Update build for OpenSSL-0.9.8j upgrade.
[dragonfly.git] / secure / lib / libcrypto / man / BN_add.3
CommitLineData
e257b235 1.\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05)
8b0cefbb
JR
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sh \" Subsection heading
984263bc
MD
6.br
7.if t .Sp
8.ne 5
9.PP
10\fB\\$1\fR
11.PP
12..
8b0cefbb 13.de Sp \" Vertical space (when we can't use .PP)
984263bc
MD
14.if t .sp .5v
15.if n .sp
16..
8b0cefbb 17.de Vb \" Begin verbatim text
984263bc
MD
18.ft CW
19.nf
20.ne \\$1
21..
8b0cefbb 22.de Ve \" End verbatim text
984263bc 23.ft R
984263bc
MD
24.fi
25..
8b0cefbb
JR
26.\" Set up some character translations and predefined strings. \*(-- will
27.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
e257b235
PA
28.\" double quote, and \*(R" will give a right double quote. \*(C+ will
29.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
30.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
31.\" nothing in troff, for use with C<>.
32.tr \(*W-
8b0cefbb 33.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
984263bc 34.ie n \{\
8b0cefbb
JR
35. ds -- \(*W-
36. ds PI pi
37. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
39. ds L" ""
40. ds R" ""
41. ds C` ""
42. ds C' ""
984263bc
MD
43'br\}
44.el\{\
8b0cefbb
JR
45. ds -- \|\(em\|
46. ds PI \(*p
47. ds L" ``
48. ds R" ''
984263bc 49'br\}
8b0cefbb 50.\"
e257b235
PA
51.\" Escape single quotes in literal strings from groff's Unicode transform.
52.ie \n(.g .ds Aq \(aq
53.el .ds Aq '
54.\"
8b0cefbb
JR
55.\" If the F register is turned on, we'll generate index entries on stderr for
56.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
57.\" entries marked with X<> in POD. Of course, you'll have to process the
58.\" output yourself in some meaningful fashion.
e257b235 59.ie \nF \{\
8b0cefbb
JR
60. de IX
61. tm Index:\\$1\t\\n%\t"\\$2"
984263bc 62..
8b0cefbb
JR
63. nr % 0
64. rr F
984263bc 65.\}
e257b235
PA
66.el \{\
67. de IX
68..
69.\}
aac4ff6f 70.\"
8b0cefbb
JR
71.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
72.\" Fear. Run. Save yourself. No user-serviceable parts.
73. \" fudge factors for nroff and troff
984263bc 74.if n \{\
8b0cefbb
JR
75. ds #H 0
76. ds #V .8m
77. ds #F .3m
78. ds #[ \f1
79. ds #] \fP
984263bc
MD
80.\}
81.if t \{\
8b0cefbb
JR
82. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
83. ds #V .6m
84. ds #F 0
85. ds #[ \&
86. ds #] \&
984263bc 87.\}
8b0cefbb 88. \" simple accents for nroff and troff
984263bc 89.if n \{\
8b0cefbb
JR
90. ds ' \&
91. ds ` \&
92. ds ^ \&
93. ds , \&
94. ds ~ ~
95. ds /
984263bc
MD
96.\}
97.if t \{\
8b0cefbb
JR
98. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
99. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
100. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
101. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
102. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
103. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
984263bc 104.\}
8b0cefbb 105. \" troff and (daisy-wheel) nroff accents
984263bc
MD
106.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
107.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
108.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
109.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
110.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
111.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
112.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
113.ds ae a\h'-(\w'a'u*4/10)'e
114.ds Ae A\h'-(\w'A'u*4/10)'E
8b0cefbb 115. \" corrections for vroff
984263bc
MD
116.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
117.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
8b0cefbb 118. \" for low resolution devices (crt and lpr)
984263bc
MD
119.if \n(.H>23 .if \n(.V>19 \
120\{\
8b0cefbb
JR
121. ds : e
122. ds 8 ss
123. ds o a
124. ds d- d\h'-1'\(ga
125. ds D- D\h'-1'\(hy
126. ds th \o'bp'
127. ds Th \o'LP'
128. ds ae ae
129. ds Ae AE
984263bc
MD
130.\}
131.rm #[ #] #H #V #F C
8b0cefbb
JR
132.\" ========================================================================
133.\"
134.IX Title "BN_add 3"
e257b235
PA
135.TH BN_add 3 "2009-01-11" "0.9.8j" "OpenSSL"
136.\" For nroff, turn off justification. Always turn off hyphenation; it makes
137.\" way too many mistakes in technical documents.
138.if n .ad l
139.nh
984263bc
MD
140.SH "NAME"
141BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
142BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd \-
143arithmetic operations on BIGNUMs
144.SH "SYNOPSIS"
8b0cefbb 145.IX Header "SYNOPSIS"
984263bc
MD
146.Vb 1
147\& #include <openssl/bn.h>
e257b235 148\&
984263bc 149\& int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
e257b235 150\&
984263bc 151\& int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
e257b235 152\&
984263bc 153\& int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
e257b235 154\&
984263bc 155\& int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
e257b235 156\&
984263bc
MD
157\& int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
158\& BN_CTX *ctx);
e257b235 159\&
984263bc 160\& int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
e257b235 161\&
984263bc 162\& int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
e257b235 163\&
984263bc
MD
164\& int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
165\& BN_CTX *ctx);
e257b235 166\&
984263bc
MD
167\& int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
168\& BN_CTX *ctx);
e257b235 169\&
984263bc
MD
170\& int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
171\& BN_CTX *ctx);
e257b235 172\&
984263bc 173\& int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
e257b235 174\&
984263bc 175\& int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
e257b235 176\&
984263bc
MD
177\& int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
178\& const BIGNUM *m, BN_CTX *ctx);
e257b235 179\&
984263bc
MD
180\& int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
181.Ve
182.SH "DESCRIPTION"
8b0cefbb
JR
183.IX Header "DESCRIPTION"
184\&\fIBN_add()\fR adds \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CW\*(C`r=a+b\*(C'\fR).
185\&\fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR.
984263bc 186.PP
8b0cefbb 187\&\fIBN_sub()\fR subtracts \fIb\fR from \fIa\fR and places the result in \fIr\fR (\f(CW\*(C`r=a\-b\*(C'\fR).
984263bc 188.PP
8b0cefbb
JR
189\&\fIBN_mul()\fR multiplies \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CW\*(C`r=a*b\*(C'\fR).
190\&\fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR.
191For multiplication by powers of 2, use \fIBN_lshift\fR\|(3).
984263bc 192.PP
8b0cefbb
JR
193\&\fIBN_sqr()\fR takes the square of \fIa\fR and places the result in \fIr\fR
194(\f(CW\*(C`r=a^2\*(C'\fR). \fIr\fR and \fIa\fR may be the same \fB\s-1BIGNUM\s0\fR.
195This function is faster than BN_mul(r,a,a).
984263bc 196.PP
8b0cefbb
JR
197\&\fIBN_div()\fR divides \fIa\fR by \fId\fR and places the result in \fIdv\fR and the
198remainder in \fIrem\fR (\f(CW\*(C`dv=a/d, rem=a%d\*(C'\fR). Either of \fIdv\fR and \fIrem\fR may
199be \fB\s-1NULL\s0\fR, in which case the respective value is not returned.
984263bc
MD
200The result is rounded towards zero; thus if \fIa\fR is negative, the
201remainder will be zero or negative.
202For division by powers of 2, use \fIBN_rshift\fR\|(3).
203.PP
8b0cefbb 204\&\fIBN_mod()\fR corresponds to \fIBN_div()\fR with \fIdv\fR set to \fB\s-1NULL\s0\fR.
984263bc 205.PP
8b0cefbb 206\&\fIBN_nnmod()\fR reduces \fIa\fR modulo \fIm\fR and places the non-negative
984263bc
MD
207remainder in \fIr\fR.
208.PP
8b0cefbb 209\&\fIBN_mod_add()\fR adds \fIa\fR to \fIb\fR modulo \fIm\fR and places the non-negative
984263bc
MD
210result in \fIr\fR.
211.PP
8b0cefbb 212\&\fIBN_mod_sub()\fR subtracts \fIb\fR from \fIa\fR modulo \fIm\fR and places the
984263bc
MD
213non-negative result in \fIr\fR.
214.PP
8b0cefbb
JR
215\&\fIBN_mod_mul()\fR multiplies \fIa\fR by \fIb\fR and finds the non-negative
216remainder respective to modulus \fIm\fR (\f(CW\*(C`r=(a*b) mod m\*(C'\fR). \fIr\fR may be
217the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR. For more efficient algorithms for
984263bc 218repeated computations using the same modulus, see
8b0cefbb
JR
219\&\fIBN_mod_mul_montgomery\fR\|(3) and
220\&\fIBN_mod_mul_reciprocal\fR\|(3).
984263bc 221.PP
8b0cefbb 222\&\fIBN_mod_sqr()\fR takes the square of \fIa\fR modulo \fBm\fR and places the
984263bc
MD
223result in \fIr\fR.
224.PP
8b0cefbb
JR
225\&\fIBN_exp()\fR raises \fIa\fR to the \fIp\fR\-th power and places the result in \fIr\fR
226(\f(CW\*(C`r=a^p\*(C'\fR). This function is faster than repeated applications of
227\&\fIBN_mul()\fR.
984263bc 228.PP
8b0cefbb
JR
229\&\fIBN_mod_exp()\fR computes \fIa\fR to the \fIp\fR\-th power modulo \fIm\fR (\f(CW\*(C`r=a^p %
230m\*(C'\fR). This function uses less time and space than \fIBN_exp()\fR.
984263bc 231.PP
8b0cefbb
JR
232\&\fIBN_gcd()\fR computes the greatest common divisor of \fIa\fR and \fIb\fR and
233places the result in \fIr\fR. \fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or
234\&\fIb\fR.
984263bc 235.PP
8b0cefbb
JR
236For all functions, \fIctx\fR is a previously allocated \fB\s-1BN_CTX\s0\fR used for
237temporary variables; see \fIBN_CTX_new\fR\|(3).
984263bc 238.PP
8b0cefbb 239Unless noted otherwise, the result \fB\s-1BIGNUM\s0\fR must be different from
984263bc
MD
240the arguments.
241.SH "RETURN VALUES"
8b0cefbb 242.IX Header "RETURN VALUES"
984263bc 243For all functions, 1 is returned for success, 0 on error. The return
8b0cefbb
JR
244value should always be checked (e.g., \f(CW\*(C`if (!BN_add(r,a,b)) goto err;\*(C'\fR).
245The error codes can be obtained by \fIERR_get_error\fR\|(3).
984263bc 246.SH "SEE ALSO"
8b0cefbb
JR
247.IX Header "SEE ALSO"
248\&\fIbn\fR\|(3), \fIERR_get_error\fR\|(3), \fIBN_CTX_new\fR\|(3),
249\&\fIBN_add_word\fR\|(3), \fIBN_set_bit\fR\|(3)
984263bc 250.SH "HISTORY"
8b0cefbb
JR
251.IX Header "HISTORY"
252\&\fIBN_add()\fR, \fIBN_sub()\fR, \fIBN_sqr()\fR, \fIBN_div()\fR, \fIBN_mod()\fR, \fIBN_mod_mul()\fR,
253\&\fIBN_mod_exp()\fR and \fIBN_gcd()\fR are available in all versions of SSLeay and
984263bc
MD
254OpenSSL. The \fIctx\fR argument to \fIBN_mul()\fR was added in SSLeay
2550.9.1b. \fIBN_exp()\fR appeared in SSLeay 0.9.0.
8b0cefbb 256\&\fIBN_nnmod()\fR, \fIBN_mod_add()\fR, \fIBN_mod_sub()\fR, and \fIBN_mod_sqr()\fR were added in
984263bc 257OpenSSL 0.9.7.