proc->thread stage 4: rework the VFS and DEVICE subsystems to take thread
[dragonfly.git] / sys / dev / netif / wi / if_wi.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
1de703da
MD
31 *
32 * $FreeBSD: src/sys/dev/wi/if_wi.c,v 1.103.2.2 2002/08/02 07:11:34 imp Exp $
dadab5e9 33 * $DragonFly: src/sys/dev/netif/wi/if_wi.c,v 1.4 2003/06/25 03:55:51 dillon Exp $
984263bc
MD
34 */
35
36/*
37 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD.
38 *
39 * Written by Bill Paul <wpaul@ctr.columbia.edu>
40 * Electrical Engineering Department
41 * Columbia University, New York City
42 */
43
44/*
45 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
46 * from Lucent. Unlike the older cards, the new ones are programmed
47 * entirely via a firmware-driven controller called the Hermes.
48 * Unfortunately, Lucent will not release the Hermes programming manual
49 * without an NDA (if at all). What they do release is an API library
50 * called the HCF (Hardware Control Functions) which is supposed to
51 * do the device-specific operations of a device driver for you. The
52 * publically available version of the HCF library (the 'HCF Light') is
53 * a) extremely gross, b) lacks certain features, particularly support
54 * for 802.11 frames, and c) is contaminated by the GNU Public License.
55 *
56 * This driver does not use the HCF or HCF Light at all. Instead, it
57 * programs the Hermes controller directly, using information gleaned
58 * from the HCF Light code and corresponding documentation.
59 *
60 * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
61 * WaveLan cards (based on the Hermes chipset), as well as the newer
62 * Prism 2 chipsets with firmware from Intersil and Symbol.
63 */
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#if __FreeBSD_version >= 500033
68#include <sys/endian.h>
69#endif
70#include <sys/sockio.h>
71#include <sys/mbuf.h>
72#include <sys/proc.h>
73#include <sys/kernel.h>
74#include <sys/socket.h>
75#include <sys/module.h>
76#include <sys/bus.h>
77#include <sys/random.h>
78#include <sys/syslog.h>
79#include <sys/sysctl.h>
80
81#include <machine/bus.h>
82#include <machine/resource.h>
83#include <machine/clock.h>
84#include <sys/rman.h>
85
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92#include <net/if_ieee80211.h>
93
94#include <netinet/in.h>
95#include <netinet/in_systm.h>
96#include <netinet/in_var.h>
97#include <netinet/ip.h>
98#include <netinet/if_ether.h>
99
100#include <net/bpf.h>
101
102#include <dev/wi/if_wavelan_ieee.h>
103#include <dev/wi/wi_hostap.h>
104#include <dev/wi/if_wivar.h>
105#include <dev/wi/if_wireg.h>
106
984263bc
MD
107static void wi_intr(void *);
108static void wi_reset(struct wi_softc *);
109static int wi_ioctl(struct ifnet *, u_long, caddr_t);
110static void wi_init(void *);
111static void wi_start(struct ifnet *);
112static void wi_stop(struct wi_softc *);
113static void wi_watchdog(struct ifnet *);
114static void wi_rxeof(struct wi_softc *);
115static void wi_txeof(struct wi_softc *, int);
116static void wi_update_stats(struct wi_softc *);
117static void wi_setmulti(struct wi_softc *);
118
119static int wi_cmd(struct wi_softc *, int, int, int, int);
120static int wi_read_record(struct wi_softc *, struct wi_ltv_gen *);
121static int wi_write_record(struct wi_softc *, struct wi_ltv_gen *);
122static int wi_read_data(struct wi_softc *, int, int, caddr_t, int);
123static int wi_write_data(struct wi_softc *, int, int, caddr_t, int);
124static int wi_seek(struct wi_softc *, int, int, int);
125static int wi_alloc_nicmem(struct wi_softc *, int, int *);
126static void wi_inquire(void *);
127static void wi_setdef(struct wi_softc *, struct wi_req *);
128
129#ifdef WICACHE
130static
131void wi_cache_store(struct wi_softc *, struct ether_header *,
132 struct mbuf *, unsigned short);
133#endif
134
135static int wi_get_cur_ssid(struct wi_softc *, char *, int *);
136static void wi_get_id(struct wi_softc *);
137static int wi_media_change(struct ifnet *);
138static void wi_media_status(struct ifnet *, struct ifmediareq *);
139
140static int wi_get_debug(struct wi_softc *, struct wi_req *);
141static int wi_set_debug(struct wi_softc *, struct wi_req *);
142
143devclass_t wi_devclass;
144
145struct wi_card_ident wi_card_ident[] = {
146 /* CARD_ID CARD_NAME FIRM_TYPE */
147 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
148 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
149 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
150 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
151 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
152 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
153 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
154 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
155 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
156 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
157 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
158 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
159 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
160 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
161 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
162 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
163 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
164 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
165 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
166 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
167 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
168 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
169 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
170 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
171 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
172 { 0, NULL, 0 },
173};
174
175int
176wi_generic_detach(dev)
177 device_t dev;
178{
179 struct wi_softc *sc;
180 struct ifnet *ifp;
181 int s;
182
183 sc = device_get_softc(dev);
184 WI_LOCK(sc, s);
185 ifp = &sc->arpcom.ac_if;
186
187 if (sc->wi_gone) {
188 device_printf(dev, "already unloaded\n");
189 WI_UNLOCK(sc, s);
190 return(ENODEV);
191 }
192
193 wi_stop(sc);
194
195 /* Delete all remaining media. */
196 ifmedia_removeall(&sc->ifmedia);
197
198 ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
199 bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
200 wi_free(dev);
201 sc->wi_gone = 1;
202
203 WI_UNLOCK(sc, s);
204#if __FreeBSD_version >= 500000
205 mtx_destroy(&sc->wi_mtx);
206#endif
207
208 return(0);
209}
210
211int
212wi_generic_attach(device_t dev)
213{
214 struct wi_softc *sc;
215 struct wi_ltv_macaddr mac;
216 struct wi_ltv_gen gen;
217 struct ifnet *ifp;
218 int error;
219 int s;
220
221 /* XXX maybe we need the splimp stuff here XXX */
222 sc = device_get_softc(dev);
223 ifp = &sc->arpcom.ac_if;
224
225 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
226 wi_intr, sc, &sc->wi_intrhand);
227
228 if (error) {
229 device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
230 wi_free(dev);
231 return (error);
232 }
233
234#if __FreeBSD_version >= 500000
235 mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
236 MTX_DEF | MTX_RECURSE);
237#endif
238 WI_LOCK(sc, s);
239
240 /* Reset the NIC. */
241 wi_reset(sc);
242
243 /*
244 * Read the station address.
245 * And do it twice. I've seen PRISM-based cards that return
246 * an error when trying to read it the first time, which causes
247 * the probe to fail.
248 */
249 mac.wi_type = WI_RID_MAC_NODE;
250 mac.wi_len = 4;
251 wi_read_record(sc, (struct wi_ltv_gen *)&mac);
252 if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) {
253 device_printf(dev, "mac read failed %d\n", error);
254 wi_free(dev);
255 return (error);
256 }
257 bcopy((char *)&mac.wi_mac_addr,
258 (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
259
260 device_printf(dev, "802.11 address: %6D\n", sc->arpcom.ac_enaddr, ":");
261
262 wi_get_id(sc);
263
264 ifp->if_softc = sc;
265 ifp->if_unit = sc->wi_unit;
266 ifp->if_name = "wi";
267 ifp->if_mtu = ETHERMTU;
268 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
269 ifp->if_ioctl = wi_ioctl;
270 ifp->if_output = ether_output;
271 ifp->if_start = wi_start;
272 ifp->if_watchdog = wi_watchdog;
273 ifp->if_init = wi_init;
274 ifp->if_baudrate = 10000000;
275 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
276
277 bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
278 bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name,
279 sizeof(WI_DEFAULT_NODENAME) - 1);
280
281 bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
282 bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name,
283 sizeof(WI_DEFAULT_NETNAME) - 1);
284
285 bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
286 bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name,
287 sizeof(WI_DEFAULT_IBSS) - 1);
288
289 sc->wi_portnum = WI_DEFAULT_PORT;
290 sc->wi_ptype = WI_PORTTYPE_BSS;
291 sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
292 sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
293 sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
294 sc->wi_max_data_len = WI_DEFAULT_DATALEN;
295 sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
296 sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
297 sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
298 sc->wi_roaming = WI_DEFAULT_ROAMING;
299 sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
300 sc->wi_authmode = IEEE80211_AUTH_OPEN;
301
302 /*
303 * Read the default channel from the NIC. This may vary
304 * depending on the country where the NIC was purchased, so
305 * we can't hard-code a default and expect it to work for
306 * everyone.
307 */
308 gen.wi_type = WI_RID_OWN_CHNL;
309 gen.wi_len = 2;
310 wi_read_record(sc, &gen);
311 sc->wi_channel = gen.wi_val;
312
313 /*
314 * Set flags based on firmware version.
315 */
316 switch (sc->sc_firmware_type) {
317 case WI_LUCENT:
318 sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
319 if (sc->sc_sta_firmware_ver >= 60000)
320 sc->wi_flags |= WI_FLAGS_HAS_MOR;
321 if (sc->sc_sta_firmware_ver >= 60006) {
322 sc->wi_flags |= WI_FLAGS_HAS_IBSS;
323 sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
324 }
325 sc->wi_ibss_port = htole16(1);
326 break;
327 case WI_INTERSIL:
328 sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
329 if (sc->sc_sta_firmware_ver >= 800) {
330 sc->wi_flags |= WI_FLAGS_HAS_IBSS;
331 sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
332 }
333 /*
334 * version 0.8.3 and newer are the only ones that are known
335 * to currently work. Earlier versions can be made to work,
336 * at least according to the Linux driver.
337 */
338 if (sc->sc_sta_firmware_ver >= 803)
339 sc->wi_flags |= WI_FLAGS_HAS_HOSTAP;
340 sc->wi_ibss_port = htole16(0);
341 break;
342 case WI_SYMBOL:
343 sc->wi_flags |= WI_FLAGS_HAS_DIVERSITY;
344 if (sc->sc_sta_firmware_ver >= 20000)
345 sc->wi_flags |= WI_FLAGS_HAS_IBSS;
346 /* Older Symbol firmware does not support IBSS creation. */
347 if (sc->sc_sta_firmware_ver >= 25000)
348 sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
349 sc->wi_ibss_port = htole16(4);
350 break;
351 }
352
353 /*
354 * Find out if we support WEP on this card.
355 */
356 gen.wi_type = WI_RID_WEP_AVAIL;
357 gen.wi_len = 2;
358 wi_read_record(sc, &gen);
359 sc->wi_has_wep = gen.wi_val;
360
361 if (bootverbose)
362 device_printf(sc->dev, "wi_has_wep = %d\n", sc->wi_has_wep);
363
364 /*
365 * Find supported rates.
366 */
367 gen.wi_type = WI_RID_DATA_RATES;
368 gen.wi_len = 2;
369 if (wi_read_record(sc, &gen))
370 sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M |
371 WI_SUPPRATES_5M | WI_SUPPRATES_11M;
372 else
373 sc->wi_supprates = gen.wi_val;
374
375 bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
376
377 wi_init(sc);
378 wi_stop(sc);
379
380 ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status);
381#define ADD(m, c) ifmedia_add(&sc->ifmedia, (m), (c), NULL)
382 if (sc->wi_supprates & WI_SUPPRATES_1M) {
383 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
384 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
385 IFM_IEEE80211_ADHOC, 0), 0);
386 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
387 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
388 IFM_IEEE80211_IBSS, 0), 0);
389 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
390 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
391 IFM_IEEE80211_IBSSMASTER, 0), 0);
392 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
393 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
394 IFM_IEEE80211_HOSTAP, 0), 0);
395 }
396 if (sc->wi_supprates & WI_SUPPRATES_2M) {
397 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
398 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
399 IFM_IEEE80211_ADHOC, 0), 0);
400 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
401 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
402 IFM_IEEE80211_IBSS, 0), 0);
403 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
404 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
405 IFM_IEEE80211_IBSSMASTER, 0), 0);
406 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
407 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
408 IFM_IEEE80211_HOSTAP, 0), 0);
409 }
410 if (sc->wi_supprates & WI_SUPPRATES_5M) {
411 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
412 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
413 IFM_IEEE80211_ADHOC, 0), 0);
414 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
415 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
416 IFM_IEEE80211_IBSS, 0), 0);
417 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
418 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
419 IFM_IEEE80211_IBSSMASTER, 0), 0);
420 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
421 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
422 IFM_IEEE80211_HOSTAP, 0), 0);
423 }
424 if (sc->wi_supprates & WI_SUPPRATES_11M) {
425 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
426 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
427 IFM_IEEE80211_ADHOC, 0), 0);
428 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
429 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
430 IFM_IEEE80211_IBSS, 0), 0);
431 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
432 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
433 IFM_IEEE80211_IBSSMASTER, 0), 0);
434 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
435 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
436 IFM_IEEE80211_HOSTAP, 0), 0);
437 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
438 }
439 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
440 if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
441 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSS,
442 0), 0);
443 if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
444 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
445 IFM_IEEE80211_IBSSMASTER, 0), 0);
446 if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
447 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
448 IFM_IEEE80211_HOSTAP, 0), 0);
449 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
450#undef ADD
451 ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
452
453 /*
454 * Call MI attach routine.
455 */
456 ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
457 callout_handle_init(&sc->wi_stat_ch);
458 WI_UNLOCK(sc, s);
459
460 return(0);
461}
462
463static void
464wi_get_id(sc)
465 struct wi_softc *sc;
466{
467 struct wi_ltv_ver ver;
468 struct wi_card_ident *id;
469
470 /* getting chip identity */
471 memset(&ver, 0, sizeof(ver));
472 ver.wi_type = WI_RID_CARD_ID;
473 ver.wi_len = 5;
474 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
475 device_printf(sc->dev, "using ");
476 sc->sc_firmware_type = WI_NOTYPE;
477 for (id = wi_card_ident; id->card_name != NULL; id++) {
478 if (le16toh(ver.wi_ver[0]) == id->card_id) {
479 printf("%s", id->card_name);
480 sc->sc_firmware_type = id->firm_type;
481 break;
482 }
483 }
484 if (sc->sc_firmware_type == WI_NOTYPE) {
485 if (le16toh(ver.wi_ver[0]) & 0x8000) {
486 printf("Unknown PRISM2 chip");
487 sc->sc_firmware_type = WI_INTERSIL;
488 } else {
489 printf("Unknown Lucent chip");
490 sc->sc_firmware_type = WI_LUCENT;
491 }
492 }
493
494 if (sc->sc_firmware_type != WI_LUCENT) {
495 /* get primary firmware version */
496 memset(&ver, 0, sizeof(ver));
497 ver.wi_type = WI_RID_PRI_IDENTITY;
498 ver.wi_len = 5;
499 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
500 ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
501 ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
502 ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
503 sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
504 ver.wi_ver[3] * 100 + ver.wi_ver[1];
505 }
506
507 /* get station firmware version */
508 memset(&ver, 0, sizeof(ver));
509 ver.wi_type = WI_RID_STA_IDENTITY;
510 ver.wi_len = 5;
511 wi_read_record(sc, (struct wi_ltv_gen *)&ver);
512 ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
513 ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
514 ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
515 sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
516 ver.wi_ver[3] * 100 + ver.wi_ver[1];
517 if (sc->sc_firmware_type == WI_INTERSIL &&
518 (sc->sc_sta_firmware_ver == 10102 ||
519 sc->sc_sta_firmware_ver == 20102)) {
520 struct wi_ltv_str sver;
521 char *p;
522
523 memset(&sver, 0, sizeof(sver));
524 sver.wi_type = WI_RID_SYMBOL_IDENTITY;
525 sver.wi_len = 7;
526 /* value should be the format like "V2.00-11" */
527 if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
528 *(p = (char *)sver.wi_str) >= 'A' &&
529 p[2] == '.' && p[5] == '-' && p[8] == '\0') {
530 sc->sc_firmware_type = WI_SYMBOL;
531 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
532 (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
533 (p[6] - '0') * 10 + (p[7] - '0');
534 }
535 }
536 printf("\n");
537 device_printf(sc->dev, "%s Firmware: ",
538 sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
539 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
540
541 /*
542 * The primary firmware is only valid on Prism based chipsets
543 * (INTERSIL or SYMBOL).
544 */
545 if (sc->sc_firmware_type != WI_LUCENT)
546 printf("Primary %u.%02u.%02u, ", sc->sc_pri_firmware_ver / 10000,
547 (sc->sc_pri_firmware_ver % 10000) / 100,
548 sc->sc_pri_firmware_ver % 100);
549 printf("Station %u.%02u.%02u\n",
550 sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
551 sc->sc_sta_firmware_ver % 100);
552 return;
553}
554
555static void
556wi_rxeof(sc)
557 struct wi_softc *sc;
558{
559 struct ifnet *ifp;
560 struct ether_header *eh;
561 struct mbuf *m;
562 int id;
563
564 ifp = &sc->arpcom.ac_if;
565
566 id = CSR_READ_2(sc, WI_RX_FID);
567
568 /*
569 * if we have the procframe flag set, disregard all this and just
570 * read the data from the device.
571 */
572 if (sc->wi_procframe || sc->wi_debug.wi_monitor) {
573 struct wi_frame *rx_frame;
574 int datlen, hdrlen;
575
576 /* first allocate mbuf for packet storage */
577 MGETHDR(m, M_DONTWAIT, MT_DATA);
578 if (m == NULL) {
579 ifp->if_ierrors++;
580 return;
581 }
582 MCLGET(m, M_DONTWAIT);
583 if (!(m->m_flags & M_EXT)) {
584 m_freem(m);
585 ifp->if_ierrors++;
586 return;
587 }
588
589 m->m_pkthdr.rcvif = ifp;
590
591 /* now read wi_frame first so we know how much data to read */
592 if (wi_read_data(sc, id, 0, mtod(m, caddr_t),
593 sizeof(struct wi_frame))) {
594 m_freem(m);
595 ifp->if_ierrors++;
596 return;
597 }
598
599 rx_frame = mtod(m, struct wi_frame *);
600
601 switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) {
602 case 7:
603 switch (rx_frame->wi_frame_ctl & WI_FCTL_FTYPE) {
604 case WI_FTYPE_DATA:
605 hdrlen = WI_DATA_HDRLEN;
606 datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
607 break;
608 case WI_FTYPE_MGMT:
609 hdrlen = WI_MGMT_HDRLEN;
610 datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
611 break;
612 case WI_FTYPE_CTL:
613 /*
614 * prism2 cards don't pass control packets
615 * down properly or consistently, so we'll only
616 * pass down the header.
617 */
618 hdrlen = WI_CTL_HDRLEN;
619 datlen = 0;
620 break;
621 default:
622 device_printf(sc->dev, "received packet of "
623 "unknown type on port 7\n");
624 m_freem(m);
625 ifp->if_ierrors++;
626 return;
627 }
628 break;
629 case 0:
630 hdrlen = WI_DATA_HDRLEN;
631 datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
632 break;
633 default:
634 device_printf(sc->dev, "received packet on invalid "
635 "port (wi_status=0x%x)\n", rx_frame->wi_status);
636 m_freem(m);
637 ifp->if_ierrors++;
638 return;
639 }
640
641 if ((hdrlen + datlen + 2) > MCLBYTES) {
642 device_printf(sc->dev, "oversized packet received "
643 "(wi_dat_len=%d, wi_status=0x%x)\n",
644 datlen, rx_frame->wi_status);
645 m_freem(m);
646 ifp->if_ierrors++;
647 return;
648 }
649
650 if (wi_read_data(sc, id, hdrlen, mtod(m, caddr_t) + hdrlen,
651 datlen + 2)) {
652 m_freem(m);
653 ifp->if_ierrors++;
654 return;
655 }
656
657 m->m_pkthdr.len = m->m_len = hdrlen + datlen;
658
659 ifp->if_ipackets++;
660
661 /* Handle BPF listeners. */
662 if (ifp->if_bpf)
663 bpf_mtap(ifp, m);
664
665 m_freem(m);
666 } else {
667 struct wi_frame rx_frame;
668
669 /* First read in the frame header */
670 if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame,
671 sizeof(rx_frame))) {
672 ifp->if_ierrors++;
673 return;
674 }
675
676 if (rx_frame.wi_status & WI_STAT_ERRSTAT) {
677 ifp->if_ierrors++;
678 return;
679 }
680
681 MGETHDR(m, M_DONTWAIT, MT_DATA);
682 if (m == NULL) {
683 ifp->if_ierrors++;
684 return;
685 }
686 MCLGET(m, M_DONTWAIT);
687 if (!(m->m_flags & M_EXT)) {
688 m_freem(m);
689 ifp->if_ierrors++;
690 return;
691 }
692
693 eh = mtod(m, struct ether_header *);
694 m->m_pkthdr.rcvif = ifp;
695
696 if (rx_frame.wi_status == WI_STAT_MGMT &&
697 sc->wi_ptype == WI_PORTTYPE_AP) {
698 if ((WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len + 2) >
699 MCLBYTES) {
700 device_printf(sc->dev, "oversized mgmt packet "
701 "received in hostap mode "
702 "(wi_dat_len=%d, wi_status=0x%x)\n",
703 rx_frame.wi_dat_len, rx_frame.wi_status);
704 m_freem(m);
705 ifp->if_ierrors++;
706 return;
707 }
708
709 /* Put the whole header in there. */
710 bcopy(&rx_frame, mtod(m, void *),
711 sizeof(struct wi_frame));
712 if (wi_read_data(sc, id, WI_802_11_OFFSET_RAW,
713 mtod(m, caddr_t) + WI_802_11_OFFSET_RAW,
714 rx_frame.wi_dat_len + 2)) {
715 m_freem(m);
716 ifp->if_ierrors++;
717 return;
718 }
719 m->m_pkthdr.len = m->m_len =
720 WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len;
721 /* XXX: consider giving packet to bhp? */
722 wihap_mgmt_input(sc, &rx_frame, m);
723 return;
724 }
725
726 if (rx_frame.wi_status == WI_STAT_1042 ||
727 rx_frame.wi_status == WI_STAT_TUNNEL ||
728 rx_frame.wi_status == WI_STAT_WMP_MSG) {
729 if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) {
730 device_printf(sc->dev,
731 "oversized packet received "
732 "(wi_dat_len=%d, wi_status=0x%x)\n",
733 rx_frame.wi_dat_len, rx_frame.wi_status);
734 m_freem(m);
735 ifp->if_ierrors++;
736 return;
737 }
738 m->m_pkthdr.len = m->m_len =
739 rx_frame.wi_dat_len + WI_SNAPHDR_LEN;
740
741#if 0
742 bcopy((char *)&rx_frame.wi_addr1,
743 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
744 if (sc->wi_ptype == WI_PORTTYPE_ADHOC) {
745 bcopy((char *)&rx_frame.wi_addr2,
746 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
747 } else {
748 bcopy((char *)&rx_frame.wi_addr3,
749 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
750 }
751#else
752 bcopy((char *)&rx_frame.wi_dst_addr,
753 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
754 bcopy((char *)&rx_frame.wi_src_addr,
755 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
756#endif
757
758 bcopy((char *)&rx_frame.wi_type,
759 (char *)&eh->ether_type, ETHER_TYPE_LEN);
760
761 if (wi_read_data(sc, id, WI_802_11_OFFSET,
762 mtod(m, caddr_t) + sizeof(struct ether_header),
763 m->m_len + 2)) {
764 m_freem(m);
765 ifp->if_ierrors++;
766 return;
767 }
768 } else {
769 if((rx_frame.wi_dat_len +
770 sizeof(struct ether_header)) > MCLBYTES) {
771 device_printf(sc->dev,
772 "oversized packet received "
773 "(wi_dat_len=%d, wi_status=0x%x)\n",
774 rx_frame.wi_dat_len, rx_frame.wi_status);
775 m_freem(m);
776 ifp->if_ierrors++;
777 return;
778 }
779 m->m_pkthdr.len = m->m_len =
780 rx_frame.wi_dat_len + sizeof(struct ether_header);
781
782 if (wi_read_data(sc, id, WI_802_3_OFFSET,
783 mtod(m, caddr_t), m->m_len + 2)) {
784 m_freem(m);
785 ifp->if_ierrors++;
786 return;
787 }
788 }
789
790 ifp->if_ipackets++;
791
792 if (sc->wi_ptype == WI_PORTTYPE_AP) {
793 /*
794 * Give host AP code first crack at data
795 * packets. If it decides to handle it (or
796 * drop it), it will return a non-zero.
797 * Otherwise, it is destined for this host.
798 */
799 if (wihap_data_input(sc, &rx_frame, m))
800 return;
801 }
802 /* Receive packet. */
803 m_adj(m, sizeof(struct ether_header));
804#ifdef WICACHE
805 wi_cache_store(sc, eh, m, rx_frame.wi_q_info);
806#endif
807 ether_input(ifp, eh, m);
808 }
809}
810
811static void
812wi_txeof(sc, status)
813 struct wi_softc *sc;
814 int status;
815{
816 struct ifnet *ifp;
817
818 ifp = &sc->arpcom.ac_if;
819
820 ifp->if_timer = 0;
821 ifp->if_flags &= ~IFF_OACTIVE;
822
823 if (status & WI_EV_TX_EXC)
824 ifp->if_oerrors++;
825 else
826 ifp->if_opackets++;
827
828 return;
829}
830
831void
832wi_inquire(xsc)
833 void *xsc;
834{
835 struct wi_softc *sc;
836 struct ifnet *ifp;
837 int s;
838
839 sc = xsc;
840 ifp = &sc->arpcom.ac_if;
841
842 sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
843
844 /* Don't do this while we're transmitting */
845 if (ifp->if_flags & IFF_OACTIVE)
846 return;
847
848 WI_LOCK(sc, s);
849 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0);
850 WI_UNLOCK(sc, s);
851
852 return;
853}
854
855void
856wi_update_stats(sc)
857 struct wi_softc *sc;
858{
859 struct wi_ltv_gen gen;
860 u_int16_t id;
861 struct ifnet *ifp;
862 u_int32_t *ptr;
863 int len, i;
864 u_int16_t t;
865
866 ifp = &sc->arpcom.ac_if;
867
868 id = CSR_READ_2(sc, WI_INFO_FID);
869
870 wi_read_data(sc, id, 0, (char *)&gen, 4);
871
872 /*
873 * if we just got our scan results, copy it over into the scan buffer
874 * so we can return it to anyone that asks for it. (add a little
875 * compatibility with the prism2 scanning mechanism)
876 */
877 if (gen.wi_type == WI_INFO_SCAN_RESULTS)
878 {
879 sc->wi_scanbuf_len = gen.wi_len;
880 wi_read_data(sc, id, 4, (char *)sc->wi_scanbuf,
881 sc->wi_scanbuf_len * 2);
882
883 return;
884 }
885 else if (gen.wi_type != WI_INFO_COUNTERS)
886 return;
887
888 len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
889 gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
890 ptr = (u_int32_t *)&sc->wi_stats;
891
892 for (i = 0; i < len - 1; i++) {
893 t = CSR_READ_2(sc, WI_DATA1);
894#ifdef WI_HERMES_STATS_WAR
895 if (t > 0xF000)
896 t = ~t & 0xFFFF;
897#endif
898 ptr[i] += t;
899 }
900
901 ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
902 sc->wi_stats.wi_tx_multi_retries +
903 sc->wi_stats.wi_tx_retry_limit;
904
905 return;
906}
907
908static void
909wi_intr(xsc)
910 void *xsc;
911{
912 struct wi_softc *sc = xsc;
913 struct ifnet *ifp;
914 u_int16_t status;
915 int s;
916
917 WI_LOCK(sc, s);
918
919 ifp = &sc->arpcom.ac_if;
920
921 if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) {
922 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
923 CSR_WRITE_2(sc, WI_INT_EN, 0);
924 WI_UNLOCK(sc, s);
925 return;
926 }
927
928 /* Disable interrupts. */
929 CSR_WRITE_2(sc, WI_INT_EN, 0);
930
931 status = CSR_READ_2(sc, WI_EVENT_STAT);
932 CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
933
934 if (status & WI_EV_RX) {
935 wi_rxeof(sc);
936 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
937 }
938
939 if (status & WI_EV_TX) {
940 wi_txeof(sc, status);
941 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
942 }
943
944 if (status & WI_EV_ALLOC) {
945 int id;
946
947 id = CSR_READ_2(sc, WI_ALLOC_FID);
948 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
949 if (id == sc->wi_tx_data_id)
950 wi_txeof(sc, status);
951 }
952
953 if (status & WI_EV_INFO) {
954 wi_update_stats(sc);
955 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
956 }
957
958 if (status & WI_EV_TX_EXC) {
959 wi_txeof(sc, status);
960 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
961 }
962
963 if (status & WI_EV_INFO_DROP) {
964 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
965 }
966
967 /* Re-enable interrupts. */
968 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
969
970 if (ifp->if_snd.ifq_head != NULL) {
971 wi_start(ifp);
972 }
973
974 WI_UNLOCK(sc, s);
975
976 return;
977}
978
979static int
980wi_cmd(sc, cmd, val0, val1, val2)
981 struct wi_softc *sc;
982 int cmd;
983 int val0;
984 int val1;
985 int val2;
986{
987 int i, s = 0;
988 static volatile int count = 0;
989
990 if (count > 1)
991 panic("Hey partner, hold on there!");
992 count++;
993
994 /* wait for the busy bit to clear */
995 for (i = 500; i > 0; i--) { /* 5s */
996 if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
997 break;
998 }
999 DELAY(10*1000); /* 10 m sec */
1000 }
1001 if (i == 0) {
1002 device_printf(sc->dev, "wi_cmd: busy bit won't clear.\n" );
1003 count--;
1004 return(ETIMEDOUT);
1005 }
1006
1007 CSR_WRITE_2(sc, WI_PARAM0, val0);
1008 CSR_WRITE_2(sc, WI_PARAM1, val1);
1009 CSR_WRITE_2(sc, WI_PARAM2, val2);
1010 CSR_WRITE_2(sc, WI_COMMAND, cmd);
1011
1012 for (i = 0; i < WI_TIMEOUT; i++) {
1013 /*
1014 * Wait for 'command complete' bit to be
1015 * set in the event status register.
1016 */
1017 s = CSR_READ_2(sc, WI_EVENT_STAT);
1018 if (s & WI_EV_CMD) {
1019 /* Ack the event and read result code. */
1020 s = CSR_READ_2(sc, WI_STATUS);
1021 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1022#ifdef foo
1023 if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
1024 return(EIO);
1025#endif
1026 if (s & WI_STAT_CMD_RESULT) {
1027 count--;
1028 return(EIO);
1029 }
1030 break;
1031 }
1032 DELAY(WI_DELAY);
1033 }
1034
1035 count--;
1036 if (i == WI_TIMEOUT) {
1037 device_printf(sc->dev,
1038 "timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
1039 return(ETIMEDOUT);
1040 }
1041 return(0);
1042}
1043
1044static void
1045wi_reset(sc)
1046 struct wi_softc *sc;
1047{
1048#define WI_INIT_TRIES 3
1049 int i;
1050 int tries;
1051
1052 /* Symbol firmware cannot be initialized more than once */
1053 if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_enabled)
1054 return;
1055 if (sc->sc_firmware_type == WI_SYMBOL)
1056 tries = 1;
1057 else
1058 tries = WI_INIT_TRIES;
1059
1060 for (i = 0; i < tries; i++) {
1061 if (wi_cmd(sc, WI_CMD_INI, 0, 0, 0) == 0)
1062 break;
1063 DELAY(WI_DELAY * 1000);
1064 }
1065 sc->sc_enabled = 1;
1066
1067 if (i == tries) {
1068 device_printf(sc->dev, "init failed\n");
1069 return;
1070 }
1071
1072 CSR_WRITE_2(sc, WI_INT_EN, 0);
1073 CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
1074
1075 /* Calibrate timer. */
1076 WI_SETVAL(WI_RID_TICK_TIME, 8);
1077
1078 return;
1079}
1080
1081/*
1082 * Read an LTV record from the NIC.
1083 */
1084static int
1085wi_read_record(sc, ltv)
1086 struct wi_softc *sc;
1087 struct wi_ltv_gen *ltv;
1088{
1089 u_int16_t *ptr;
1090 int i, len, code;
1091 struct wi_ltv_gen *oltv, p2ltv;
1092
1093 oltv = ltv;
1094 if (sc->sc_firmware_type != WI_LUCENT) {
1095 switch (ltv->wi_type) {
1096 case WI_RID_ENCRYPTION:
1097 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1098 p2ltv.wi_len = 2;
1099 ltv = &p2ltv;
1100 break;
1101 case WI_RID_TX_CRYPT_KEY:
1102 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1103 p2ltv.wi_len = 2;
1104 ltv = &p2ltv;
1105 break;
1106 case WI_RID_ROAMING_MODE:
1107 if (sc->sc_firmware_type == WI_INTERSIL)
1108 break;
1109 /* not supported */
1110 ltv->wi_len = 1;
1111 return 0;
1112 case WI_RID_MICROWAVE_OVEN:
1113 /* not supported */
1114 ltv->wi_len = 1;
1115 return 0;
1116 }
1117 }
1118
1119 /* Tell the NIC to enter record read mode. */
1120 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0))
1121 return(EIO);
1122
1123 /* Seek to the record. */
1124 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1125 return(EIO);
1126
1127 /*
1128 * Read the length and record type and make sure they
1129 * match what we expect (this verifies that we have enough
1130 * room to hold all of the returned data).
1131 */
1132 len = CSR_READ_2(sc, WI_DATA1);
1133 if (len > ltv->wi_len)
1134 return(ENOSPC);
1135 code = CSR_READ_2(sc, WI_DATA1);
1136 if (code != ltv->wi_type)
1137 return(EIO);
1138
1139 ltv->wi_len = len;
1140 ltv->wi_type = code;
1141
1142 /* Now read the data. */
1143 ptr = &ltv->wi_val;
1144 for (i = 0; i < ltv->wi_len - 1; i++)
1145 ptr[i] = CSR_READ_2(sc, WI_DATA1);
1146
1147 if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS
1148 && ltv->wi_val == sc->wi_ibss_port) {
1149 /*
1150 * Convert vendor IBSS port type to WI_PORTTYPE_IBSS.
1151 * Since Lucent uses port type 1 for BSS *and* IBSS we
1152 * have to rely on wi_ptype to distinguish this for us.
1153 */
1154 ltv->wi_val = htole16(WI_PORTTYPE_IBSS);
1155 } else if (sc->sc_firmware_type != WI_LUCENT) {
1156 switch (oltv->wi_type) {
1157 case WI_RID_TX_RATE:
1158 case WI_RID_CUR_TX_RATE:
1159 switch (ltv->wi_val) {
1160 case 1: oltv->wi_val = 1; break;
1161 case 2: oltv->wi_val = 2; break;
1162 case 3: oltv->wi_val = 6; break;
1163 case 4: oltv->wi_val = 5; break;
1164 case 7: oltv->wi_val = 7; break;
1165 case 8: oltv->wi_val = 11; break;
1166 case 15: oltv->wi_val = 3; break;
1167 default: oltv->wi_val = 0x100 + ltv->wi_val; break;
1168 }
1169 break;
1170 case WI_RID_ENCRYPTION:
1171 oltv->wi_len = 2;
1172 if (ltv->wi_val & 0x01)
1173 oltv->wi_val = 1;
1174 else
1175 oltv->wi_val = 0;
1176 break;
1177 case WI_RID_TX_CRYPT_KEY:
1178 oltv->wi_len = 2;
1179 oltv->wi_val = ltv->wi_val;
1180 break;
1181 case WI_RID_CNFAUTHMODE:
1182 oltv->wi_len = 2;
1183 if (le16toh(ltv->wi_val) & 0x01)
1184 oltv->wi_val = htole16(1);
1185 else if (le16toh(ltv->wi_val) & 0x02)
1186 oltv->wi_val = htole16(2);
1187 break;
1188 }
1189 }
1190
1191 return(0);
1192}
1193
1194/*
1195 * Same as read, except we inject data instead of reading it.
1196 */
1197static int
1198wi_write_record(sc, ltv)
1199 struct wi_softc *sc;
1200 struct wi_ltv_gen *ltv;
1201{
1202 u_int16_t *ptr;
1203 int i;
1204 struct wi_ltv_gen p2ltv;
1205
1206 if (ltv->wi_type == WI_RID_PORTTYPE &&
1207 le16toh(ltv->wi_val) == WI_PORTTYPE_IBSS) {
1208 /* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */
1209 p2ltv.wi_type = WI_RID_PORTTYPE;
1210 p2ltv.wi_len = 2;
1211 p2ltv.wi_val = sc->wi_ibss_port;
1212 ltv = &p2ltv;
1213 } else if (sc->sc_firmware_type != WI_LUCENT) {
1214 switch (ltv->wi_type) {
1215 case WI_RID_TX_RATE:
1216 p2ltv.wi_type = WI_RID_TX_RATE;
1217 p2ltv.wi_len = 2;
1218 switch (ltv->wi_val) {
1219 case 1: p2ltv.wi_val = 1; break;
1220 case 2: p2ltv.wi_val = 2; break;
1221 case 3: p2ltv.wi_val = 15; break;
1222 case 5: p2ltv.wi_val = 4; break;
1223 case 6: p2ltv.wi_val = 3; break;
1224 case 7: p2ltv.wi_val = 7; break;
1225 case 11: p2ltv.wi_val = 8; break;
1226 default: return EINVAL;
1227 }
1228 ltv = &p2ltv;
1229 break;
1230 case WI_RID_ENCRYPTION:
1231 p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1232 p2ltv.wi_len = 2;
1233 if (le16toh(ltv->wi_val)) {
1234 p2ltv.wi_val =htole16(PRIVACY_INVOKED |
1235 EXCLUDE_UNENCRYPTED);
1236 if (sc->wi_ptype == WI_PORTTYPE_AP)
1237 /*
1238 * Disable tx encryption...
1239 * it's broken.
1240 */
1241 p2ltv.wi_val |= htole16(HOST_ENCRYPT);
1242 } else
1243 p2ltv.wi_val =
1244 htole16(HOST_ENCRYPT | HOST_DECRYPT);
1245 ltv = &p2ltv;
1246 break;
1247 case WI_RID_TX_CRYPT_KEY:
1248 p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1249 p2ltv.wi_len = 2;
1250 p2ltv.wi_val = ltv->wi_val;
1251 ltv = &p2ltv;
1252 break;
1253 case WI_RID_DEFLT_CRYPT_KEYS:
1254 {
1255 int error;
1256 int keylen;
1257 struct wi_ltv_str ws;
1258 struct wi_ltv_keys *wk =
1259 (struct wi_ltv_keys *)ltv;
1260
1261 keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1262
1263 for (i = 0; i < 4; i++) {
1264 bzero(&ws, sizeof(ws));
1265 ws.wi_len = (keylen > 5) ? 8 : 4;
1266 ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1267 memcpy(ws.wi_str,
1268 &wk->wi_keys[i].wi_keydat, keylen);
1269 error = wi_write_record(sc,
1270 (struct wi_ltv_gen *)&ws);
1271 if (error)
1272 return error;
1273 }
1274 return 0;
1275 }
1276 case WI_RID_CNFAUTHMODE:
1277 p2ltv.wi_type = WI_RID_CNFAUTHMODE;
1278 p2ltv.wi_len = 2;
1279 if (le16toh(ltv->wi_val) == 1)
1280 p2ltv.wi_val = htole16(0x01);
1281 else if (le16toh(ltv->wi_val) == 2)
1282 p2ltv.wi_val = htole16(0x02);
1283 ltv = &p2ltv;
1284 break;
1285 case WI_RID_ROAMING_MODE:
1286 if (sc->sc_firmware_type == WI_INTERSIL)
1287 break;
1288 /* not supported */
1289 return 0;
1290 case WI_RID_MICROWAVE_OVEN:
1291 /* not supported */
1292 return 0;
1293 }
1294 } else {
1295 /* LUCENT */
1296 switch (ltv->wi_type) {
1297 case WI_RID_TX_RATE:
1298 switch (ltv->wi_val) {
1299 case 1: ltv->wi_val = 1; break; /* 1Mb/s fixed */
1300 case 2: ltv->wi_val = 2; break; /* 2Mb/s fixed */
1301 case 3: ltv->wi_val = 3; break; /* 11Mb/s auto */
1302 case 5: ltv->wi_val = 4; break; /* 5.5Mb/s fixed */
1303 case 6: ltv->wi_val = 6; break; /* 2Mb/s auto */
1304 case 7: ltv->wi_val = 7; break; /* 5.5Mb/s auto */
1305 case 11: ltv->wi_val = 5; break; /* 11Mb/s fixed */
1306 default: return EINVAL;
1307 }
1308 }
1309 }
1310
1311 if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1312 return(EIO);
1313
1314 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1315 CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1316
1317 ptr = &ltv->wi_val;
1318 for (i = 0; i < ltv->wi_len - 1; i++)
1319 CSR_WRITE_2(sc, WI_DATA1, ptr[i]);
1320
1321 if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0))
1322 return(EIO);
1323
1324 return(0);
1325}
1326
1327static int
1328wi_seek(sc, id, off, chan)
1329 struct wi_softc *sc;
1330 int id, off, chan;
1331{
1332 int i;
1333 int selreg, offreg;
1334 int status;
1335
1336 switch (chan) {
1337 case WI_BAP0:
1338 selreg = WI_SEL0;
1339 offreg = WI_OFF0;
1340 break;
1341 case WI_BAP1:
1342 selreg = WI_SEL1;
1343 offreg = WI_OFF1;
1344 break;
1345 default:
1346 device_printf(sc->dev, "invalid data path: %x\n", chan);
1347 return(EIO);
1348 }
1349
1350 CSR_WRITE_2(sc, selreg, id);
1351 CSR_WRITE_2(sc, offreg, off);
1352
1353 for (i = 0; i < WI_TIMEOUT; i++) {
1354 status = CSR_READ_2(sc, offreg);
1355 if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1356 break;
1357 DELAY(WI_DELAY);
1358 }
1359
1360 if (i == WI_TIMEOUT) {
1361 device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n",
1362 id, off, status);
1363 return(ETIMEDOUT);
1364 }
1365
1366 return(0);
1367}
1368
1369static int
1370wi_read_data(sc, id, off, buf, len)
1371 struct wi_softc *sc;
1372 int id, off;
1373 caddr_t buf;
1374 int len;
1375{
1376 int i;
1377 u_int16_t *ptr;
1378
1379 if (wi_seek(sc, id, off, WI_BAP1))
1380 return(EIO);
1381
1382 ptr = (u_int16_t *)buf;
1383 for (i = 0; i < len / 2; i++)
1384 ptr[i] = CSR_READ_2(sc, WI_DATA1);
1385
1386 return(0);
1387}
1388
1389/*
1390 * According to the comments in the HCF Light code, there is a bug in
1391 * the Hermes (or possibly in certain Hermes firmware revisions) where
1392 * the chip's internal autoincrement counter gets thrown off during
1393 * data writes: the autoincrement is missed, causing one data word to
1394 * be overwritten and subsequent words to be written to the wrong memory
1395 * locations. The end result is that we could end up transmitting bogus
1396 * frames without realizing it. The workaround for this is to write a
1397 * couple of extra guard words after the end of the transfer, then
1398 * attempt to read then back. If we fail to locate the guard words where
1399 * we expect them, we preform the transfer over again.
1400 */
1401static int
1402wi_write_data(sc, id, off, buf, len)
1403 struct wi_softc *sc;
1404 int id, off;
1405 caddr_t buf;
1406 int len;
1407{
1408 int i;
1409 u_int16_t *ptr;
1410#ifdef WI_HERMES_AUTOINC_WAR
1411 int retries;
1412
1413 retries = 512;
1414again:
1415#endif
1416
1417 if (wi_seek(sc, id, off, WI_BAP0))
1418 return(EIO);
1419
1420 ptr = (u_int16_t *)buf;
1421 for (i = 0; i < (len / 2); i++)
1422 CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
1423
1424#ifdef WI_HERMES_AUTOINC_WAR
1425 CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1426 CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1427
1428 if (wi_seek(sc, id, off + len, WI_BAP0))
1429 return(EIO);
1430
1431 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1432 CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1433 if (--retries >= 0)
1434 goto again;
1435 device_printf(sc->dev, "wi_write_data device timeout\n");
1436 return (EIO);
1437 }
1438#endif
1439
1440 return(0);
1441}
1442
1443/*
1444 * Allocate a region of memory inside the NIC and zero
1445 * it out.
1446 */
1447static int
1448wi_alloc_nicmem(sc, len, id)
1449 struct wi_softc *sc;
1450 int len;
1451 int *id;
1452{
1453 int i;
1454
1455 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1456 device_printf(sc->dev,
1457 "failed to allocate %d bytes on NIC\n", len);
1458 return(ENOMEM);
1459 }
1460
1461 for (i = 0; i < WI_TIMEOUT; i++) {
1462 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1463 break;
1464 DELAY(WI_DELAY);
1465 }
1466
1467 if (i == WI_TIMEOUT) {
1468 device_printf(sc->dev, "time out allocating memory on card\n");
1469 return(ETIMEDOUT);
1470 }
1471
1472 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1473 *id = CSR_READ_2(sc, WI_ALLOC_FID);
1474
1475 if (wi_seek(sc, *id, 0, WI_BAP0)) {
1476 device_printf(sc->dev, "seek failed while allocating memory on card\n");
1477 return(EIO);
1478 }
1479
1480 for (i = 0; i < len / 2; i++)
1481 CSR_WRITE_2(sc, WI_DATA0, 0);
1482
1483 return(0);
1484}
1485
1486static void
1487wi_setmulti(sc)
1488 struct wi_softc *sc;
1489{
1490 struct ifnet *ifp;
1491 int i = 0;
1492 struct ifmultiaddr *ifma;
1493 struct wi_ltv_mcast mcast;
1494
1495 ifp = &sc->arpcom.ac_if;
1496
1497 bzero((char *)&mcast, sizeof(mcast));
1498
1499 mcast.wi_type = WI_RID_MCAST_LIST;
1500 mcast.wi_len = (3 * 16) + 1;
1501
1502 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1503 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1504 return;
1505 }
1506
1507#if __FreeBSD_version < 500000
1508 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1509#else
1510 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1511#endif
1512 if (ifma->ifma_addr->sa_family != AF_LINK)
1513 continue;
1514 if (i < 16) {
1515 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1516 (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
1517 i++;
1518 } else {
1519 bzero((char *)&mcast, sizeof(mcast));
1520 break;
1521 }
1522 }
1523
1524 mcast.wi_len = (i * 3) + 1;
1525 wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1526
1527 return;
1528}
1529
1530static void
1531wi_setdef(sc, wreq)
1532 struct wi_softc *sc;
1533 struct wi_req *wreq;
1534{
1535 struct sockaddr_dl *sdl;
1536 struct ifaddr *ifa;
1537 struct ifnet *ifp;
1538
1539 ifp = &sc->arpcom.ac_if;
1540
1541 switch(wreq->wi_type) {
1542 case WI_RID_MAC_NODE:
1543 ifa = ifaddr_byindex(ifp->if_index);
1544 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1545 bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr,
1546 ETHER_ADDR_LEN);
1547 bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1548 break;
1549 case WI_RID_PORTTYPE:
1550 sc->wi_ptype = le16toh(wreq->wi_val[0]);
1551 break;
1552 case WI_RID_TX_RATE:
1553 sc->wi_tx_rate = le16toh(wreq->wi_val[0]);
1554 break;
1555 case WI_RID_MAX_DATALEN:
1556 sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1557 break;
1558 case WI_RID_RTS_THRESH:
1559 sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1560 break;
1561 case WI_RID_SYSTEM_SCALE:
1562 sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1563 break;
1564 case WI_RID_CREATE_IBSS:
1565 sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1566 break;
1567 case WI_RID_OWN_CHNL:
1568 sc->wi_channel = le16toh(wreq->wi_val[0]);
1569 break;
1570 case WI_RID_NODENAME:
1571 bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
1572 bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30);
1573 break;
1574 case WI_RID_DESIRED_SSID:
1575 bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
1576 bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30);
1577 break;
1578 case WI_RID_OWN_SSID:
1579 bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
1580 bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30);
1581 break;
1582 case WI_RID_PM_ENABLED:
1583 sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1584 break;
1585 case WI_RID_MICROWAVE_OVEN:
1586 sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1587 break;
1588 case WI_RID_MAX_SLEEP:
1589 sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1590 break;
1591 case WI_RID_CNFAUTHMODE:
1592 sc->wi_authtype = le16toh(wreq->wi_val[0]);
1593 break;
1594 case WI_RID_ROAMING_MODE:
1595 sc->wi_roaming = le16toh(wreq->wi_val[0]);
1596 break;
1597 case WI_RID_ENCRYPTION:
1598 sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1599 break;
1600 case WI_RID_TX_CRYPT_KEY:
1601 sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1602 break;
1603 case WI_RID_DEFLT_CRYPT_KEYS:
1604 bcopy((char *)wreq, (char *)&sc->wi_keys,
1605 sizeof(struct wi_ltv_keys));
1606 break;
1607 default:
1608 break;
1609 }
1610
1611 /* Reinitialize WaveLAN. */
1612 wi_init(sc);
1613
1614 return;
1615}
1616
1617static int
1618wi_ioctl(ifp, command, data)
1619 struct ifnet *ifp;
1620 u_long command;
1621 caddr_t data;
1622{
1623 int error = 0;
1624 int len;
1625 u_int8_t tmpkey[14];
1626 char tmpssid[IEEE80211_NWID_LEN];
1627 struct wi_softc *sc;
1628 struct wi_req wreq;
1629 struct ifreq *ifr;
1630 struct ieee80211req *ireq;
984263bc 1631 struct thread *td = curthread;
984263bc
MD
1632 int s;
1633
1634 sc = ifp->if_softc;
1635 WI_LOCK(sc, s);
1636 ifr = (struct ifreq *)data;
1637 ireq = (struct ieee80211req *)data;
1638
1639 if (sc->wi_gone) {
1640 error = ENODEV;
1641 goto out;
1642 }
1643
1644 switch(command) {
1645 case SIOCSIFADDR:
1646 case SIOCGIFADDR:
1647 case SIOCSIFMTU:
1648 error = ether_ioctl(ifp, command, data);
1649 break;
1650 case SIOCSIFFLAGS:
1651 /*
1652 * Can't do promisc and hostap at the same time. If all that's
1653 * changing is the promisc flag, try to short-circuit a call to
1654 * wi_init() by just setting PROMISC in the hardware.
1655 */
1656 if (ifp->if_flags & IFF_UP) {
1657 if (sc->wi_ptype != WI_PORTTYPE_AP &&
1658 ifp->if_flags & IFF_RUNNING) {
1659 if (ifp->if_flags & IFF_PROMISC &&
1660 !(sc->wi_if_flags & IFF_PROMISC)) {
1661 WI_SETVAL(WI_RID_PROMISC, 1);
1662 } else if (!(ifp->if_flags & IFF_PROMISC) &&
1663 sc->wi_if_flags & IFF_PROMISC) {
1664 WI_SETVAL(WI_RID_PROMISC, 0);
1665 } else {
1666 wi_init(sc);
1667 }
1668 } else {
1669 wi_init(sc);
1670 }
1671 } else {
1672 if (ifp->if_flags & IFF_RUNNING) {
1673 wi_stop(sc);
1674 }
1675 }
1676 sc->wi_if_flags = ifp->if_flags;
1677 error = 0;
1678 break;
1679 case SIOCSIFMEDIA:
1680 case SIOCGIFMEDIA:
1681 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1682 break;
1683 case SIOCADDMULTI:
1684 case SIOCDELMULTI:
1685 wi_setmulti(sc);
1686 error = 0;
1687 break;
1688 case SIOCGWAVELAN:
1689 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1690 if (error)
1691 break;
1692 if (wreq.wi_len > WI_MAX_DATALEN) {
1693 error = EINVAL;
1694 break;
1695 }
1696 /* Don't show WEP keys to non-root users. */
dadab5e9 1697 if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(td))
984263bc
MD
1698 break;
1699 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1700 bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
1701 sizeof(sc->wi_stats));
1702 wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1703 } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1704 bcopy((char *)&sc->wi_keys, (char *)&wreq,
1705 sizeof(struct wi_ltv_keys));
1706 }
1707#ifdef WICACHE
1708 else if (wreq.wi_type == WI_RID_ZERO_CACHE) {
1709 sc->wi_sigitems = sc->wi_nextitem = 0;
1710 } else if (wreq.wi_type == WI_RID_READ_CACHE) {
1711 char *pt = (char *)&wreq.wi_val;
1712 bcopy((char *)&sc->wi_sigitems,
1713 (char *)pt, sizeof(int));
1714 pt += (sizeof (int));
1715 wreq.wi_len = sizeof(int) / 2;
1716 bcopy((char *)&sc->wi_sigcache, (char *)pt,
1717 sizeof(struct wi_sigcache) * sc->wi_sigitems);
1718 wreq.wi_len += ((sizeof(struct wi_sigcache) *
1719 sc->wi_sigitems) / 2) + 1;
1720 }
1721#endif
1722 else if (wreq.wi_type == WI_RID_PROCFRAME) {
1723 wreq.wi_len = 2;
1724 wreq.wi_val[0] = sc->wi_procframe;
1725 } else if (wreq.wi_type == WI_RID_PRISM2) {
1726 wreq.wi_len = 2;
1727 wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT;
1728 } else if (wreq.wi_type == WI_RID_SCAN_RES &&
1729 sc->sc_firmware_type == WI_LUCENT) {
1730 memcpy((char *)wreq.wi_val, (char *)sc->wi_scanbuf,
1731 sc->wi_scanbuf_len * 2);
1732 wreq.wi_len = sc->wi_scanbuf_len;
1733 } else {
1734 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) {
1735 error = EINVAL;
1736 break;
1737 }
1738 }
1739 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1740 break;
1741 case SIOCSWAVELAN:
dadab5e9 1742 if ((error = suser(td)))
984263bc
MD
1743 goto out;
1744 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1745 if (error)
1746 break;
1747 if (wreq.wi_len > WI_MAX_DATALEN) {
1748 error = EINVAL;
1749 break;
1750 }
1751 if (wreq.wi_type == WI_RID_IFACE_STATS) {
1752 error = EINVAL;
1753 break;
1754 } else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1755 error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1756 wreq.wi_len);
1757 } else if (wreq.wi_type == WI_RID_PROCFRAME) {
1758 sc->wi_procframe = wreq.wi_val[0];
1759 /*
1760 * if we're getting a scan request from a wavelan card
1761 * (non-prism2), send out a cmd_inquire to the card to scan
1762 * results for the scan will be received through the info
1763 * interrupt handler. otherwise the scan request can be
1764 * directly handled by a prism2 card's rid interface.
1765 */
1766 } else if (wreq.wi_type == WI_RID_SCAN_REQ &&
1767 sc->sc_firmware_type == WI_LUCENT) {
1768 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1769 } else {
1770 error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
1771 if (!error)
1772 wi_setdef(sc, &wreq);
1773 }
1774 break;
1775 case SIOCGPRISM2DEBUG:
1776 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1777 if (error)
1778 break;
1779 if (!(ifp->if_flags & IFF_RUNNING) ||
1780 sc->sc_firmware_type == WI_LUCENT) {
1781 error = EIO;
1782 break;
1783 }
1784 error = wi_get_debug(sc, &wreq);
1785 if (error == 0)
1786 error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1787 break;
1788 case SIOCSPRISM2DEBUG:
dadab5e9 1789 if ((error = suser(td)))
984263bc
MD
1790 goto out;
1791 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1792 if (error)
1793 break;
1794 error = wi_set_debug(sc, &wreq);
1795 break;
1796 case SIOCG80211:
1797 switch(ireq->i_type) {
1798 case IEEE80211_IOC_SSID:
1799 if(ireq->i_val == -1) {
1800 bzero(tmpssid, IEEE80211_NWID_LEN);
1801 error = wi_get_cur_ssid(sc, tmpssid, &len);
1802 if (error != 0)
1803 break;
1804 error = copyout(tmpssid, ireq->i_data,
1805 IEEE80211_NWID_LEN);
1806 ireq->i_len = len;
1807 } else if (ireq->i_val == 0) {
1808 error = copyout(sc->wi_net_name,
1809 ireq->i_data,
1810 IEEE80211_NWID_LEN);
1811 ireq->i_len = IEEE80211_NWID_LEN;
1812 } else
1813 error = EINVAL;
1814 break;
1815 case IEEE80211_IOC_NUMSSIDS:
1816 ireq->i_val = 1;
1817 break;
1818 case IEEE80211_IOC_WEP:
1819 if(!sc->wi_has_wep) {
1820 ireq->i_val = IEEE80211_WEP_NOSUP;
1821 } else {
1822 if(sc->wi_use_wep) {
1823 ireq->i_val =
1824 IEEE80211_WEP_MIXED;
1825 } else {
1826 ireq->i_val =
1827 IEEE80211_WEP_OFF;
1828 }
1829 }
1830 break;
1831 case IEEE80211_IOC_WEPKEY:
1832 if(!sc->wi_has_wep ||
1833 ireq->i_val < 0 || ireq->i_val > 3) {
1834 error = EINVAL;
1835 break;
1836 }
1837 len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen;
dadab5e9 1838 if (suser(td))
984263bc
MD
1839 bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1840 tmpkey, len);
1841 else
1842 bzero(tmpkey, len);
1843
1844 ireq->i_len = len;
1845 error = copyout(tmpkey, ireq->i_data, len);
1846
1847 break;
1848 case IEEE80211_IOC_NUMWEPKEYS:
1849 if(!sc->wi_has_wep)
1850 error = EINVAL;
1851 else
1852 ireq->i_val = 4;
1853 break;
1854 case IEEE80211_IOC_WEPTXKEY:
1855 if(!sc->wi_has_wep)
1856 error = EINVAL;
1857 else
1858 ireq->i_val = sc->wi_tx_key;
1859 break;
1860 case IEEE80211_IOC_AUTHMODE:
1861 ireq->i_val = sc->wi_authmode;
1862 break;
1863 case IEEE80211_IOC_STATIONNAME:
1864 error = copyout(sc->wi_node_name,
1865 ireq->i_data, IEEE80211_NWID_LEN);
1866 ireq->i_len = IEEE80211_NWID_LEN;
1867 break;
1868 case IEEE80211_IOC_CHANNEL:
1869 wreq.wi_type = WI_RID_CURRENT_CHAN;
1870 wreq.wi_len = WI_MAX_DATALEN;
1871 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1872 error = EINVAL;
1873 else {
1874 ireq->i_val = wreq.wi_val[0];
1875 }
1876 break;
1877 case IEEE80211_IOC_POWERSAVE:
1878 if(sc->wi_pm_enabled)
1879 ireq->i_val = IEEE80211_POWERSAVE_ON;
1880 else
1881 ireq->i_val = IEEE80211_POWERSAVE_OFF;
1882 break;
1883 case IEEE80211_IOC_POWERSAVESLEEP:
1884 ireq->i_val = sc->wi_max_sleep;
1885 break;
1886 default:
1887 error = EINVAL;
1888 }
1889 break;
1890 case SIOCS80211:
dadab5e9 1891 if ((error = suser(td)))
984263bc
MD
1892 goto out;
1893 switch(ireq->i_type) {
1894 case IEEE80211_IOC_SSID:
1895 if (ireq->i_val != 0 ||
1896 ireq->i_len > IEEE80211_NWID_LEN) {
1897 error = EINVAL;
1898 break;
1899 }
1900 /* We set both of them */
1901 bzero(sc->wi_net_name, IEEE80211_NWID_LEN);
1902 error = copyin(ireq->i_data,
1903 sc->wi_net_name, ireq->i_len);
1904 bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN);
1905 break;
1906 case IEEE80211_IOC_WEP:
1907 /*
1908 * These cards only support one mode so
1909 * we just turn wep on what ever is
1910 * passed in if it's not OFF.
1911 */
1912 if (ireq->i_val == IEEE80211_WEP_OFF) {
1913 sc->wi_use_wep = 0;
1914 } else {
1915 sc->wi_use_wep = 1;
1916 }
1917 break;
1918 case IEEE80211_IOC_WEPKEY:
1919 if (ireq->i_val < 0 || ireq->i_val > 3 ||
1920 ireq->i_len > 13) {
1921 error = EINVAL;
1922 break;
1923 }
1924 bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13);
1925 error = copyin(ireq->i_data,
1926 sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1927 ireq->i_len);
1928 if(error)
1929 break;
1930 sc->wi_keys.wi_keys[ireq->i_val].wi_keylen =
1931 ireq->i_len;
1932 break;
1933 case IEEE80211_IOC_WEPTXKEY:
1934 if (ireq->i_val < 0 || ireq->i_val > 3) {
1935 error = EINVAL;
1936 break;
1937 }
1938 sc->wi_tx_key = ireq->i_val;
1939 break;
1940 case IEEE80211_IOC_AUTHMODE:
1941 sc->wi_authmode = ireq->i_val;
1942 break;
1943 case IEEE80211_IOC_STATIONNAME:
1944 if (ireq->i_len > 32) {
1945 error = EINVAL;
1946 break;
1947 }
1948 bzero(sc->wi_node_name, 32);
1949 error = copyin(ireq->i_data,
1950 sc->wi_node_name, ireq->i_len);
1951 break;
1952 case IEEE80211_IOC_CHANNEL:
1953 /*
1954 * The actual range is 1-14, but if you
1955 * set it to 0 you get the default. So
1956 * we let that work too.
1957 */
1958 if (ireq->i_val < 0 || ireq->i_val > 14) {
1959 error = EINVAL;
1960 break;
1961 }
1962 sc->wi_channel = ireq->i_val;
1963 break;
1964 case IEEE80211_IOC_POWERSAVE:
1965 switch (ireq->i_val) {
1966 case IEEE80211_POWERSAVE_OFF:
1967 sc->wi_pm_enabled = 0;
1968 break;
1969 case IEEE80211_POWERSAVE_ON:
1970 sc->wi_pm_enabled = 1;
1971 break;
1972 default:
1973 error = EINVAL;
1974 break;
1975 }
1976 break;
1977 case IEEE80211_IOC_POWERSAVESLEEP:
1978 if (ireq->i_val < 0) {
1979 error = EINVAL;
1980 break;
1981 }
1982 sc->wi_max_sleep = ireq->i_val;
1983 break;
1984 default:
1985 error = EINVAL;
1986 break;
1987 }
1988
1989 /* Reinitialize WaveLAN. */
1990 wi_init(sc);
1991
1992 break;
1993 case SIOCHOSTAP_ADD:
1994 case SIOCHOSTAP_DEL:
1995 case SIOCHOSTAP_GET:
1996 case SIOCHOSTAP_GETALL:
1997 case SIOCHOSTAP_GFLAGS:
1998 case SIOCHOSTAP_SFLAGS:
1999 /* Send all Host AP specific ioctl's to Host AP code. */
2000 error = wihap_ioctl(sc, command, data);
2001 break;
2002 default:
2003 error = EINVAL;
2004 break;
2005 }
2006out:
2007 WI_UNLOCK(sc, s);
2008
2009 return(error);
2010}
2011
2012static void
2013wi_init(xsc)
2014 void *xsc;
2015{
2016 struct wi_softc *sc = xsc;
2017 struct ifnet *ifp = &sc->arpcom.ac_if;
2018 struct wi_ltv_macaddr mac;
2019 int id = 0;
2020 int s;
2021
2022 WI_LOCK(sc, s);
2023
2024 if (sc->wi_gone) {
2025 WI_UNLOCK(sc, s);
2026 return;
2027 }
2028
2029 if (ifp->if_flags & IFF_RUNNING)
2030 wi_stop(sc);
2031
2032 wi_reset(sc);
2033
2034 /* Program max data length. */
2035 WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
2036
2037 /* Set the port type. */
2038 WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
2039
2040 /* Enable/disable IBSS creation. */
2041 WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
2042
2043 /* Program the RTS/CTS threshold. */
2044 WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
2045
2046 /* Program the TX rate */
2047 WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
2048
2049 /* Access point density */
2050 WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
2051
2052 /* Power Management Enabled */
2053 WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
2054
2055 /* Power Managment Max Sleep */
2056 WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
2057
2058 /* Roaming type */
2059 WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
2060
2061 /* Specify the IBSS name */
2062 WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
2063
2064 /* Specify the network name */
2065 WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
2066
2067 /* Specify the frequency to use */
2068 WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
2069
2070 /* Program the nodename. */
2071 WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
2072
2073 /* Specify the authentication mode. */
2074 WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authmode);
2075
2076 /* Set our MAC address. */
2077 mac.wi_len = 4;
2078 mac.wi_type = WI_RID_MAC_NODE;
2079 bcopy((char *)&sc->arpcom.ac_enaddr,
2080 (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN);
2081 wi_write_record(sc, (struct wi_ltv_gen *)&mac);
2082
2083 /*
2084 * Initialize promisc mode.
2085 * Being in the Host-AP mode causes
2086 * great deal of pain if promisc mode is set.
2087 * Therefore we avoid confusing the firmware
2088 * and always reset promisc mode in Host-AP regime,
2089 * it shows us all the packets anyway.
2090 */
2091 if (sc->wi_ptype != WI_PORTTYPE_AP && ifp->if_flags & IFF_PROMISC)
2092 WI_SETVAL(WI_RID_PROMISC, 1);
2093 else
2094 WI_SETVAL(WI_RID_PROMISC, 0);
2095
2096 /* Configure WEP. */
2097 if (sc->wi_has_wep) {
2098 WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
2099 WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
2100 sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
2101 sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2102 wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
2103 if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
2104 /*
2105 * ONLY HWB3163 EVAL-CARD Firmware version
2106 * less than 0.8 variant2
2107 *
2108 * If promiscuous mode disable, Prism2 chip
2109 * does not work with WEP.
2110 * It is under investigation for details.
2111 * (ichiro@netbsd.org)
2112 *
2113 * And make sure that we don't need to do it
2114 * in hostap mode, since it interferes with
2115 * the above hostap workaround.
2116 */
2117 if (sc->wi_ptype != WI_PORTTYPE_AP &&
2118 sc->sc_firmware_type == WI_INTERSIL &&
2119 sc->sc_sta_firmware_ver < 802 ) {
2120 /* firm ver < 0.8 variant 2 */
2121 WI_SETVAL(WI_RID_PROMISC, 1);
2122 }
2123 WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authtype);
2124 }
2125 }
2126
2127 /* Set multicast filter. */
2128 wi_setmulti(sc);
2129
2130 /* Enable desired port */
2131 wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0);
2132
2133 if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
2134 device_printf(sc->dev, "tx buffer allocation failed\n");
2135 sc->wi_tx_data_id = id;
2136
2137 if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
2138 device_printf(sc->dev, "mgmt. buffer allocation failed\n");
2139 sc->wi_tx_mgmt_id = id;
2140
2141 /* enable interrupts */
2142 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
2143
2144 wihap_init(sc);
2145
2146 ifp->if_flags |= IFF_RUNNING;
2147 ifp->if_flags &= ~IFF_OACTIVE;
2148
2149 sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
2150 WI_UNLOCK(sc, s);
2151
2152 return;
2153}
2154
2155#define RC4STATE 256
2156#define RC4KEYLEN 16
2157#define RC4SWAP(x,y) \
2158 do { u_int8_t t = state[x]; state[x] = state[y]; state[y] = t; } while(0)
2159
2160static void
2161wi_do_hostencrypt(struct wi_softc *sc, caddr_t buf, int len)
2162{
2163 u_int32_t i, crc, klen;
2164 u_int8_t state[RC4STATE], key[RC4KEYLEN];
2165 u_int8_t x, y, *dat;
2166
2167 if (!sc->wi_icv_flag) {
2168 sc->wi_icv = arc4random();
2169 sc->wi_icv_flag++;
2170 } else
2171 sc->wi_icv++;
2172 /*
2173 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2174 * (B, 255, N) with 3 <= B < 8
2175 */
2176 if (sc->wi_icv >= 0x03ff00 &&
2177 (sc->wi_icv & 0xf8ff00) == 0x00ff00)
2178 sc->wi_icv += 0x000100;
2179
2180 /* prepend 24bit IV to tx key, byte order does not matter */
2181 key[0] = sc->wi_icv >> 16;
2182 key[1] = sc->wi_icv >> 8;
2183 key[2] = sc->wi_icv;
2184
2185 klen = sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keylen +
2186 IEEE80211_WEP_IVLEN;
2187 klen = (klen >= RC4KEYLEN) ? RC4KEYLEN : RC4KEYLEN/2;
2188 bcopy((char *)&sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keydat,
2189 (char *)key + IEEE80211_WEP_IVLEN, klen - IEEE80211_WEP_IVLEN);
2190
2191 /* rc4 keysetup */
2192 x = y = 0;
2193 for (i = 0; i < RC4STATE; i++)
2194 state[i] = i;
2195 for (i = 0; i < RC4STATE; i++) {
2196 y = (key[x] + state[i] + y) % RC4STATE;
2197 RC4SWAP(i, y);
2198 x = (x + 1) % klen;
2199 }
2200
2201 /* output: IV, tx keyid, rc4(data), rc4(crc32(data)) */
2202 dat = buf;
2203 dat[0] = key[0];
2204 dat[1] = key[1];
2205 dat[2] = key[2];
2206 dat[3] = sc->wi_tx_key << 6; /* pad and keyid */
2207 dat += 4;
2208
2209 /* compute rc4 over data, crc32 over data */
2210 crc = ~0;
2211 x = y = 0;
2212 for (i = 0; i < len; i++) {
2213 x = (x + 1) % RC4STATE;
2214 y = (state[x] + y) % RC4STATE;
2215 RC4SWAP(x, y);
2216 crc = crc32_tab[(crc ^ dat[i]) & 0xff] ^ (crc >> 8);
2217 dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
2218 }
2219 crc = ~crc;
2220 dat += len;
2221
2222 /* append little-endian crc32 and encrypt */
2223 dat[0] = crc;
2224 dat[1] = crc >> 8;
2225 dat[2] = crc >> 16;
2226 dat[3] = crc >> 24;
2227 for (i = 0; i < IEEE80211_WEP_CRCLEN; i++) {
2228 x = (x + 1) % RC4STATE;
2229 y = (state[x] + y) % RC4STATE;
2230 RC4SWAP(x, y);
2231 dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
2232 }
2233}
2234
2235static void
2236wi_start(ifp)
2237 struct ifnet *ifp;
2238{
2239 struct wi_softc *sc;
2240 struct mbuf *m0;
2241 struct wi_frame tx_frame;
2242 struct ether_header *eh;
2243 int id;
2244 int s;
2245
2246 sc = ifp->if_softc;
2247 WI_LOCK(sc, s);
2248
2249 if (sc->wi_gone) {
2250 WI_UNLOCK(sc, s);
2251 return;
2252 }
2253
2254 if (ifp->if_flags & IFF_OACTIVE) {
2255 WI_UNLOCK(sc, s);
2256 return;
2257 }
2258
2259nextpkt:
2260 IF_DEQUEUE(&ifp->if_snd, m0);
2261 if (m0 == NULL) {
2262 WI_UNLOCK(sc, s);
2263 return;
2264 }
2265
2266 bzero((char *)&tx_frame, sizeof(tx_frame));
2267 tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
2268 id = sc->wi_tx_data_id;
2269 eh = mtod(m0, struct ether_header *);
2270
2271 if (sc->wi_ptype == WI_PORTTYPE_AP) {
2272 if (!wihap_check_tx(&sc->wi_hostap_info,
2273 eh->ether_dhost, &tx_frame.wi_tx_rate)) {
2274 if (ifp->if_flags & IFF_DEBUG)
2275 printf("wi_start: dropping unassoc "
2276 "dst %6D\n", eh->ether_dhost, ":");
2277 m_freem(m0);
2278 goto nextpkt;
2279 }
2280 }
2281 /*
2282 * Use RFC1042 encoding for IP and ARP datagrams,
2283 * 802.3 for anything else.
2284 */
2285 if (ntohs(eh->ether_type) > ETHER_MAX_LEN) {
2286 bcopy((char *)&eh->ether_dhost,
2287 (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
2288 if (sc->wi_ptype == WI_PORTTYPE_AP) {
2289 tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT; /* XXX */
2290 tx_frame.wi_frame_ctl |= WI_FCTL_FROMDS;
2291 if (sc->wi_use_wep)
2292 tx_frame.wi_frame_ctl |= WI_FCTL_WEP;
2293 bcopy((char *)&sc->arpcom.ac_enaddr,
2294 (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
2295 bcopy((char *)&eh->ether_shost,
2296 (char *)&tx_frame.wi_addr3, ETHER_ADDR_LEN);
2297 }
2298 else
2299 bcopy((char *)&eh->ether_shost,
2300 (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
2301 bcopy((char *)&eh->ether_dhost,
2302 (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
2303 bcopy((char *)&eh->ether_shost,
2304 (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
2305
2306 tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
2307 tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
2308 tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
2309 tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
2310 tx_frame.wi_type = eh->ether_type;
2311
2312 if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
2313 /* Do host encryption. */
2314 bcopy(&tx_frame.wi_dat[0], &sc->wi_txbuf[4], 8);
2315 m_copydata(m0, sizeof(struct ether_header),
2316 m0->m_pkthdr.len - sizeof(struct ether_header),
2317 (caddr_t)&sc->wi_txbuf[12]);
2318 wi_do_hostencrypt(sc, &sc->wi_txbuf[0],
2319 tx_frame.wi_dat_len);
2320 tx_frame.wi_dat_len += IEEE80211_WEP_IVLEN +
2321 IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN;
2322 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2323 sizeof(struct wi_frame));
2324 wi_write_data(sc, id, WI_802_11_OFFSET_RAW,
2325 (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
2326 sizeof(struct ether_header)) + 18);
2327 } else {
2328 m_copydata(m0, sizeof(struct ether_header),
2329 m0->m_pkthdr.len - sizeof(struct ether_header),
2330 (caddr_t)&sc->wi_txbuf);
2331 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2332 sizeof(struct wi_frame));
2333 wi_write_data(sc, id, WI_802_11_OFFSET,
2334 (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
2335 sizeof(struct ether_header)) + 2);
2336 }
2337 } else {
2338 tx_frame.wi_dat_len = m0->m_pkthdr.len;
2339
2340 if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
2341 /* Do host encryption. */
2342 printf( "XXX: host encrypt not implemented for 802.3\n" );
2343 } else {
2344 eh->ether_type = htons(m0->m_pkthdr.len -
2345 WI_SNAPHDR_LEN);
2346 m_copydata(m0, 0, m0->m_pkthdr.len,
2347 (caddr_t)&sc->wi_txbuf);
2348
2349 wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2350 sizeof(struct wi_frame));
2351 wi_write_data(sc, id, WI_802_3_OFFSET,
2352 (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2);
2353 }
2354 }
2355
2356 /*
2357 * If there's a BPF listner, bounce a copy of
2358 * this frame to him. Also, don't send this to the bpf sniffer
2359 * if we're in procframe or monitor sniffing mode.
2360 */
2361 if (!(sc->wi_procframe || sc->wi_debug.wi_monitor) && ifp->if_bpf)
2362 bpf_mtap(ifp, m0);
2363
2364 m_freem(m0);
2365
2366 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0))
2367 device_printf(sc->dev, "xmit failed\n");
2368
2369 ifp->if_flags |= IFF_OACTIVE;
2370
2371 /*
2372 * Set a timeout in case the chip goes out to lunch.
2373 */
2374 ifp->if_timer = 5;
2375
2376 WI_UNLOCK(sc, s);
2377 return;
2378}
2379
2380int
2381wi_mgmt_xmit(sc, data, len)
2382 struct wi_softc *sc;
2383 caddr_t data;
2384 int len;
2385{
2386 struct wi_frame tx_frame;
2387 int id;
2388 struct wi_80211_hdr *hdr;
2389 caddr_t dptr;
2390
2391 if (sc->wi_gone)
2392 return(ENODEV);
2393
2394 hdr = (struct wi_80211_hdr *)data;
2395 dptr = data + sizeof(struct wi_80211_hdr);
2396
2397 bzero((char *)&tx_frame, sizeof(tx_frame));
2398 id = sc->wi_tx_mgmt_id;
2399
2400 bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl,
2401 sizeof(struct wi_80211_hdr));
2402
2403 tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT;
2404 tx_frame.wi_dat_len = len - sizeof(struct wi_80211_hdr);
2405 tx_frame.wi_len = htons(tx_frame.wi_dat_len);
2406
2407 wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
2408 wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
2409 len - sizeof(struct wi_80211_hdr) + 2);
2410
2411 if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) {
2412 device_printf(sc->dev, "xmit failed\n");
2413 return(EIO);
2414 }
2415
2416 return(0);
2417}
2418
2419static void
2420wi_stop(sc)
2421 struct wi_softc *sc;
2422{
2423 struct ifnet *ifp;
2424 int s;
2425
2426 WI_LOCK(sc, s);
2427
2428 if (sc->wi_gone) {
2429 WI_UNLOCK(sc, s);
2430 return;
2431 }
2432
2433 wihap_shutdown(sc);
2434
2435 ifp = &sc->arpcom.ac_if;
2436
2437 /*
2438 * If the card is gone and the memory port isn't mapped, we will
2439 * (hopefully) get 0xffff back from the status read, which is not
2440 * a valid status value.
2441 */
2442 if (CSR_READ_2(sc, WI_STATUS) != 0xffff) {
2443 CSR_WRITE_2(sc, WI_INT_EN, 0);
2444 wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0);
2445 }
2446
2447 untimeout(wi_inquire, sc, sc->wi_stat_ch);
2448
2449 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2450
2451 WI_UNLOCK(sc, s);
2452 return;
2453}
2454
2455static void
2456wi_watchdog(ifp)
2457 struct ifnet *ifp;
2458{
2459 struct wi_softc *sc;
2460
2461 sc = ifp->if_softc;
2462
2463 device_printf(sc->dev, "watchdog timeout\n");
2464
2465 wi_init(sc);
2466
2467 ifp->if_oerrors++;
2468
2469 return;
2470}
2471
2472int
2473wi_alloc(dev, rid)
2474 device_t dev;
2475 int rid;
2476{
2477 struct wi_softc *sc = device_get_softc(dev);
2478
2479 if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
2480 sc->iobase_rid = rid;
2481 sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
2482 &sc->iobase_rid, 0, ~0, (1 << 6),
2483 rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
2484 if (!sc->iobase) {
2485 device_printf(dev, "No I/O space?!\n");
2486 return (ENXIO);
2487 }
2488
2489 sc->wi_io_addr = rman_get_start(sc->iobase);
2490 sc->wi_btag = rman_get_bustag(sc->iobase);
2491 sc->wi_bhandle = rman_get_bushandle(sc->iobase);
2492 } else {
2493 sc->mem_rid = rid;
2494 sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY,
2495 &sc->mem_rid, 0, ~0, 1, RF_ACTIVE);
2496
2497 if (!sc->mem) {
2498 device_printf(dev, "No Mem space on prism2.5?\n");
2499 return (ENXIO);
2500 }
2501
2502 sc->wi_btag = rman_get_bustag(sc->mem);
2503 sc->wi_bhandle = rman_get_bushandle(sc->mem);
2504 }
2505
2506
2507 sc->irq_rid = 0;
2508 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
2509 0, ~0, 1, RF_ACTIVE |
2510 ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
2511
2512 if (!sc->irq) {
2513 wi_free(dev);
2514 device_printf(dev, "No irq?!\n");
2515 return (ENXIO);
2516 }
2517
2518 sc->dev = dev;
2519 sc->wi_unit = device_get_unit(dev);
2520
2521 return (0);
2522}
2523
2524void
2525wi_free(dev)
2526 device_t dev;
2527{
2528 struct wi_softc *sc = device_get_softc(dev);
2529
2530 if (sc->iobase != NULL) {
2531 bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
2532 sc->iobase = NULL;
2533 }
2534 if (sc->irq != NULL) {
2535 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
2536 sc->irq = NULL;
2537 }
2538 if (sc->mem != NULL) {
2539 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
2540 sc->mem = NULL;
2541 }
2542
2543 return;
2544}
2545
2546void
2547wi_shutdown(dev)
2548 device_t dev;
2549{
2550 struct wi_softc *sc;
2551
2552 sc = device_get_softc(dev);
2553 wi_stop(sc);
2554
2555 return;
2556}
2557
2558#ifdef WICACHE
2559/* wavelan signal strength cache code.
2560 * store signal/noise/quality on per MAC src basis in
2561 * a small fixed cache. The cache wraps if > MAX slots
2562 * used. The cache may be zeroed out to start over.
2563 * Two simple filters exist to reduce computation:
2564 * 1. ip only (literally 0x800) which may be used
2565 * to ignore some packets. It defaults to ip only.
2566 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2567 * 2. multicast/broadcast only. This may be used to
2568 * ignore unicast packets and only cache signal strength
2569 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2570 * beacons and not unicast traffic.
2571 *
2572 * The cache stores (MAC src(index), IP src (major clue), signal,
2573 * quality, noise)
2574 *
2575 * No apologies for storing IP src here. It's easy and saves much
2576 * trouble elsewhere. The cache is assumed to be INET dependent,
2577 * although it need not be.
2578 */
2579
2580#ifdef documentation
2581
2582int wi_sigitems; /* number of cached entries */
2583struct wi_sigcache wi_sigcache[MAXWICACHE]; /* array of cache entries */
2584int wi_nextitem; /* index/# of entries */
2585
2586
2587#endif
2588
2589/* control variables for cache filtering. Basic idea is
2590 * to reduce cost (e.g., to only Mobile-IP agent beacons
2591 * which are broadcast or multicast). Still you might
2592 * want to measure signal strength with unicast ping packets
2593 * on a pt. to pt. ant. setup.
2594 */
2595/* set true if you want to limit cache items to broadcast/mcast
2596 * only packets (not unicast). Useful for mobile-ip beacons which
2597 * are broadcast/multicast at network layer. Default is all packets
2598 * so ping/unicast will work say with pt. to pt. antennae setup.
2599 */
2600static int wi_cache_mcastonly = 0;
2601SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW,
2602 &wi_cache_mcastonly, 0, "");
2603
2604/* set true if you want to limit cache items to IP packets only
2605*/
2606static int wi_cache_iponly = 1;
2607SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW,
2608 &wi_cache_iponly, 0, "");
2609
2610/*
2611 * Original comments:
2612 * -----------------
2613 * wi_cache_store, per rx packet store signal
2614 * strength in MAC (src) indexed cache.
2615 *
2616 * follows linux driver in how signal strength is computed.
2617 * In ad hoc mode, we use the rx_quality field.
2618 * signal and noise are trimmed to fit in the range from 47..138.
2619 * rx_quality field MSB is signal strength.
2620 * rx_quality field LSB is noise.
2621 * "quality" is (signal - noise) as is log value.
2622 * note: quality CAN be negative.
2623 *
2624 * In BSS mode, we use the RID for communication quality.
2625 * TBD: BSS mode is currently untested.
2626 *
2627 * Bill's comments:
2628 * ---------------
2629 * Actually, we use the rx_quality field all the time for both "ad-hoc"
2630 * and BSS modes. Why? Because reading an RID is really, really expensive:
2631 * there's a bunch of PIO operations that have to be done to read a record
2632 * from the NIC, and reading the comms quality RID each time a packet is
2633 * received can really hurt performance. We don't have to do this anyway:
2634 * the comms quality field only reflects the values in the rx_quality field
2635 * anyway. The comms quality RID is only meaningful in infrastructure mode,
2636 * but the values it contains are updated based on the rx_quality from
2637 * frames received from the access point.
2638 *
2639 * Also, according to Lucent, the signal strength and noise level values
2640 * can be converted to dBms by subtracting 149, so I've modified the code
2641 * to do that instead of the scaling it did originally.
2642 */
2643static void
2644wi_cache_store(struct wi_softc *sc, struct ether_header *eh,
2645 struct mbuf *m, unsigned short rx_quality)
2646{
2647 struct ip *ip = 0;
2648 int i;
2649 static int cache_slot = 0; /* use this cache entry */
2650 static int wrapindex = 0; /* next "free" cache entry */
2651 int sig, noise;
2652 int sawip=0;
2653
2654 /*
2655 * filters:
2656 * 1. ip only
2657 * 2. configurable filter to throw out unicast packets,
2658 * keep multicast only.
2659 */
2660
2661 if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
2662 sawip = 1;
2663 }
2664
2665 /*
2666 * filter for ip packets only
2667 */
2668 if (wi_cache_iponly && !sawip) {
2669 return;
2670 }
2671
2672 /*
2673 * filter for broadcast/multicast only
2674 */
2675 if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2676 return;
2677 }
2678
2679#ifdef SIGDEBUG
2680 printf("wi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit,
2681 rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
2682#endif
2683
2684 /*
2685 * find the ip header. we want to store the ip_src
2686 * address.
2687 */
2688 if (sawip)
2689 ip = mtod(m, struct ip *);
2690
2691 /*
2692 * do a linear search for a matching MAC address
2693 * in the cache table
2694 * . MAC address is 6 bytes,
2695 * . var w_nextitem holds total number of entries already cached
2696 */
2697 for(i = 0; i < sc->wi_nextitem; i++) {
2698 if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc, 6 )) {
2699 /*
2700 * Match!,
2701 * so we already have this entry,
2702 * update the data
2703 */
2704 break;
2705 }
2706 }
2707
2708 /*
2709 * did we find a matching mac address?
2710 * if yes, then overwrite a previously existing cache entry
2711 */
2712 if (i < sc->wi_nextitem ) {
2713 cache_slot = i;
2714 }
2715 /*
2716 * else, have a new address entry,so
2717 * add this new entry,
2718 * if table full, then we need to replace LRU entry
2719 */
2720 else {
2721
2722 /*
2723 * check for space in cache table
2724 * note: wi_nextitem also holds number of entries
2725 * added in the cache table
2726 */
2727 if ( sc->wi_nextitem < MAXWICACHE ) {
2728 cache_slot = sc->wi_nextitem;
2729 sc->wi_nextitem++;
2730 sc->wi_sigitems = sc->wi_nextitem;
2731 }
2732 /* no space found, so simply wrap with wrap index
2733 * and "zap" the next entry
2734 */
2735 else {
2736 if (wrapindex == MAXWICACHE) {
2737 wrapindex = 0;
2738 }
2739 cache_slot = wrapindex++;
2740 }
2741 }
2742
2743 /*
2744 * invariant: cache_slot now points at some slot
2745 * in cache.
2746 */
2747 if (cache_slot < 0 || cache_slot >= MAXWICACHE) {
2748 log(LOG_ERR, "wi_cache_store, bad index: %d of "
2749 "[0..%d], gross cache error\n",
2750 cache_slot, MAXWICACHE);
2751 return;
2752 }
2753
2754 /*
2755 * store items in cache
2756 * .ip source address
2757 * .mac src
2758 * .signal, etc.
2759 */
2760 if (sawip)
2761 sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2762 bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc, 6);
2763
2764 sig = (rx_quality >> 8) & 0xFF;
2765 noise = rx_quality & 0xFF;
2766 sc->wi_sigcache[cache_slot].signal = sig - 149;
2767 sc->wi_sigcache[cache_slot].noise = noise - 149;
2768 sc->wi_sigcache[cache_slot].quality = sig - noise;
2769
2770 return;
2771}
2772#endif
2773
2774static int
2775wi_get_cur_ssid(sc, ssid, len)
2776 struct wi_softc *sc;
2777 char *ssid;
2778 int *len;
2779{
2780 int error = 0;
2781 struct wi_req wreq;
2782
2783 wreq.wi_len = WI_MAX_DATALEN;
2784 switch (sc->wi_ptype) {
2785 case WI_PORTTYPE_AP:
2786 *len = IEEE80211_NWID_LEN;
2787 bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2788 break;
2789 case WI_PORTTYPE_ADHOC:
2790 wreq.wi_type = WI_RID_CURRENT_SSID;
2791 error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2792 if (error != 0)
2793 break;
2794 if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2795 error = EINVAL;
2796 break;
2797 }
2798 *len = wreq.wi_val[0];
2799 bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2800 break;
2801 case WI_PORTTYPE_BSS:
2802 wreq.wi_type = WI_RID_COMMQUAL;
2803 error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2804 if (error != 0)
2805 break;
2806 if (wreq.wi_val[0] != 0) /* associated */ {
2807 wreq.wi_type = WI_RID_CURRENT_SSID;
2808 wreq.wi_len = WI_MAX_DATALEN;
2809 error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2810 if (error != 0)
2811 break;
2812 if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2813 error = EINVAL;
2814 break;
2815 }
2816 *len = wreq.wi_val[0];
2817 bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2818 } else {
2819 *len = IEEE80211_NWID_LEN;
2820 bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2821 }
2822 break;
2823 default:
2824 error = EINVAL;
2825 break;
2826 }
2827
2828 return error;
2829}
2830
2831static int
2832wi_media_change(ifp)
2833 struct ifnet *ifp;
2834{
2835 struct wi_softc *sc = ifp->if_softc;
2836 int otype = sc->wi_ptype;
2837 int orate = sc->wi_tx_rate;
2838 int ocreate_ibss = sc->wi_create_ibss;
2839
2840 if ((sc->ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_HOSTAP) &&
2841 sc->sc_firmware_type != WI_INTERSIL)
2842 return (EINVAL);
2843
2844 sc->wi_create_ibss = 0;
2845
2846 switch (sc->ifmedia.ifm_cur->ifm_media & IFM_OMASK) {
2847 case 0:
2848 sc->wi_ptype = WI_PORTTYPE_BSS;
2849 break;
2850 case IFM_IEEE80211_ADHOC:
2851 sc->wi_ptype = WI_PORTTYPE_ADHOC;
2852 break;
2853 case IFM_IEEE80211_HOSTAP:
2854 sc->wi_ptype = WI_PORTTYPE_AP;
2855 break;
2856 case IFM_IEEE80211_IBSSMASTER:
2857 case IFM_IEEE80211_IBSSMASTER|IFM_IEEE80211_IBSS:
2858 if (!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS))
2859 return (EINVAL);
2860 sc->wi_create_ibss = 1;
2861 /* FALLTHROUGH */
2862 case IFM_IEEE80211_IBSS:
2863 sc->wi_ptype = WI_PORTTYPE_IBSS;
2864 break;
2865 default:
2866 /* Invalid combination. */
2867 return (EINVAL);
2868 }
2869
2870 switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) {
2871 case IFM_IEEE80211_DS1:
2872 sc->wi_tx_rate = 1;
2873 break;
2874 case IFM_IEEE80211_DS2:
2875 sc->wi_tx_rate = 2;
2876 break;
2877 case IFM_IEEE80211_DS5:
2878 sc->wi_tx_rate = 5;
2879 break;
2880 case IFM_IEEE80211_DS11:
2881 sc->wi_tx_rate = 11;
2882 break;
2883 case IFM_AUTO:
2884 sc->wi_tx_rate = 3;
2885 break;
2886 }
2887
2888 if (ocreate_ibss != sc->wi_create_ibss || otype != sc->wi_ptype ||
2889 orate != sc->wi_tx_rate)
2890 wi_init(sc);
2891
2892 return(0);
2893}
2894
2895static void
2896wi_media_status(ifp, imr)
2897 struct ifnet *ifp;
2898 struct ifmediareq *imr;
2899{
2900 struct wi_req wreq;
2901 struct wi_softc *sc = ifp->if_softc;
2902
2903 if (sc->wi_tx_rate == 3) {
2904 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
2905 if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
2906 imr->ifm_active |= IFM_IEEE80211_ADHOC;
2907 else if (sc->wi_ptype == WI_PORTTYPE_AP)
2908 imr->ifm_active |= IFM_IEEE80211_HOSTAP;
2909 else if (sc->wi_ptype == WI_PORTTYPE_IBSS) {
2910 if (sc->wi_create_ibss)
2911 imr->ifm_active |= IFM_IEEE80211_IBSSMASTER;
2912 else
2913 imr->ifm_active |= IFM_IEEE80211_IBSS;
2914 }
2915 wreq.wi_type = WI_RID_CUR_TX_RATE;
2916 wreq.wi_len = WI_MAX_DATALEN;
2917 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
2918 switch(wreq.wi_val[0]) {
2919 case 1:
2920 imr->ifm_active |= IFM_IEEE80211_DS1;
2921 break;
2922 case 2:
2923 imr->ifm_active |= IFM_IEEE80211_DS2;
2924 break;
2925 case 6:
2926 imr->ifm_active |= IFM_IEEE80211_DS5;
2927 break;
2928 case 11:
2929 imr->ifm_active |= IFM_IEEE80211_DS11;
2930 break;
2931 }
2932 }
2933 } else {
2934 imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media;
2935 }
2936
2937 imr->ifm_status = IFM_AVALID;
2938 if (sc->wi_ptype == WI_PORTTYPE_ADHOC ||
2939 sc->wi_ptype == WI_PORTTYPE_IBSS)
2940 /*
2941 * XXX: It would be nice if we could give some actually
2942 * useful status like whether we joined another IBSS or
2943 * created one ourselves.
2944 */
2945 imr->ifm_status |= IFM_ACTIVE;
2946 else if (sc->wi_ptype == WI_PORTTYPE_AP)
2947 imr->ifm_status |= IFM_ACTIVE;
2948 else {
2949 wreq.wi_type = WI_RID_COMMQUAL;
2950 wreq.wi_len = WI_MAX_DATALEN;
2951 if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
2952 wreq.wi_val[0] != 0)
2953 imr->ifm_status |= IFM_ACTIVE;
2954 }
2955}
2956
2957static int
2958wi_get_debug(sc, wreq)
2959 struct wi_softc *sc;
2960 struct wi_req *wreq;
2961{
2962 int error = 0;
2963
2964 wreq->wi_len = 1;
2965
2966 switch (wreq->wi_type) {
2967 case WI_DEBUG_SLEEP:
2968 wreq->wi_len++;
2969 wreq->wi_val[0] = sc->wi_debug.wi_sleep;
2970 break;
2971 case WI_DEBUG_DELAYSUPP:
2972 wreq->wi_len++;
2973 wreq->wi_val[0] = sc->wi_debug.wi_delaysupp;
2974 break;
2975 case WI_DEBUG_TXSUPP:
2976 wreq->wi_len++;
2977 wreq->wi_val[0] = sc->wi_debug.wi_txsupp;
2978 break;
2979 case WI_DEBUG_MONITOR:
2980 wreq->wi_len++;
2981 wreq->wi_val[0] = sc->wi_debug.wi_monitor;
2982 break;
2983 case WI_DEBUG_LEDTEST:
2984 wreq->wi_len += 3;
2985 wreq->wi_val[0] = sc->wi_debug.wi_ledtest;
2986 wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0;
2987 wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1;
2988 break;
2989 case WI_DEBUG_CONTTX:
2990 wreq->wi_len += 2;
2991 wreq->wi_val[0] = sc->wi_debug.wi_conttx;
2992 wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0;
2993 break;
2994 case WI_DEBUG_CONTRX:
2995 wreq->wi_len++;
2996 wreq->wi_val[0] = sc->wi_debug.wi_contrx;
2997 break;
2998 case WI_DEBUG_SIGSTATE:
2999 wreq->wi_len += 2;
3000 wreq->wi_val[0] = sc->wi_debug.wi_sigstate;
3001 wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0;
3002 break;
3003 case WI_DEBUG_CONFBITS:
3004 wreq->wi_len += 2;
3005 wreq->wi_val[0] = sc->wi_debug.wi_confbits;
3006 wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0;
3007 break;
3008 default:
3009 error = EIO;
3010 break;
3011 }
3012
3013 return (error);
3014}
3015
3016static int
3017wi_set_debug(sc, wreq)
3018 struct wi_softc *sc;
3019 struct wi_req *wreq;
3020{
3021 int error = 0;
3022 u_int16_t cmd, param0 = 0, param1 = 0;
3023
3024 switch (wreq->wi_type) {
3025 case WI_DEBUG_RESET:
3026 case WI_DEBUG_INIT:
3027 case WI_DEBUG_CALENABLE:
3028 break;
3029 case WI_DEBUG_SLEEP:
3030 sc->wi_debug.wi_sleep = 1;
3031 break;
3032 case WI_DEBUG_WAKE:
3033 sc->wi_debug.wi_sleep = 0;
3034 break;
3035 case WI_DEBUG_CHAN:
3036 param0 = wreq->wi_val[0];
3037 break;
3038 case WI_DEBUG_DELAYSUPP:
3039 sc->wi_debug.wi_delaysupp = 1;
3040 break;
3041 case WI_DEBUG_TXSUPP:
3042 sc->wi_debug.wi_txsupp = 1;
3043 break;
3044 case WI_DEBUG_MONITOR:
3045 sc->wi_debug.wi_monitor = 1;
3046 break;
3047 case WI_DEBUG_LEDTEST:
3048 param0 = wreq->wi_val[0];
3049 param1 = wreq->wi_val[1];
3050 sc->wi_debug.wi_ledtest = 1;
3051 sc->wi_debug.wi_ledtest_param0 = param0;
3052 sc->wi_debug.wi_ledtest_param1 = param1;
3053 break;
3054 case WI_DEBUG_CONTTX:
3055 param0 = wreq->wi_val[0];
3056 sc->wi_debug.wi_conttx = 1;
3057 sc->wi_debug.wi_conttx_param0 = param0;
3058 break;
3059 case WI_DEBUG_STOPTEST:
3060 sc->wi_debug.wi_delaysupp = 0;
3061 sc->wi_debug.wi_txsupp = 0;
3062 sc->wi_debug.wi_monitor = 0;
3063 sc->wi_debug.wi_ledtest = 0;
3064 sc->wi_debug.wi_ledtest_param0 = 0;
3065 sc->wi_debug.wi_ledtest_param1 = 0;
3066 sc->wi_debug.wi_conttx = 0;
3067 sc->wi_debug.wi_conttx_param0 = 0;
3068 sc->wi_debug.wi_contrx = 0;
3069 sc->wi_debug.wi_sigstate = 0;
3070 sc->wi_debug.wi_sigstate_param0 = 0;
3071 break;
3072 case WI_DEBUG_CONTRX:
3073 sc->wi_debug.wi_contrx = 1;
3074 break;
3075 case WI_DEBUG_SIGSTATE:
3076 param0 = wreq->wi_val[0];
3077 sc->wi_debug.wi_sigstate = 1;
3078 sc->wi_debug.wi_sigstate_param0 = param0;
3079 break;
3080 case WI_DEBUG_CONFBITS:
3081 param0 = wreq->wi_val[0];
3082 param1 = wreq->wi_val[1];
3083 sc->wi_debug.wi_confbits = param0;
3084 sc->wi_debug.wi_confbits_param0 = param1;
3085 break;
3086 default:
3087 error = EIO;
3088 break;
3089 }
3090
3091 if (error)
3092 return (error);
3093
3094 cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
3095 error = wi_cmd(sc, cmd, param0, param1, 0);
3096
3097 return (error);
3098}