Upgrade GCC from 4.4.6-RELEASE to 4.4.7 snapshot 2011-10-25
[dragonfly.git] / contrib / gcc-4.4 / gcc / cp / init.c
CommitLineData
c251ad9e
SS
1/* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 3, or (at your option)
12any later version.
13
14GCC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
22
23/* High-level class interface. */
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
28#include "tm.h"
29#include "tree.h"
30#include "rtl.h"
31#include "expr.h"
32#include "cp-tree.h"
33#include "flags.h"
34#include "output.h"
35#include "except.h"
36#include "toplev.h"
37#include "target.h"
38
39static bool begin_init_stmts (tree *, tree *);
40static tree finish_init_stmts (bool, tree, tree);
41static void construct_virtual_base (tree, tree);
42static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45static void perform_member_init (tree, tree);
46static tree build_builtin_delete_call (tree);
47static int member_init_ok_or_else (tree, tree, tree);
48static void expand_virtual_init (tree, tree);
49static tree sort_mem_initializers (tree, tree);
50static tree initializing_context (tree);
51static void expand_cleanup_for_base (tree, tree);
52static tree get_temp_regvar (tree, tree);
53static tree dfs_initialize_vtbl_ptrs (tree, void *);
54static tree build_dtor_call (tree, special_function_kind, int);
55static tree build_field_list (tree, tree, int *);
56static tree build_vtbl_address (tree);
57
58/* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
66
67static bool
68begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
69{
70 bool is_global = !building_stmt_tree ();
71
72 *stmt_expr_p = begin_stmt_expr ();
73 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
74
75 return is_global;
76}
77
78/* Finish out the statement-expression begun by the previous call to
79 begin_init_stmts. Returns the statement-expression itself. */
80
81static tree
82finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
83{
84 finish_compound_stmt (compound_stmt);
85
86 stmt_expr = finish_stmt_expr (stmt_expr, true);
87
88 gcc_assert (!building_stmt_tree () == is_global);
89
90 return stmt_expr;
91}
92
93/* Constructors */
94
95/* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
96 which we want to initialize the vtable pointer for, DATA is
97 TREE_LIST whose TREE_VALUE is the this ptr expression. */
98
99static tree
100dfs_initialize_vtbl_ptrs (tree binfo, void *data)
101{
102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
103 return dfs_skip_bases;
104
105 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
106 {
107 tree base_ptr = TREE_VALUE ((tree) data);
108
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
110
111 expand_virtual_init (binfo, base_ptr);
112 }
113
114 return NULL_TREE;
115}
116
117/* Initialize all the vtable pointers in the object pointed to by
118 ADDR. */
119
120void
121initialize_vtbl_ptrs (tree addr)
122{
123 tree list;
124 tree type;
125
126 type = TREE_TYPE (TREE_TYPE (addr));
127 list = build_tree_list (type, addr);
128
129 /* Walk through the hierarchy, initializing the vptr in each base
130 class. We do these in pre-order because we can't find the virtual
131 bases for a class until we've initialized the vtbl for that
132 class. */
133 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
134}
135
136/* Return an expression for the zero-initialization of an object with
137 type T. This expression will either be a constant (in the case
138 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
139 aggregate), or NULL (in the case that T does not require
140 initialization). In either case, the value can be used as
141 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
142 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
143 is the number of elements in the array. If STATIC_STORAGE_P is
144 TRUE, initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
d8f1d01e
JM
146 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
147 subfields with bit positions at or above that bit size shouldn't
148 be added. */
c251ad9e 149
d8f1d01e
JM
150static tree
151build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
152 tree field_size)
c251ad9e
SS
153{
154 tree init = NULL_TREE;
155
156 /* [dcl.init]
157
158 To zero-initialize an object of type T means:
159
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
162
163 -- if T is a non-union class type, the storage for each nonstatic
164 data member and each base-class subobject is zero-initialized.
165
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
168
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
171
172 -- if T is a reference type, no initialization is performed. */
173
174 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
175
176 if (type == error_mark_node)
177 ;
178 else if (static_storage_p && zero_init_p (type))
179 /* In order to save space, we do not explicitly build initializers
180 for items that do not need them. GCC's semantics are that
181 items with static storage duration that are not otherwise
182 initialized are initialized to zero. */
183 ;
184 else if (SCALAR_TYPE_P (type))
185 init = convert (type, integer_zero_node);
186 else if (CLASS_TYPE_P (type))
187 {
188 tree field;
189 VEC(constructor_elt,gc) *v = NULL;
190
191 /* Iterate over the fields, building initializations. */
192 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
193 {
194 if (TREE_CODE (field) != FIELD_DECL)
195 continue;
196
d8f1d01e
JM
197 /* Don't add virtual bases for base classes if they are beyond
198 the size of the current field, that means it is present
199 somewhere else in the object. */
200 if (field_size)
201 {
202 tree bitpos = bit_position (field);
203 if (TREE_CODE (bitpos) == INTEGER_CST
204 && !tree_int_cst_lt (bitpos, field_size))
205 continue;
206 }
207
c251ad9e
SS
208 /* Note that for class types there will be FIELD_DECLs
209 corresponding to base classes as well. Thus, iterating
210 over TYPE_FIELDs will result in correct initialization of
211 all of the subobjects. */
212 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
213 {
d8f1d01e
JM
214 tree new_field_size
215 = (DECL_FIELD_IS_BASE (field)
216 && DECL_SIZE (field)
217 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
218 ? DECL_SIZE (field) : NULL_TREE;
219 tree value = build_zero_init_1 (TREE_TYPE (field),
220 /*nelts=*/NULL_TREE,
221 static_storage_p,
222 new_field_size);
c251ad9e
SS
223 if (value)
224 CONSTRUCTOR_APPEND_ELT(v, field, value);
225 }
226
227 /* For unions, only the first field is initialized. */
228 if (TREE_CODE (type) == UNION_TYPE)
229 break;
230 }
231
232 /* Build a constructor to contain the initializations. */
233 init = build_constructor (type, v);
234 }
235 else if (TREE_CODE (type) == ARRAY_TYPE)
236 {
237 tree max_index;
238 VEC(constructor_elt,gc) *v = NULL;
239
240 /* Iterate over the array elements, building initializations. */
241 if (nelts)
242 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
243 nelts, integer_one_node);
244 else
245 max_index = array_type_nelts (type);
246
247 /* If we have an error_mark here, we should just return error mark
248 as we don't know the size of the array yet. */
249 if (max_index == error_mark_node)
250 return error_mark_node;
251 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
252
253 /* A zero-sized array, which is accepted as an extension, will
254 have an upper bound of -1. */
255 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
256 {
257 constructor_elt *ce;
258
259 v = VEC_alloc (constructor_elt, gc, 1);
260 ce = VEC_quick_push (constructor_elt, v, NULL);
261
262 /* If this is a one element array, we just use a regular init. */
263 if (tree_int_cst_equal (size_zero_node, max_index))
264 ce->index = size_zero_node;
265 else
266 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
267 max_index);
268
d8f1d01e
JM
269 ce->value = build_zero_init_1 (TREE_TYPE (type),
270 /*nelts=*/NULL_TREE,
271 static_storage_p, NULL_TREE);
c251ad9e
SS
272 }
273
274 /* Build a constructor to contain the initializations. */
275 init = build_constructor (type, v);
276 }
277 else if (TREE_CODE (type) == VECTOR_TYPE)
278 init = fold_convert (type, integer_zero_node);
279 else
280 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
281
282 /* In all cases, the initializer is a constant. */
283 if (init)
284 TREE_CONSTANT (init) = 1;
285
286 return init;
287}
288
d8f1d01e
JM
289/* Return an expression for the zero-initialization of an object with
290 type T. This expression will either be a constant (in the case
291 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
292 aggregate), or NULL (in the case that T does not require
293 initialization). In either case, the value can be used as
294 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
295 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
296 is the number of elements in the array. If STATIC_STORAGE_P is
297 TRUE, initializers are only generated for entities for which
298 zero-initialization does not simply mean filling the storage with
299 zero bytes. */
300
301tree
302build_zero_init (tree type, tree nelts, bool static_storage_p)
303{
304 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
305}
306
c251ad9e
SS
307/* Return a suitable initializer for value-initializing an object of type
308 TYPE, as described in [dcl.init]. */
309
310tree
311build_value_init (tree type)
312{
313 /* [dcl.init]
314
315 To value-initialize an object of type T means:
316
317 - if T is a class type (clause 9) with a user-provided constructor
318 (12.1), then the default constructor for T is called (and the
319 initialization is ill-formed if T has no accessible default
320 constructor);
321
322 - if T is a non-union class type without a user-provided constructor,
323 then every non-static data member and base-class component of T is
324 value-initialized;92)
325
326 - if T is an array type, then each element is value-initialized;
327
328 - otherwise, the object is zero-initialized.
329
330 A program that calls for default-initialization or
331 value-initialization of an entity of reference type is ill-formed.
332
333 92) Value-initialization for such a class object may be implemented by
334 zero-initializing the object and then calling the default
335 constructor. */
336
337 if (CLASS_TYPE_P (type))
338 {
339 if (type_has_user_provided_constructor (type))
340 return build_aggr_init_expr
341 (type,
342 build_special_member_call (NULL_TREE, complete_ctor_identifier,
343 NULL_TREE, type, LOOKUP_NORMAL,
344 tf_warning_or_error));
345 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
346 {
347 /* This is a class that needs constructing, but doesn't have
348 a user-provided constructor. So we need to zero-initialize
349 the object and then call the implicitly defined ctor.
350 This will be handled in simplify_aggr_init_expr. */
351 tree ctor = build_special_member_call
352 (NULL_TREE, complete_ctor_identifier,
353 NULL_TREE, type, LOOKUP_NORMAL, tf_warning_or_error);
354
355 ctor = build_aggr_init_expr (type, ctor);
356 AGGR_INIT_ZERO_FIRST (ctor) = 1;
357 return ctor;
358 }
359 }
360 return build_value_init_noctor (type);
361}
362
363/* Like build_value_init, but don't call the constructor for TYPE. Used
364 for base initializers. */
365
366tree
367build_value_init_noctor (tree type)
368{
369 if (CLASS_TYPE_P (type))
370 {
371 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
372
373 if (TREE_CODE (type) != UNION_TYPE)
374 {
375 tree field;
376 VEC(constructor_elt,gc) *v = NULL;
377
378 /* Iterate over the fields, building initializations. */
379 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
380 {
381 tree ftype, value;
382
383 if (TREE_CODE (field) != FIELD_DECL)
384 continue;
385
386 ftype = TREE_TYPE (field);
387
388 if (TREE_CODE (ftype) == REFERENCE_TYPE)
389 error ("value-initialization of reference");
390
391 /* We could skip vfields and fields of types with
392 user-defined constructors, but I think that won't improve
393 performance at all; it should be simpler in general just
394 to zero out the entire object than try to only zero the
395 bits that actually need it. */
396
397 /* Note that for class types there will be FIELD_DECLs
398 corresponding to base classes as well. Thus, iterating
399 over TYPE_FIELDs will result in correct initialization of
400 all of the subobjects. */
401 value = build_value_init (ftype);
402
403 if (value)
404 CONSTRUCTOR_APPEND_ELT(v, field, value);
405 }
406
407 /* Build a constructor to contain the zero- initializations. */
408 return build_constructor (type, v);
409 }
410 }
411 else if (TREE_CODE (type) == ARRAY_TYPE)
412 {
413 VEC(constructor_elt,gc) *v = NULL;
414
415 /* Iterate over the array elements, building initializations. */
416 tree max_index = array_type_nelts (type);
417
418 /* If we have an error_mark here, we should just return error mark
419 as we don't know the size of the array yet. */
420 if (max_index == error_mark_node)
421 return error_mark_node;
422 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
423
424 /* A zero-sized array, which is accepted as an extension, will
425 have an upper bound of -1. */
426 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
427 {
428 constructor_elt *ce;
429
430 v = VEC_alloc (constructor_elt, gc, 1);
431 ce = VEC_quick_push (constructor_elt, v, NULL);
432
433 /* If this is a one element array, we just use a regular init. */
434 if (tree_int_cst_equal (size_zero_node, max_index))
435 ce->index = size_zero_node;
436 else
437 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
438 max_index);
439
440 ce->value = build_value_init (TREE_TYPE (type));
441
442 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
443 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
444 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
445 }
446
447 /* Build a constructor to contain the initializations. */
448 return build_constructor (type, v);
449 }
450
451 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
452}
453
454/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
455 arguments. If TREE_LIST is void_type_node, an empty initializer
456 list was given; if NULL_TREE no initializer was given. */
457
458static void
459perform_member_init (tree member, tree init)
460{
461 tree decl;
462 tree type = TREE_TYPE (member);
463
464 /* Effective C++ rule 12 requires that all data members be
465 initialized. */
466 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
467 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
468 "list", current_function_decl, member);
469
470 /* Get an lvalue for the data member. */
471 decl = build_class_member_access_expr (current_class_ref, member,
472 /*access_path=*/NULL_TREE,
473 /*preserve_reference=*/true,
474 tf_warning_or_error);
475 if (decl == error_mark_node)
476 return;
477
478 if (init == void_type_node)
479 {
480 /* mem() means value-initialization. */
481 if (TREE_CODE (type) == ARRAY_TYPE)
482 {
483 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
484 /*explicit_value_init_p=*/true,
485 /* from_array=*/0,
486 tf_warning_or_error);
487 finish_expr_stmt (init);
488 }
489 else
490 {
491 if (TREE_CODE (type) == REFERENCE_TYPE)
492 permerror (input_location, "%Jvalue-initialization of %q#D, "
493 "which has reference type",
494 current_function_decl, member);
495 else
496 {
497 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
498 finish_expr_stmt (init);
499 }
500 }
501 }
502 /* Deal with this here, as we will get confused if we try to call the
503 assignment op for an anonymous union. This can happen in a
504 synthesized copy constructor. */
505 else if (ANON_AGGR_TYPE_P (type))
506 {
507 if (init)
508 {
509 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
510 finish_expr_stmt (init);
511 }
512 }
513 else if (TYPE_NEEDS_CONSTRUCTING (type))
514 {
515 if (init != NULL_TREE
516 && TREE_CODE (type) == ARRAY_TYPE
517 && TREE_CHAIN (init) == NULL_TREE
518 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
519 {
520 /* Initialization of one array from another. */
521 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
522 /*explicit_value_init_p=*/false,
523 /* from_array=*/1,
524 tf_warning_or_error));
525 }
526 else
527 {
528 if (CP_TYPE_CONST_P (type)
529 && init == NULL_TREE
530 && !type_has_user_provided_default_constructor (type))
531 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
532 vtable; still give this diagnostic. */
533 permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
534 current_function_decl, member, type);
535 finish_expr_stmt (build_aggr_init (decl, init, 0,
536 tf_warning_or_error));
537 }
538 }
539 else
540 {
541 if (init == NULL_TREE)
542 {
543 /* member traversal: note it leaves init NULL */
544 if (TREE_CODE (type) == REFERENCE_TYPE)
545 permerror (input_location, "%Juninitialized reference member %qD",
546 current_function_decl, member);
547 else if (CP_TYPE_CONST_P (type))
548 permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
549 current_function_decl, member, type);
550 }
551 else if (TREE_CODE (init) == TREE_LIST)
552 /* There was an explicit member initialization. Do some work
553 in that case. */
554 init = build_x_compound_expr_from_list (init, "member initializer");
555
556 if (init)
557 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
558 tf_warning_or_error));
559 }
560
561 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
562 {
563 tree expr;
564
565 expr = build_class_member_access_expr (current_class_ref, member,
566 /*access_path=*/NULL_TREE,
567 /*preserve_reference=*/false,
568 tf_warning_or_error);
569 expr = build_delete (type, expr, sfk_complete_destructor,
570 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
571
572 if (expr != error_mark_node)
573 finish_eh_cleanup (expr);
574 }
575}
576
577/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
578 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
579
580static tree
581build_field_list (tree t, tree list, int *uses_unions_p)
582{
583 tree fields;
584
585 *uses_unions_p = 0;
586
587 /* Note whether or not T is a union. */
588 if (TREE_CODE (t) == UNION_TYPE)
589 *uses_unions_p = 1;
590
591 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
592 {
593 /* Skip CONST_DECLs for enumeration constants and so forth. */
594 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
595 continue;
596
597 /* Keep track of whether or not any fields are unions. */
598 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
599 *uses_unions_p = 1;
600
601 /* For an anonymous struct or union, we must recursively
602 consider the fields of the anonymous type. They can be
603 directly initialized from the constructor. */
604 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
605 {
606 /* Add this field itself. Synthesized copy constructors
607 initialize the entire aggregate. */
608 list = tree_cons (fields, NULL_TREE, list);
609 /* And now add the fields in the anonymous aggregate. */
610 list = build_field_list (TREE_TYPE (fields), list,
611 uses_unions_p);
612 }
613 /* Add this field. */
614 else if (DECL_NAME (fields))
615 list = tree_cons (fields, NULL_TREE, list);
616 }
617
618 return list;
619}
620
621/* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
622 a FIELD_DECL or BINFO in T that needs initialization. The
623 TREE_VALUE gives the initializer, or list of initializer arguments.
624
625 Return a TREE_LIST containing all of the initializations required
626 for T, in the order in which they should be performed. The output
627 list has the same format as the input. */
628
629static tree
630sort_mem_initializers (tree t, tree mem_inits)
631{
632 tree init;
633 tree base, binfo, base_binfo;
634 tree sorted_inits;
635 tree next_subobject;
636 VEC(tree,gc) *vbases;
637 int i;
638 int uses_unions_p;
639
640 /* Build up a list of initializations. The TREE_PURPOSE of entry
641 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
642 TREE_VALUE will be the constructor arguments, or NULL if no
643 explicit initialization was provided. */
644 sorted_inits = NULL_TREE;
645
646 /* Process the virtual bases. */
647 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
648 VEC_iterate (tree, vbases, i, base); i++)
649 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
650
651 /* Process the direct bases. */
652 for (binfo = TYPE_BINFO (t), i = 0;
653 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
654 if (!BINFO_VIRTUAL_P (base_binfo))
655 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
656
657 /* Process the non-static data members. */
658 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
659 /* Reverse the entire list of initializations, so that they are in
660 the order that they will actually be performed. */
661 sorted_inits = nreverse (sorted_inits);
662
663 /* If the user presented the initializers in an order different from
664 that in which they will actually occur, we issue a warning. Keep
665 track of the next subobject which can be explicitly initialized
666 without issuing a warning. */
667 next_subobject = sorted_inits;
668
669 /* Go through the explicit initializers, filling in TREE_PURPOSE in
670 the SORTED_INITS. */
671 for (init = mem_inits; init; init = TREE_CHAIN (init))
672 {
673 tree subobject;
674 tree subobject_init;
675
676 subobject = TREE_PURPOSE (init);
677
678 /* If the explicit initializers are in sorted order, then
679 SUBOBJECT will be NEXT_SUBOBJECT, or something following
680 it. */
681 for (subobject_init = next_subobject;
682 subobject_init;
683 subobject_init = TREE_CHAIN (subobject_init))
684 if (TREE_PURPOSE (subobject_init) == subobject)
685 break;
686
687 /* Issue a warning if the explicit initializer order does not
688 match that which will actually occur.
689 ??? Are all these on the correct lines? */
690 if (warn_reorder && !subobject_init)
691 {
692 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
693 warning (OPT_Wreorder, "%q+D will be initialized after",
694 TREE_PURPOSE (next_subobject));
695 else
696 warning (OPT_Wreorder, "base %qT will be initialized after",
697 TREE_PURPOSE (next_subobject));
698 if (TREE_CODE (subobject) == FIELD_DECL)
699 warning (OPT_Wreorder, " %q+#D", subobject);
700 else
701 warning (OPT_Wreorder, " base %qT", subobject);
702 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
703 }
704
705 /* Look again, from the beginning of the list. */
706 if (!subobject_init)
707 {
708 subobject_init = sorted_inits;
709 while (TREE_PURPOSE (subobject_init) != subobject)
710 subobject_init = TREE_CHAIN (subobject_init);
711 }
712
713 /* It is invalid to initialize the same subobject more than
714 once. */
715 if (TREE_VALUE (subobject_init))
716 {
717 if (TREE_CODE (subobject) == FIELD_DECL)
718 error ("%Jmultiple initializations given for %qD",
719 current_function_decl, subobject);
720 else
721 error ("%Jmultiple initializations given for base %qT",
722 current_function_decl, subobject);
723 }
724
725 /* Record the initialization. */
726 TREE_VALUE (subobject_init) = TREE_VALUE (init);
727 next_subobject = subobject_init;
728 }
729
730 /* [class.base.init]
731
732 If a ctor-initializer specifies more than one mem-initializer for
733 multiple members of the same union (including members of
734 anonymous unions), the ctor-initializer is ill-formed. */
735 if (uses_unions_p)
736 {
737 tree last_field = NULL_TREE;
738 for (init = sorted_inits; init; init = TREE_CHAIN (init))
739 {
740 tree field;
741 tree field_type;
742 int done;
743
744 /* Skip uninitialized members and base classes. */
745 if (!TREE_VALUE (init)
746 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
747 continue;
748 /* See if this field is a member of a union, or a member of a
749 structure contained in a union, etc. */
750 field = TREE_PURPOSE (init);
751 for (field_type = DECL_CONTEXT (field);
752 !same_type_p (field_type, t);
753 field_type = TYPE_CONTEXT (field_type))
754 if (TREE_CODE (field_type) == UNION_TYPE)
755 break;
756 /* If this field is not a member of a union, skip it. */
757 if (TREE_CODE (field_type) != UNION_TYPE)
758 continue;
759
760 /* It's only an error if we have two initializers for the same
761 union type. */
762 if (!last_field)
763 {
764 last_field = field;
765 continue;
766 }
767
768 /* See if LAST_FIELD and the field initialized by INIT are
769 members of the same union. If so, there's a problem,
770 unless they're actually members of the same structure
771 which is itself a member of a union. For example, given:
772
773 union { struct { int i; int j; }; };
774
775 initializing both `i' and `j' makes sense. */
776 field_type = DECL_CONTEXT (field);
777 done = 0;
778 do
779 {
780 tree last_field_type;
781
782 last_field_type = DECL_CONTEXT (last_field);
783 while (1)
784 {
785 if (same_type_p (last_field_type, field_type))
786 {
787 if (TREE_CODE (field_type) == UNION_TYPE)
788 error ("%Jinitializations for multiple members of %qT",
789 current_function_decl, last_field_type);
790 done = 1;
791 break;
792 }
793
794 if (same_type_p (last_field_type, t))
795 break;
796
797 last_field_type = TYPE_CONTEXT (last_field_type);
798 }
799
800 /* If we've reached the outermost class, then we're
801 done. */
802 if (same_type_p (field_type, t))
803 break;
804
805 field_type = TYPE_CONTEXT (field_type);
806 }
807 while (!done);
808
809 last_field = field;
810 }
811 }
812
813 return sorted_inits;
814}
815
816/* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
817 is a TREE_LIST giving the explicit mem-initializer-list for the
818 constructor. The TREE_PURPOSE of each entry is a subobject (a
819 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
820 is a TREE_LIST giving the arguments to the constructor or
821 void_type_node for an empty list of arguments. */
822
823void
824emit_mem_initializers (tree mem_inits)
825{
826 /* We will already have issued an error message about the fact that
827 the type is incomplete. */
828 if (!COMPLETE_TYPE_P (current_class_type))
829 return;
830
831 /* Sort the mem-initializers into the order in which the
832 initializations should be performed. */
833 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
834
835 in_base_initializer = 1;
836
837 /* Initialize base classes. */
838 while (mem_inits
839 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
840 {
841 tree subobject = TREE_PURPOSE (mem_inits);
842 tree arguments = TREE_VALUE (mem_inits);
843
844 /* If these initializations are taking place in a copy constructor,
845 the base class should probably be explicitly initialized if there
846 is a user-defined constructor in the base class (other than the
847 default constructor, which will be called anyway). */
848 if (extra_warnings && !arguments
849 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
850 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
851 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
852 "copy constructor",
853 current_function_decl, BINFO_TYPE (subobject));
854
855 /* Initialize the base. */
856 if (BINFO_VIRTUAL_P (subobject))
857 construct_virtual_base (subobject, arguments);
858 else
859 {
860 tree base_addr;
861
862 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
863 subobject, 1);
864 expand_aggr_init_1 (subobject, NULL_TREE,
865 cp_build_indirect_ref (base_addr, NULL,
866 tf_warning_or_error),
867 arguments,
868 LOOKUP_NORMAL,
869 tf_warning_or_error);
870 expand_cleanup_for_base (subobject, NULL_TREE);
871 }
872
873 mem_inits = TREE_CHAIN (mem_inits);
874 }
875 in_base_initializer = 0;
876
877 /* Initialize the vptrs. */
878 initialize_vtbl_ptrs (current_class_ptr);
879
880 /* Initialize the data members. */
881 while (mem_inits)
882 {
883 perform_member_init (TREE_PURPOSE (mem_inits),
884 TREE_VALUE (mem_inits));
885 mem_inits = TREE_CHAIN (mem_inits);
886 }
887}
888
889/* Returns the address of the vtable (i.e., the value that should be
890 assigned to the vptr) for BINFO. */
891
892static tree
893build_vtbl_address (tree binfo)
894{
895 tree binfo_for = binfo;
896 tree vtbl;
897
898 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
899 /* If this is a virtual primary base, then the vtable we want to store
900 is that for the base this is being used as the primary base of. We
901 can't simply skip the initialization, because we may be expanding the
902 inits of a subobject constructor where the virtual base layout
903 can be different. */
904 while (BINFO_PRIMARY_P (binfo_for))
905 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
906
907 /* Figure out what vtable BINFO's vtable is based on, and mark it as
908 used. */
909 vtbl = get_vtbl_decl_for_binfo (binfo_for);
910 assemble_external (vtbl);
911 TREE_USED (vtbl) = 1;
912
913 /* Now compute the address to use when initializing the vptr. */
914 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
915 if (TREE_CODE (vtbl) == VAR_DECL)
916 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
917
918 return vtbl;
919}
920
921/* This code sets up the virtual function tables appropriate for
922 the pointer DECL. It is a one-ply initialization.
923
924 BINFO is the exact type that DECL is supposed to be. In
925 multiple inheritance, this might mean "C's A" if C : A, B. */
926
927static void
928expand_virtual_init (tree binfo, tree decl)
929{
930 tree vtbl, vtbl_ptr;
931 tree vtt_index;
932
933 /* Compute the initializer for vptr. */
934 vtbl = build_vtbl_address (binfo);
935
936 /* We may get this vptr from a VTT, if this is a subobject
937 constructor or subobject destructor. */
938 vtt_index = BINFO_VPTR_INDEX (binfo);
939 if (vtt_index)
940 {
941 tree vtbl2;
942 tree vtt_parm;
943
944 /* Compute the value to use, when there's a VTT. */
945 vtt_parm = current_vtt_parm;
946 vtbl2 = build2 (POINTER_PLUS_EXPR,
947 TREE_TYPE (vtt_parm),
948 vtt_parm,
949 vtt_index);
950 vtbl2 = cp_build_indirect_ref (vtbl2, NULL, tf_warning_or_error);
951 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
952
953 /* The actual initializer is the VTT value only in the subobject
954 constructor. In maybe_clone_body we'll substitute NULL for
955 the vtt_parm in the case of the non-subobject constructor. */
956 vtbl = build3 (COND_EXPR,
957 TREE_TYPE (vtbl),
958 build2 (EQ_EXPR, boolean_type_node,
959 current_in_charge_parm, integer_zero_node),
960 vtbl2,
961 vtbl);
962 }
963
964 /* Compute the location of the vtpr. */
965 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, NULL,
966 tf_warning_or_error),
967 TREE_TYPE (binfo));
968 gcc_assert (vtbl_ptr != error_mark_node);
969
970 /* Assign the vtable to the vptr. */
971 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
972 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
973 tf_warning_or_error));
974}
975
976/* If an exception is thrown in a constructor, those base classes already
977 constructed must be destroyed. This function creates the cleanup
978 for BINFO, which has just been constructed. If FLAG is non-NULL,
979 it is a DECL which is nonzero when this base needs to be
980 destroyed. */
981
982static void
983expand_cleanup_for_base (tree binfo, tree flag)
984{
985 tree expr;
986
987 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
988 return;
989
990 /* Call the destructor. */
991 expr = build_special_member_call (current_class_ref,
992 base_dtor_identifier,
993 NULL_TREE,
994 binfo,
995 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
996 tf_warning_or_error);
997 if (flag)
998 expr = fold_build3 (COND_EXPR, void_type_node,
999 c_common_truthvalue_conversion (input_location, flag),
1000 expr, integer_zero_node);
1001
1002 finish_eh_cleanup (expr);
1003}
1004
1005/* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1006 constructor. */
1007
1008static void
1009construct_virtual_base (tree vbase, tree arguments)
1010{
1011 tree inner_if_stmt;
1012 tree exp;
1013 tree flag;
1014
1015 /* If there are virtual base classes with destructors, we need to
1016 emit cleanups to destroy them if an exception is thrown during
1017 the construction process. These exception regions (i.e., the
1018 period during which the cleanups must occur) begin from the time
1019 the construction is complete to the end of the function. If we
1020 create a conditional block in which to initialize the
1021 base-classes, then the cleanup region for the virtual base begins
1022 inside a block, and ends outside of that block. This situation
1023 confuses the sjlj exception-handling code. Therefore, we do not
1024 create a single conditional block, but one for each
1025 initialization. (That way the cleanup regions always begin
1026 in the outer block.) We trust the back end to figure out
1027 that the FLAG will not change across initializations, and
1028 avoid doing multiple tests. */
1029 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
1030 inner_if_stmt = begin_if_stmt ();
1031 finish_if_stmt_cond (flag, inner_if_stmt);
1032
1033 /* Compute the location of the virtual base. If we're
1034 constructing virtual bases, then we must be the most derived
1035 class. Therefore, we don't have to look up the virtual base;
1036 we already know where it is. */
1037 exp = convert_to_base_statically (current_class_ref, vbase);
1038
1039 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1040 LOOKUP_COMPLAIN, tf_warning_or_error);
1041 finish_then_clause (inner_if_stmt);
1042 finish_if_stmt (inner_if_stmt);
1043
1044 expand_cleanup_for_base (vbase, flag);
1045}
1046
1047/* Find the context in which this FIELD can be initialized. */
1048
1049static tree
1050initializing_context (tree field)
1051{
1052 tree t = DECL_CONTEXT (field);
1053
1054 /* Anonymous union members can be initialized in the first enclosing
1055 non-anonymous union context. */
1056 while (t && ANON_AGGR_TYPE_P (t))
1057 t = TYPE_CONTEXT (t);
1058 return t;
1059}
1060
1061/* Function to give error message if member initialization specification
1062 is erroneous. FIELD is the member we decided to initialize.
1063 TYPE is the type for which the initialization is being performed.
1064 FIELD must be a member of TYPE.
1065
1066 MEMBER_NAME is the name of the member. */
1067
1068static int
1069member_init_ok_or_else (tree field, tree type, tree member_name)
1070{
1071 if (field == error_mark_node)
1072 return 0;
1073 if (!field)
1074 {
1075 error ("class %qT does not have any field named %qD", type,
1076 member_name);
1077 return 0;
1078 }
1079 if (TREE_CODE (field) == VAR_DECL)
1080 {
1081 error ("%q#D is a static data member; it can only be "
1082 "initialized at its definition",
1083 field);
1084 return 0;
1085 }
1086 if (TREE_CODE (field) != FIELD_DECL)
1087 {
1088 error ("%q#D is not a non-static data member of %qT",
1089 field, type);
1090 return 0;
1091 }
1092 if (initializing_context (field) != type)
1093 {
1094 error ("class %qT does not have any field named %qD", type,
1095 member_name);
1096 return 0;
1097 }
1098
1099 return 1;
1100}
1101
1102/* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1103 is a _TYPE node or TYPE_DECL which names a base for that type.
1104 Check the validity of NAME, and return either the base _TYPE, base
1105 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1106 NULL_TREE and issue a diagnostic.
1107
1108 An old style unnamed direct single base construction is permitted,
1109 where NAME is NULL. */
1110
1111tree
1112expand_member_init (tree name)
1113{
1114 tree basetype;
1115 tree field;
1116
1117 if (!current_class_ref)
1118 return NULL_TREE;
1119
1120 if (!name)
1121 {
1122 /* This is an obsolete unnamed base class initializer. The
1123 parser will already have warned about its use. */
1124 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1125 {
1126 case 0:
1127 error ("unnamed initializer for %qT, which has no base classes",
1128 current_class_type);
1129 return NULL_TREE;
1130 case 1:
1131 basetype = BINFO_TYPE
1132 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1133 break;
1134 default:
1135 error ("unnamed initializer for %qT, which uses multiple inheritance",
1136 current_class_type);
1137 return NULL_TREE;
1138 }
1139 }
1140 else if (TYPE_P (name))
1141 {
1142 basetype = TYPE_MAIN_VARIANT (name);
1143 name = TYPE_NAME (name);
1144 }
1145 else if (TREE_CODE (name) == TYPE_DECL)
1146 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1147 else
1148 basetype = NULL_TREE;
1149
1150 if (basetype)
1151 {
1152 tree class_binfo;
1153 tree direct_binfo;
1154 tree virtual_binfo;
1155 int i;
1156
1157 if (current_template_parms)
1158 return basetype;
1159
1160 class_binfo = TYPE_BINFO (current_class_type);
1161 direct_binfo = NULL_TREE;
1162 virtual_binfo = NULL_TREE;
1163
1164 /* Look for a direct base. */
1165 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1166 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1167 break;
1168
1169 /* Look for a virtual base -- unless the direct base is itself
1170 virtual. */
1171 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1172 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1173
1174 /* [class.base.init]
1175
1176 If a mem-initializer-id is ambiguous because it designates
1177 both a direct non-virtual base class and an inherited virtual
1178 base class, the mem-initializer is ill-formed. */
1179 if (direct_binfo && virtual_binfo)
1180 {
1181 error ("%qD is both a direct base and an indirect virtual base",
1182 basetype);
1183 return NULL_TREE;
1184 }
1185
1186 if (!direct_binfo && !virtual_binfo)
1187 {
1188 if (CLASSTYPE_VBASECLASSES (current_class_type))
1189 error ("type %qT is not a direct or virtual base of %qT",
1190 basetype, current_class_type);
1191 else
1192 error ("type %qT is not a direct base of %qT",
1193 basetype, current_class_type);
1194 return NULL_TREE;
1195 }
1196
1197 return direct_binfo ? direct_binfo : virtual_binfo;
1198 }
1199 else
1200 {
1201 if (TREE_CODE (name) == IDENTIFIER_NODE)
1202 field = lookup_field (current_class_type, name, 1, false);
1203 else
1204 field = name;
1205
1206 if (member_init_ok_or_else (field, current_class_type, name))
1207 return field;
1208 }
1209
1210 return NULL_TREE;
1211}
1212
1213/* This is like `expand_member_init', only it stores one aggregate
1214 value into another.
1215
1216 INIT comes in two flavors: it is either a value which
1217 is to be stored in EXP, or it is a parameter list
1218 to go to a constructor, which will operate on EXP.
1219 If INIT is not a parameter list for a constructor, then set
1220 LOOKUP_ONLYCONVERTING.
1221 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1222 the initializer, if FLAGS is 0, then it is the (init) form.
1223 If `init' is a CONSTRUCTOR, then we emit a warning message,
1224 explaining that such initializations are invalid.
1225
1226 If INIT resolves to a CALL_EXPR which happens to return
1227 something of the type we are looking for, then we know
1228 that we can safely use that call to perform the
1229 initialization.
1230
1231 The virtual function table pointer cannot be set up here, because
1232 we do not really know its type.
1233
1234 This never calls operator=().
1235
1236 When initializing, nothing is CONST.
1237
1238 A default copy constructor may have to be used to perform the
1239 initialization.
1240
1241 A constructor or a conversion operator may have to be used to
1242 perform the initialization, but not both, as it would be ambiguous. */
1243
1244tree
1245build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1246{
1247 tree stmt_expr;
1248 tree compound_stmt;
1249 int destroy_temps;
1250 tree type = TREE_TYPE (exp);
1251 int was_const = TREE_READONLY (exp);
1252 int was_volatile = TREE_THIS_VOLATILE (exp);
1253 int is_global;
1254
1255 if (init == error_mark_node)
1256 return error_mark_node;
1257
1258 TREE_READONLY (exp) = 0;
1259 TREE_THIS_VOLATILE (exp) = 0;
1260
1261 if (init && TREE_CODE (init) != TREE_LIST)
1262 flags |= LOOKUP_ONLYCONVERTING;
1263
1264 if (TREE_CODE (type) == ARRAY_TYPE)
1265 {
1266 tree itype;
1267
1268 /* An array may not be initialized use the parenthesized
1269 initialization form -- unless the initializer is "()". */
1270 if (init && TREE_CODE (init) == TREE_LIST)
1271 {
1272 if (complain & tf_error)
1273 error ("bad array initializer");
1274 return error_mark_node;
1275 }
1276 /* Must arrange to initialize each element of EXP
1277 from elements of INIT. */
1278 itype = init ? TREE_TYPE (init) : NULL_TREE;
1279 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1280 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1281 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1282 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1283 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1284 /*explicit_value_init_p=*/false,
1285 itype && same_type_p (itype,
1286 TREE_TYPE (exp)),
1287 complain);
1288 TREE_READONLY (exp) = was_const;
1289 TREE_THIS_VOLATILE (exp) = was_volatile;
1290 TREE_TYPE (exp) = type;
1291 if (init)
1292 TREE_TYPE (init) = itype;
1293 return stmt_expr;
1294 }
1295
1296 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1297 /* Just know that we've seen something for this node. */
1298 TREE_USED (exp) = 1;
1299
1300 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1301 destroy_temps = stmts_are_full_exprs_p ();
1302 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1303 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1304 init, LOOKUP_NORMAL|flags, complain);
1305 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1306 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1307 TREE_READONLY (exp) = was_const;
1308 TREE_THIS_VOLATILE (exp) = was_volatile;
1309
1310 return stmt_expr;
1311}
1312
1313static void
1314expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1315 tsubst_flags_t complain)
1316{
1317 tree type = TREE_TYPE (exp);
1318 tree ctor_name;
1319
1320 /* It fails because there may not be a constructor which takes
1321 its own type as the first (or only parameter), but which does
1322 take other types via a conversion. So, if the thing initializing
1323 the expression is a unit element of type X, first try X(X&),
1324 followed by initialization by X. If neither of these work
1325 out, then look hard. */
1326 tree rval;
1327 tree parms;
1328
1329 if (init && TREE_CODE (init) != TREE_LIST
1330 && (flags & LOOKUP_ONLYCONVERTING))
1331 {
1332 /* Base subobjects should only get direct-initialization. */
1333 gcc_assert (true_exp == exp);
1334
1335 if (flags & DIRECT_BIND)
1336 /* Do nothing. We hit this in two cases: Reference initialization,
1337 where we aren't initializing a real variable, so we don't want
1338 to run a new constructor; and catching an exception, where we
1339 have already built up the constructor call so we could wrap it
1340 in an exception region. */;
1341 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1342 && CP_AGGREGATE_TYPE_P (type))
1343 {
1344 /* A brace-enclosed initializer for an aggregate. */
1345 init = digest_init (type, init);
1346 }
1347 else
1348 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1349
1350 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1351 /* We need to protect the initialization of a catch parm with a
1352 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1353 around the TARGET_EXPR for the copy constructor. See
1354 initialize_handler_parm. */
1355 {
1356 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1357 TREE_OPERAND (init, 0));
1358 TREE_TYPE (init) = void_type_node;
1359 }
1360 else
1361 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1362 TREE_SIDE_EFFECTS (init) = 1;
1363 finish_expr_stmt (init);
1364 return;
1365 }
1366
1367 if (init == NULL_TREE
1368 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1369 {
1370 parms = init;
1371 if (parms)
1372 init = TREE_VALUE (parms);
1373 }
1374 else
1375 parms = build_tree_list (NULL_TREE, init);
1376
1377 if (true_exp == exp)
1378 ctor_name = complete_ctor_identifier;
1379 else
1380 ctor_name = base_ctor_identifier;
1381
1382 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags,
1383 complain);
1384 if (TREE_SIDE_EFFECTS (rval))
1385 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1386}
1387
1388/* This function is responsible for initializing EXP with INIT
1389 (if any).
1390
1391 BINFO is the binfo of the type for who we are performing the
1392 initialization. For example, if W is a virtual base class of A and B,
1393 and C : A, B.
1394 If we are initializing B, then W must contain B's W vtable, whereas
1395 were we initializing C, W must contain C's W vtable.
1396
1397 TRUE_EXP is nonzero if it is the true expression being initialized.
1398 In this case, it may be EXP, or may just contain EXP. The reason we
1399 need this is because if EXP is a base element of TRUE_EXP, we
1400 don't necessarily know by looking at EXP where its virtual
1401 baseclass fields should really be pointing. But we do know
1402 from TRUE_EXP. In constructors, we don't know anything about
1403 the value being initialized.
1404
1405 FLAGS is just passed to `build_new_method_call'. See that function
1406 for its description. */
1407
1408static void
1409expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1410 tsubst_flags_t complain)
1411{
1412 tree type = TREE_TYPE (exp);
1413
1414 gcc_assert (init != error_mark_node && type != error_mark_node);
1415 gcc_assert (building_stmt_tree ());
1416
1417 /* Use a function returning the desired type to initialize EXP for us.
1418 If the function is a constructor, and its first argument is
1419 NULL_TREE, know that it was meant for us--just slide exp on
1420 in and expand the constructor. Constructors now come
1421 as TARGET_EXPRs. */
1422
1423 if (init && TREE_CODE (exp) == VAR_DECL
1424 && COMPOUND_LITERAL_P (init))
1425 {
1426 /* If store_init_value returns NULL_TREE, the INIT has been
1427 recorded as the DECL_INITIAL for EXP. That means there's
1428 nothing more we have to do. */
1429 init = store_init_value (exp, init);
1430 if (init)
1431 finish_expr_stmt (init);
1432 return;
1433 }
1434
1435 /* If an explicit -- but empty -- initializer list was present,
1436 that's value-initialization. */
1437 if (init == void_type_node)
1438 {
1439 /* If there's a user-provided constructor, we just call that. */
1440 if (type_has_user_provided_constructor (type))
1441 /* Fall through. */;
1442 /* If there isn't, but we still need to call the constructor,
1443 zero out the object first. */
1444 else if (TYPE_NEEDS_CONSTRUCTING (type))
1445 {
d8f1d01e
JM
1446 tree field_size = NULL_TREE;
1447 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1448 /* Don't clobber already initialized virtual bases. */
1449 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1450 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1451 field_size);
c251ad9e
SS
1452 init = build2 (INIT_EXPR, type, exp, init);
1453 finish_expr_stmt (init);
1454 /* And then call the constructor. */
1455 }
1456 /* If we don't need to mess with the constructor at all,
1457 then just zero out the object and we're done. */
1458 else
1459 {
1460 init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
1461 finish_expr_stmt (init);
1462 return;
1463 }
1464 init = NULL_TREE;
1465 }
1466
1467 /* We know that expand_default_init can handle everything we want
1468 at this point. */
1469 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1470}
1471
1472/* Report an error if TYPE is not a user-defined, class type. If
1473 OR_ELSE is nonzero, give an error message. */
1474
1475int
1476is_class_type (tree type, int or_else)
1477{
1478 if (type == error_mark_node)
1479 return 0;
1480
1481 if (! CLASS_TYPE_P (type))
1482 {
1483 if (or_else)
1484 error ("%qT is not a class type", type);
1485 return 0;
1486 }
1487 return 1;
1488}
1489
1490tree
1491get_type_value (tree name)
1492{
1493 if (name == error_mark_node)
1494 return NULL_TREE;
1495
1496 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1497 return IDENTIFIER_TYPE_VALUE (name);
1498 else
1499 return NULL_TREE;
1500}
1501
1502/* Build a reference to a member of an aggregate. This is not a C++
1503 `&', but really something which can have its address taken, and
1504 then act as a pointer to member, for example TYPE :: FIELD can have
1505 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1506 this expression is the operand of "&".
1507
1508 @@ Prints out lousy diagnostics for operator <typename>
1509 @@ fields.
1510
1511 @@ This function should be rewritten and placed in search.c. */
1512
1513tree
1514build_offset_ref (tree type, tree member, bool address_p)
1515{
1516 tree decl;
1517 tree basebinfo = NULL_TREE;
1518
1519 /* class templates can come in as TEMPLATE_DECLs here. */
1520 if (TREE_CODE (member) == TEMPLATE_DECL)
1521 return member;
1522
1523 if (dependent_type_p (type) || type_dependent_expression_p (member))
1524 return build_qualified_name (NULL_TREE, type, member,
1525 /*template_p=*/false);
1526
1527 gcc_assert (TYPE_P (type));
1528 if (! is_class_type (type, 1))
1529 return error_mark_node;
1530
1531 gcc_assert (DECL_P (member) || BASELINK_P (member));
1532 /* Callers should call mark_used before this point. */
1533 gcc_assert (!DECL_P (member) || TREE_USED (member));
1534
1535 if (!COMPLETE_TYPE_P (complete_type (type))
1536 && !TYPE_BEING_DEFINED (type))
1537 {
1538 error ("incomplete type %qT does not have member %qD", type, member);
1539 return error_mark_node;
1540 }
1541
1542 /* Entities other than non-static members need no further
1543 processing. */
1544 if (TREE_CODE (member) == TYPE_DECL)
1545 return member;
1546 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1547 return convert_from_reference (member);
1548
1549 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1550 {
1551 error ("invalid pointer to bit-field %qD", member);
1552 return error_mark_node;
1553 }
1554
1555 /* Set up BASEBINFO for member lookup. */
1556 decl = maybe_dummy_object (type, &basebinfo);
1557
1558 /* A lot of this logic is now handled in lookup_member. */
1559 if (BASELINK_P (member))
1560 {
1561 /* Go from the TREE_BASELINK to the member function info. */
1562 tree t = BASELINK_FUNCTIONS (member);
1563
1564 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1565 {
1566 /* Get rid of a potential OVERLOAD around it. */
1567 t = OVL_CURRENT (t);
1568
1569 /* Unique functions are handled easily. */
1570
1571 /* For non-static member of base class, we need a special rule
1572 for access checking [class.protected]:
1573
1574 If the access is to form a pointer to member, the
1575 nested-name-specifier shall name the derived class
1576 (or any class derived from that class). */
1577 if (address_p && DECL_P (t)
1578 && DECL_NONSTATIC_MEMBER_P (t))
1579 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1580 else
1581 perform_or_defer_access_check (basebinfo, t, t);
1582
1583 if (DECL_STATIC_FUNCTION_P (t))
1584 return t;
1585 member = t;
1586 }
1587 else
1588 TREE_TYPE (member) = unknown_type_node;
1589 }
1590 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1591 /* We need additional test besides the one in
1592 check_accessibility_of_qualified_id in case it is
1593 a pointer to non-static member. */
1594 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1595
1596 if (!address_p)
1597 {
1598 /* If MEMBER is non-static, then the program has fallen afoul of
1599 [expr.prim]:
1600
1601 An id-expression that denotes a nonstatic data member or
1602 nonstatic member function of a class can only be used:
1603
1604 -- as part of a class member access (_expr.ref_) in which the
1605 object-expression refers to the member's class or a class
1606 derived from that class, or
1607
1608 -- to form a pointer to member (_expr.unary.op_), or
1609
1610 -- in the body of a nonstatic member function of that class or
1611 of a class derived from that class (_class.mfct.nonstatic_), or
1612
1613 -- in a mem-initializer for a constructor for that class or for
1614 a class derived from that class (_class.base.init_). */
1615 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1616 {
1617 /* Build a representation of the qualified name suitable
1618 for use as the operand to "&" -- even though the "&" is
1619 not actually present. */
1620 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1621 /* In Microsoft mode, treat a non-static member function as if
1622 it were a pointer-to-member. */
1623 if (flag_ms_extensions)
1624 {
1625 PTRMEM_OK_P (member) = 1;
1626 return cp_build_unary_op (ADDR_EXPR, member, 0,
1627 tf_warning_or_error);
1628 }
1629 error ("invalid use of non-static member function %qD",
1630 TREE_OPERAND (member, 1));
1631 return error_mark_node;
1632 }
1633 else if (TREE_CODE (member) == FIELD_DECL)
1634 {
1635 error ("invalid use of non-static data member %qD", member);
1636 return error_mark_node;
1637 }
1638 return member;
1639 }
1640
1641 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1642 PTRMEM_OK_P (member) = 1;
1643 return member;
1644}
1645
1646/* If DECL is a scalar enumeration constant or variable with a
1647 constant initializer, return the initializer (or, its initializers,
1648 recursively); otherwise, return DECL. If INTEGRAL_P, the
1649 initializer is only returned if DECL is an integral
1650 constant-expression. */
1651
1652static tree
1653constant_value_1 (tree decl, bool integral_p)
1654{
1655 while (TREE_CODE (decl) == CONST_DECL
1656 || (integral_p
1657 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1658 : (TREE_CODE (decl) == VAR_DECL
1659 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1660 {
1661 tree init;
1662 /* Static data members in template classes may have
1663 non-dependent initializers. References to such non-static
1664 data members are not value-dependent, so we must retrieve the
1665 initializer here. The DECL_INITIAL will have the right type,
1666 but will not have been folded because that would prevent us
1667 from performing all appropriate semantic checks at
1668 instantiation time. */
1669 if (DECL_CLASS_SCOPE_P (decl)
1670 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1671 && uses_template_parms (CLASSTYPE_TI_ARGS
1672 (DECL_CONTEXT (decl))))
1673 {
1674 ++processing_template_decl;
1675 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1676 --processing_template_decl;
1677 }
1678 else
1679 {
1680 /* If DECL is a static data member in a template
1681 specialization, we must instantiate it here. The
1682 initializer for the static data member is not processed
1683 until needed; we need it now. */
1684 mark_used (decl);
1685 init = DECL_INITIAL (decl);
1686 }
1687 if (init == error_mark_node)
1688 return decl;
1689 /* Initializers in templates are generally expanded during
1690 instantiation, so before that for const int i(2)
1691 INIT is a TREE_LIST with the actual initializer as
1692 TREE_VALUE. */
1693 if (processing_template_decl
1694 && init
1695 && TREE_CODE (init) == TREE_LIST
1696 && TREE_CHAIN (init) == NULL_TREE)
1697 init = TREE_VALUE (init);
1698 if (!init
1699 || !TREE_TYPE (init)
1700 || (integral_p
1701 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1702 : (!TREE_CONSTANT (init)
1703 /* Do not return an aggregate constant (of which
1704 string literals are a special case), as we do not
1705 want to make inadvertent copies of such entities,
1706 and we must be sure that their addresses are the
1707 same everywhere. */
1708 || TREE_CODE (init) == CONSTRUCTOR
1709 || TREE_CODE (init) == STRING_CST)))
1710 break;
1711 decl = unshare_expr (init);
1712 }
1713 return decl;
1714}
1715
1716/* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1717 constant of integral or enumeration type, then return that value.
1718 These are those variables permitted in constant expressions by
1719 [5.19/1]. */
1720
1721tree
1722integral_constant_value (tree decl)
1723{
1724 return constant_value_1 (decl, /*integral_p=*/true);
1725}
1726
1727/* A more relaxed version of integral_constant_value, used by the
1728 common C/C++ code and by the C++ front end for optimization
1729 purposes. */
1730
1731tree
1732decl_constant_value (tree decl)
1733{
1734 return constant_value_1 (decl,
1735 /*integral_p=*/processing_template_decl);
1736}
1737\f
1738/* Common subroutines of build_new and build_vec_delete. */
1739
1740/* Call the global __builtin_delete to delete ADDR. */
1741
1742static tree
1743build_builtin_delete_call (tree addr)
1744{
1745 mark_used (global_delete_fndecl);
1746 return build_call_n (global_delete_fndecl, 1, addr);
1747}
1748\f
1749/* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1750 the type of the object being allocated; otherwise, it's just TYPE.
1751 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1752 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1753 the TREE_LIST of arguments to be provided as arguments to a
1754 placement new operator. This routine performs no semantic checks;
1755 it just creates and returns a NEW_EXPR. */
1756
1757static tree
1758build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1759 int use_global_new)
1760{
1761 tree new_expr;
1762
1763 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1764 nelts, init);
1765 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1766 TREE_SIDE_EFFECTS (new_expr) = 1;
1767
1768 return new_expr;
1769}
1770
1771/* Make sure that there are no aliasing issues with T, a placement new
1772 expression applied to PLACEMENT, by recording the change in dynamic
1773 type. If placement new is inlined, as it is with libstdc++, and if
1774 the type of the placement new differs from the type of the
1775 placement location itself, then alias analysis may think it is OK
1776 to interchange writes to the location from before the placement new
1777 and from after the placement new. We have to prevent type-based
1778 alias analysis from applying. PLACEMENT may be NULL, which means
1779 that we couldn't capture it in a temporary variable, in which case
1780 we use a memory clobber. */
1781
1782static tree
1783avoid_placement_new_aliasing (tree t, tree placement)
1784{
1785 tree type_change;
1786
1787 if (processing_template_decl)
1788 return t;
1789
1790 /* If we are not using type based aliasing, we don't have to do
1791 anything. */
1792 if (!flag_strict_aliasing)
1793 return t;
1794
1795 /* If we have a pointer and a location, record the change in dynamic
1796 type. Otherwise we need a general memory clobber. */
1797 if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE
1798 && placement != NULL_TREE
1799 && TREE_CODE (TREE_TYPE (placement)) == POINTER_TYPE)
1800 type_change = build_stmt (CHANGE_DYNAMIC_TYPE_EXPR,
1801 TREE_TYPE (t),
1802 placement);
1803 else
1804 {
1805 /* Build a memory clobber. */
1806 type_change = build_stmt (ASM_EXPR,
1807 build_string (0, ""),
1808 NULL_TREE,
1809 NULL_TREE,
1810 tree_cons (NULL_TREE,
1811 build_string (6, "memory"),
1812 NULL_TREE));
1813
1814 ASM_VOLATILE_P (type_change) = 1;
1815 }
1816
1817 return build2 (COMPOUND_EXPR, TREE_TYPE (t), type_change, t);
1818}
1819
1820/* Generate code for a new-expression, including calling the "operator
1821 new" function, initializing the object, and, if an exception occurs
1822 during construction, cleaning up. The arguments are as for
1823 build_raw_new_expr. */
1824
1825static tree
1826build_new_1 (tree placement, tree type, tree nelts, tree init,
1827 bool globally_qualified_p, tsubst_flags_t complain)
1828{
1829 tree size, rval;
1830 /* True iff this is a call to "operator new[]" instead of just
1831 "operator new". */
1832 bool array_p = false;
1833 /* If ARRAY_P is true, the element type of the array. This is never
1834 an ARRAY_TYPE; for something like "new int[3][4]", the
1835 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1836 TYPE. */
1837 tree elt_type;
1838 /* The type of the new-expression. (This type is always a pointer
1839 type.) */
1840 tree pointer_type;
1841 tree outer_nelts = NULL_TREE;
1842 tree alloc_call, alloc_expr;
1843 /* The address returned by the call to "operator new". This node is
1844 a VAR_DECL and is therefore reusable. */
1845 tree alloc_node;
1846 tree alloc_fn;
1847 tree cookie_expr, init_expr;
1848 int nothrow, check_new;
1849 int use_java_new = 0;
1850 /* If non-NULL, the number of extra bytes to allocate at the
1851 beginning of the storage allocated for an array-new expression in
1852 order to store the number of elements. */
1853 tree cookie_size = NULL_TREE;
1854 tree placement_expr = NULL_TREE;
1855 /* True if the function we are calling is a placement allocation
1856 function. */
1857 bool placement_allocation_fn_p;
1858 tree args = NULL_TREE;
1859 /* True if the storage must be initialized, either by a constructor
1860 or due to an explicit new-initializer. */
1861 bool is_initialized;
1862 /* The address of the thing allocated, not including any cookie. In
1863 particular, if an array cookie is in use, DATA_ADDR is the
1864 address of the first array element. This node is a VAR_DECL, and
1865 is therefore reusable. */
1866 tree data_addr;
1867 tree init_preeval_expr = NULL_TREE;
1868
1869 if (nelts)
1870 {
1871 outer_nelts = nelts;
1872 array_p = true;
1873 }
1874 else if (TREE_CODE (type) == ARRAY_TYPE)
1875 {
1876 array_p = true;
1877 nelts = array_type_nelts_top (type);
1878 outer_nelts = nelts;
1879 type = TREE_TYPE (type);
1880 }
1881
1882 /* If our base type is an array, then make sure we know how many elements
1883 it has. */
1884 for (elt_type = type;
1885 TREE_CODE (elt_type) == ARRAY_TYPE;
1886 elt_type = TREE_TYPE (elt_type))
1887 nelts = cp_build_binary_op (input_location,
1888 MULT_EXPR, nelts,
1889 array_type_nelts_top (elt_type),
1890 complain);
1891
1892 if (TREE_CODE (elt_type) == VOID_TYPE)
1893 {
1894 if (complain & tf_error)
1895 error ("invalid type %<void%> for new");
1896 return error_mark_node;
1897 }
1898
1899 if (abstract_virtuals_error (NULL_TREE, elt_type))
1900 return error_mark_node;
1901
1902 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1903
1904 if (CP_TYPE_CONST_P (elt_type) && !init
1905 && !type_has_user_provided_default_constructor (elt_type))
1906 {
1907 if (complain & tf_error)
1908 error ("uninitialized const in %<new%> of %q#T", elt_type);
1909 return error_mark_node;
1910 }
1911
1912 size = size_in_bytes (elt_type);
1913 if (array_p)
1914 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1915
1916 alloc_fn = NULL_TREE;
1917
1918 /* Allocate the object. */
1919 if (! placement && TYPE_FOR_JAVA (elt_type))
1920 {
1921 tree class_addr;
1922 tree class_decl = build_java_class_ref (elt_type);
1923 static const char alloc_name[] = "_Jv_AllocObject";
1924
1925 if (class_decl == error_mark_node)
1926 return error_mark_node;
1927
1928 use_java_new = 1;
1929 if (!get_global_value_if_present (get_identifier (alloc_name),
1930 &alloc_fn))
1931 {
1932 if (complain & tf_error)
1933 error ("call to Java constructor with %qs undefined", alloc_name);
1934 return error_mark_node;
1935 }
1936 else if (really_overloaded_fn (alloc_fn))
1937 {
1938 if (complain & tf_error)
1939 error ("%qD should never be overloaded", alloc_fn);
1940 return error_mark_node;
1941 }
1942 alloc_fn = OVL_CURRENT (alloc_fn);
1943 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1944 alloc_call = (cp_build_function_call
1945 (alloc_fn,
1946 build_tree_list (NULL_TREE, class_addr),
1947 complain));
1948 }
1949 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
1950 {
1951 error ("Java class %q#T object allocated using placement new", elt_type);
1952 return error_mark_node;
1953 }
1954 else
1955 {
1956 tree fnname;
1957 tree fns;
1958
1959 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1960
1961 if (!globally_qualified_p
1962 && CLASS_TYPE_P (elt_type)
1963 && (array_p
1964 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1965 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1966 {
1967 /* Use a class-specific operator new. */
1968 /* If a cookie is required, add some extra space. */
1969 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1970 {
1971 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1972 size = size_binop (PLUS_EXPR, size, cookie_size);
1973 }
1974 /* Create the argument list. */
1975 args = tree_cons (NULL_TREE, size, placement);
1976 /* Do name-lookup to find the appropriate operator. */
1977 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1978 if (fns == NULL_TREE)
1979 {
1980 if (complain & tf_error)
1981 error ("no suitable %qD found in class %qT", fnname, elt_type);
1982 return error_mark_node;
1983 }
1984 if (TREE_CODE (fns) == TREE_LIST)
1985 {
1986 if (complain & tf_error)
1987 {
1988 error ("request for member %qD is ambiguous", fnname);
1989 print_candidates (fns);
1990 }
1991 return error_mark_node;
1992 }
1993 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1994 fns, args,
1995 /*conversion_path=*/NULL_TREE,
1996 LOOKUP_NORMAL,
1997 &alloc_fn,
1998 complain);
1999 }
2000 else
2001 {
2002 /* Use a global operator new. */
2003 /* See if a cookie might be required. */
2004 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2005 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2006 else
2007 cookie_size = NULL_TREE;
2008
2009 alloc_call = build_operator_new_call (fnname, placement,
2010 &size, &cookie_size,
2011 &alloc_fn);
2012 }
2013 }
2014
2015 if (alloc_call == error_mark_node)
2016 return error_mark_node;
2017
2018 gcc_assert (alloc_fn != NULL_TREE);
2019
2020 /* If PLACEMENT is a simple pointer type and is not passed by reference,
2021 then copy it into PLACEMENT_EXPR. */
2022 if (!processing_template_decl
2023 && placement != NULL_TREE
2024 && TREE_CHAIN (placement) == NULL_TREE
2025 && TREE_CODE (TREE_TYPE (TREE_VALUE (placement))) == POINTER_TYPE
2026 && TREE_CODE (alloc_call) == CALL_EXPR
2027 && call_expr_nargs (alloc_call) == 2
2028 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2029 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2030 {
2031 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2032
2033 if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2034 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2035 {
2036 placement_expr = get_target_expr (TREE_VALUE (placement));
2037 CALL_EXPR_ARG (alloc_call, 1)
2038 = convert (TREE_TYPE (placement_arg), placement_expr);
2039 }
2040 }
2041
2042 /* In the simple case, we can stop now. */
2043 pointer_type = build_pointer_type (type);
2044 if (!cookie_size && !is_initialized)
2045 {
2046 rval = build_nop (pointer_type, alloc_call);
2047 if (placement != NULL)
2048 rval = avoid_placement_new_aliasing (rval, placement_expr);
2049 return rval;
2050 }
2051
2052 /* Store the result of the allocation call in a variable so that we can
2053 use it more than once. */
2054 alloc_expr = get_target_expr (alloc_call);
2055 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2056
2057 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2058 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2059 alloc_call = TREE_OPERAND (alloc_call, 1);
2060
2061 /* Now, check to see if this function is actually a placement
2062 allocation function. This can happen even when PLACEMENT is NULL
2063 because we might have something like:
2064
2065 struct S { void* operator new (size_t, int i = 0); };
2066
2067 A call to `new S' will get this allocation function, even though
2068 there is no explicit placement argument. If there is more than
2069 one argument, or there are variable arguments, then this is a
2070 placement allocation function. */
2071 placement_allocation_fn_p
2072 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2073 || varargs_function_p (alloc_fn));
2074
2075 /* Preevaluate the placement args so that we don't reevaluate them for a
2076 placement delete. */
2077 if (placement_allocation_fn_p)
2078 {
2079 tree inits;
2080 stabilize_call (alloc_call, &inits);
2081 if (inits)
2082 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2083 alloc_expr);
2084 }
2085
2086 /* unless an allocation function is declared with an empty excep-
2087 tion-specification (_except.spec_), throw(), it indicates failure to
2088 allocate storage by throwing a bad_alloc exception (clause _except_,
2089 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2090 cation function is declared with an empty exception-specification,
2091 throw(), it returns null to indicate failure to allocate storage and a
2092 non-null pointer otherwise.
2093
2094 So check for a null exception spec on the op new we just called. */
2095
2096 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2097 check_new = (flag_check_new || nothrow) && ! use_java_new;
2098
2099 if (cookie_size)
2100 {
2101 tree cookie;
2102 tree cookie_ptr;
2103 tree size_ptr_type;
2104
2105 /* Adjust so we're pointing to the start of the object. */
2106 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2107 alloc_node, cookie_size);
2108
2109 /* Store the number of bytes allocated so that we can know how
2110 many elements to destroy later. We use the last sizeof
2111 (size_t) bytes to store the number of elements. */
2112 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2113 cookie_ptr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2114 alloc_node, cookie_ptr);
2115 size_ptr_type = build_pointer_type (sizetype);
2116 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2117 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2118
2119 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2120
2121 if (targetm.cxx.cookie_has_size ())
2122 {
2123 /* Also store the element size. */
2124 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2125 fold_build1 (NEGATE_EXPR, sizetype,
2126 size_in_bytes (sizetype)));
2127
2128 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2129 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2130 size_in_bytes (elt_type));
2131 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2132 cookie, cookie_expr);
2133 }
2134 }
2135 else
2136 {
2137 cookie_expr = NULL_TREE;
2138 data_addr = alloc_node;
2139 }
2140
2141 /* Now use a pointer to the type we've actually allocated. */
2142 data_addr = fold_convert (pointer_type, data_addr);
2143 /* Any further uses of alloc_node will want this type, too. */
2144 alloc_node = fold_convert (pointer_type, alloc_node);
2145
2146 /* Now initialize the allocated object. Note that we preevaluate the
2147 initialization expression, apart from the actual constructor call or
2148 assignment--we do this because we want to delay the allocation as long
2149 as possible in order to minimize the size of the exception region for
2150 placement delete. */
2151 if (is_initialized)
2152 {
2153 bool stable;
2154 bool explicit_value_init_p = false;
2155
2156 if (init == void_zero_node)
2157 {
2158 init = NULL_TREE;
2159 explicit_value_init_p = true;
2160 }
2161
2162 if (array_p)
2163 {
2164 tree non_const_pointer_type = build_pointer_type
2165 (cp_build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_CONST));
2166
2167 if (init && TREE_CHAIN (init) == NULL_TREE
2168 && BRACE_ENCLOSED_INITIALIZER_P (TREE_VALUE (init))
2169 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init)))
2170 {
2171 tree arraytype, domain;
2172 init = TREE_VALUE (init);
2173 if (TREE_CONSTANT (nelts))
2174 domain = compute_array_index_type (NULL_TREE, nelts);
2175 else
2176 {
2177 domain = NULL_TREE;
2178 if (CONSTRUCTOR_NELTS (init) > 0)
2179 warning (0, "non-constant array size in new, unable to "
2180 "verify length of initializer-list");
2181 }
2182 arraytype = build_cplus_array_type (type, domain);
2183 init = digest_init (arraytype, init);
2184 }
2185 else if (init)
2186 {
2187 if (complain & tf_error)
2188 permerror (input_location, "ISO C++ forbids initialization in array new");
2189 else
2190 return error_mark_node;
2191 }
2192 init_expr
2193 = build_vec_init (fold_convert (non_const_pointer_type, data_addr),
2194 cp_build_binary_op (input_location,
2195 MINUS_EXPR, outer_nelts,
2196 integer_one_node,
2197 complain),
2198 init,
2199 explicit_value_init_p,
2200 /*from_array=*/0,
2201 complain);
2202
2203 /* An array initialization is stable because the initialization
2204 of each element is a full-expression, so the temporaries don't
2205 leak out. */
2206 stable = true;
2207 }
2208 else
2209 {
2210 init_expr = cp_build_indirect_ref (data_addr, NULL, complain);
2211
4b1e227d
SW
2212 if (TYPE_NEEDS_CONSTRUCTING (type)
2213 && (!explicit_value_init_p || processing_template_decl))
c251ad9e
SS
2214 {
2215 init_expr = build_special_member_call (init_expr,
2216 complete_ctor_identifier,
2217 init, elt_type,
2218 LOOKUP_NORMAL,
2219 complain);
2220 }
2221 else if (explicit_value_init_p)
2222 {
4b1e227d
SW
2223 if (processing_template_decl)
2224 /* Don't worry about it, we'll handle this properly at
2225 instantiation time. */;
2226 else
2227 /* Something like `new int()'. */
2228 init_expr = build2 (INIT_EXPR, type,
2229 init_expr, build_value_init (type));
c251ad9e
SS
2230 }
2231 else
2232 {
2233 /* We are processing something like `new int (10)', which
2234 means allocate an int, and initialize it with 10. */
2235
2236 if (TREE_CODE (init) == TREE_LIST)
2237 init = build_x_compound_expr_from_list (init,
2238 "new initializer");
2239 else
2240 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2241 || TREE_TYPE (init) != NULL_TREE);
2242
2243 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, init,
2244 complain);
2245 }
2246 stable = stabilize_init (init_expr, &init_preeval_expr);
2247 }
2248
2249 if (init_expr == error_mark_node)
2250 return error_mark_node;
2251
2252 /* If any part of the object initialization terminates by throwing an
2253 exception and a suitable deallocation function can be found, the
2254 deallocation function is called to free the memory in which the
2255 object was being constructed, after which the exception continues
2256 to propagate in the context of the new-expression. If no
2257 unambiguous matching deallocation function can be found,
2258 propagating the exception does not cause the object's memory to be
2259 freed. */
2260 if (flag_exceptions && ! use_java_new)
2261 {
2262 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2263 tree cleanup;
2264
2265 /* The Standard is unclear here, but the right thing to do
2266 is to use the same method for finding deallocation
2267 functions that we use for finding allocation functions. */
2268 cleanup = (build_op_delete_call
2269 (dcode,
2270 alloc_node,
2271 size,
2272 globally_qualified_p,
2273 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2274 alloc_fn));
2275
2276 if (!cleanup)
2277 /* We're done. */;
2278 else if (stable)
2279 /* This is much simpler if we were able to preevaluate all of
2280 the arguments to the constructor call. */
2281 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2282 init_expr, cleanup);
2283 else
2284 /* Ack! First we allocate the memory. Then we set our sentry
2285 variable to true, and expand a cleanup that deletes the
2286 memory if sentry is true. Then we run the constructor, and
2287 finally clear the sentry.
2288
2289 We need to do this because we allocate the space first, so
2290 if there are any temporaries with cleanups in the
2291 constructor args and we weren't able to preevaluate them, we
2292 need this EH region to extend until end of full-expression
2293 to preserve nesting. */
2294 {
2295 tree end, sentry, begin;
2296
2297 begin = get_target_expr (boolean_true_node);
2298 CLEANUP_EH_ONLY (begin) = 1;
2299
2300 sentry = TARGET_EXPR_SLOT (begin);
2301
2302 TARGET_EXPR_CLEANUP (begin)
2303 = build3 (COND_EXPR, void_type_node, sentry,
2304 cleanup, void_zero_node);
2305
2306 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2307 sentry, boolean_false_node);
2308
2309 init_expr
2310 = build2 (COMPOUND_EXPR, void_type_node, begin,
2311 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2312 end));
2313 }
2314
2315 }
2316 }
2317 else
2318 init_expr = NULL_TREE;
2319
2320 /* Now build up the return value in reverse order. */
2321
2322 rval = data_addr;
2323
2324 if (init_expr)
2325 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2326 if (cookie_expr)
2327 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2328
2329 if (rval == data_addr)
2330 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2331 and return the call (which doesn't need to be adjusted). */
2332 rval = TARGET_EXPR_INITIAL (alloc_expr);
2333 else
2334 {
2335 if (check_new)
2336 {
2337 tree ifexp = cp_build_binary_op (input_location,
2338 NE_EXPR, alloc_node,
2339 integer_zero_node,
2340 complain);
2341 rval = build_conditional_expr (ifexp, rval, alloc_node,
2342 complain);
2343 }
2344
2345 /* Perform the allocation before anything else, so that ALLOC_NODE
2346 has been initialized before we start using it. */
2347 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2348 }
2349
2350 if (init_preeval_expr)
2351 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2352
2353 /* A new-expression is never an lvalue. */
2354 gcc_assert (!lvalue_p (rval));
2355
2356 if (placement != NULL)
2357 rval = avoid_placement_new_aliasing (rval, placement_expr);
2358
2359 return rval;
2360}
2361
2362/* Generate a representation for a C++ "new" expression. PLACEMENT is
2363 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2364 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2365 NELTS is not NULL, then this is an array-new allocation; TYPE is
2366 the type of the elements in the array and NELTS is the number of
2367 elements in the array. INIT, if non-NULL, is the initializer for
2368 the new object, or void_zero_node to indicate an initializer of
2369 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2370 "::new" rather than just "new". */
2371
2372tree
2373build_new (tree placement, tree type, tree nelts, tree init,
2374 int use_global_new, tsubst_flags_t complain)
2375{
2376 tree rval;
2377 tree orig_placement;
2378 tree orig_nelts;
2379 tree orig_init;
2380
2381 if (placement == error_mark_node || type == error_mark_node
2382 || init == error_mark_node)
2383 return error_mark_node;
2384
2385 orig_placement = placement;
2386 orig_nelts = nelts;
2387 orig_init = init;
2388
2389 if (nelts == NULL_TREE && init != void_zero_node && list_length (init) == 1)
2390 {
2391 tree auto_node = type_uses_auto (type);
2392 if (auto_node && describable_type (TREE_VALUE (init)))
2393 type = do_auto_deduction (type, TREE_VALUE (init), auto_node);
2394 }
2395
2396 if (processing_template_decl)
2397 {
2398 if (dependent_type_p (type)
2399 || any_type_dependent_arguments_p (placement)
2400 || (nelts && type_dependent_expression_p (nelts))
2401 || (init != void_zero_node
2402 && any_type_dependent_arguments_p (init)))
2403 return build_raw_new_expr (placement, type, nelts, init,
2404 use_global_new);
2405 placement = build_non_dependent_args (placement);
2406 if (nelts)
2407 nelts = build_non_dependent_expr (nelts);
2408 if (init != void_zero_node)
2409 init = build_non_dependent_args (init);
2410 }
2411
2412 if (nelts)
2413 {
2414 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2415 {
2416 if (complain & tf_error)
2417 permerror (input_location, "size in array new must have integral type");
2418 else
2419 return error_mark_node;
2420 }
2421 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2422 }
2423
2424 /* ``A reference cannot be created by the new operator. A reference
2425 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2426 returned by new.'' ARM 5.3.3 */
2427 if (TREE_CODE (type) == REFERENCE_TYPE)
2428 {
2429 if (complain & tf_error)
2430 error ("new cannot be applied to a reference type");
2431 else
2432 return error_mark_node;
2433 type = TREE_TYPE (type);
2434 }
2435
2436 if (TREE_CODE (type) == FUNCTION_TYPE)
2437 {
2438 if (complain & tf_error)
2439 error ("new cannot be applied to a function type");
2440 return error_mark_node;
2441 }
2442
2443 /* The type allocated must be complete. If the new-type-id was
2444 "T[N]" then we are just checking that "T" is complete here, but
2445 that is equivalent, since the value of "N" doesn't matter. */
2446 if (!complete_type_or_else (type, NULL_TREE))
2447 return error_mark_node;
2448
2449 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2450 if (rval == error_mark_node)
2451 return error_mark_node;
2452
2453 if (processing_template_decl)
2454 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2455 use_global_new);
2456
2457 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2458 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2459 TREE_NO_WARNING (rval) = 1;
2460
2461 return rval;
2462}
2463
2464/* Given a Java class, return a decl for the corresponding java.lang.Class. */
2465
2466tree
2467build_java_class_ref (tree type)
2468{
2469 tree name = NULL_TREE, class_decl;
2470 static tree CL_suffix = NULL_TREE;
2471 if (CL_suffix == NULL_TREE)
2472 CL_suffix = get_identifier("class$");
2473 if (jclass_node == NULL_TREE)
2474 {
2475 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2476 if (jclass_node == NULL_TREE)
2477 {
2478 error ("call to Java constructor, while %<jclass%> undefined");
2479 return error_mark_node;
2480 }
2481 jclass_node = TREE_TYPE (jclass_node);
2482 }
2483
2484 /* Mangle the class$ field. */
2485 {
2486 tree field;
2487 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2488 if (DECL_NAME (field) == CL_suffix)
2489 {
2490 mangle_decl (field);
2491 name = DECL_ASSEMBLER_NAME (field);
2492 break;
2493 }
2494 if (!field)
2495 {
2496 error ("can't find %<class$%> in %qT", type);
2497 return error_mark_node;
2498 }
2499 }
2500
2501 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2502 if (class_decl == NULL_TREE)
2503 {
2504 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2505 TREE_STATIC (class_decl) = 1;
2506 DECL_EXTERNAL (class_decl) = 1;
2507 TREE_PUBLIC (class_decl) = 1;
2508 DECL_ARTIFICIAL (class_decl) = 1;
2509 DECL_IGNORED_P (class_decl) = 1;
2510 pushdecl_top_level (class_decl);
2511 make_decl_rtl (class_decl);
2512 }
2513 return class_decl;
2514}
2515\f
2516static tree
2517build_vec_delete_1 (tree base, tree maxindex, tree type,
2518 special_function_kind auto_delete_vec, int use_global_delete)
2519{
2520 tree virtual_size;
2521 tree ptype = build_pointer_type (type = complete_type (type));
2522 tree size_exp = size_in_bytes (type);
2523
2524 /* Temporary variables used by the loop. */
2525 tree tbase, tbase_init;
2526
2527 /* This is the body of the loop that implements the deletion of a
2528 single element, and moves temp variables to next elements. */
2529 tree body;
2530
2531 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2532 tree loop = 0;
2533
2534 /* This is the thing that governs what to do after the loop has run. */
2535 tree deallocate_expr = 0;
2536
2537 /* This is the BIND_EXPR which holds the outermost iterator of the
2538 loop. It is convenient to set this variable up and test it before
2539 executing any other code in the loop.
2540 This is also the containing expression returned by this function. */
2541 tree controller = NULL_TREE;
2542 tree tmp;
2543
2544 /* We should only have 1-D arrays here. */
2545 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2546
2547 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2548 goto no_destructor;
2549
2550 /* The below is short by the cookie size. */
2551 virtual_size = size_binop (MULT_EXPR, size_exp,
2552 convert (sizetype, maxindex));
2553
2554 tbase = create_temporary_var (ptype);
2555 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2556 fold_build2 (POINTER_PLUS_EXPR, ptype,
2557 fold_convert (ptype, base),
2558 virtual_size),
2559 tf_warning_or_error);
2560 DECL_REGISTER (tbase) = 1;
2561 controller = build3 (BIND_EXPR, void_type_node, tbase,
2562 NULL_TREE, NULL_TREE);
2563 TREE_SIDE_EFFECTS (controller) = 1;
2564
2565 body = build1 (EXIT_EXPR, void_type_node,
2566 build2 (EQ_EXPR, boolean_type_node, tbase,
2567 fold_convert (ptype, base)));
2568 tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
2569 body = build_compound_expr
2570 (body, cp_build_modify_expr (tbase, NOP_EXPR,
2571 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2572 tf_warning_or_error));
2573 body = build_compound_expr
2574 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2575 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2576
2577 loop = build1 (LOOP_EXPR, void_type_node, body);
2578 loop = build_compound_expr (tbase_init, loop);
2579
2580 no_destructor:
2581 /* If the delete flag is one, or anything else with the low bit set,
2582 delete the storage. */
2583 if (auto_delete_vec != sfk_base_destructor)
2584 {
2585 tree base_tbd;
2586
2587 /* The below is short by the cookie size. */
2588 virtual_size = size_binop (MULT_EXPR, size_exp,
2589 convert (sizetype, maxindex));
2590
2591 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2592 /* no header */
2593 base_tbd = base;
2594 else
2595 {
2596 tree cookie_size;
2597
2598 cookie_size = targetm.cxx.get_cookie_size (type);
2599 base_tbd
2600 = cp_convert (ptype,
2601 cp_build_binary_op (input_location,
2602 MINUS_EXPR,
2603 cp_convert (string_type_node,
2604 base),
2605 cookie_size,
2606 tf_warning_or_error));
2607 /* True size with header. */
2608 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2609 }
2610
2611 if (auto_delete_vec == sfk_deleting_destructor)
2612 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2613 base_tbd, virtual_size,
2614 use_global_delete & 1,
2615 /*placement=*/NULL_TREE,
2616 /*alloc_fn=*/NULL_TREE);
2617 }
2618
2619 body = loop;
2620 if (!deallocate_expr)
2621 ;
2622 else if (!body)
2623 body = deallocate_expr;
2624 else
2625 body = build_compound_expr (body, deallocate_expr);
2626
2627 if (!body)
2628 body = integer_zero_node;
2629
2630 /* Outermost wrapper: If pointer is null, punt. */
2631 body = fold_build3 (COND_EXPR, void_type_node,
2632 fold_build2 (NE_EXPR, boolean_type_node, base,
2633 convert (TREE_TYPE (base),
2634 integer_zero_node)),
2635 body, integer_zero_node);
2636 body = build1 (NOP_EXPR, void_type_node, body);
2637
2638 if (controller)
2639 {
2640 TREE_OPERAND (controller, 1) = body;
2641 body = controller;
2642 }
2643
2644 if (TREE_CODE (base) == SAVE_EXPR)
2645 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2646 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2647
2648 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2649}
2650
2651/* Create an unnamed variable of the indicated TYPE. */
2652
2653tree
2654create_temporary_var (tree type)
2655{
2656 tree decl;
2657
2658 decl = build_decl (VAR_DECL, NULL_TREE, type);
2659 TREE_USED (decl) = 1;
2660 DECL_ARTIFICIAL (decl) = 1;
2661 DECL_IGNORED_P (decl) = 1;
2662 DECL_SOURCE_LOCATION (decl) = input_location;
2663 DECL_CONTEXT (decl) = current_function_decl;
2664
2665 return decl;
2666}
2667
2668/* Create a new temporary variable of the indicated TYPE, initialized
2669 to INIT.
2670
2671 It is not entered into current_binding_level, because that breaks
2672 things when it comes time to do final cleanups (which take place
2673 "outside" the binding contour of the function). */
2674
2675static tree
2676get_temp_regvar (tree type, tree init)
2677{
2678 tree decl;
2679
2680 decl = create_temporary_var (type);
2681 add_decl_expr (decl);
2682
2683 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2684 tf_warning_or_error));
2685
2686 return decl;
2687}
2688
2689/* `build_vec_init' returns tree structure that performs
2690 initialization of a vector of aggregate types.
2691
2692 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2693 to the first element, of POINTER_TYPE.
2694 MAXINDEX is the maximum index of the array (one less than the
2695 number of elements). It is only used if BASE is a pointer or
2696 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2697
2698 INIT is the (possibly NULL) initializer.
2699
2700 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2701 elements in the array are value-initialized.
2702
2703 FROM_ARRAY is 0 if we should init everything with INIT
2704 (i.e., every element initialized from INIT).
2705 FROM_ARRAY is 1 if we should index into INIT in parallel
2706 with initialization of DECL.
2707 FROM_ARRAY is 2 if we should index into INIT in parallel,
2708 but use assignment instead of initialization. */
2709
2710tree
2711build_vec_init (tree base, tree maxindex, tree init,
2712 bool explicit_value_init_p,
2713 int from_array, tsubst_flags_t complain)
2714{
2715 tree rval;
2716 tree base2 = NULL_TREE;
2717 tree size;
2718 tree itype = NULL_TREE;
2719 tree iterator;
2720 /* The type of BASE. */
2721 tree atype = TREE_TYPE (base);
2722 /* The type of an element in the array. */
2723 tree type = TREE_TYPE (atype);
2724 /* The element type reached after removing all outer array
2725 types. */
2726 tree inner_elt_type;
2727 /* The type of a pointer to an element in the array. */
2728 tree ptype;
2729 tree stmt_expr;
2730 tree compound_stmt;
2731 int destroy_temps;
2732 tree try_block = NULL_TREE;
2733 int num_initialized_elts = 0;
2734 bool is_global;
2735
2736 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2737 maxindex = array_type_nelts (atype);
2738
2739 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2740 return error_mark_node;
2741
2742 if (explicit_value_init_p)
2743 gcc_assert (!init);
2744
2745 inner_elt_type = strip_array_types (type);
dff90b41
SS
2746
2747 /* Look through the TARGET_EXPR around a compound literal. */
2748 if (init && TREE_CODE (init) == TARGET_EXPR
2749 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
2750 && from_array != 2)
2751 init = TARGET_EXPR_INITIAL (init);
2752
c251ad9e
SS
2753 if (init
2754 && TREE_CODE (atype) == ARRAY_TYPE
2755 && (from_array == 2
2756 ? (!CLASS_TYPE_P (inner_elt_type)
2757 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2758 : !TYPE_NEEDS_CONSTRUCTING (type))
2759 && ((TREE_CODE (init) == CONSTRUCTOR
2760 /* Don't do this if the CONSTRUCTOR might contain something
2761 that might throw and require us to clean up. */
2762 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2763 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2764 || from_array))
2765 {
2766 /* Do non-default initialization of POD arrays resulting from
2767 brace-enclosed initializers. In this case, digest_init and
2768 store_constructor will handle the semantics for us. */
2769
2770 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2771 return stmt_expr;
2772 }
2773
2774 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2775 size = size_in_bytes (type);
2776 if (TREE_CODE (atype) == ARRAY_TYPE)
2777 {
2778 ptype = build_pointer_type (type);
2779 base = cp_convert (ptype, decay_conversion (base));
2780 }
2781 else
2782 ptype = atype;
2783
2784 /* The code we are generating looks like:
2785 ({
2786 T* t1 = (T*) base;
2787 T* rval = t1;
2788 ptrdiff_t iterator = maxindex;
2789 try {
2790 for (; iterator != -1; --iterator) {
2791 ... initialize *t1 ...
2792 ++t1;
2793 }
2794 } catch (...) {
2795 ... destroy elements that were constructed ...
2796 }
2797 rval;
2798 })
2799
2800 We can omit the try and catch blocks if we know that the
2801 initialization will never throw an exception, or if the array
2802 elements do not have destructors. We can omit the loop completely if
2803 the elements of the array do not have constructors.
2804
2805 We actually wrap the entire body of the above in a STMT_EXPR, for
2806 tidiness.
2807
2808 When copying from array to another, when the array elements have
2809 only trivial copy constructors, we should use __builtin_memcpy
2810 rather than generating a loop. That way, we could take advantage
2811 of whatever cleverness the back end has for dealing with copies
2812 of blocks of memory. */
2813
2814 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2815 destroy_temps = stmts_are_full_exprs_p ();
2816 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2817 rval = get_temp_regvar (ptype, base);
2818 base = get_temp_regvar (ptype, rval);
2819 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2820
dff90b41
SS
2821 /* If initializing one array from another, initialize element by
2822 element. We rely upon the below calls to do the argument
2823 checking. Evaluate the initializer before entering the try block. */
2824 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
2825 {
2826 base2 = decay_conversion (init);
2827 itype = TREE_TYPE (base2);
2828 base2 = get_temp_regvar (itype, base2);
2829 itype = TREE_TYPE (itype);
2830 }
2831
c251ad9e
SS
2832 /* Protect the entire array initialization so that we can destroy
2833 the partially constructed array if an exception is thrown.
2834 But don't do this if we're assigning. */
2835 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2836 && from_array != 2)
2837 {
2838 try_block = begin_try_block ();
2839 }
2840
2841 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2842 {
2843 /* Do non-default initialization of non-POD arrays resulting from
2844 brace-enclosed initializers. */
2845 unsigned HOST_WIDE_INT idx;
2846 tree elt;
2847 from_array = 0;
2848
2849 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2850 {
2851 tree baseref = build1 (INDIRECT_REF, type, base);
2852
2853 num_initialized_elts++;
2854
2855 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2856 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2857 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2858 else
2859 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2860 elt, complain));
2861 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2862
2863 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2864 complain));
2865 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2866 complain));
2867 }
2868
2869 /* Clear out INIT so that we don't get confused below. */
2870 init = NULL_TREE;
2871 }
2872 else if (from_array)
2873 {
c251ad9e 2874 if (init)
dff90b41 2875 /* OK, we set base2 above. */;
c251ad9e
SS
2876 else if (TYPE_LANG_SPECIFIC (type)
2877 && TYPE_NEEDS_CONSTRUCTING (type)
2878 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2879 {
2880 if (complain & tf_error)
2881 error ("initializer ends prematurely");
2882 return error_mark_node;
2883 }
2884 }
2885
2886 /* Now, default-initialize any remaining elements. We don't need to
2887 do that if a) the type does not need constructing, or b) we've
2888 already initialized all the elements.
2889
2890 We do need to keep going if we're copying an array. */
2891
2892 if (from_array
2893 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2894 && ! (host_integerp (maxindex, 0)
2895 && (num_initialized_elts
2896 == tree_low_cst (maxindex, 0) + 1))))
2897 {
2898 /* If the ITERATOR is equal to -1, then we don't have to loop;
2899 we've already initialized all the elements. */
2900 tree for_stmt;
2901 tree elt_init;
2902 tree to;
2903
2904 for_stmt = begin_for_stmt ();
2905 finish_for_init_stmt (for_stmt);
2906 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2907 build_int_cst (TREE_TYPE (iterator), -1)),
2908 for_stmt);
2909 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2910 complain),
2911 for_stmt);
2912
2913 to = build1 (INDIRECT_REF, type, base);
2914
2915 if (from_array)
2916 {
2917 tree from;
2918
2919 if (base2)
2920 from = build1 (INDIRECT_REF, itype, base2);
2921 else
2922 from = NULL_TREE;
2923
2924 if (from_array == 2)
2925 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2926 complain);
2927 else if (TYPE_NEEDS_CONSTRUCTING (type))
2928 elt_init = build_aggr_init (to, from, 0, complain);
2929 else if (from)
2930 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2931 complain);
2932 else
2933 gcc_unreachable ();
2934 }
2935 else if (TREE_CODE (type) == ARRAY_TYPE)
2936 {
2937 if (init != 0)
2938 sorry
2939 ("cannot initialize multi-dimensional array with initializer");
2940 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2941 0, 0,
2942 explicit_value_init_p,
2943 0, complain);
2944 }
2945 else if (explicit_value_init_p)
2946 elt_init = build2 (INIT_EXPR, type, to,
2947 build_value_init (type));
2948 else
2949 {
2950 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
2951 elt_init = build_aggr_init (to, init, 0, complain);
2952 }
2953
2954 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2955 finish_expr_stmt (elt_init);
2956 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2957
2958 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2959 complain));
2960 if (base2)
2961 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
2962 complain));
2963
2964 finish_for_stmt (for_stmt);
2965 }
2966
2967 /* Make sure to cleanup any partially constructed elements. */
2968 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2969 && from_array != 2)
2970 {
2971 tree e;
2972 tree m = cp_build_binary_op (input_location,
2973 MINUS_EXPR, maxindex, iterator,
2974 complain);
2975
2976 /* Flatten multi-dimensional array since build_vec_delete only
2977 expects one-dimensional array. */
2978 if (TREE_CODE (type) == ARRAY_TYPE)
2979 m = cp_build_binary_op (input_location,
2980 MULT_EXPR, m,
2981 array_type_nelts_total (type),
2982 complain);
2983
2984 finish_cleanup_try_block (try_block);
2985 e = build_vec_delete_1 (rval, m,
2986 inner_elt_type, sfk_base_destructor,
2987 /*use_global_delete=*/0);
2988 finish_cleanup (e, try_block);
2989 }
2990
2991 /* The value of the array initialization is the array itself, RVAL
2992 is a pointer to the first element. */
2993 finish_stmt_expr_expr (rval, stmt_expr);
2994
2995 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2996
2997 /* Now make the result have the correct type. */
2998 if (TREE_CODE (atype) == ARRAY_TYPE)
2999 {
3000 atype = build_pointer_type (atype);
3001 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3002 stmt_expr = cp_build_indirect_ref (stmt_expr, NULL, complain);
3003 }
3004
3005 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3006 return stmt_expr;
3007}
3008
3009/* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3010 build_delete. */
3011
3012static tree
3013build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
3014{
3015 tree name;
3016 tree fn;
3017 switch (dtor_kind)
3018 {
3019 case sfk_complete_destructor:
3020 name = complete_dtor_identifier;
3021 break;
3022
3023 case sfk_base_destructor:
3024 name = base_dtor_identifier;
3025 break;
3026
3027 case sfk_deleting_destructor:
3028 name = deleting_dtor_identifier;
3029 break;
3030
3031 default:
3032 gcc_unreachable ();
3033 }
3034 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3035 return build_new_method_call (exp, fn,
3036 /*args=*/NULL_TREE,
3037 /*conversion_path=*/NULL_TREE,
3038 flags,
3039 /*fn_p=*/NULL,
3040 tf_warning_or_error);
3041}
3042
3043/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3044 ADDR is an expression which yields the store to be destroyed.
3045 AUTO_DELETE is the name of the destructor to call, i.e., either
3046 sfk_complete_destructor, sfk_base_destructor, or
3047 sfk_deleting_destructor.
3048
3049 FLAGS is the logical disjunction of zero or more LOOKUP_
3050 flags. See cp-tree.h for more info. */
3051
3052tree
3053build_delete (tree type, tree addr, special_function_kind auto_delete,
3054 int flags, int use_global_delete)
3055{
3056 tree expr;
3057
3058 if (addr == error_mark_node)
3059 return error_mark_node;
3060
3061 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3062 set to `error_mark_node' before it gets properly cleaned up. */
3063 if (type == error_mark_node)
3064 return error_mark_node;
3065
3066 type = TYPE_MAIN_VARIANT (type);
3067
3068 if (TREE_CODE (type) == POINTER_TYPE)
3069 {
3070 bool complete_p = true;
3071
3072 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3073 if (TREE_CODE (type) == ARRAY_TYPE)
3074 goto handle_array;
3075
3076 /* We don't want to warn about delete of void*, only other
3077 incomplete types. Deleting other incomplete types
3078 invokes undefined behavior, but it is not ill-formed, so
3079 compile to something that would even do The Right Thing
3080 (TM) should the type have a trivial dtor and no delete
3081 operator. */
3082 if (!VOID_TYPE_P (type))
3083 {
3084 complete_type (type);
3085 if (!COMPLETE_TYPE_P (type))
3086 {
3087 if (warning (0, "possible problem detected in invocation of "
3088 "delete operator:"))
3089 {
3090 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3091 inform (input_location, "neither the destructor nor the class-specific "
3092 "operator delete will be called, even if they are "
3093 "declared when the class is defined.");
3094 }
3095 complete_p = false;
3096 }
3097 }
3098 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3099 /* Call the builtin operator delete. */
3100 return build_builtin_delete_call (addr);
3101 if (TREE_SIDE_EFFECTS (addr))
3102 addr = save_expr (addr);
3103
3104 /* Throw away const and volatile on target type of addr. */
3105 addr = convert_force (build_pointer_type (type), addr, 0);
3106 }
3107 else if (TREE_CODE (type) == ARRAY_TYPE)
3108 {
3109 handle_array:
3110
3111 if (TYPE_DOMAIN (type) == NULL_TREE)
3112 {
3113 error ("unknown array size in delete");
3114 return error_mark_node;
3115 }
3116 return build_vec_delete (addr, array_type_nelts (type),
3117 auto_delete, use_global_delete);
3118 }
3119 else
3120 {
3121 /* Don't check PROTECT here; leave that decision to the
3122 destructor. If the destructor is accessible, call it,
3123 else report error. */
3124 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3125 if (TREE_SIDE_EFFECTS (addr))
3126 addr = save_expr (addr);
3127
3128 addr = convert_force (build_pointer_type (type), addr, 0);
3129 }
3130
3131 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3132
3133 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3134 {
3135 if (auto_delete != sfk_deleting_destructor)
3136 return void_zero_node;
3137
3138 return build_op_delete_call (DELETE_EXPR, addr,
3139 cxx_sizeof_nowarn (type),
3140 use_global_delete,
3141 /*placement=*/NULL_TREE,
3142 /*alloc_fn=*/NULL_TREE);
3143 }
3144 else
3145 {
3146 tree head = NULL_TREE;
3147 tree do_delete = NULL_TREE;
3148 tree ifexp;
3149
3150 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3151 lazily_declare_fn (sfk_destructor, type);
3152
3153 /* For `::delete x', we must not use the deleting destructor
3154 since then we would not be sure to get the global `operator
3155 delete'. */
3156 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3157 {
3158 /* We will use ADDR multiple times so we must save it. */
3159 addr = save_expr (addr);
3160 head = get_target_expr (build_headof (addr));
3161 /* Delete the object. */
3162 do_delete = build_builtin_delete_call (head);
3163 /* Otherwise, treat this like a complete object destructor
3164 call. */
3165 auto_delete = sfk_complete_destructor;
3166 }
3167 /* If the destructor is non-virtual, there is no deleting
3168 variant. Instead, we must explicitly call the appropriate
3169 `operator delete' here. */
3170 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3171 && auto_delete == sfk_deleting_destructor)
3172 {
3173 /* We will use ADDR multiple times so we must save it. */
3174 addr = save_expr (addr);
3175 /* Build the call. */
3176 do_delete = build_op_delete_call (DELETE_EXPR,
3177 addr,
3178 cxx_sizeof_nowarn (type),
3179 /*global_p=*/false,
3180 /*placement=*/NULL_TREE,
3181 /*alloc_fn=*/NULL_TREE);
3182 /* Call the complete object destructor. */
3183 auto_delete = sfk_complete_destructor;
3184 }
3185 else if (auto_delete == sfk_deleting_destructor
3186 && TYPE_GETS_REG_DELETE (type))
3187 {
3188 /* Make sure we have access to the member op delete, even though
3189 we'll actually be calling it from the destructor. */
3190 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3191 /*global_p=*/false,
3192 /*placement=*/NULL_TREE,
3193 /*alloc_fn=*/NULL_TREE);
3194 }
3195
3196 expr = build_dtor_call (cp_build_indirect_ref (addr, NULL,
3197 tf_warning_or_error),
3198 auto_delete, flags);
3199 if (do_delete)
3200 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3201
3202 /* We need to calculate this before the dtor changes the vptr. */
3203 if (head)
3204 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3205
3206 if (flags & LOOKUP_DESTRUCTOR)
3207 /* Explicit destructor call; don't check for null pointer. */
3208 ifexp = integer_one_node;
3209 else
3210 /* Handle deleting a null pointer. */
3211 ifexp = fold (cp_build_binary_op (input_location,
3212 NE_EXPR, addr, integer_zero_node,
3213 tf_warning_or_error));
3214
3215 if (ifexp != integer_one_node)
3216 expr = build3 (COND_EXPR, void_type_node,
3217 ifexp, expr, void_zero_node);
3218
3219 return expr;
3220 }
3221}
3222
3223/* At the beginning of a destructor, push cleanups that will call the
3224 destructors for our base classes and members.
3225
3226 Called from begin_destructor_body. */
3227
3228void
3229push_base_cleanups (void)
3230{
3231 tree binfo, base_binfo;
3232 int i;
3233 tree member;
3234 tree expr;
3235 VEC(tree,gc) *vbases;
3236
3237 /* Run destructors for all virtual baseclasses. */
3238 if (CLASSTYPE_VBASECLASSES (current_class_type))
3239 {
3240 tree cond = (condition_conversion
3241 (build2 (BIT_AND_EXPR, integer_type_node,
3242 current_in_charge_parm,
3243 integer_two_node)));
3244
3245 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3246 order, which is also the right order for pushing cleanups. */
3247 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3248 VEC_iterate (tree, vbases, i, base_binfo); i++)
3249 {
3250 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3251 {
3252 expr = build_special_member_call (current_class_ref,
3253 base_dtor_identifier,
3254 NULL_TREE,
3255 base_binfo,
3256 (LOOKUP_NORMAL
3257 | LOOKUP_NONVIRTUAL),
3258 tf_warning_or_error);
3259 expr = build3 (COND_EXPR, void_type_node, cond,
3260 expr, void_zero_node);
3261 finish_decl_cleanup (NULL_TREE, expr);
3262 }
3263 }
3264 }
3265
3266 /* Take care of the remaining baseclasses. */
3267 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3268 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3269 {
3270 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3271 || BINFO_VIRTUAL_P (base_binfo))
3272 continue;
3273
3274 expr = build_special_member_call (current_class_ref,
3275 base_dtor_identifier,
3276 NULL_TREE, base_binfo,
3277 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3278 tf_warning_or_error);
3279 finish_decl_cleanup (NULL_TREE, expr);
3280 }
3281
3282 for (member = TYPE_FIELDS (current_class_type); member;
3283 member = TREE_CHAIN (member))
3284 {
3285 if (TREE_TYPE (member) == error_mark_node
3286 || TREE_CODE (member) != FIELD_DECL
3287 || DECL_ARTIFICIAL (member))
3288 continue;
3289 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3290 {
3291 tree this_member = (build_class_member_access_expr
3292 (current_class_ref, member,
3293 /*access_path=*/NULL_TREE,
3294 /*preserve_reference=*/false,
3295 tf_warning_or_error));
3296 tree this_type = TREE_TYPE (member);
3297 expr = build_delete (this_type, this_member,
3298 sfk_complete_destructor,
3299 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3300 0);
3301 finish_decl_cleanup (NULL_TREE, expr);
3302 }
3303 }
3304}
3305
3306/* Build a C++ vector delete expression.
3307 MAXINDEX is the number of elements to be deleted.
3308 ELT_SIZE is the nominal size of each element in the vector.
3309 BASE is the expression that should yield the store to be deleted.
3310 This function expands (or synthesizes) these calls itself.
3311 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3312
3313 This also calls delete for virtual baseclasses of elements of the vector.
3314
3315 Update: MAXINDEX is no longer needed. The size can be extracted from the
3316 start of the vector for pointers, and from the type for arrays. We still
3317 use MAXINDEX for arrays because it happens to already have one of the
3318 values we'd have to extract. (We could use MAXINDEX with pointers to
3319 confirm the size, and trap if the numbers differ; not clear that it'd
3320 be worth bothering.) */
3321
3322tree
3323build_vec_delete (tree base, tree maxindex,
3324 special_function_kind auto_delete_vec, int use_global_delete)
3325{
3326 tree type;
3327 tree rval;
3328 tree base_init = NULL_TREE;
3329
3330 type = TREE_TYPE (base);
3331
3332 if (TREE_CODE (type) == POINTER_TYPE)
3333 {
3334 /* Step back one from start of vector, and read dimension. */
3335 tree cookie_addr;
3336 tree size_ptr_type = build_pointer_type (sizetype);
3337
3338 if (TREE_SIDE_EFFECTS (base))
3339 {
3340 base_init = get_target_expr (base);
3341 base = TARGET_EXPR_SLOT (base_init);
3342 }
3343 type = strip_array_types (TREE_TYPE (type));
3344 cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
3345 cookie_addr = build2 (POINTER_PLUS_EXPR,
3346 size_ptr_type,
3347 fold_convert (size_ptr_type, base),
3348 cookie_addr);
3349 maxindex = cp_build_indirect_ref (cookie_addr, NULL, tf_warning_or_error);
3350 }
3351 else if (TREE_CODE (type) == ARRAY_TYPE)
3352 {
3353 /* Get the total number of things in the array, maxindex is a
3354 bad name. */
3355 maxindex = array_type_nelts_total (type);
3356 type = strip_array_types (type);
3357 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3358 if (TREE_SIDE_EFFECTS (base))
3359 {
3360 base_init = get_target_expr (base);
3361 base = TARGET_EXPR_SLOT (base_init);
3362 }
3363 }
3364 else
3365 {
3366 if (base != error_mark_node)
3367 error ("type to vector delete is neither pointer or array type");
3368 return error_mark_node;
3369 }
3370
3371 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3372 use_global_delete);
3373 if (base_init)
3374 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3375
3376 return rval;
3377}