vaddr_);
3629}
3630
3631// Return the address of the first section.
3632
3633uint64_t
3634Output_segment::first_section_load_address() const
3635{
3636 for (Output_data_list::const_iterator p = this->output_data_.begin();
3637 p != this->output_data_.end();
3638 ++p)
3639 if ((*p)->is_section())
3640 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3641
3642 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3643 p != this->output_bss_.end();
3644 ++p)
3645 if ((*p)->is_section())
3646 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3647
3648 gold_unreachable();
3649}
3650
3651// Return the number of Output_sections in an Output_segment.
3652
3653unsigned int
3654Output_segment::output_section_count() const
3655{
3656 return (this->output_section_count_list(&this->output_data_)
3657 + this->output_section_count_list(&this->output_bss_));
3658}
3659
3660// Return the number of Output_sections in an Output_data_list.
3661
3662unsigned int
3663Output_segment::output_section_count_list(const Output_data_list* pdl) const
3664{
3665 unsigned int count = 0;
3666 for (Output_data_list::const_iterator p = pdl->begin();
3667 p != pdl->end();
3668 ++p)
3669 {
3670 if ((*p)->is_section())
3671 ++count;
3672 }
3673 return count;
3674}
3675
3676// Return the section attached to the list segment with the lowest
3677// load address. This is used when handling a PHDRS clause in a
3678// linker script.
3679
3680Output_section*
3681Output_segment::section_with_lowest_load_address() const
3682{
3683 Output_section* found = NULL;
3684 uint64_t found_lma = 0;
3685 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3686
3687 Output_section* found_data = found;
3688 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3689 if (found != found_data && found_data != NULL)
3690 {
3691 gold_error(_("nobits section %s may not precede progbits section %s "
3692 "in same segment"),
3693 found->name(), found_data->name());
3694 return NULL;
3695 }
3696
3697 return found;
3698}
3699
3700// Look through a list for a section with a lower load address.
3701
3702void
3703Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3704 Output_section** found,
3705 uint64_t* found_lma) const
3706{
3707 for (Output_data_list::const_iterator p = pdl->begin();
3708 p != pdl->end();
3709 ++p)
3710 {
3711 if (!(*p)->is_section())
3712 continue;
3713 Output_section* os = static_cast<Output_section*>(*p);
3714 uint64_t lma = (os->has_load_address()
3715 ? os->load_address()
3716 : os->address());
3717 if (*found == NULL || lma < *found_lma)
3718 {
3719 *found = os;
3720 *found_lma = lma;
3721 }
3722 }
3723}
3724
3725// Write the segment data into *OPHDR.
3726
3727template<int size, bool big_endian>
3728void
3729Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3730{
3731 ophdr->put_p_type(this->type_);
3732 ophdr->put_p_offset(this->offset_);
3733 ophdr->put_p_vaddr(this->vaddr_);
3734 ophdr->put_p_paddr(this->paddr_);
3735 ophdr->put_p_filesz(this->filesz_);
3736 ophdr->put_p_memsz(this->memsz_);
3737 ophdr->put_p_flags(this->flags_);
3738 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3739}
3740
3741// Write the section headers into V.
3742
3743template<int size, bool big_endian>
3744unsigned char*
3745Output_segment::write_section_headers(const Layout* layout,
3746 const Stringpool* secnamepool,
3747 unsigned char* v,
3748 unsigned int *pshndx) const
3749{
3750 // Every section that is attached to a segment must be attached to a
3751 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3752 // segments.
3753 if (this->type_ != elfcpp::PT_LOAD)
3754 return v;
3755
3756 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3757 &this->output_data_,
3758 v, pshndx);
3759 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3760 &this->output_bss_,
3761 v, pshndx);
3762 return v;
3763}
3764
3765template<int size, bool big_endian>
3766unsigned char*
3767Output_segment::write_section_headers_list(const Layout* layout,
3768 const Stringpool* secnamepool,
3769 const Output_data_list* pdl,
3770 unsigned char* v,
3771 unsigned int* pshndx) const
3772{
3773 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3774 for (Output_data_list::const_iterator p = pdl->begin();
3775 p != pdl->end();
3776 ++p)
3777 {
3778 if ((*p)->is_section())
3779 {
3780 const Output_section* ps = static_cast<const Output_section*>(*p);
3781 gold_assert(*pshndx == ps->out_shndx());
3782 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3783 ps->write_header(layout, secnamepool, &oshdr);
3784 v += shdr_size;
3785 ++*pshndx;
3786 }
3787 }
3788 return v;
3789}
3790
3791// Print the output sections to the map file.
3792
3793void
3794Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3795{
3796 if (this->type() != elfcpp::PT_LOAD)
3797 return;
3798 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3799 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3800}
3801
3802// Print an output section list to the map file.
3803
3804void
3805Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3806 const Output_data_list* pdl) const
3807{
3808 for (Output_data_list::const_iterator p = pdl->begin();
3809 p != pdl->end();
3810 ++p)
3811 (*p)->print_to_mapfile(mapfile);
3812}
3813
3814// Output_file methods.
3815
3816Output_file::Output_file(const char* name)
3817 : name_(name),
3818 o_(-1),
3819 file_size_(0),
3820 base_(NULL),
3821 map_is_anonymous_(false),
3822 is_temporary_(false)
3823{
3824}
3825
3826// Try to open an existing file. Returns false if the file doesn't
3827// exist, has a size of 0 or can't be mmapped.
3828
3829bool
3830Output_file::open_for_modification()
3831{
3832 // The name "-" means "stdout".
3833 if (strcmp(this->name_, "-") == 0)
3834 return false;
3835
3836 // Don't bother opening files with a size of zero.
3837 struct stat s;
3838 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3839 return false;
3840
3841 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3842 if (o < 0)
3843 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3844 this->o_ = o;
3845 this->file_size_ = s.st_size;
3846
3847 // If the file can't be mmapped, copying the content to an anonymous
3848 // map will probably negate the performance benefits of incremental
3849 // linking. This could be helped by using views and loading only
3850 // the necessary parts, but this is not supported as of now.
3851 if (!this->map_no_anonymous())
3852 {
3853 release_descriptor(o, true);
3854 this->o_ = -1;
3855 this->file_size_ = 0;
3856 return false;
3857 }
3858
3859 return true;
3860}
3861
3862// Open the output file.
3863
3864void
3865Output_file::open(off_t file_size)
3866{
3867 this->file_size_ = file_size;
3868
3869 // Unlink the file first; otherwise the open() may fail if the file
3870 // is busy (e.g. it's an executable that's currently being executed).
3871 //
3872 // However, the linker may be part of a system where a zero-length
3873 // file i